1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
* Copyright (c) 2025 Ventana Micro Systems Inc.
*/
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/pgtable.h>
#include <asm/kvm_gstage.h>
#ifdef CONFIG_64BIT
unsigned long kvm_riscv_gstage_mode __ro_after_init = HGATP_MODE_SV39X4;
unsigned long kvm_riscv_gstage_pgd_levels __ro_after_init = 3;
#else
unsigned long kvm_riscv_gstage_mode __ro_after_init = HGATP_MODE_SV32X4;
unsigned long kvm_riscv_gstage_pgd_levels __ro_after_init = 2;
#endif
#define gstage_pte_leaf(__ptep) \
(pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC))
static inline unsigned long gstage_pte_index(gpa_t addr, u32 level)
{
unsigned long mask;
unsigned long shift = HGATP_PAGE_SHIFT + (kvm_riscv_gstage_index_bits * level);
if (level == (kvm_riscv_gstage_pgd_levels - 1))
mask = (PTRS_PER_PTE * (1UL << kvm_riscv_gstage_pgd_xbits)) - 1;
else
mask = PTRS_PER_PTE - 1;
return (addr >> shift) & mask;
}
static inline unsigned long gstage_pte_page_vaddr(pte_t pte)
{
return (unsigned long)pfn_to_virt(__page_val_to_pfn(pte_val(pte)));
}
static int gstage_page_size_to_level(unsigned long page_size, u32 *out_level)
{
u32 i;
unsigned long psz = 1UL << 12;
for (i = 0; i < kvm_riscv_gstage_pgd_levels; i++) {
if (page_size == (psz << (i * kvm_riscv_gstage_index_bits))) {
*out_level = i;
return 0;
}
}
return -EINVAL;
}
static int gstage_level_to_page_order(u32 level, unsigned long *out_pgorder)
{
if (kvm_riscv_gstage_pgd_levels < level)
return -EINVAL;
*out_pgorder = 12 + (level * kvm_riscv_gstage_index_bits);
return 0;
}
static int gstage_level_to_page_size(u32 level, unsigned long *out_pgsize)
{
int rc;
unsigned long page_order = PAGE_SHIFT;
rc = gstage_level_to_page_order(level, &page_order);
if (rc)
return rc;
*out_pgsize = BIT(page_order);
return 0;
}
bool kvm_riscv_gstage_get_leaf(struct kvm_gstage *gstage, gpa_t addr,
pte_t **ptepp, u32 *ptep_level)
{
pte_t *ptep;
u32 current_level = kvm_riscv_gstage_pgd_levels - 1;
*ptep_level = current_level;
ptep = (pte_t *)gstage->pgd;
ptep = &ptep[gstage_pte_index(addr, current_level)];
while (ptep && pte_val(ptep_get(ptep))) {
if (gstage_pte_leaf(ptep)) {
*ptep_level = current_level;
*ptepp = ptep;
return true;
}
if (current_level) {
current_level--;
*ptep_level = current_level;
ptep = (pte_t *)gstage_pte_page_vaddr(ptep_get(ptep));
ptep = &ptep[gstage_pte_index(addr, current_level)];
} else {
ptep = NULL;
}
}
return false;
}
static void gstage_tlb_flush(struct kvm_gstage *gstage, u32 level, gpa_t addr)
{
unsigned long order = PAGE_SHIFT;
if (gstage_level_to_page_order(level, &order))
return;
addr &= ~(BIT(order) - 1);
if (gstage->flags & KVM_GSTAGE_FLAGS_LOCAL)
kvm_riscv_local_hfence_gvma_vmid_gpa(gstage->vmid, addr, BIT(order), order);
else
kvm_riscv_hfence_gvma_vmid_gpa(gstage->kvm, -1UL, 0, addr, BIT(order), order,
gstage->vmid);
}
int kvm_riscv_gstage_set_pte(struct kvm_gstage *gstage,
struct kvm_mmu_memory_cache *pcache,
const struct kvm_gstage_mapping *map)
{
u32 current_level = kvm_riscv_gstage_pgd_levels - 1;
pte_t *next_ptep = (pte_t *)gstage->pgd;
pte_t *ptep = &next_ptep[gstage_pte_index(map->addr, current_level)];
if (current_level < map->level)
return -EINVAL;
while (current_level != map->level) {
if (gstage_pte_leaf(ptep))
return -EEXIST;
if (!pte_val(ptep_get(ptep))) {
if (!pcache)
return -ENOMEM;
next_ptep = kvm_mmu_memory_cache_alloc(pcache);
if (!next_ptep)
return -ENOMEM;
set_pte(ptep, pfn_pte(PFN_DOWN(__pa(next_ptep)),
__pgprot(_PAGE_TABLE)));
} else {
if (gstage_pte_leaf(ptep))
return -EEXIST;
next_ptep = (pte_t *)gstage_pte_page_vaddr(ptep_get(ptep));
}
current_level--;
ptep = &next_ptep[gstage_pte_index(map->addr, current_level)];
}
if (pte_val(*ptep) != pte_val(map->pte)) {
set_pte(ptep, map->pte);
if (gstage_pte_leaf(ptep))
gstage_tlb_flush(gstage, current_level, map->addr);
}
return 0;
}
int kvm_riscv_gstage_map_page(struct kvm_gstage *gstage,
struct kvm_mmu_memory_cache *pcache,
gpa_t gpa, phys_addr_t hpa, unsigned long page_size,
bool page_rdonly, bool page_exec,
struct kvm_gstage_mapping *out_map)
{
pgprot_t prot;
int ret;
out_map->addr = gpa;
out_map->level = 0;
ret = gstage_page_size_to_level(page_size, &out_map->level);
if (ret)
return ret;
/*
* A RISC-V implementation can choose to either:
* 1) Update 'A' and 'D' PTE bits in hardware
* 2) Generate page fault when 'A' and/or 'D' bits are not set
* PTE so that software can update these bits.
