1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2025 Google LLC.
use kernel::{
list::{AtomicTracker, List, ListArc, ListLinks, TryNewListArc},
prelude::*,
seq_file::SeqFile,
seq_print,
sync::lock::{spinlock::SpinLockBackend, Guard},
sync::{Arc, LockedBy, SpinLock},
};
use crate::{
defs::*,
error::BinderError,
process::{NodeRefInfo, Process, ProcessInner},
thread::Thread,
transaction::Transaction,
BinderReturnWriter, DArc, DLArc, DTRWrap, DeliverToRead,
};
use core::mem;
mod wrapper;
pub(crate) use self::wrapper::CritIncrWrapper;
#[derive(Debug)]
pub(crate) struct CouldNotDeliverCriticalIncrement;
/// Keeps track of how this node is scheduled.
///
/// There are two ways to schedule a node to a work list. Just schedule the node itself, or
/// allocate a wrapper that references the node and schedule the wrapper. These wrappers exists to
/// make it possible to "move" a node from one list to another - when `do_work` is called directly
/// on the `Node`, then it's a no-op if there's also a pending wrapper.
///
/// Wrappers are generally only needed for zero-to-one refcount increments, and there are two cases
/// of this: weak increments and strong increments. We call such increments "critical" because it
/// is critical that they are delivered to the thread doing the increment. Some examples:
///
/// * One thread makes a zero-to-one strong increment, and another thread makes a zero-to-one weak
/// increment. Delivering the node to the thread doing the weak increment is wrong, since the
/// thread doing the strong increment may have ended a long time ago when the command is actually
/// processed by userspace.
///
/// * We have a weak reference and are about to drop it on one thread. But then another thread does
/// a zero-to-one strong increment. If the strong increment gets sent to the thread that was
/// about to drop the weak reference, then the strong increment could be processed after the
/// other thread has already exited, which would be too late.
///
/// Note that trying to create a `ListArc` to the node can succeed even if `has_normal_push` is
/// set. This is because another thread might just have popped the node from a todo list, but not
/// yet called `do_work`. However, if `has_normal_push` is false, then creating a `ListArc` should
/// always succeed.
///
/// Like the other fields in `NodeInner`, the delivery state is protected by the process lock.
struct DeliveryState {
/// Is the `Node` currently scheduled?
has_pushed_node: bool,
/// Is a wrapper currently scheduled?
///
/// The wrapper is used only for strong zero2one increments.
has_pushed_wrapper: bool,
/// Is the currently scheduled `Node` scheduled due to a weak zero2one increment?
///
/// Weak zero2one operations are always scheduled using the `Node`.
has_weak_zero2one: bool,
/// Is the currently scheduled wrapper/`Node` scheduled due to a strong zero2one increment?
///
/// If `has_pushed_wrapper` is set, then the strong zero2one increment was scheduled using the
/// wrapper. Otherwise, `has_pushed_node` must be set and it was scheduled using the `Node`.
has_strong_zero2one: bool,
}
impl DeliveryState {
fn should_normal_push(&self) -> bool {
!self.has_pushed_node && !self.has_pushed_wrapper
}
fn did_normal_push(&mut self) {
assert!(self.should_normal_push());
self.has_pushed_node = true;
}
fn should_push_weak_zero2one(&self) -> bool {
!self.has_weak_zero2one && !self.has_strong_zero2one
}
fn can_push_weak_zero2one_normally(&self) -> bool {
!self.has_pushed_node
}
fn did_push_weak_zero2one(&mut self) {
assert!(self.should_push_weak_zero2one());
assert!(self.can_push_weak_zero2one_normally());
self.has_pushed_node = true;
self.has_weak_zero2one = true;
}
fn should_push_strong_zero2one(&self) -> bool {
!self.has_strong_zero2one
}
fn can_push_strong_zero2one_normally(&self) -> bool {
!self.has_pushed_node
}
fn did_push_strong_zero2one(&mut self) {
assert!(self.should_push_strong_zero2one());
assert!(self.can_push_strong_zero2one_normally());
self.has_pushed_node = true;
self.has_strong_zero2one = true;
}
fn did_push_strong_zero2one_wrapper(&mut self) {
assert!(self.should_push_strong_zero2one());
assert!(!self.can_push_strong_zero2one_normally());
self.has_pushed_wrapper = true;
self.has_strong_zero2one = true;
}
}
struct CountState {
/// The reference count.
