summaryrefslogtreecommitdiff
path: root/arch/x86/events/core.c
AgeCommit message (Collapse)Author
2025-05-26Merge tag 'x86-core-2025-05-25' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core x86 updates from Ingo Molnar: "Boot code changes: - A large series of changes to reorganize the x86 boot code into a better isolated and easier to maintain base of PIC early startup code in arch/x86/boot/startup/, by Ard Biesheuvel. Motivation & background: | Since commit | | c88d71508e36 ("x86/boot/64: Rewrite startup_64() in C") | | dated Jun 6 2017, we have been using C code on the boot path in a way | that is not supported by the toolchain, i.e., to execute non-PIC C | code from a mapping of memory that is different from the one provided | to the linker. It should have been obvious at the time that this was a | bad idea, given the need to sprinkle fixup_pointer() calls left and | right to manipulate global variables (including non-pointer variables) | without crashing. | | This C startup code has been expanding, and in particular, the SEV-SNP | startup code has been expanding over the past couple of years, and | grown many of these warts, where the C code needs to use special | annotations or helpers to access global objects. This tree includes the first phase of this work-in-progress x86 boot code reorganization. Scalability enhancements and micro-optimizations: - Improve code-patching scalability (Eric Dumazet) - Remove MFENCEs for X86_BUG_CLFLUSH_MONITOR (Andrew Cooper) CPU features enumeration updates: - Thorough reorganization and cleanup of CPUID parsing APIs (Ahmed S. Darwish) - Fix, refactor and clean up the cacheinfo code (Ahmed S. Darwish, Thomas Gleixner) - Update CPUID bitfields to x86-cpuid-db v2.3 (Ahmed S. Darwish) Memory management changes: - Allow temporary MMs when IRQs are on (Andy Lutomirski) - Opt-in to IRQs-off activate_mm() (Andy Lutomirski) - Simplify choose_new_asid() and generate better code (Borislav Petkov) - Simplify 32-bit PAE page table handling (Dave Hansen) - Always use dynamic memory layout (Kirill A. Shutemov) - Make SPARSEMEM_VMEMMAP the only memory model (Kirill A. Shutemov) - Make 5-level paging support unconditional (Kirill A. Shutemov) - Stop prefetching current->mm->mmap_lock on page faults (Mateusz Guzik) - Predict valid_user_address() returning true (Mateusz Guzik) - Consolidate initmem_init() (Mike Rapoport) FPU support and vector computing: - Enable Intel APX support (Chang S. Bae) - Reorgnize and clean up the xstate code (Chang S. Bae) - Make task_struct::thread constant size (Ingo Molnar) - Restore fpu_thread_struct_whitelist() to fix CONFIG_HARDENED_USERCOPY=y (Kees Cook) - Simplify the switch_fpu_prepare() + switch_fpu_finish() logic (Oleg Nesterov) - Always preserve non-user xfeatures/flags in __state_perm (Sean Christopherson) Microcode loader changes: - Help users notice when running old Intel microcode (Dave Hansen) - AMD: Do not return error when microcode update is not necessary (Annie Li) - AMD: Clean the cache if update did not load microcode (Boris Ostrovsky) Code patching (alternatives) changes: - Simplify, reorganize and clean up the x86 text-patching code (Ingo Molnar) - Make smp_text_poke_batch_process() subsume smp_text_poke_batch_finish() (Nikolay Borisov) - Refactor the {,un}use_temporary_mm() code (Peter Zijlstra) Debugging support: - Add early IDT and GDT loading to debug relocate_kernel() bugs (David Woodhouse) - Print the reason for the last reset on modern AMD CPUs (Yazen Ghannam) - Add AMD Zen debugging document (Mario Limonciello) - Fix opcode map (!REX2) superscript tags (Masami Hiramatsu) - Stop decoding i64 instructions in x86-64 mode at opcode (Masami Hiramatsu) CPU bugs and bug mitigations: - Remove X86_BUG_MMIO_UNKNOWN (Borislav Petkov) - Fix SRSO reporting on Zen1/2 with SMT disabled (Borislav Petkov) - Restructure and harmonize the various CPU bug mitigation methods (David Kaplan) - Fix spectre_v2 mitigation default on Intel (Pawan Gupta) MSR API: - Large MSR code and API cleanup (Xin Li) - In-kernel MSR API type cleanups and renames (Ingo Molnar) PKEYS: - Simplify PKRU update in signal frame (Chang S. Bae) NMI handling code: - Clean up, refactor and simplify the NMI handling code (Sohil Mehta) - Improve NMI duration console printouts (Sohil Mehta) Paravirt guests interface: - Restrict PARAVIRT_XXL to 64-bit only (Kirill A. Shutemov) SEV support: - Share the sev_secrets_pa value again (Tom Lendacky) x86 platform changes: - Introduce the <asm/amd/> header namespace (Ingo Molnar) - i2c: piix4, x86/platform: Move the SB800 PIIX4 FCH definitions to <asm/amd/fch.h> (Mario Limonciello) Fixes and cleanups: - x86 assembly code cleanups and fixes (Uros Bizjak) - Misc fixes and cleanups (Andi Kleen, Andy Lutomirski, Andy Shevchenko, Ard Biesheuvel, Bagas Sanjaya, Baoquan He, Borislav Petkov, Chang S. Bae, Chao Gao, Dan Williams, Dave Hansen, David Kaplan, David Woodhouse, Eric Biggers, Ingo Molnar, Josh Poimboeuf, Juergen Gross, Malaya Kumar Rout, Mario Limonciello, Nathan Chancellor, Oleg Nesterov, Pawan Gupta, Peter Zijlstra, Shivank Garg, Sohil Mehta, Thomas Gleixner, Uros Bizjak, Xin Li)" * tag 'x86-core-2025-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (331 commits) x86/bugs: Fix spectre_v2 mitigation default on Intel x86/bugs: Restructure ITS mitigation x86/xen/msr: Fix uninitialized variable 'err' x86/msr: Remove a superfluous inclusion of <asm/asm.h> x86/paravirt: Restrict PARAVIRT_XXL to 64-bit only x86/mm/64: Make 5-level paging support unconditional x86/mm/64: Make SPARSEMEM_VMEMMAP the only memory model x86/mm/64: Always use dynamic memory layout x86/bugs: Fix indentation due to ITS merge x86/cpuid: Rename hypervisor_cpuid_base()/for_each_possible_hypervisor_cpuid_base() to cpuid_base_hypervisor()/for_each_possible_cpuid_base_hypervisor() x86/cpu/intel: Rename CPUID(0x2) descriptors iterator parameter x86/cacheinfo: Rename CPUID(0x2) descriptors iterator parameter x86/cpuid: Rename cpuid_get_leaf_0x2_regs() to cpuid_leaf_0x2() x86/cpuid: Rename have_cpuid_p() to cpuid_feature() x86/cpuid: Set <asm/cpuid/api.h> as the main CPUID header x86/cpuid: Move CPUID(0x2) APIs into <cpuid/api.h> x86/msr: Add rdmsrl_on_cpu() compatibility wrapper x86/mm: Fix kernel-doc descriptions of various pgtable methods x86/asm-offsets: Export certain 'struct cpuinfo_x86' fields for 64-bit asm use too x86/boot: Defer initialization of VM space related global variables ...
