summaryrefslogtreecommitdiff
path: root/kernel/sched/core.c
AgeCommit message (Collapse)Author
2021-08-04sched: remove redundant on_rq status changeWang Hui
activate_task/deactivate_task will change on_rq status, no need to do it again. Signed-off-by: Wang Hui <john.wanghui@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210721091109.1406043-1-john.wanghui@huawei.com
2021-08-04sched/rt: Fix double enqueue caused by rt_effective_prioPeter Zijlstra
Double enqueues in rt runqueues (list) have been reported while running a simple test that spawns a number of threads doing a short sleep/run pattern while being concurrently setscheduled between rt and fair class. WARNING: CPU: 3 PID: 2825 at kernel/sched/rt.c:1294 enqueue_task_rt+0x355/0x360 CPU: 3 PID: 2825 Comm: setsched__13 RIP: 0010:enqueue_task_rt+0x355/0x360 Call Trace: __sched_setscheduler+0x581/0x9d0 _sched_setscheduler+0x63/0xa0 do_sched_setscheduler+0xa0/0x150 __x64_sys_sched_setscheduler+0x1a/0x30 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xae list_add double add: new=ffff9867cb629b40, prev=ffff9867cb629b40, next=ffff98679fc67ca0. kernel BUG at lib/list_debug.c:31! invalid opcode: 0000 [#1] PREEMPT_RT SMP PTI CPU: 3 PID: 2825 Comm: setsched__13 RIP: 0010:__list_add_valid+0x41/0x50 Call Trace: enqueue_task_rt+0x291/0x360 __sched_setscheduler+0x581/0x9d0 _sched_setscheduler+0x63/0xa0 do_sched_setscheduler+0xa0/0x150 __x64_sys_sched_setscheduler+0x1a/0x30 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xae __sched_setscheduler() uses rt_effective_prio() to handle proper queuing of priority boosted tasks that are setscheduled while being boosted. rt_effective_prio() is however called twice per each __sched_setscheduler() call: first directly by __sched_setscheduler() before dequeuing the task and then by __setscheduler() to actually do the priority change. If the priority of the pi_top_task is concurrently being changed however, it might happen that the two calls return different results. If, for example, the first call returned the same rt priority the task was running at and the second one a fair priority, the task won't be removed by the rt list (on_list still set) and then enqueued in the fair runqueue. When eventually setscheduled back to rt it will be seen as enqueued already and the WARNING/BUG be issued. Fix this by calling rt_effective_prio() only once and then reusing the return value. While at it refactor code as well for clarity. Concurrent priority inheritance handling is still safe and will eventually converge to a new state by following the inheritance chain(s). Fixes: 0782e63bc6fe ("sched: Handle priority boosted tasks proper in setscheduler()") [squashed Peterz changes; added changelog] Reported-by: Mark Simmons <msimmons@redhat.com> Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210803104501.38333-1-juri.lelli@redhat.com
2021-07-01cpufreq: CPPC: Add support for frequency invarianceViresh Kumar
The Frequency Invariance Engine (FIE) is providing a frequency scaling correction factor that helps achieve more accurate load-tracking. Normally, this scaling factor can be obtained directly with the help of the cpufreq drivers as they know the exact frequency the hardware is running at. But that isn't the case for CPPC cpufreq driver. Another way of obtaining that is using the arch specific counter support, which is already present in kernel, but that hardware is optional for platforms. This patch updates the CPPC driver to register itself with the topology core to provide its own implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which gets called by the scheduler on every tick. Note that the arch specific counters have higher priority than CPPC counters, if available, though the CPPC driver doesn't need to have any special handling for that. On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we reach here from hard-irq context), which then schedules a normal work item and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable based on the counter updates since the last tick. To allow platforms to disable this CPPC counter-based frequency invariance support, this is all done under CONFIG_ACPI_CPPC_CPUFREQ_FIE, which is enabled by default. This also exports sched_setattr_nocheck() as the CPPC driver can be built as a module. Cc: linux-acpi@vger.kernel.org Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Qian Cai <quic_qiancai@quicinc.com> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
2021-06-28Merge tag 'timers-nohz-2021-06-28' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timers/nohz updates from Ingo Molnar: - Micro-optimize tick_nohz_full_cpu() - Optimize idle exit tick restarts to be less eager - Optimize tick_nohz_dep_set_task() to only wake up a single CPU. This reduces IPIs and interruptions on nohz_full CPUs. - Optimize tick_nohz_dep_set_signal() in a similar fashion. - Skip IPIs in tick_nohz_kick_task() when trying to kick a non-running task. - Micro-optimize tick_nohz_task_switch() IRQ flags handling to reduce context switching costs. - Misc cleanups and fixes * tag 'timers-nohz-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: MAINTAINERS: Add myself as context tracking maintainer tick/nohz: Call tick_nohz_task_switch() with interrupts disabled tick/nohz: Kick only _queued_ task whose tick dependency is updated tick/nohz: Change signal tick dependency to wake up CPUs of member tasks tick/nohz: Only wake up a single target cpu when kicking a task tick/nohz: Update nohz_full Kconfig help tick/nohz: Update idle_exittime on actual idle exit tick/nohz: Remove superflous check for CONFIG_VIRT_CPU_ACCOUNTING_NATIVE tick/nohz: Conditionally restart tick on idle exit tick/nohz: Evaluate the CPU expression after the static key