count: usize,
/// Whether the process that owns this node thinks that we hold a refcount on it. (Note that
/// even if count is greater than one, we only increment it once in the owning process.)
has_count: bool,
}
impl CountState {
fn new() -> Self {
Self {
count: 0,
has_count: false,
}
}
}
struct NodeInner {
/// Strong refcounts held on this node by `NodeRef` objects.
strong: CountState,
/// Weak refcounts held on this node by `NodeRef` objects.
weak: CountState,
delivery_state: DeliveryState,
/// The binder driver guarantees that oneway transactions sent to the same node are serialized,
/// that is, userspace will not be given the next one until it has finished processing the
/// previous oneway transaction. This is done to avoid the case where two oneway transactions
/// arrive in opposite order from the order in which they were sent. (E.g., they could be
/// delivered to two different threads, which could appear as-if they were sent in opposite
/// order.)
///
/// To fix that, we store pending oneway transactions in a separate list in the node, and don't
/// deliver the next oneway transaction until userspace signals that it has finished processing
/// the previous oneway transaction by calling the `BC_FREE_BUFFER` ioctl.
oneway_todo: List<DTRWrap<Transaction>>,
/// Keeps track of whether this node has a pending oneway transaction.
///
/// When this is true, incoming oneway transactions are stored in `oneway_todo`, instead of
/// being delivered directly to the process.
has_oneway_transaction: bool,
/// List of processes to deliver a notification to when this node is destroyed (usually due to
/// the process dying).
death_list: List<DTRWrap<NodeDeath>, 1>,
/// List of processes to deliver freeze notifications to.
freeze_list: KVVec<Arc<Process>>,
/// The number of active BR_INCREFS or BR_ACQUIRE operations. (should be maximum two)
///
/// If this is non-zero, then we postpone any BR_RELEASE or BR_DECREFS notifications until the
/// active operations have ended. This avoids the situation an increment and decrement get
/// reordered from userspace's perspective.
active_inc_refs: u8,
/// List of `NodeRefInfo` objects that reference this node.
refs: List<NodeRefInfo, { NodeRefInfo::LIST_NODE }>,
}
#[pin_data]
pub(crate) struct Node {
pub(crate) debug_id: usize,
ptr: u64,
pub(crate) cookie: u64,
pub(crate) flags: u32,
pub(crate) owner: Arc<Process>,
inner: LockedBy<NodeInner, ProcessInner>,
#[pin]
links_track: AtomicTracker,
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<0> for Node {
tracked_by links_track: AtomicTracker;
}
}
// Make `oneway_todo` work.