2025-05-21perf/x86/intel: Remove driver-specific throttle supportKan Liang
The throttle support has been added in the generic code. Remove the driver-specific throttle support. Besides the throttle, perf_event_overflow may return true because of event_limit. It already does an inatomic event disable. The pmu->stop is not required either. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20250520181644.2673067-4-kan.liang@linux.intel.com
2025-05-13Merge branch 'x86/msr' into x86/core, to resolve conflictsIngo Molnar
Conflicts: arch/x86/boot/startup/sme.c arch/x86/coco/sev/core.c arch/x86/kernel/fpu/core.c arch/x86/kernel/fpu/xstate.c Semantic conflict: arch/x86/include/asm/sev-internal.h Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-13Merge branch 'x86/alternatives' into x86/core, to merge dependent commitsIngo Molnar
Prepare to resolve conflicts with an upstream series of fixes that conflict with pending x86 changes: 6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-06Merge tag 'v6.15-rc5' into x86/msr, to pick up fixes and to resolve conflictsIngo Molnar
Conflicts: drivers/cpufreq/intel_pstate.c Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-02x86/msr: Convert the rdpmc() macro to an __always_inline functionXin Li (Intel)
Functions offer type safety and better readability compared to macros. Additionally, always inline functions can match the performance of macros. Converting the rdpmc() macro into an always inline function is simple and straightforward, so just make the change. Moreover, the read result is now the returned value, further enhancing readability. Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Juergen Gross <jgross@suse.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Kees Cook <keescook@chromium.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Uros Bizjak <ubizjak@gmail.com> Link: https://lore.kernel.org/r/20250427092027.1598740-6-xin@zytor.com
2025-05-02x86/msr: Rename rdpmcl() to rdpmc()Xin Li (Intel)
Now that rdpmc() is gone, rdpmcl() is the sole PMC read helper, simply rename rdpmcl() to rdpmc(). Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Juergen Gross <jgross@suse.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Kees Cook <keescook@chromium.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Uros Bizjak <ubizjak@gmail.com> Link: https://lore.kernel.org/r/20250427092027.1598740-5-xin@zytor.com
2025-05-02x86/msr: Add explicit includes of <asm/msr.h>Xin Li (Intel)
For historic reasons there are some TSC-related functions in the <asm/msr.h> header, even though there's an <asm/tsc.h> header. To facilitate the relocation of rdtsc{,_ordered}() from <asm/msr.h> to <asm/tsc.h> and to eventually eliminate the inclusion of <asm/msr.h> in <asm/tsc.h>, add an explicit <asm/msr.h> dependency to the source files that reference definitions from <asm/msr.h>. [ mingo: Clarified the changelog. ] Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Juergen Gross <jgross@suse.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Kees Cook <keescook@chromium.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Uros Bizjak <ubizjak@gmail.com> Link: https://lore.kernel.org/r/20250501054241.1245648-1-xin@zytor.com
2025-05-02Merge tag 'v6.15-rc4' into x86/msr, to pick up fixes and resolve conflictsIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-04-25perf/x86: Optimize the is_x86_eventKan Liang
The current is_x86_event has to go through the hybrid_pmus list to find the matched pmu, then check if it's a X86 PMU and a X86 event. It's not necessary. The X86 PMU has a unique type ID on a non-hybrid machine, and a unique capability type. They are good enough to do the check. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20250424134718.311934-5-kan.liang@linux.intel.com
2025-04-25Merge branch 'perf/urgent'Peter Zijlstra
Merge urgent fixes for dependencies. Signed-off-by: Peter Zijlstra <peterz@infradead.org>
2025-04-25perf/x86/intel: Only check the group flag for X86 leaderKan Liang
A warning in intel_pmu_lbr_counters_reorder() may be triggered by below perf command. perf record -e "{cpu-clock,cycles/call-graph="lbr"/}" -- sleep 1 It's because the group is mistakenly treated as a branch counter group. The hw.flags of the leader are used to determine whether a group is a branch counters group. However, the hw.flags is only available for a hardware event. The field to store the flags is a union type. For a software event, it's a hrtimer. The corresponding bit may be set if the leader is a software event. For a branch counter group and other groups that have a group flag (e.g., topdown, PEBS counters snapshotting, and ACR), the leader must be a X86 event. Check the X86 event before checking the flag. The patch only fixes the issue for the branch counter group. The following patch will fix the other groups. There may be an alternative way to fix the issue by moving the hw.flags out of the union type. It should work for now. But it's still possible that the flags will be used by other types of events later. As long as that type of event is used as a leader, a similar issue will be triggered. So the alternative way is dropped. Fixes: 33744916196b ("perf/x86/intel: Support branch counters logging") Closes: https://lore.kernel.org/lkml/20250412091423.1839809-1-luogengkun@huaweicloud.com/ Reported-by: Luo Gengkun <luogengkun@huaweicloud.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20250424134718.311934-2-kan.liang@linux.intel.com
2025-04-24perf/x86: Fix non-sampling (counting) events on certain x86 platformsLuo Gengkun
Perf doesn't work at perf stat for hardware events on certain x86 platforms: $perf stat -- sleep 1 Performance counter stats for 'sleep 1': 16.44 msec task-clock # 0.016 CPUs utilized 2 context-switches # 121.691 /sec 0 cpu-migrations # 0.000 /sec 54 page-faults # 3.286 K/sec <not supported> cycles <not supported> instructions <not supported> branches <not supported> branch-misses The reason is that the check in x86_pmu_hw_config() for sampling events is unexpectedly applied to counting events as well. It should only impact x86 platforms with limit_period used for non-PEBS events. For Intel platforms, it should only impact some older platforms, e.g., HSW, BDW and NHM. Fixes: 88ec7eedbbd2 ("perf/x86: Fix low freqency setting issue") Signed-off-by: Luo Gengkun <luogengkun@huaweicloud.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250423064724.3716211-1-luogengkun@huaweicloud.com
2025-04-17perf/x86/intel: Introduce pairs of PEBS static callsDapeng Mi