2021-06-28Merge tag 'sched-core-2021-06-28' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler udpates from Ingo Molnar: - Changes to core scheduling facilities: - Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables coordinated scheduling across SMT siblings. This is a much requested feature for cloud computing platforms, to allow the flexible utilization of SMT siblings, without exposing untrusted domains to information leaks & side channels, plus to ensure more deterministic computing performance on SMT systems used by heterogenous workloads. There are new prctls to set core scheduling groups, which allows more flexible management of workloads that can share siblings. - Fix task->state access anti-patterns that may result in missed wakeups and rename it to ->__state in the process to catch new abuses. - Load-balancing changes: - Tweak newidle_balance for fair-sched, to improve 'memcache'-like workloads. - "Age" (decay) average idle time, to better track & improve workloads such as 'tbench'. - Fix & improve energy-aware (EAS) balancing logic & metrics. - Fix & improve the uclamp metrics. - Fix task migration (taskset) corner case on !CONFIG_CPUSET. - Fix RT and deadline utilization tracking across policy changes - Introduce a "burstable" CFS controller via cgroups, which allows bursty CPU-bound workloads to borrow a bit against their future quota to improve overall latencies & batching. Can be tweaked via /sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us. - Rework assymetric topology/capacity detection & handling. - Scheduler statistics & tooling: - Disable delayacct by default, but add a sysctl to enable it at runtime if tooling needs it. Use static keys and other optimizations to make it more palatable. - Use sched_clock() in delayacct, instead of ktime_get_ns(). - Misc cleanups and fixes. * tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits) sched/doc: Update the CPU capacity asymmetry bits sched/topology: Rework CPU capacity asymmetry detection sched/core: Introduce SD_ASYM_CPUCAPACITY_FULL sched_domain flag psi: Fix race between psi_trigger_create/destroy sched/fair: Introduce the burstable CFS controller sched/uclamp: Fix uclamp_tg_restrict() sched/rt: Fix Deadline utilization tracking during policy change sched/rt: Fix RT utilization tracking during policy change sched: Change task_struct::state sched,arch: Remove unused TASK_STATE offsets sched,timer: Use __set_current_state() sched: Add get_current_state() sched,perf,kvm: Fix preemption condition sched: Introduce task_is_running() sched: Unbreak wakeups sched/fair: Age the average idle time sched/cpufreq: Consider reduced CPU capacity in energy calculation sched/fair: Take thermal pressure into account while estimating energy thermal/cpufreq_cooling: Update offline CPUs per-cpu thermal_pressure sched/fair: Return early from update_tg_cfs_load() if delta == 0 ...
2021-06-28sched: Optimize housekeeping_cpumask() in for_each_cpu_and()Yuan ZhaoXiong
On a 128 cores AMD machine, there are 8 cores in nohz_full mode, and the others are used for housekeeping. When many housekeeping cpus are in idle state, we can observe huge time burn in the loop for searching nearest busy housekeeper cpu by ftrace. 9) | get_nohz_timer_target() { 9) | housekeeping_test_cpu() { 9) 0.390 us | housekeeping_get_mask.part.1(); 9) 0.561 us | } 9) 0.090 us | __rcu_read_lock(); 9) 0.090 us | housekeeping_cpumask(); 9) 0.521 us | housekeeping_cpumask(); 9) 0.140 us | housekeeping_cpumask(); ... 9) 0.500 us | housekeeping_cpumask(); 9) | housekeeping_any_cpu() { 9) 0.090 us | housekeeping_get_mask.part.1(); 9) 0.100 us | sched_numa_find_closest(); 9) 0.491 us | } 9) 0.100 us | __rcu_read_unlock(); 9) + 76.163 us | } for_each_cpu_and() is a micro function, so in get_nohz_timer_target() function the for_each_cpu_and(i, sched_domain_span(sd), housekeeping_cpumask(HK_FLAG_TIMER)) equals to below: for (i = -1; i = cpumask_next_and(i, sched_domain_span(sd), housekeeping_cpumask(HK_FLAG_TIMER)), i < nr_cpu_ids;) That will cause that housekeeping_cpumask() will be invoked many times. The housekeeping_cpumask() function returns a const value, so it is unnecessary to invoke it every time. This patch can minimize the worst searching time from ~76us to ~16us in my testing. Similarly, the find_new_ilb() function has the same problem. Co-developed-by: Li RongQing <lirongqing@baidu.com> Signed-off-by: Li RongQing <lirongqing@baidu.com> Signed-off-by: Yuan ZhaoXiong <yuanzhaoxiong@baidu.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1622985115-51007-1-git-send-email-yuanzhaoxiong@baidu.com
2021-06-24sched/fair: Introduce the burstable CFS controllerHuaixin Chang
The CFS bandwidth controller limits CPU requests of a task group to quota during each period. However, parallel workloads might be bursty so that they get throttled even when their average utilization is under quota. And they are latency sensitive at the same time so that throttling them is undesired. We borrow time now against our future underrun, at the cost of increased interference against the other system users. All nicely bounded. Traditional (UP-EDF) bandwidth control is something like: (U = \Sum u_i) <= 1 This guaranteeds both that every deadline is met and that the system is stable. After all, if U were > 1, then for every second of walltime, we'd have to run more than a second of program time, and obviously miss our deadline, but the next deadline will be further out still, there is never time to catch up, unbounded fail. This work observes that a workload doesn't always executes the full quota; this enables one to describe u_i as a statistical distribution. For example, have u_i = {x,e}_i, where x is the p(95) and x+e p(100) (the traditional WCET). This effectively allows u to be smaller, increasing the efficiency (we can pack more tasks in the system), but at the cost of missing deadlines when all the odds line up. However, it does maintain stability, since every overrun must be paired with an underrun as long as our x is above the average. That is, suppose we have 2 tasks, both specify a p(95) value, then we have a p(95)*p(95) = 90.25% chance both tasks are within their quota and everything is good. At the same time we have a p(5)p(5) = 0.25% chance both tasks will exceed their quota at the same time (guaranteed deadline fail). Somewhere in between there's a threshold where one exceeds and the other doesn't underrun enough to compensate; this depends on the specific CDFs. At the same time, we can say that the worst case deadline miss, will be \Sum e_i; that is, there is a bounded tardiness (under the assumption that x+e is indeed WCET). The benefit of burst is