kernel::list::impl_list_item! {
impl ListItem<0> for DTRWrap<Transaction> {
using ListLinks { self.links.inner };
}
}
impl Node {
pub(crate) fn new(
ptr: u64,
cookie: u64,
flags: u32,
owner: Arc<Process>,
) -> impl PinInit<Self> {
pin_init!(Self {
inner: LockedBy::new(
&owner.inner,
NodeInner {
strong: CountState::new(),
weak: CountState::new(),
delivery_state: DeliveryState {
has_pushed_node: false,
has_pushed_wrapper: false,
has_weak_zero2one: false,
has_strong_zero2one: false,
},
death_list: List::new(),
oneway_todo: List::new(),
freeze_list: KVVec::new(),
has_oneway_transaction: false,
active_inc_refs: 0,
refs: List::new(),
},
),
debug_id: super::next_debug_id(),
ptr,
cookie,
flags,
owner,
links_track <- AtomicTracker::new(),
})
}
pub(crate) fn has_oneway_transaction(&self, owner_inner: &mut ProcessInner) -> bool {
let inner = self.inner.access_mut(owner_inner);
inner.has_oneway_transaction
}
#[inline(never)]
pub(crate) fn full_debug_print(
&self,
m: &SeqFile,
owner_inner: &mut ProcessInner,
) -> Result<()> {
let inner = self.inner.access_mut(owner_inner);
seq_print!(
m,
" node {}: u{:016x} c{:016x} hs {} hw {} cs {} cw {}",
self.debug_id,
self.ptr,
self.cookie,
inner.strong.has_count,
inner.weak.has_count,
inner.strong.count,
inner.weak.count,
);
if !inner.refs.is_empty() {
seq_print!(m, " proc");
for node_ref in &inner.refs {
seq_print!(m, " {}", node_ref.process.task.pid());
}
}
seq_print!(m, "\n");
for t in &inner.oneway_todo {
t.debug_print_inner(m, " pending async transaction ");
}
Ok(())
}
/// Insert the `NodeRef` into this `refs` list.
///
/// # Safety
///
/// It must be the case that `info.node_ref.node` is this node.
pub(crate) unsafe fn insert_node_info(
&self,
info: ListArc<NodeRefInfo, { NodeRefInfo::LIST_NODE }>,
) {
self.inner
.access_mut(&mut self.owner.inner.lock())
.refs
.push_front(info);
}
/// Insert the `NodeRef` into this `refs` list.
///
/// # Safety
///
/// It must be the case that `info.node_ref.node` is this node.
pub(crate) unsafe fn remove_node_info(
&self,
info: &NodeRefInfo,
) -> Option<ListArc<NodeRefInfo, { NodeRefInfo::LIST_NODE }>> {
// SAFETY: We always insert `NodeRefInfo` objects into the `refs` list of the node that it
// references in `info.node_ref.node`. That is this node, so `info` cannot possibly be in
// the `refs` list of another node.
unsafe {
self.inner
.access_mut(&mut self.owner.inner.lock())
.refs
.remove(info)
}
}
/// An id that is unique across all binder nodes on the system. Used as the key in the
/// `by_node` map.
pub(crate) fn global_id(&self) -> usize {
self as *const Node as usize
}
pub(crate) fn get_id(&self) -> (u64, u64) {
(self.ptr, self.cookie)
}
pub(crate) fn add_death(
&self,
death: ListArc<DTRWrap<NodeDeath>, 1>,
guard: &mut Guard<'_, ProcessInner, SpinLockBackend>,
) {
self.inner.access_mut(guard).death_list.push_back(death);
}
pub(crate) fn inc_ref_done_locked(
self: &DArc<Node>,
_strong: bool,
owner_inner: &mut ProcessInner,
) -> Option<DLArc<Node>> {
let inner = self.inner.access_mut(owner_inner);
if inner.active_inc_refs == 0 {
pr_err!("inc_ref_done called when no active inc_refs");
return None;
}
inner.active_inc_refs -= 1;
if inner.active_inc_refs == 0 {
// Having active inc_refs can inhibit dropping of ref-counts. Calculate whether we
// would send a refcount decrement, and if so, tell the caller to schedule us.
let strong = inner.strong.count > 0;
let has_strong = inner.strong.has_count;
let weak = strong || inner.weak.count > 0;
let has_weak = inner.weak.has_count;
let should_drop_weak = !weak && has_weak;
let should_drop_strong = !strong && has_strong;
// If we want to drop the ref-count again, tell the caller to schedule a work node for
// that.