Arch-PEBS retires IA32_PEBS_ENABLE and MSR_PEBS_DATA_CFG MSRs, so intel_pmu_pebs_enable/disable() and intel_pmu_pebs_enable/disable_all() are not needed to call for ach-PEBS. To make the code cleaner, introduce static calls x86_pmu_pebs_enable/disable() and x86_pmu_pebs_enable/disable_all() instead of adding "x86_pmu.arch_pebs" check directly in these helpers. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20250415114428.341182-7-dapeng1.mi@linux.intel.com
2025-04-12x86/events, x86/insn-eval: Remove incorrect current->active_mm referencesAndy Lutomirski
When decoding an instruction or handling a perf event that references an LDT segment, if we don't have a valid user context, trying to access the LDT by any means other than SLDT is racy. Certainly, using current->active_mm is wrong, as active_mm can point to a real user mm when CR3 and LDTR no longer reference that mm. Clean up the code. If nmi_uaccess_okay() says we don't have a valid context, just fail. Otherwise use current->mm. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: https://lore.kernel.org/r/20250402094540.3586683-3-mingo@kernel.org
2025-04-10x86/msr: Rename 'wrmsrl_safe()' to 'wrmsrq_safe()'Ingo Molnar
Suggested-by: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Juergen Gross <jgross@suse.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Xin Li <xin@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-10x86/msr: Rename 'rdmsrl_safe()' to 'rdmsrq_safe()'Ingo Molnar
Suggested-by: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Juergen Gross <jgross@suse.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Xin Li <xin@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-10x86/msr: Rename 'wrmsrl()' to 'wrmsrq()'Ingo Molnar
Suggested-by: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Juergen Gross <jgross@suse.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Xin Li <xin@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-10x86/msr: Rename 'rdmsrl()' to 'rdmsrq()'Ingo Molnar
Suggested-by: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Juergen Gross <jgross@suse.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Xin Li <xin@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-09perf/arch: Record sample last_period before updating on the x86 and PowerPC ↵Mark Barnett
platforms This change alters the PowerPC and x86 driver implementations to record the last sample period before the event is updated for the next period. A common pattern in PMU driver implementations is to have a "*_event_set_period" function which takes care of updating the various period-related fields in a perf_event structure. In most cases, the drivers choose to call this function after initializing a sample data structure with perf_sample_data_init. The x86 and PowerPC drivers deviate from this, choosing to update the period before initializing the sample data. When using an event with an alternate sample period, this causes an incorrect period to be written to the sample data that gets reported to userspace. Signed-off-by: Mark Barnett <mark.barnett@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250408171530.140858-2-mark.barnett@arm.com
2025-04-08perf/x86/intel: Support auto counter reloadKan Liang
The relative rates among two or more events are useful for performance analysis, e.g., a high branch miss rate may indicate a performance issue. Usually, the samples with a relative rate that exceeds some threshold are more useful. However, the traditional sampling takes samples of events separately. To get the relative rates among two or more events, a high sample rate is required, which can bring high overhead. Many samples taken in the non-hotspot area are also dropped (useless) in the post-process. The auto counter reload (ACR) feature takes samples when the relative rate of two or more events exceeds some threshold, which provides the fine-grained information at a low cost. To support the feature, two sets of MSRs are introduced. For a given counter IA32_PMC_GPn_CTR/IA32_PMC_FXm_CTR, bit fields in the IA32_PMC_GPn_CFG_B/IA32_PMC_FXm_CFG_B MSR indicate which counter(s) can cause a reload of that counter. The reload value is stored in the IA32_PMC_GPn_CFG_C/IA32_PMC_FXm_CFG_C. The details can be found at Intel SDM (085), Volume 3, 21.9.11 Auto Counter Reload. In the hw_config(), an ACR event is specially configured, because the cause/reloadable counter mask has to be applied to the dyn_constraint. Besides the HW limit, e.g., not support perf metrics, PDist and etc, a SW limit is applied as well. ACR events in a group must be contiguous. It facilitates the later conversion from the event idx to the counter idx. Otherwise, the intel_pmu_acr_late_setup() has to traverse the whole event list again to find the "cause" event. Also, add a new flag PERF_X86_EVENT_ACR to indicate an ACR group, which is set to the group leader. The late setup() is also required for an ACR group. It's to convert the event idx to the counter idx, and saved it in hw.config1. The ACR configuration MSRs are only updated in the enable_event(). The disable_event() doesn't clear the ACR CFG register. Add acr_cfg_b/acr_cfg_c in the struct cpu_hw_events to cache the MSR values. It can avoid a MSR write if the value is not changed. Expose an acr_mask to the sysfs. The perf tool can utilize the new format to configure the relation of events in the group. The bit sequence of the acr_mask follows the events enabled order of the group. Example: Here is the snippet of the mispredict.c. Since the array has a random numbers, jumps are random and often mispredicted. The mispredicted rate depends on the compared value. For the Loop1, ~11% of all branches are mispredicted. For the Loop2, ~21% of all branches are mispredicted. main() { ... for (i = 0; i < N; i++) data[i] = rand() % 256; ... /* Loop 1 */ for (k = 0; k < 50; k++) for (i = 0; i < N; i++) if (data[i] >= 64) sum += data[i]; ... ... /* Loop 2 */ for (k = 0; k < 50; k++) for (i = 0; i < N; i++) if (data[i] >= 128) sum += data[i]; ... } Usually, a code with a high branch miss rate means a bad performance. To understand the branch miss rate of the codes, the traditional method usually samples both branches and branch-misses events. E.g., perf record -e "{cpu_atom/branch-misses/ppu, cpu_atom/branch-instructions/u}" -c 1000000 -- ./mispredict [ perf record: Woken up 4 times to write data ] [ perf record: Captured and wrote 0.925 MB perf.data (5106 samples) ] The 5106 samples are from both events and spread in both Loops. In the post-process stage, a user can know that the Loop 2 has a 21% branch miss rate. Then they can focus on the samples of branch-misses events for the Loop 2. With this patch, the user can generate the samples only when the branch miss rate > 20%. For example, perf record -e "{cpu_atom/branch-misses,period=200000,acr_mask=0x2/ppu, cpu_atom/branch-instructions,period=1000000,acr_mask=0x3/u}" -- ./mispredict (Two different periods are applied to branch-misses and branch-instructions. The ratio is set to 20%. If the branch-instructions is overflowed first, the branch-miss rate < 20%. No samples should be generated. All counters should be automatically reloaded. If the branch-misses is overflowed first, the branch-miss rate > 20%. A sample triggered by the branch-misses event should be generated. Just the counter of the branch-instructions should be automatically reloaded. The branch-misses event should only be automatically reloaded when the branch-instructions is overflowed. So the "cause" event is the branch-instructions event. The acr_mask is set to 0x2, since the event index in the group of branch-instructions is 1. The branch-instructions event is automatically reloaded no matter which events are overflowed. So the "cause" events are the branch-misses and the branch-instructions event. The acr_mask should be set to 0x3.) [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.098 MB perf.data (2498 samples) ] $perf report Percent │154: movl $0x0,-0x14(%rbp) │ ↓ jmp 1af │ for (i = j; i < N; i++) │15d: mov -0x10(%rbp),%eax │ mov %eax,-0x18(%rbp) │ ↓ jmp 1a2 │ if (data[i] >= 128) │165: mov -0x18(%rbp),%eax │ cltq │ lea 0x0(,%rax,4),%rdx │ mov -0x8(%rbp),%rax │ add %rdx,%rax │ mov (%rax),%eax │ ┌──cmp $0x7f,%eax 100.00 0.00 │ ├──jle 19e │ │sum += data[i]; The 2498 samples are all from the branch-misses events for the Loop 2. The number of samples and overhead is significantly reduced without losing any information. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Thomas Falcon <thomas.falcon@intel.com> Link: https://lkml.kernel.org/r/20250327195217.2683619-6-kan.liang@linux.intel.com
2025-04-08perf/x86: Add dynamic constraintKan Liang
More and more features require a dynamic event constraint, e.g., branch counter logging, auto counter reload, Arch PEBS, etc. Add a generic flag, PMU_FL_DYN_CONSTRAINT, to indicate the case. It avoids keeping adding the individual flag in intel_cpuc_prepare(). Add a variable dyn_constraint in the struct hw_perf_event to track the dynamic constraint of the event. Apply it if it's updated. Apply the generic dynamic constraint for branch counter logging. Many features on and after V6 require dynamic constraint. So unconditionally set the flag for V6+. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Thomas Falcon <thomas.falcon@intel.com> Link: https://lkml.kernel.org/r/20250327195217.2683619-2-kan.liang@linux.intel.com
2025-03-24Merge tag 'x86-core-2025-03-22' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core x86 updates from Ingo Molnar: "x86 CPU features support: - Generate the <asm/cpufeaturemasks.h> header based on build config (H. Peter Anvin, Xin Li) - x86 CPUID parsing updates and fixes (Ahmed S. Darwish) - Introduce the 'setcpuid=' boot parameter (Brendan Jackman) - Enable modifying CPU bug flags with '{clear,set}puid=' (Brendan Jackman) - Utilize CPU-type for CPU matching (Pawan Gupta) - Warn about unmet CPU feature dependencies (Sohil Mehta) - Prepare for new Intel Family numbers (Sohil Mehta) Percpu code: - Standardize & reorganize the x86 percpu layout and related cleanups (Brian Gerst) - Convert the stackprotector canary to a regular percpu variable (Brian Gerst) - Add a percpu subsection for cache hot data (Brian Gerst) - Unify __pcpu_op{1,2}_N() macros to __pcpu_op_N() (Uros Bizjak) - Construct __percpu_seg_override from __percpu_seg (Uros Bizjak) MM: - Add support for broadcast TLB invalidation using AMD's INVLPGB instruction (Rik van Riel) - Rework ROX cache to avoid writable copy (Mike Rapoport) - PAT: restore large ROX pages after fragmentation (Kirill A. Shutemov, Mike Rapoport) - Make memremap(MEMREMAP_WB) map memory as encrypted by default (Kirill A. Shutemov) - Robustify page table initialization (Kirill A. Shutemov) - Fix flush_tlb_range() when used for zapping normal PMDs (Jann Horn) - Clear _PAGE_DIRTY for kernel mappings when we clear _PAGE_RW (Matthew Wilcox) KASLR: - x86/kaslr: Reduce KASLR entropy on most x86 systems, to support PCI BAR space beyond the 10TiB region (CONFIG_PCI_P2PDMA=y) (Balbir Singh) CPU bugs: - Implement FineIBT-BHI mitigation (Peter Zijlstra) - speculation: Simplify and make CALL_NOSPEC consistent (Pawan Gupta) - speculation: Add a conditional CS prefix to CALL_NOSPEC (Pawan Gupta) - RFDS: Exclude P-only parts from the RFDS affected list (Pawan Gupta) System calls: - Break up entry/common.c (Brian Gerst) - Move sysctls into arch/x86 (Joel Granados) Intel LAM support updates: (Maciej Wieczor-Retman) - selftests/lam: Move cpu_has_la57() to use cpuinfo flag - selftests/lam: Skip test if LAM is disabled - selftests/lam: Test get_user() LAM pointer handling AMD SMN access updates: - Add SMN offsets to exclusive region access (Mario Limonciello) - Add support for debugfs access to SMN registers (Mario Limonciello) - Have HSMP use SMN through AMD_NODE (Yazen Ghannam) Power management updates: (Patryk Wlazlyn) - Allow calling mwait_play_dead with an arbitrary hint - ACPI/processor_idle: Add FFH state handling - intel_idle: Provide the default enter_dead() handler - Eliminate mwait_play_dead_cpuid_hint() Build system: - Raise the minimum GCC version to 8.1 (Brian Gerst) - Raise the minimum LLVM version to 15.0.0 (Nathan Chancellor) Kconfig: (Arnd Bergmann) - Add cmpxchg8b support back to Geode CPUs - Drop 32-bit "bigsmp" machine support - Rework CONFIG_GENERIC_CPU compiler flags - Drop configuration options for early 64-bit CPUs - Remove CONFIG_HIGHMEM64G support - Drop CONFIG_SWIOTLB for PAE - Drop support for CONFIG_HIGHPTE - Document CONFIG_X86_INTEL_MID as 64-bit-only - Remove old STA2x11 support - Only allow CONFIG_EISA for 32-bit Headers: - Replace __ASSEMBLY__ with __ASSEMBLER__ in UAPI and non-UAPI headers (Thomas Huth) Assembly code & machine code patching: - x86/alternatives: Simplify alternative_call() interface (Josh Poimboeuf) - x86/alternatives: Simplify callthunk patching (Peter Zijlstra) - KVM: VMX: Use named operands in inline asm (Josh Poimboeuf) - x86/hyperv: Use named operands in inline asm (Josh Poimboeuf) - x86/traps: Cleanup and robustify decode_bug() (Peter Zijlstra) - x86/kexec: Merge x86_32 and x86_64 code using macros from <asm/asm.h> (Uros Bizjak) - Use named operands in inline asm (Uros Bizjak) - Improve performance by using asm_inline() for atomic locking instructions (Uros Bizjak) Earlyprintk: - Harden early_serial (Peter Zijlstra) NMI handler: - Add an emergency handler in nmi_desc & use it in nmi_shootdown_cpus() (Waiman Long) Miscellaneous fixes