seen when testing with schbench. Default value of kernel.sched_cfs_bandwidth_slice_us(5ms) and CONFIG_HZ(1000) is used. mkdir /sys/fs/cgroup/cpu/test echo $$ > /sys/fs/cgroup/cpu/test/cgroup.procs echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_quota_us echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_burst_us ./schbench -m 1 -t 3 -r 20 -c 80000 -R 10 The average CPU usage is at 80%. I run this for 10 times, and got long tail latency for 6 times and got throttled for 8 times. Tail latencies are shown below, and it wasn't the worst case. Latency percentiles (usec) 50.0000th: 19872 75.0000th: 21344 90.0000th: 22176 95.0000th: 22496 *99.0000th: 22752 99.5000th: 22752 99.9000th: 22752 min=0, max=22727 rps: 9.90 p95 (usec) 22496 p99 (usec) 22752 p95/cputime 28.12% p99/cputime 28.44% The interferenece when using burst is valued by the possibilities for missing the deadline and the average WCET. Test results showed that when there many cgroups or CPU is under utilized, the interference is limited. More details are shown in: https://lore.kernel.org/lkml/5371BD36-55AE-4F71-B9D7-B86DC32E3D2B@linux.alibaba.com/ Co-developed-by: Shanpei Chen <shanpeic@linux.alibaba.com> Signed-off-by: Shanpei Chen <shanpeic@linux.alibaba.com> Co-developed-by: Tianchen Ding <dtcccc@linux.alibaba.com> Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com> Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ben Segall <bsegall@google.com> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20210621092800.23714-2-changhuaixin@linux.alibaba.com
2021-06-22sched/uclamp: Fix uclamp_tg_restrict()Qais Yousef
Now cpu.uclamp.min acts as a protection, we need to make sure that the uclamp request of the task is within the allowed range of the cgroup, that is it is clamp()'ed correctly by tg->uclamp[UCLAMP_MIN] and tg->uclamp[UCLAMP_MAX]. As reported by Xuewen [1] we can have some corner cases where there's inversion between uclamp requested by task (p) and the uclamp values of the taskgroup it's attached to (tg). Following table demonstrates 2 corner cases: | p | tg | effective -----------+-----+------+----------- CASE 1 -----------+-----+------+----------- uclamp_min | 60% | 0% | 60% -----------+-----+------+----------- uclamp_max | 80% | 50% | 50% -----------+-----+------+----------- CASE 2 -----------+-----+------+----------- uclamp_min | 0% | 30% | 30% -----------+-----+------+----------- uclamp_max | 20% | 50% | 20% -----------+-----+------+----------- With this fix we get: | p | tg | effective -----------+-----+------+----------- CASE 1 -----------+-----+------+----------- uclamp_min | 60% | 0% | 50% -----------+-----+------+----------- uclamp_max | 80% | 50% | 50% -----------+-----+------+----------- CASE 2 -----------+-----+------+----------- uclamp_min | 0% | 30% | 30% -----------+-----+------+----------- uclamp_max | 20% | 50% | 30% -----------+-----+------+----------- Additionally uclamp_update_active_tasks() must now unconditionally update both UCLAMP_MIN/MAX because changing the tg's UCLAMP_MAX for instance could have an impact on the effective UCLAMP_MIN of the tasks. | p | tg | effective -----------+-----+------+----------- old -----------+-----+------+----------- uclamp_min | 60% | 0% | 50% -----------+-----+------+----------- uclamp_max | 80% | 50% | 50% -----------+-----+------+----------- *new* -----------+-----+------+----------- uclamp_min | 60% | 0% | *60%* -----------+-----+------+----------- uclamp_max | 80% |*70%* | *70%* -----------+-----+------+----------- [1] https://lore.kernel.org/lkml/CAB8ipk_a6VFNjiEnHRHkUMBKbA+qzPQvhtNjJ_YNzQhqV_o8Zw@mail.gmail.com/ Fixes: 0c18f2ecfcc2 ("sched/uclamp: Fix wrong implementation of cpu.uclamp.min") Reported-by: Xuewen Yan <xuewen.yan94@gmail.com> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210617165155.3774110-1-qais.yousef@arm.com
2021-06-18sched: Change task_struct::statePeter Zijlstra
Change the type and name of task_struct::state. Drop the volatile and shrink it to an 'unsigned int'. Rename it in order to find all uses such that we can use READ_ONCE/WRITE_ONCE as appropriate. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com> Acked-by: Will Deacon <will@kernel.org> Acked-by: Daniel Thompson <daniel.thompson@linaro.org> Link: https://lore.kernel.org/r/20210611082838.550736351@infradead.org
2021-06-18sched: Add get_current_state()Peter Zijlstra
Remove yet another few p->state accesses. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20210611082838.347475156@infradead.org
2021-06-18sched: Introduce task_is_running()Peter Zijlstra
Replace a bunch of 'p->state == TASK_RUNNING' with a new helper: task_is_running(p). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Davidlohr Bueso <dave@stgolabs.net> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20210611082838.222401495@infradead.org
2021-06-17sched/fair: Age the average idle timePeter Zijlstra
This is a partial forward-port of Peter Ziljstra's work first posted at: https://lore.kernel.org/lkml/20180530142236.667774973@infradead.org/ Currently select_idle_cpu()'s proportional scheme uses the average idle time *for when we are idle*, that is temporally challenged. When a CPU is not at all idle, we'll happily continue using whatever value we did see when the CPU goes idle. To fix this, introduce a separate average idle and age it (the existing value still makes sense for things like new-idle balancing, which happens when we do go idle). The overall goal is to not spend more time scanning for idle CPUs than we're idle for. Otherwise we're inhibiting work. This means that we need to consider the cost over all the wake-ups between consecutive idle periods. To track this, the scan cost is subtracted from the estimated average idle time. The impact of this patch is related to workloads that have domains that are fully busy or overloaded. Without the patch, the scan depth may be too high because a CPU is not reaching idle. Due to the nature of the patch, this is a regression magnet. It potentially wins when domains are almost fully busy or overloaded -- at that point searches are likely to fail but idle is not being aged as CPUs are active so search depth is too large and useless. It will potentially show