let need_push = should_drop_weak || should_drop_strong;
if need_push && inner.delivery_state.should_normal_push() {
let list_arc = ListArc::try_from_arc(self.clone()).ok().unwrap();
inner.delivery_state.did_normal_push();
Some(list_arc)
} else {
None
}
} else {
None
}
}
pub(crate) fn update_refcount_locked(
self: &DArc<Node>,
inc: bool,
strong: bool,
count: usize,
owner_inner: &mut ProcessInner,
) -> Option<DLArc<Node>> {
let is_dead = owner_inner.is_dead;
let inner = self.inner.access_mut(owner_inner);
// Get a reference to the state we'll update.
let state = if strong {
&mut inner.strong
} else {
&mut inner.weak
};
// Update the count and determine whether we need to push work.
let need_push = if inc {
state.count += count;
// TODO: This method shouldn't be used for zero-to-one increments.
!is_dead && !state.has_count
} else {
if state.count < count {
pr_err!("Failure: refcount underflow!");
return None;
}
state.count -= count;
!is_dead && state.count == 0 && state.has_count
};
if need_push && inner.delivery_state.should_normal_push() {
let list_arc = ListArc::try_from_arc(self.clone()).ok().unwrap();
inner.delivery_state.did_normal_push();
Some(list_arc)
} else {
None
}
}
pub(crate) fn incr_refcount_allow_zero2one(
self: &DArc<Self>,
strong: bool,
owner_inner: &mut ProcessInner,
) -> Result<Option<DLArc<Node>>, CouldNotDeliverCriticalIncrement> {
let is_dead = owner_inner.is_dead;
let inner = self.inner.access_mut(owner_inner);
// Get a reference to the state we'll update.
let state = if strong {
&mut inner.strong
} else {
&mut inner.weak
};
// Update the count and determine whether we need to push work.
state.count += 1;
if is_dead || state.has_count {
return Ok(None);
}
// Userspace needs to be notified of this.
if !strong && inner.delivery_state.should_push_weak_zero2one() {
assert!(inner.delivery_state.can_push_weak_zero2one_normally());
let list_arc = ListArc::try_from_arc(self.clone()).ok().unwrap();
inner.delivery_state.did_push_weak_zero2one();
Ok(Some(list_arc))
} else if strong && inner.delivery_state.should_push_strong_zero2one() {
if inner.delivery_state.can_push_strong_zero2one_normally() {
let list_arc = ListArc::try_from_arc(self.clone()).ok().unwrap();
inner.delivery_state.did_push_strong_zero2one();
Ok(Some(list_arc))
} else {
state.count -= 1;
Err(CouldNotDeliverCriticalIncrement)
}
} else {
// Work is already pushed, and we don't need to push again.
Ok(None)
}
}
pub(crate) fn incr_refcount_allow_zero2one_with_wrapper(
self: &DArc<Self>,
strong: bool,
wrapper: CritIncrWrapper,
owner_inner: &mut ProcessInner,
) -> Option<DLArc<dyn DeliverToRead>> {
match self.incr_refcount_allow_zero2one(strong, owner_inner) {
Ok(Some(node)) => Some(node as _),
Ok(None) => None,
Err(CouldNotDeliverCriticalIncrement) => {
assert!(strong);
let inner = self.inner.access_mut(owner_inner);
inner.strong.count += 1;
inner.delivery_state.did_push_strong_zero2one_wrapper();
Some(wrapper.init(self.clone()))
}
}
}
pub(crate) fn update_refcount(self: &DArc<Self>, inc: bool, count: usize, strong: bool) {
self.owner
.inner
.lock()
.update_node_refcount(self, inc, strong, count, None);
}
pub(crate) fn populate_counts(
&self,
out: &mut BinderNodeInfoForRef,
guard: &Guard<'_, ProcessInner, SpinLockBackend>,
) {
let inner = self.inner.access(guard);
out.strong_count = inner.strong.count as _;
out.weak_count = inner.weak.count as _;
}
pub(crate) fn populate_debug_info(
&self,
out: &mut BinderNodeDebugInfo,
guard: &Guard<'_, ProcessInner, SpinLockBackend>,
) {
out.ptr = self.ptr as _;