and cleanups: - by Ahmed S. Darwish, Andy Shevchenko, Ard Biesheuvel, Artem Bityutskiy, Borislav Petkov, Brendan Jackman, Brian Gerst, Dan Carpenter, Dr. David Alan Gilbert, H. Peter Anvin, Ingo Molnar, Josh Poimboeuf, Kevin Brodsky, Mike Rapoport, Lukas Bulwahn, Maciej Wieczor-Retman, Max Grobecker, Patryk Wlazlyn, Pawan Gupta, Peter Zijlstra, Philip Redkin, Qasim Ijaz, Rik van Riel, Thomas Gleixner, Thorsten Blum, Tom Lendacky, Tony Luck, Uros Bizjak, Vitaly Kuznetsov, Xin Li, liuye" * tag 'x86-core-2025-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (211 commits) zstd: Increase DYNAMIC_BMI2 GCC version cutoff from 4.8 to 11.0 to work around compiler segfault x86/asm: Make asm export of __ref_stack_chk_guard unconditional x86/mm: Only do broadcast flush from reclaim if pages were unmapped perf/x86/intel, x86/cpu: Replace Pentium 4 model checks with VFM ones perf/x86/intel, x86/cpu: Simplify Intel PMU initialization x86/headers: Replace __ASSEMBLY__ with __ASSEMBLER__ in non-UAPI headers x86/headers: Replace __ASSEMBLY__ with __ASSEMBLER__ in UAPI headers x86/locking/atomic: Improve performance by using asm_inline() for atomic locking instructions x86/asm: Use asm_inline() instead of asm() in clwb() x86/asm: Use CLFLUSHOPT and CLWB mnemonics in <asm/special_insns.h> x86/hweight: Use asm_inline() instead of asm() x86/hweight: Use ASM_CALL_CONSTRAINT in inline asm() x86/hweight: Use named operands in inline asm() x86/stackprotector/64: Only export __ref_stack_chk_guard on CONFIG_SMP x86/head/64: Avoid Clang < 17 stack protector in startup code x86/kexec: Merge x86_32 and x86_64 code using macros from <asm/asm.h> x86/runtime-const: Add the RUNTIME_CONST_PTR assembly macro x86/cpu/intel: Limit the non-architectural constant_tsc model checks x86/mm/pat: Replace Intel x86_model checks with VFM ones x86/cpu/intel: Fix fast string initialization for extended Families ...
2025-03-17perf/x86: Remove swap_task_ctx()Kan Liang
The pmu specific data is saved in task_struct now. It doesn't need to swap between context. Remove swap_task_ctx() support. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20250314172700.438923-6-kan.liang@linux.intel.com
2025-03-17perf: Supply task information to sched_task()Kan Liang
To save/restore LBR call stack data in system-wide mode, the task_struct information is required. Extend the parameters of sched_task() to supply task_struct information. When schedule in, the LBR call stack data for new task will be restored. When schedule out, the LBR call stack data for old task will be saved. Only need to pass the required task_struct information. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20250314172700.438923-4-kan.liang@linux.intel.com
2025-03-03Merge tag 'v6.14-rc5' into x86/core, to pick up fixesIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-03-01Merge branch 'perf/urgent' into perf/core, to pick up dependent patches and ↵Ingo Molnar
fixes Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-02-25perf/x86: Fix low freqency setting issueKan Liang
Perf doesn't work at low frequencies: $ perf record -e cpu_core/instructions/ppp -F 120 Error: The sys_perf_event_open() syscall returned with 22 (Invalid argument) for event (cpu_core/instructions/ppp). "dmesg | grep -i perf" may provide additional information. The limit_period() check avoids a low sampling period on a counter. It doesn't intend to limit the frequency. The check in the x86_pmu_hw_config() should be limited to non-freq mode. The attr.sample_period and attr.sample_freq are union. The attr.sample_period should not be used to indicate the frequency mode. Fixes: c46e665f0377 ("perf/x86: Add INST_RETIRED.ALL workarounds") Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20250117151913.3043942-1-kan.liang@linux.intel.com Closes: https://lore.kernel.org/lkml/20250115154949.3147-1-ravi.bangoria@amd.com/
2025-02-14x86/ibt: Clean up is_endbr()Peter Zijlstra
Pretty much every caller of is_endbr() actually wants to test something at an address and ends up doing get_kernel_nofault(). Fold the lot into a more convenient helper. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Sami Tolvanen <samitolvanen@google.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: "Masami Hiramatsu (Google)" <mhiramat@kernel.org> Link: https://lore.kernel.org/r/20250207122546.181367417@infradead.org
2025-02-05perf/x86/intel: Support PEBS counters snapshottingKan Liang
The counters snapshotting is a new adaptive PEBS extension, which can capture programmable counters, fixed-function counters, and performance metrics in a PEBS record. The feature is available in the PEBS format V6. The target counters can be configured in the new fields of MSR_PEBS_CFG. Then the PEBS HW will generate the bit mask of counters (Counters Group Header) followed by the content of all the requested counters into a PEBS record. The current Linux perf sample read feature can read all events in the group when any event in the group is overflowed. But the rdpmc in the NMI/overflow handler has a small gap from overflow. Also, there is some overhead for each rdpmc read. The counters snapshotting feature can be used as an accurate and low-overhead replacement. Extend intel_update_topdown_event() to accept the value from PEBS records. Add a new PEBS_CNTR flag to indicate a sample read group that utilizes the counters snapshotting feature. When the group is scheduled, the PEBS configure can be updated accordingly. To prevent the case that a PEBS record value might be in the past relative to what is already in the event, perf always stops the PMU and drains the PEBS buffer before updating the corresponding event->count. Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20250121152303.3128733-4-kan.liang@linux.intel.com
2024-11-19perf/core: Check sample_type in perf_sample_save_brstackYabin Cui
Check sample_type in perf_sample_save_brstack() to prevent saving branch stack data when it isn't required. Suggested-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Yabin Cui <yabinc@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ian Rogers <irogers@google.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20240515193610.2350456-4-yabinc@google.com
2024-11-14perf/core: Correct perf sampling with guest VMsColton Lewis