regressions when there are idle CPUs and a deep search is beneficial. This tbench result on a 2-socket broadwell machine partially illustates the problem 5.13.0-rc2 5.13.0-rc2 vanilla sched-avgidle-v1r5 Hmean 1 445.02 ( 0.00%) 451.36 * 1.42%* Hmean 2 830.69 ( 0.00%) 846.03 * 1.85%* Hmean 4 1350.80 ( 0.00%) 1505.56 * 11.46%* Hmean 8 2888.88 ( 0.00%) 2586.40 * -10.47%* Hmean 16 5248.18 ( 0.00%) 5305.26 * 1.09%* Hmean 32 8914.03 ( 0.00%) 9191.35 * 3.11%* Hmean 64 10663.10 ( 0.00%) 10192.65 * -4.41%* Hmean 128 18043.89 ( 0.00%) 18478.92 * 2.41%* Hmean 256 16530.89 ( 0.00%) 17637.16 * 6.69%* Hmean 320 16451.13 ( 0.00%) 17270.97 * 4.98%* Note that 8 was a regression point where a deeper search would have helped but it gains for high thread counts when searches are useless. Hackbench is a more extreme example although not perfect as the tasks idle rapidly hackbench-process-pipes 5.13.0-rc2 5.13.0-rc2 vanilla sched-avgidle-v1r5 Amean 1 0.3950 ( 0.00%) 0.3887 ( 1.60%) Amean 4 0.9450 ( 0.00%) 0.9677 ( -2.40%) Amean 7 1.4737 ( 0.00%) 1.4890 ( -1.04%) Amean 12 2.3507 ( 0.00%) 2.3360 * 0.62%* Amean 21 4.0807 ( 0.00%) 4.0993 * -0.46%* Amean 30 5.6820 ( 0.00%) 5.7510 * -1.21%* Amean 48 8.7913 ( 0.00%) 8.7383 ( 0.60%) Amean 79 14.3880 ( 0.00%) 13.9343 * 3.15%* Amean 110 21.2233 ( 0.00%) 19.4263 * 8.47%* Amean 141 28.2930 ( 0.00%) 25.1003 * 11.28%* Amean 172 34.7570 ( 0.00%) 30.7527 * 11.52%* Amean 203 41.0083 ( 0.00%) 36.4267 * 11.17%* Amean 234 47.7133 ( 0.00%) 42.0623 * 11.84%* Amean 265 53.0353 ( 0.00%) 47.7720 * 9.92%* Amean 296 60.0170 ( 0.00%) 53.4273 * 10.98%* Stddev 1 0.0052 ( 0.00%) 0.0025 ( 51.57%) Stddev 4 0.0357 ( 0.00%) 0.0370 ( -3.75%) Stddev 7 0.0190 ( 0.00%) 0.0298 ( -56.64%) Stddev 12 0.0064 ( 0.00%) 0.0095 ( -48.38%) Stddev 21 0.0065 ( 0.00%) 0.0097 ( -49.28%) Stddev 30 0.0185 ( 0.00%) 0.0295 ( -59.54%) Stddev 48 0.0559 ( 0.00%) 0.0168 ( 69.92%) Stddev 79 0.1559 ( 0.00%) 0.0278 ( 82.17%) Stddev 110 1.1728 ( 0.00%) 0.0532 ( 95.47%) Stddev 141 0.7867 ( 0.00%) 0.0968 ( 87.69%) Stddev 172 1.0255 ( 0.00%) 0.0420 ( 95.91%) Stddev 203 0.8106 ( 0.00%) 0.1384 ( 82.92%) Stddev 234 1.1949 ( 0.00%) 0.1328 ( 88.89%) Stddev 265 0.9231 ( 0.00%) 0.0820 ( 91.11%) Stddev 296 1.0456 ( 0.00%) 0.1327 ( 87.31%) Again, higher thread counts benefit and the standard deviation shows that results are also a lot more stable when the idle time is aged. The patch potentially matters when a socket was multiple LLCs as the maximum search depth is lower. However, some of the test results were suspiciously good (e.g. specjbb2005 gaining 50% on a Zen1 machine) and other results were not dramatically different to other mcahines. Given the nature of the patch, Peter's full series is not being forward ported as each part should stand on its own. Preferably they would be merged at different times to reduce the risk of false bisections. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210615111611.GH30378@techsingularity.net
2021-06-14Revert "cpufreq: CPPC: Add support for frequency invariance"Viresh Kumar
This reverts commit 4c38f2df71c8e33c0b64865992d693f5022eeaad. There are few races in the frequency invariance support for CPPC driver, namely the driver doesn't stop the kthread_work and irq_work on policy exit during suspend/resume or CPU hotplug. A proper fix won't be possible for the 5.13-rc, as it requires a lot of changes. Lets revert the patch instead for now. Fixes: 4c38f2df71c8 ("cpufreq: CPPC: Add support for frequency invariance") Reported-by: Qian Cai <quic_qiancai@quicinc.com> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-06-04sched/debug: Remove obsolete init_schedstats()Eric Dumazet
Revert commit 4698f88c06b8 ("sched/debug: Fix 'schedstats=enable' cmdline option"). After commit 6041186a3258 ("init: initialize jump labels before command line option parsing") we can rely on jump label infra being ready for use when setup_schedstats() is called. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20210602112108.1709635-1-eric.dumazet@gmail.com
2021-06-01sched: Don't defer CPU pick to migration_cpu_stop()Valentin Schneider
Will reported that the 'XXX __migrate_task() can fail' in migration_cpu_stop() can happen, and it *is* sort of a big deal. Looking at it some more, one will note there is a glaring hole in the deferred CPU selection: (w/ CONFIG_CPUSET=n, so that the affinity mask passed via taskset doesn't get AND'd with cpu_online_mask) $ taskset -pc 0-2 $PID # offline CPUs 3-4 $ taskset -pc 3-5 $PID `\ $PID may stay on 0-2 due to the cpumask_any_distribute() picking an offline CPU and __migrate_task() refusing to do anything due to cpu_is_allowed(). set_cpus_allowed_ptr() goes to some length to pick a dest_cpu that matches the right constraints vs affinity and the online/active state of the CPUs. Reuse that instead of discarding it in the affine_move_task() case. Fixes: 6d337eab041d ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()") Reported-by: Will Deacon <will@kernel.org> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210526205751.842360-2-valentin.schneider@arm.com
2021-06-01sched,init: Fix DEBUG_PREEMPT vs early bootPeter Zijlstra
Extend 8fb12156b8db ("init: Pin init task to the boot CPU, initially") to cover the new PF_NO_SETAFFINITY requirement. While there, move wait_for_completion(&kthreadd_done) into kernel_init() to make it absolutely clear it is the very first thing done by the init thread. Fixes: 570a752b7a9b ("lib/smp_processor_id: Use is_percpu_thread() instead of nr_cpus_allowed") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Tested-by: Valentin Schneider <valentin.schneider@arm.com> Tested-by: Borislav Petkov <bp@alien8.de> Link: https://lkml.kernel.org/r/YLS4mbKUrA3Gnb4t@hirez.programming.kicks-ass.net
2021-05-19sched: Fix a stale comment in pick_next_task()Masahiro Yamada
fair_sched_class->next no longer exists since commit: a87e749e8fa1 ("sched: Remove struct sched_class::next field"). Now the sched_class order is specified by the linker script. Rewrite the comment in a more generic way. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210519063709.323162-1-masahiroy@kernel.org
2021-05-19sched/uclamp: Fix locking around cpu_util_update_eff()Qais Yousef