out.cookie = self.cookie as _;
let inner = self.inner.access(guard);
if inner.strong.has_count {
out.has_strong_ref = 1;
}
if inner.weak.has_count {
out.has_weak_ref = 1;
}
}
pub(crate) fn force_has_count(&self, guard: &mut Guard<'_, ProcessInner, SpinLockBackend>) {
let inner = self.inner.access_mut(guard);
inner.strong.has_count = true;
inner.weak.has_count = true;
}
fn write(&self, writer: &mut BinderReturnWriter<'_>, code: u32) -> Result {
writer.write_code(code)?;
writer.write_payload(&self.ptr)?;
writer.write_payload(&self.cookie)?;
Ok(())
}
pub(crate) fn submit_oneway(
&self,
transaction: DLArc<Transaction>,
guard: &mut Guard<'_, ProcessInner, SpinLockBackend>,
) -> Result<(), (BinderError, DLArc<dyn DeliverToRead>)> {
if guard.is_dead {
return Err((BinderError::new_dead(), transaction));
}
let inner = self.inner.access_mut(guard);
if inner.has_oneway_transaction {
inner.oneway_todo.push_back(transaction);
} else {
inner.has_oneway_transaction = true;
guard.push_work(transaction)?;
}
Ok(())
}
pub(crate) fn release(&self) {
let mut guard = self.owner.inner.lock();
while let Some(work) = self.inner.access_mut(&mut guard).oneway_todo.pop_front() {
drop(guard);
work.into_arc().cancel();
guard = self.owner.inner.lock();
}
let death_list = core::mem::take(&mut self.inner.access_mut(&mut guard).death_list);
drop(guard);
for death in death_list {
death.into_arc().set_dead();
}
}
pub(crate) fn pending_oneway_finished(&self) {
let mut guard = self.owner.inner.lock();
if guard.is_dead {
// Cleanup will happen in `Process::deferred_release`.
return;
}
let inner = self.inner.access_mut(&mut guard);
let transaction = inner.oneway_todo.pop_front();
inner.has_oneway_transaction = transaction.is_some();
if let Some(transaction) = transaction {
match guard.push_work(transaction) {
Ok(()) => {}
Err((_err, work)) => {
// Process is dead.
// This shouldn't happen due to the `is_dead` check, but if it does, just drop
// the transaction and return.
drop(guard);
drop(work);
}
}
}
}
/// Finds an outdated transaction that the given transaction can replace.
///
/// If one is found, it is removed from the list and returned.
pub(crate) fn take_outdated_transaction(
&self,
new: &Transaction,
guard: &mut Guard<'_, ProcessInner, SpinLockBackend>,
) -> Option<DLArc<Transaction>> {
let inner = self.inner.access_mut(guard);
let mut cursor = inner.oneway_todo.cursor_front();
while let Some(next) = cursor.peek_next() {
if new.can_replace(&next) {
return Some(next.remove());
}
cursor.move_next();
}
None
}
/// This is split into a separate function since it's called by both `Node::do_work` and
/// `NodeWrapper::do_work`.
fn do_work_locked(
&self,
writer: &mut BinderReturnWriter<'_>,
mut guard: Guard<'_, ProcessInner, SpinLockBackend>,
) -> Result<bool> {
let inner = self.inner.access_mut(&mut guard);
let strong = inner.strong.count > 0;
let has_strong = inner.strong.has_count;
let weak = strong || inner.weak.count > 0;
let has_weak = inner.weak.has_count;
if weak && !has_weak {
inner.weak.has_count = true;
inner.active_inc_refs += 1;
}
if strong && !has_strong {
inner.strong.has_count = true;
inner.active_inc_refs += 1;
}
let no_active_inc_refs = inner.active_inc_refs == 0;
let should_drop_weak = no_active_inc_refs && (!weak && has_weak);
let should_drop_strong = no_active_inc_refs && (!strong && has_strong);
if should_drop_weak {
inner.weak.has_count = false;
}
if should_drop_strong {
inner.strong.has_count = false;
}
if no_active_inc_refs && !weak {
// Remove the node if there are no references to it.