Previously any PMU overflow interrupt that fired while a VCPU was loaded was recorded as a guest event whether it truly was or not. This resulted in nonsense perf recordings that did not honor perf_event_attr.exclude_guest and recorded guest IPs where it should have recorded host IPs. Rework the sampling logic to only record guest samples for events with exclude_guest = 0. This way any host-only events with exclude_guest set will never see unexpected guest samples. The behaviour of events with exclude_guest = 0 is unchanged. Note that events configured to sample both host and guest may still misattribute a PMI that arrived in the host as a guest event depending on KVM arch and vendor behavior. Signed-off-by: Colton Lewis <coltonlewis@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20241113190156.2145593-6-coltonlewis@google.com
2024-11-14perf/x86: Refactor misc flag assignmentsColton Lewis
Break the assignment logic for misc flags into their own respective functions to reduce the complexity of the nested logic. Signed-off-by: Colton Lewis <coltonlewis@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Acked-by: Kan Liang <kan.liang@linux.intel.com> Link: https://lore.kernel.org/r/20241113190156.2145593-5-coltonlewis@google.com
2024-11-14perf/core: Hoist perf_instruction_pointer() and perf_misc_flags()Colton Lewis
For clarity, rename the arch-specific definitions of these functions to perf_arch_* to denote they are arch-specifc. Define the generic-named functions in one place where they can call the arch-specific ones as needed. Signed-off-by: Colton Lewis <coltonlewis@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Acked-by: Thomas Richter <tmricht@linux.ibm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Madhavan Srinivasan <maddy@linux.ibm.com> Acked-by: Kan Liang <kan.liang@linux.intel.com> Link: https://lore.kernel.org/r/20241113190156.2145593-3-coltonlewis@google.com
2024-09-05Merge branch 'perf/urgent' into perf/core, to pick up fixesIngo Molnar
This also refreshes the -rc1 based branch to -rc5. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-08-02perf,x86: avoid missing caller address in stack traces captured in uprobeAndrii Nakryiko
When tracing user functions with uprobe functionality, it's common to install the probe (e.g., a BPF program) at the first instruction of the function. This is often going to be `push %rbp` instruction in function preamble, which means that within that function frame pointer hasn't been established yet. This leads to consistently missing an actual caller of the traced function, because perf_callchain_user() only records current IP (capturing traced function) and then following frame pointer chain (which would be caller's frame, containing the address of caller's caller). So when we have target_1 -> target_2 -> target_3 call chain and we are tracing an entry to target_3, captured stack trace will report target_1 -> target_3 call chain, which is wrong and confusing. This patch proposes a x86-64-specific heuristic to detect `push %rbp` (`push %ebp` on 32-bit architecture) instruction being traced. Given entire kernel implementation of user space stack trace capturing works under assumption that user space code was compiled with frame pointer register (%rbp/%ebp) preservation, it seems pretty reasonable to use this instruction as a strong indicator that this is the entry to the function. In that case, return address is still pointed to by %rsp/%esp, so we fetch it and add to stack trace before proceeding to unwind the rest using frame pointer-based logic. We also check for `endbr64` (for 64-bit modes) as another common pattern for function entry, as suggested by Josh Poimboeuf. Even if we get this wrong sometimes for uprobes attached not at the function entry, it's OK because stack trace will still be overall meaningful, just with one extra bogus entry. If we don't detect this, we end up with guaranteed to be missing caller function entry in the stack trace, which is worse overall. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20240729175223.23914-1-andrii@kernel.org
2024-07-31perf/x86: Fix smp_processor_id()-in-preemptible warningsLi Huafei
The following bug was triggered on a system built with CONFIG_DEBUG_PREEMPT=y: # echo p > /proc/sysrq-trigger BUG: using smp_processor_id() in preemptible [00000000] code: sh/117 caller is perf_event_print_debug+0x1a/0x4c0 CPU: 3 UID: 0 PID: 117 Comm: sh Not tainted 6.11.0-rc1 #109 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x4f/0x60 check_preemption_disabled+0xc8/0xd0 perf_event_print_debug+0x1a/0x4c0 __handle_sysrq+0x140/0x180 write_sysrq_trigger+0x61/0x70 proc_reg_write+0x4e/0x70 vfs_write+0xd0/0x430 ? handle_mm_fault+0xc8/0x240 ksys_write+0x9c/0xd0 do_syscall_64+0x96/0x190 entry_SYSCALL_64_after_hwframe+0x4b/0x53 This is because the commit d4b294bf84db ("perf/x86: Hybrid PMU support for counters") took smp_processor_id() outside the irq critical section. If a preemption occurs in perf_event_print_debug() and the task is migrated to another cpu, we may get incorrect pmu debug information. Move smp_processor_id() back inside the irq critical section to fix this issue. Fixes: d4b294bf84db ("perf/x86: Hybrid PMU support for counters") Signed-off-by: Li Huafei <lihuafei1@huawei.com> Reviewed-and-tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Link: https://lore.kernel.org/r/20240729220928.325449-1-lihuafei1@huawei.com
2024-07-16Merge tag 'perf-core-2024-07-16' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull performance events updates from Ingo Molnar: - Intel PT support enhancements & fixes - Fix leaked SIGTRAP events - Improve and fix the Intel uncore driver - Add support for Intel HBM and CXL uncore counters - Add Intel Lake and Arrow Lake support - AMD uncore driver fixes - Make SIGTRAP and __perf_pending_irq() work on RT - Micro-optimizations - Misc cleanups and fixes * tag 'perf-core-2024-07-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits) perf/x86/intel: Add a distinct name for Granite Rapids perf/x86/intel/ds: Fix non 0 retire latency on Raptorlake perf/x86/intel: Hide Topdown metrics events if the feature is not enumerated perf/x86/intel/uncore: Fix the bits of the CHA extended umask for SPR perf: Split __perf_pending_irq() out of perf_pending_irq() perf: Don't disable preemption in perf_pending_task(). perf: Move swevent_htable::recursion into task_struct. perf: Shrink the size of the recursion counter. perf: Enqueue SIGTRAP always via task_work. task_work: Add TWA_NMI_CURRENT as an additional notify mode. perf: Move irq_work_queue() where the event is prepared. perf: Fix event leak upon exec and file release perf: Fix event leak upon exit task_work: Introduce task_work_cancel() again task_work: s/task_work_cancel()/task_work_cancel_func()/ perf/x86/amd/uncore: Fix DF and UMC domain identification perf/x86/amd/uncore: Avoid PMU registration if counters are unavailable perf/x86/intel: Support Perfmon MSRs aliasing perf/x86/intel: Support PERFEVTSEL extension perf/x86: Add config_mask to represent EVENTSEL bitmask ...