cpu_cgroup_css_online() calls cpu_util_update_eff() without holding the uclamp_mutex or rcu_read_lock() like other call sites, which is a mistake. The uclamp_mutex is required to protect against concurrent reads and writes that could update the cgroup hierarchy. The rcu_read_lock() is required to traverse the cgroup data structures in cpu_util_update_eff(). Surround the caller with the required locks and add some asserts to better document the dependency in cpu_util_update_eff(). Fixes: 7226017ad37a ("sched/uclamp: Fix a bug in propagating uclamp value in new cgroups") Reported-by: Quentin Perret <qperret@google.com> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210510145032.1934078-3-qais.yousef@arm.com
2021-05-19sched/uclamp: Fix wrong implementation of cpu.uclamp.minQais Yousef
cpu.uclamp.min is a protection as described in cgroup-v2 Resource Distribution Model Documentation/admin-guide/cgroup-v2.rst which means we try our best to preserve the minimum performance point of tasks in this group. See full description of cpu.uclamp.min in the cgroup-v2.rst. But the current implementation makes it a limit, which is not what was intended. For example: tg->cpu.uclamp.min = 20% p0->uclamp[UCLAMP_MIN] = 0 p1->uclamp[UCLAMP_MIN] = 50% Previous Behavior (limit): p0->effective_uclamp = 0 p1->effective_uclamp = 20% New Behavior (Protection): p0->effective_uclamp = 20% p1->effective_uclamp = 50% Which is inline with how protections should work. With this change the cgroup and per-task behaviors are the same, as expected. Additionally, we remove the confusing relationship between cgroup and !user_defined flag. We don't want for example RT tasks that are boosted by default to max to change their boost value when they attach to a cgroup. If a cgroup wants to limit the max performance point of tasks attached to it, then cpu.uclamp.max must be set accordingly. Or if they want to set different boost value based on cgroup, then sysctl_sched_util_clamp_min_rt_default must be used to NOT boost to max and set the right cpu.uclamp.min for each group to let the RT tasks obtain the desired boost value when attached to that group. As it stands the dependency on !user_defined flag adds an extra layer of complexity that is not required now cpu.uclamp.min behaves properly as a protection. The propagation model of effective cpu.uclamp.min in child cgroups as implemented by cpu_util_update_eff() is still correct. The parent protection sets an upper limit of what the child cgroups will effectively get. Fixes: 3eac870a3247 (sched/uclamp: Use TG's clamps to restrict TASK's clamps) Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210510145032.1934078-2-qais.yousef@arm.com
2021-05-18sched: Make the idle task quack like a per-CPU kthreadValentin Schneider
For all intents and purposes, the idle task is a per-CPU kthread. It isn't created via the same route as other pcpu kthreads however, and as a result it is missing a few bells and whistles: it fails kthread_is_per_cpu() and it doesn't have PF_NO_SETAFFINITY set. Fix the former by giving the idle task a kthread struct along with the KTHREAD_IS_PER_CPU flag. This requires some extra iffery as init_idle() call be called more than once on the same idle task. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210510151024.2448573-2-valentin.schneider@arm.com
2021-05-13tick/nohz: Call tick_nohz_task_switch() with interrupts disabledPeter Zijlstra
Call tick_nohz_task_switch() slightly earlier after the context switch to benefit from disabled IRQs. This way the function doesn't need to disable them once more. Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210512232924.150322-10-frederic@kernel.org
2021-05-13tick/nohz: Kick only _queued_ task whose tick dependency is updatedMarcelo Tosatti
When the tick dependency of a task is updated, we want it to aknowledge the new state and restart the tick if needed. If the task is not running, we don't need to kick it because it will observe the new dependency upon scheduling in. But if the task is running, we may need to send an IPI to it so that it gets notified. Unfortunately we don't have the means to check if a task is running in a race free way. Checking p->on_cpu in a synchronized way against p->tick_dep_mask would imply adding a full barrier between prepare_task_switch() and tick_nohz_task_switch(), which we want to avoid in this fast-path. Therefore we blindly fire an IPI to the task's CPU. Meanwhile we can check if the task is queued on the CPU rq because p->on_rq is always set to TASK_ON_RQ_QUEUED _before_ schedule() and its full barrier that precedes tick_nohz_task_switch(). And if the task is queued on a nohz_full CPU, it also has fair chances to be running as the isolation constraints prescribe running single tasks on full dynticks CPUs. So use this as a trick to check if we can spare an IPI toward a non-running task. NOTE: For the ordering to be correct, it is assumed that we never deactivate a task while it is running, the only exception being the task deactivating itself while scheduling out. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20210512232924.150322-9-frederic@kernel.org
2021-05-12sched: Make nr_iowait_cpu() return 32-bit valueAlexey Dobriyan
Runqueue ->nr_iowait counters are 32-bit anyway. Propagate 32-bitness into other code, but don't try too hard. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210422200228.1423391-3-adobriyan@gmail.com
2021-05-12sched: Make nr_iowait() return 32-bit valueAlexey Dobriyan
Creating 2**32 tasks to wait in D-state is impossible and wasteful. Return "unsigned int" and save on REX prefixes. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210422200228.1423391-2-adobriyan@gmail.com
2021-05-12sched: Make nr_running() return 32-bit valueAlexey Dobriyan
Creating 2**32 tasks is impossible due to futex pid limits and wasteful anyway. Nobody has done it. Bring nr_running() into 32-bit world to save on REX prefixes. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210422200228.1423391-1-adobriyan@gmail.com
2021-05-12sched: Fix leftover comment typosIngo Molnar
A few more snuck in. Also capitalize 'CPU' while at it. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2021-05-12sched/core: Initialize the idle task with preemption disabledValentin Schneider