*
* We support both options mentioned above. To achieve this, we
* always set 'A' and 'D' PTE bits at time of creating G-stage
* mapping. To support KVM dirty page logging with both options
* mentioned above, we will write-protect G-stage PTEs to track
* dirty pages.
*/
if (page_exec) {
if (page_rdonly)
prot = PAGE_READ_EXEC;
else
prot = PAGE_WRITE_EXEC;
} else {
if (page_rdonly)
prot = PAGE_READ;
else
prot = PAGE_WRITE;
}
out_map->pte = pfn_pte(PFN_DOWN(hpa), prot);
out_map->pte = pte_mkdirty(out_map->pte);
return kvm_riscv_gstage_set_pte(gstage, pcache, out_map);
}
void kvm_riscv_gstage_op_pte(struct kvm_gstage *gstage, gpa_t addr,
pte_t *ptep, u32 ptep_level, enum kvm_riscv_gstage_op op)
{
int i, ret;
pte_t old_pte, *next_ptep;
u32 next_ptep_level;
unsigned long next_page_size, page_size;
ret = gstage_level_to_page_size(ptep_level, &page_size);
if (ret)
return;
WARN_ON(addr & (page_size - 1));
if (!pte_val(ptep_get(ptep)))
return;
if (ptep_level && !gstage_pte_leaf(ptep)) {
next_ptep = (pte_t *)gstage_pte_page_vaddr(ptep_get(ptep));
next_ptep_level = ptep_level - 1;
ret = gstage_level_to_page_size(next_ptep_level, &next_page_size);
if (ret)
return;
if (op == GSTAGE_OP_CLEAR)
set_pte(ptep, __pte(0));
for (i = 0; i < PTRS_PER_PTE; i++)
kvm_riscv_gstage_op_pte(gstage, addr + i * next_page_size,
&next_ptep[i], next_ptep_level, op);
if (op == GSTAGE_OP_CLEAR)
put_page(virt_to_page(next_ptep));
} else {
old_pte = *ptep;
if (op == GSTAGE_OP_CLEAR)
set_pte(ptep, __pte(0));
else if (op == GSTAGE_OP_WP)
set_pte(ptep, __pte(pte_val(ptep_get(ptep)) & ~_PAGE_WRITE));
if (pte_val(*ptep) != pte_val(old_pte))
gstage_tlb_flush(gstage, ptep_level, addr);
}
}
void kvm_riscv_gstage_unmap_range(struct kvm_gstage *gstage,
gpa_t start, gpa_t size, bool may_block)
{
int ret;
pte_t *ptep;
u32 ptep_level;
bool found_leaf;
unsigned long page_size;
gpa_t addr = start, end = start + size;
while (addr < end) {
found_leaf = kvm_riscv_gstage_get_leaf(gstage, addr, &ptep, &ptep_level);
ret = gstage_level_to_page_size(ptep_level, &page_size);
if (ret)
break;
if (!found_leaf)
goto next;
if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
kvm_riscv_gstage_op_pte(gstage, addr, ptep,
ptep_level, GSTAGE_OP_CLEAR);
next:
addr += page_size;
/*
* If the range is too large, release the kvm->mmu_lock
* to prevent starvation and lockup detector warnings.
*/
if (!(gstage->flags & KVM_GSTAGE_FLAGS_LOCAL) && may_block && addr < end)
cond_resched_lock(&gstage->kvm->mmu_lock);
}
}
void kvm_riscv_gstage_wp_range(struct kvm_gstage *gstage, gpa_t start, gpa_t end)
{
int ret;
pte_t *ptep;
u32 ptep_level;
bool found_leaf;
gpa_t addr = start;
unsigned long page_size;
while (addr < end) {
found_leaf = kvm_riscv_gstage_get_leaf(gstage, addr, &ptep, &ptep_level);
ret = gstage_level_to_page_size(ptep_level, &page_size);
if (ret)
break;
if (!found_leaf)
goto next;
if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
kvm_riscv_gstage_op_pte(gstage, addr, ptep,
ptep_level, GSTAGE_OP_WP);
next:
addr += page_size;
}
}
void __init kvm_riscv_gstage_mode_detect(void)
{
#ifdef CONFIG_64BIT
/* Try Sv57x4 G-stage mode */
csr_write(CSR_HGATP, HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV57X4) {
kvm_riscv_gstage_mode = HGATP_MODE_SV57X4;
kvm_riscv_gstage_pgd_levels = 5;
goto skip_sv48x4_test;
}
/* Try Sv48x4 G-stage mode */
csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) {
kvm_riscv_gstage_mode = HGATP_MODE_SV48X4;
kvm_riscv_gstage_pgd_levels = 4;
}
skip_sv48x4_test:
csr_write(CSR_HGATP, 0);
kvm_riscv_local_hfence_gvma_all();
#endif
}
|