2024-07-04perf/x86/intel: Support Perfmon MSRs aliasingKan Liang
The architectural performance monitoring V6 supports a new range of counters' MSRs in the 19xxH address range. They include all the GP counter MSRs, the GP control MSRs, and the fixed counter MSRs. The step between each sibling counter is 4. Add intel_pmu_addr_offset() to calculate the correct offset. Add fixedctr in struct x86_pmu to store the address of the fixed counter 0. It can be used to calculate the rest of the fixed counters. The MSR address of the fixed counter control is not changed. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Ian Rogers <irogers@google.com> Link: https://lkml.kernel.org/r/20240626143545.480761-9-kan.liang@linux.intel.com
2024-07-04perf/x86: Add config_mask to represent EVENTSEL bitmaskKan Liang
Different vendors may support different fields in EVENTSEL MSR, such as Intel would introduce new fields umask2 and eq bits in EVENTSEL MSR since Perfmon version 6. However, a fixed mask X86_RAW_EVENT_MASK is used to filter the attr.config. Introduce a new config_mask to record the real supported EVENTSEL bitmask. Only apply it to the existing code now. No functional change. Co-developed-by: Dapeng Mi <dapeng1.mi@linux.intel.com> Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Ian Rogers <irogers@google.com> Link: https://lkml.kernel.org/r/20240626143545.480761-7-kan.liang@linux.intel.com
2024-07-04perf/x86: Support counter maskKan Liang
The current perf assumes that both GP and fixed counters are contiguous. But it's not guaranteed on newer Intel platforms or in a virtualization environment. Use the counter mask to replace the number of counters for both GP and the fixed counters. For the other ARCHs or old platforms which don't support a counter mask, using GENMASK_ULL(num_counter - 1, 0) to replace. There is no functional change for them. The interface to KVM is not changed. The number of counters still be passed to KVM. It can be updated later separately. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Ian Rogers <irogers@google.com> Link: https://lkml.kernel.org/r/20240626143545.480761-3-kan.liang@linux.intel.com
2024-06-11perf/x86: Serialize set_attr_rdpmc()Thomas Gleixner
Yue and Xingwei reported a jump label failure. It's caused by the lack of serialization in set_attr_rdpmc(): CPU0 CPU1 Assume: x86_pmu.attr_rdpmc == 0 if (val != x86_pmu.attr_rdpmc) { if (val == 0) ... else if (x86_pmu.attr_rdpmc == 0) static_branch_dec(&rdpmc_never_available_key); if (val != x86_pmu.attr_rdpmc) { if (val == 0) ... else if (x86_pmu.attr_rdpmc == 0) FAIL, due to imbalance ---> static_branch_dec(&rdpmc_never_available_key); The reported BUG() is a consequence of the above and of another bug in the jump label core code. The core code needs a separate fix, but that cannot prevent the imbalance problem caused by set_attr_rdpmc(). Prevent this by serializing set_attr_rdpmc() locally. Fixes: a66734297f78 ("perf/x86: Add /sys/devices/cpu/rdpmc=2 to allow rdpmc for all tasks") Closes: https://lore.kernel.org/r/CAEkJfYNzfW1vG=ZTMdz_Weoo=RXY1NDunbxnDaLyj8R4kEoE_w@mail.gmail.com Reported-by: Yue Sun <samsun1006219@gmail.com> Reported-by: Xingwei Lee <xrivendell7@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20240610124406.359476013@linutronix.de
2024-04-10perf/x86: Fix out of range dataNamhyung Kim
On x86 each struct cpu_hw_events maintains a table for counter assignment but it missed to update one for the deleted event in x86_pmu_del(). This can make perf_clear_dirty_counters() reset used counter if it's called before event scheduling or enabling. Then it would return out of range data which doesn't make sense. The following code can reproduce the problem. $ cat repro.c #include <pthread.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <linux/perf_event.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <sys/syscall.h> struct perf_event_attr attr = { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES, .disabled = 1, }; void *worker(void *arg) { int cpu = (long)arg; int fd1 = syscall(SYS_perf_event_open, &attr, -1, cpu, -1, 0); int fd2 = syscall(SYS_perf_event_open, &attr, -1, cpu, -1, 0); void *p; do { ioctl(fd1, PERF_EVENT_IOC_ENABLE, 0); p = mmap(NULL, 4096, PROT_READ, MAP_SHARED, fd1, 0); ioctl(fd2, PERF_EVENT_IOC_ENABLE, 0); ioctl(fd2, PERF_EVENT_IOC_DISABLE, 0); munmap(p, 4096); ioctl(fd1, PERF_EVENT_IOC_DISABLE, 0); } while (1); return NULL; } int main(void) { int i; int n = sysconf(_SC_NPROCESSORS_ONLN); pthread_t *th = calloc(n, sizeof(*th)); for (i = 0; i < n; i++) pthread_create(&th[i], NULL, worker, (void *)(long)i); for (i = 0; i < n; i++) pthread_join(th[i], NULL); free(th); return 0; } And you can see the out of range data using perf stat like this. Probably it'd be easier to see on a large machine. $ gcc -o repro repro.c -pthread $ ./repro & $ sudo perf stat -A -I 1000 2>&1 | awk '{ if (length($3) > 15) print }' 1.001028462 CPU6 196,719,295,683,763 cycles # 194290.996 GHz (71.54%) 1.001028462 CPU3 396,077,485,787,730 branch-misses # 15804359784.80% of all branches (71.07%) 1.001028462 CPU17 197,608,350,727,877 branch-misses # 14594186554.56% of all branches (71.22%) 2.020064073 CPU4 198,372,472,612,140 cycles # 194681.113 GHz (70.95%) 2.020064073 CPU6 199,419,277,896,696 cycles # 195720.007 GHz (70.57%) 2.020064073 CPU20 198,147,174,025,639 cycles # 194474.654 GHz (71.03%) 2.020064073 CPU20 198,421,240,580,145 stalled-cycles-frontend # 100.14% frontend cycles idle (70.93%) 3.037443155 CPU4 197,382,689,923,416 cycles # 194043.065 GHz (71.30%) 3.037443155 CPU20 196,324,797,879,414 cycles # 193003.773 GHz (71.69%) 3.037443155 CPU5 197,679,956,608,205 stalled-cycles-backend # 1315606428.66% backend cycles idle (71.19%) 3.037443155 CPU5 198,571,860,474,851 instructions # 13215422.58 insn per cycle It should move the contents in the cpuc->assign as well. Fixes: 5471eea5d3bf ("perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task") Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20240306061003.1894224-1-namhyung@kernel.org