As pointed out by commit de9b8f5dcbd9 ("sched: Fix crash trying to dequeue/enqueue the idle thread") init_idle() can and will be invoked more than once on the same idle task. At boot time, it is invoked for the boot CPU thread by sched_init(). Then smp_init() creates the threads for all the secondary CPUs and invokes init_idle() on them. As the hotplug machinery brings the secondaries to life, it will issue calls to idle_thread_get(), which itself invokes init_idle() yet again. In this case it's invoked twice more per secondary: at _cpu_up(), and at bringup_cpu(). Given smp_init() already initializes the idle tasks for all *possible* CPUs, no further initialization should be required. Now, removing init_idle() from idle_thread_get() exposes some interesting expectations with regards to the idle task's preempt_count: the secondary startup always issues a preempt_disable(), requiring some reset of the preempt count to 0 between hot-unplug and hotplug, which is currently served by idle_thread_get() -> idle_init(). Given the idle task is supposed to have preemption disabled once and never see it re-enabled, it seems that what we actually want is to initialize its preempt_count to PREEMPT_DISABLED and leave it there. Do that, and remove init_idle() from idle_thread_get(). Secondary startups were patched via coccinelle: @begone@ @@ -preempt_disable(); ... cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20210512094636.2958515-1-valentin.schneider@arm.com
2021-05-12sched: Trivial core scheduling cookie managementPeter Zijlstra
In order to not have to use pid_struct, create a new, smaller, structure to manage task cookies for core scheduling. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.919768100@infradead.org
2021-05-12sched: Trivial forced-newidle balancerPeter Zijlstra
When a sibling is forced-idle to match the core-cookie; search for matching tasks to fill the core. rcu_read_unlock() can incur an infrequent deadlock in sched_core_balance(). Fix this by using the RCU-sched flavor instead. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.800048269@infradead.org
2021-05-12sched/fair: Snapshot the min_vruntime of CPUs on force idleJoel Fernandes (Google)
During force-idle, we end up doing cross-cpu comparison of vruntimes during pick_next_task. If we simply compare (vruntime-min_vruntime) across CPUs, and if the CPUs only have 1 task each, we will always end up comparing 0 with 0 and pick just one of the tasks all the time. This starves the task that was not picked. To fix this, take a snapshot of the min_vruntime when entering force idle and use it for comparison. This min_vruntime snapshot will only be used for cross-CPU vruntime comparison, and nothing else. A note about the min_vruntime snapshot and force idling: During selection: When we're not fi, we need to update snapshot. when we're fi and we were not fi, we must update snapshot. When we're fi and we were already fi, we must not update snapshot. Which gives: fib fi update 0 0 1 0 1 1 1 0 1 1 1 0 Where: fi: force-idled now fib: force-idled before So the min_vruntime snapshot needs to be updated when: !(fib && fi). Also, the cfs_prio_less() function needs to be aware of whether the core is in force idle or not, since it will be use this information to know whether to advance a cfs_rq's min_vruntime_fi in the hierarchy. So pass this information along via pick_task() -> prio_less(). Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.738542617@infradead.org
2021-05-12sched: Fix priority inversion of cookied task with siblingJoel Fernandes (Google)
The rationale is as follows. In the core-wide pick logic, even if need_sync == false, we need to go look at other CPUs (non-local CPUs) to see if they could be running RT. Say the RQs in a particular core look like this: Let CFS1 and CFS2 be 2 tagged CFS tags. Let RT1 be an untagged RT task. rq0 rq1 CFS1 (tagged) RT1 (no tag) CFS2 (tagged) Say schedule() runs on rq0. Now, it will enter the above loop and pick_task(RT) will return NULL for 'p'. It will enter the above if() block and see that need_sync == false and will skip RT entirely. The end result of the selection will be (say prio(CFS1) > prio(CFS2)): rq0 rq1 CFS1 IDLE When it should have selected: rq0 rq1 IDLE RT Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.678425748@infradead.org
2021-05-12sched/fair: Fix forced idle sibling starvation corner caseVineeth Pillai
If there is only one long running local task and the sibling is forced idle, it might not get a chance to run until a schedule event happens on any cpu in the core. So we check for this condition during a tick to see if a sibling is starved and then give it a chance to schedule. Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.617407840@infradead.org
2021-05-12sched: Add core wide task selection and schedulingPeter Zijlstra
Instead of only selecting a local task, select a task for all SMT siblings for every reschedule on the core (irrespective which logical CPU does the reschedule). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.557559654@infradead.org
2021-05-12sched: Basic tracking of matching tasksPeter Zijlstra
Introduce task_struct::core_cookie as an opaque identifier for core scheduling. When enabled; core scheduling will only allow matching task to be on the core; where idle matches everything. When task_struct::core_cookie is set (and core scheduling is enabled) these tasks are indexed in a second RB-tree, first on cookie value then on scheduling function, such that matching task selection always finds the most elegible match. NOTE: *shudder* at the overhead... NOTE: *sigh*, a 3rd copy of the scheduling function; the alternative is per class tracking of cookies and that just duplicates a lot of stuff for no raisin (the 2nd copy lives in the rt-mutex PI code). [Joel: folded fixes] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.496975854@infradead.org
2021-05-12sched: Allow sched_core_put() from atomic contextPeter Zijlstra
Stuff the meat of sched_core_put() into a work such that we can use sched_core_put() from atomic context. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.377455632@infradead.org
2021-05-12sched: Optimize rq_lockp() usagePeter Zijlstra
rq_lockp() includes a static_branch(), which is asm-goto, which is asm volatile which defeats regular CSE. This means that: if (!static_branch(&foo)) return simple; if (static_branch(&foo) && cond) return complex; Doesn't fold and we get horrible code. Introduce __rq_lockp() without the static_branch() on. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.316696988@infradead.org
2021-05-12sched: Core-wide rq->lockPeter Zijlstra
Introduce the basic infrastructure to have a core wide rq->lock. This relies on the rq->__lock order being in increasing CPU number (inside a core). It is also constrained to SMT8 per lockdep (and SMT256 per preempt_count). Luckily SMT8 is the max supported SMT count for Linux (Mips, Sparc and Power are known to have this). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/YJUNfzSgptjX7tG6@hirez.programming.kicks-ass.net
2021-05-12sched: Prepare for Core-wide rq->lockPeter Zijlstra
When switching on core-sched, CPUs need to agree which lock to use for their RQ. The new rule will be that rq->core_enabled will be toggled while holding all rq->__locks that belong to a core. This means we need to double check the rq->core_enabled value after each lock acquire and retry if it changed. This also has implications for those sites that take multiple RQ locks, they need to be careful that the second lock doesn't end up being the first lock. Verify the lock pointer after acquiring the first lock, because if they're on the same core, holding any of the rq->__lock instances will pin the core state. While there, change the rq->__lock order to CPU number, instead of rq address, this greatly simplifies the next patch. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/YJUNY0dmrJMD/BIm@hirez.programming.kicks-ass.net
2021-05-12sched: Wrap rq::lock accessPeter Zijlstra
In preparation of playing games with rq->lock, abstract the thing using an accessor. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.136465446@infradead.org
2021-05-12sched: Provide raw_spin_rq_*lock*() helpersPeter Zijlstra
In prepration for playing games with rq->lock, add some rq_lock wrappers. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123308.075967879@infradead.org
2021-05-12sched: Rename sched_info_{queued,dequeued}Peter Zijlstra
For consistency, rename {queued,dequeued} to {enqueue,dequeue}. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Rik van Riel <riel@surriel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Balbir Singh <bsingharora@gmail.com> Link: https://lkml.kernel.org/r/20210505111525.061402904@infradead.org
2021-05-12sched/core: Remove the pointless BUG_ON(!task) from wake_up_q()Oleg Nesterov
container_of() can never return NULL - so don't check for it pointlessly. [ mingo: Twiddled the changelog. ] Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210510161522.GA32644@redhat.com
2021-05-06sched: Fix out-of-bound access in uclampQuentin Perret
Util-clamp places tasks in different buckets based on their clamp values for performance reasons. However, the size of buckets is currently computed using a rounding division, which can lead to an off-by-one error in some configurations. For instance, with 20 buckets, the bucket size will be 1024/20=51. A task with a clamp of 1024 will be mapped to bucket id 1024/51=20. Sadly, correct indexes are in range [0,19], hence leading to an out of bound memory access. Clamp the bucket id to fix the issue. Fixes: 69842cba9ace ("sched/uclamp: Add CPU's clamp buckets refcounting") Suggested-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Quentin Perret <qperret@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lkml.kernel.org/r/20210430151412.160913-1-qperret@google.com
2021-04-28Merge tag 'sched-core-2021-04-28' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - Clean up SCHED_DEBUG: move the decades old mess of sysctl, procfs and debugfs interfaces to a unified debugfs interface. - Signals: Allow caching one sigqueue object per task, to improve performance & latencies. - Improve newidle_balance() irq-off latencies on systems with a large number of CPU cgroups. - Improve energy-aware scheduling - Improve the PELT metrics for certain workloads - Reintroduce select_idle_smt() to improve load-balancing locality - but without the previous regressions - Add 'scheduler latency debugging': warn after long periods of pending need_resched. This is an opt-in feature that requires the enabling of the LATENCY_WARN scheduler feature, or the use of the resched_latency_warn_ms=xx boot parameter. - CPU hotplug fixes for HP-rollback, and for the 'fail' interface. Fix remaining balance_push() vs. hotplug holes/races - PSI fixes, plus allow /proc/pressure/ files to be written by CAP_SYS_RESOURCE tasks as well - Fix/improve various load-balancing corner cases vs. capacity margins - Fix sched topology on systems with NUMA diameter of 3 or above - Fix PF_KTHREAD vs to_kthread() race - Minor rseq optimizations - Misc cleanups, optimizations, fixes and smaller updates * tag 'sched-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits) cpumask/hotplug: Fix cpu_dying() state tracking kthread: Fix PF_KTHREAD vs to_kthread() race sched/debug: Fix cgroup_path[] serialization sched,psi: Handle potential task count underflow bugs more gracefully sched: Warn on long periods of pending need_resched sched/fair: Move update_nohz_stats() to the CONFIG_NO_HZ_COMMON block to simplify the code & fix an unused function warning sched/debug: Rename the sched_debug parameter to sched_verbose sched,fair: Alternative sched_slice() sched: Move /proc/sched_debug to debugfs sched,debug: Convert sysctl sched_domains to debugfs debugfs: Implement debugfs_create_str() sched,preempt: Move preempt_dynamic to debug.c sched: Move SCHED_DEBUG sysctl to debugfs sched: Don't make LATENCYTOP select SCHED_DEBUG sched: Remove sched_schedstats sysctl out from under SCHED_DEBUG sched/numa: Allow runtime enabling/disabling of NUMA balance without SCHED_DEBUG sched: Use cpu_dying() to fix balance_push vs hotplug-rollback cpumask: Introduce DYING mask cpumask: Make cpu_{online,possible,present,active}() inline rseq: Optimise rseq_get_rseq_cs() and clear_rseq_cs() ...