2023-10-27perf: Add branch_sample_call_stackKan Liang
Add a helper function to check call stack sample type. The later patch will invoke the function in several places. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20231025201626.3000228-3-kan.liang@linux.intel.com
2023-10-27perf: Add branch stack countersKan Liang
Currently, the additional information of a branch entry is stored in a u64 space. With more and more information added, the space is running out. For example, the information of occurrences of events will be added for each branch. Two places were suggested to append the counters. https://lore.kernel.org/lkml/20230802215814.GH231007@hirez.programming.kicks-ass.net/ One place is right after the flags of each branch entry. It changes the existing struct perf_branch_entry. The later ARCH specific implementation has to be really careful to consistently pick the right struct. The other place is right after the entire struct perf_branch_stack. The disadvantage is that the pointer of the extra space has to be recorded. The common interface perf_sample_save_brstack() has to be updated. The latter is much straightforward, and should be easily understood and maintained. It is implemented in the patch. Add a new branch sample type, PERF_SAMPLE_BRANCH_COUNTERS, to indicate the event which is recorded in the branch info. The "u64 counters" may store the occurrences of several events. The information regarding the number of events/counters and the width of each counter should be exposed via sysfs as a reference for the perf tool. Define the branch_counter_nr and branch_counter_width ABI here. The support will be implemented later in the Intel-specific patch. Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20231025201626.3000228-1-kan.liang@linux.intel.com
2023-08-29perf/x86/intel: Clean up the hybrid CPU type handling codeKan Liang
There is a fairly long list of grievances about the current code. The main beefs: 1. hybrid_big_small assumes that the *HARDWARE* (CPUID) provided core types are a bitmap. They are not. If Intel happened to make a core type of 0xff, hilarity would ensue. 2. adl_get_hybrid_cpu_type() utterly inscrutable. There are precisely zero comments and zero changelog about what it is attempting to do. According to Kan, the adl_get_hybrid_cpu_type() is there because some Alder Lake (ADL) CPUs can do some silly things. Some ADL models are *supposed* to be hybrid CPUs with big and little cores, but there are some SKUs that only have big cores. CPUID(0x1a) on those CPUs does not say that the CPUs are big cores. It apparently just returns 0x0. It confuses perf because it expects to see either 0x40 (Core) or 0x20 (Atom). The perf workaround for this is to watch for a CPU core saying it is type 0x0. If that happens on an Alder Lake, it calls x86_pmu.get_hybrid_cpu_type() and just assumes that the core is a Core (0x40) CPU. To fix up the mess, separate out the CPU types and the 'pmu' types. This allows 'hybrid_pmu_type' bitmaps without worrying that some future CPU type will set multiple bits. Since the types are now separate, add a function to glue them back together again. Actual comment on the situation in the glue function (find_hybrid_pmu_for_cpu()). Also, give ->get_hybrid_cpu_type() a real return type and make it clear that it is overriding the *CPU* type, not the PMU type. Rename cpu_type to pmu_type in the struct x86_hybrid_pmu to reflect the change. Originally-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230829125806.3016082-6-kan.liang@linux.intel.com
2023-07-26perf/x86: Remove unused PERF_PMU_CAP_HETEROGENEOUS_CPUS capabilityJames Clark
Since commit bd2756811766 ("perf: Rewrite core context handling") the relationship between perf_event_context and PMUs has changed so that the error scenario that PERF_PMU_CAP_HETEROGENEOUS_CPUS originally silenced no longer exists. Remove the capability to avoid confusion that it actually influences any perf core behavior. This change should be a no-op. Signed-off-by: James Clark <james.clark@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20230724134500.970496-3-james.clark@arm.com
2023-07-10perf/x86: Use local64_try_cmpxchgUros Bizjak
Use local64_try_cmpxchg instead of local64_cmpxchg (*ptr, old, new) == old. x86 CMPXCHG instruction returns success in ZF flag, so this change saves a compare after cmpxchg (and related move instruction in front of cmpxchg). Also, try_cmpxchg implicitly assigns old *ptr value to "old" when cmpxchg fails. There is no need to re-read the value in the loop. No functional change intended. Cc. "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20230706141720.2672-1-ubizjak@gmail.com
2023-05-08perf/x86: Fix missing sample size update on AMD BRSNamhyung Kim
It missed to convert a PERF_SAMPLE_BRANCH_STACK user to call the new perf_sample_save_brstack() helper in order to update the dyn_size. This affects AMD Zen3 machines with the branch-brs event. Fixes: eb55b455ef9c ("perf/core: Add perf_sample_save_brstack() helper") Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20230427030527.580841-1-namhyung@kernel.org
2023-02-15perf/x86: Refuse to export capabilities for hybrid PMUsSean Christopherson
Now that KVM disables vPMU support on hybrid CPUs, WARN and return zeros if perf_get_x86_pmu_capability() is invoked on a hybrid CPU. The helper doesn't provide an accurate accounting of the PMU capabilities for hybrid CPUs and needs to be enhanced if KVM, or anything else outside of perf, wants to act on the PMU capabilities. Cc: stable@vger.kernel.org Cc: Andrew Cooper <Andrew.Cooper3@citrix.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Link: https://lore.kernel.org/all/20220818181530.2355034-1-kan.liang@linux.intel.com Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230208204230.1360502-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>