2021-04-28Merge tag 'locking-core-2021-04-28' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking updates from Ingo Molnar: - rtmutex cleanup & spring cleaning pass that removes ~400 lines of code - Futex simplifications & cleanups - Add debugging to the CSD code, to help track down a tenacious race (or hw problem) - Add lockdep_assert_not_held(), to allow code to require a lock to not be held, and propagate this into the ath10k driver - Misc LKMM documentation updates - Misc KCSAN updates: cleanups & documentation updates - Misc fixes and cleanups - Fix locktorture bugs with ww_mutexes * tag 'locking-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits) kcsan: Fix printk format string static_call: Relax static_call_update() function argument type static_call: Fix unused variable warn w/o MODULE locking/rtmutex: Clean up signal handling in __rt_mutex_slowlock() locking/rtmutex: Restrict the trylock WARN_ON() to debug locking/rtmutex: Fix misleading comment in rt_mutex_postunlock() locking/rtmutex: Consolidate the fast/slowpath invocation locking/rtmutex: Make text section and inlining consistent locking/rtmutex: Move debug functions as inlines into common header locking/rtmutex: Decrapify __rt_mutex_init() locking/rtmutex: Remove pointless CONFIG_RT_MUTEXES=n stubs locking/rtmutex: Inline chainwalk depth check locking/rtmutex: Move rt_mutex_debug_task_free() to rtmutex.c locking/rtmutex: Remove empty and unused debug stubs locking/rtmutex: Consolidate rt_mutex_init() locking/rtmutex: Remove output from deadlock detector locking/rtmutex: Remove rtmutex deadlock tester leftovers locking/rtmutex: Remove rt_mutex_timed_lock() MAINTAINERS: Add myself as futex reviewer locking/mutex: Remove repeated declaration ...
2021-04-21kthread: Fix PF_KTHREAD vs to_kthread() racePeter Zijlstra
The kthread_is_per_cpu() construct relies on only being called on PF_KTHREAD tasks (per the WARN in to_kthread). This gives rise to the following usage pattern: if ((p->flags & PF_KTHREAD) && kthread_is_per_cpu(p)) However, as reported by syzcaller, this is broken. The scenario is: CPU0 CPU1 (running p) (p->flags & PF_KTHREAD) // true begin_new_exec() me->flags &= ~(PF_KTHREAD|...); kthread_is_per_cpu(p) to_kthread(p) WARN(!(p->flags & PF_KTHREAD) <-- *SPLAT* Introduce __to_kthread() that omits the WARN and is sure to check both values. Use this to remove the problematic pattern for kthread_is_per_cpu() and fix a number of other kthread_*() functions that have similar issues but are currently not used in ways that would expose the problem. Notably kthread_func() is only ever called on 'current', while kthread_probe_data() is only used for PF_WQ_WORKER, which implies the task is from kthread_create*(). Fixes: ac687e6e8c26 ("kthread: Extract KTHREAD_IS_PER_CPU") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com> Link: https://lkml.kernel.org/r/YH6WJc825C4P0FCK@hirez.programming.kicks-ass.net
2021-04-21sched: Warn on long periods of pending need_reschedPaul Turner
CPU scheduler marks need_resched flag to signal a schedule() on a particular CPU. But, schedule() may not happen immediately in cases where the current task is executing in the kernel mode (no preemption state) for extended periods of time. This patch adds a warn_on if need_resched is pending for more than the time specified in sysctl resched_latency_warn_ms. If it goes off, it is likely that there is a missing cond_resched() somewhere. Monitoring is done via the tick and the accuracy is hence limited to jiffy scale. This also means that we won't trigger the warning if the tick is disabled. This feature (LATENCY_WARN) is default disabled. Signed-off-by: Paul Turner <pjt@google.com> Signed-off-by: Josh Don <joshdon@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210416212936.390566-1-joshdon@google.com
2021-04-16sched,preempt: Move preempt_dynamic to debug.cPeter Zijlstra
Move the #ifdef SCHED_DEBUG bits to kernel/sched/debug.c in order to collect all the debugfs bits. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210412102001.353833279@infradead.org
2021-04-16sched: Move SCHED_DEBUG sysctl to debugfsPeter Zijlstra
Stop polluting sysctl with undocumented knobs that really are debug only, move them all to /debug/sched/ along with the existing /debug/sched_* files that already exist. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Tested-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210412102001.287610138@infradead.org
2021-04-16sched: Use cpu_dying() to fix balance_push vs hotplug-rollbackPeter Zijlstra
Use the new cpu_dying() state to simplify and fix the balance_push() vs CPU hotplug rollback state. Specifically, we currently rely on notifiers sched_cpu_dying() / sched_cpu_activate() to terminate balance_push, however if the cpu_down() fails when we're past sched_cpu_deactivate(), it should terminate balance_push at that point and not wait until we hit sched_cpu_activate(). Similarly, when cpu_up() fails and we're going back down, balance_push should be active, where it currently is not. So instead, make sure balance_push is enabled below SCHED_AP_ACTIVE (when !cpu_active()), and gate it's utility with cpu_dying(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/YHgAYef83VQhKdC2@hirez.programming.kicks-ass.net