guard.remove_node(self.ptr);
}
drop(guard);
if weak && !has_weak {
self.write(writer, BR_INCREFS)?;
}
if strong && !has_strong {
self.write(writer, BR_ACQUIRE)?;
}
if should_drop_strong {
self.write(writer, BR_RELEASE)?;
}
if should_drop_weak {
self.write(writer, BR_DECREFS)?;
}
Ok(true)
}
pub(crate) fn add_freeze_listener(
&self,
process: &Arc<Process>,
flags: kernel::alloc::Flags,
) -> Result {
let mut vec_alloc = KVVec::<Arc<Process>>::new();
loop {
let mut guard = self.owner.inner.lock();
// Do not check for `guard.dead`. The `dead` flag that matters here is the owner of the
// listener, no the target.
let inner = self.inner.access_mut(&mut guard);
let len = inner.freeze_list.len();
if len >= inner.freeze_list.capacity() {
if len >= vec_alloc.capacity() {
drop(guard);
vec_alloc = KVVec::with_capacity((1 + len).next_power_of_two(), flags)?;
continue;
}
mem::swap(&mut inner.freeze_list, &mut vec_alloc);
for elem in vec_alloc.drain_all() {
inner.freeze_list.push_within_capacity(elem)?;
}
}
inner.freeze_list.push_within_capacity(process.clone())?;
return Ok(());
}
}
pub(crate) fn remove_freeze_listener(&self, p: &Arc<Process>) {
let _unused_capacity;
let mut guard = self.owner.inner.lock();
let inner = self.inner.access_mut(&mut guard);
let len = inner.freeze_list.len();
inner.freeze_list.retain(|proc| !Arc::ptr_eq(proc, p));
if len == inner.freeze_list.len() {
pr_warn!(
"Could not remove freeze listener for {}\n",
p.pid_in_current_ns()
);
}
if inner.freeze_list.is_empty() {
_unused_capacity = mem::replace(&mut inner.freeze_list, KVVec::new());
}
}
pub(crate) fn freeze_list<'a>(&'a self, guard: &'a ProcessInner) -> &'a [Arc<Process>] {
&self.inner.access(guard).freeze_list
}
}
impl DeliverToRead for Node {
fn do_work(
self: DArc<Self>,
_thread: &Thread,
writer: &mut BinderReturnWriter<'_>,
) -> Result<bool> {
let mut owner_inner = self.owner.inner.lock();
let inner = self.inner.access_mut(&mut owner_inner);
assert!(inner.delivery_state.has_pushed_node);
if inner.delivery_state.has_pushed_wrapper {
// If the wrapper is scheduled, then we are either a normal push or weak zero2one
// increment, and the wrapper is a strong zero2one increment, so the wrapper always
// takes precedence over us.
assert!(inner.delivery_state.has_strong_zero2one);
inner.delivery_state.has_pushed_node = false;
inner.delivery_state.has_weak_zero2one = false;
return Ok(true);
}
inner.delivery_state.has_pushed_node = false;
inner.delivery_state.has_weak_zero2one = false;
inner.delivery_state.has_strong_zero2one = false;
self.do_work_locked(writer, owner_inner)
}
fn cancel(self: DArc<Self>) {}
fn should_sync_wakeup(&self) -> bool {
false
}
#[inline(never)]
fn debug_print(&self, m: &SeqFile, prefix: &str, _tprefix: &str) -> Result<()> {
seq_print!(
m,
"{}node work {}: u{:016x} c{:016x}\n",
prefix,
self.debug_id,
self.ptr,
self.cookie,
);
Ok(())
}
}
/// Represents something that holds one or more ref-counts to a `Node`.
///
/// Whenever process A holds a refcount to a node owned by a different process B, then process A
/// will store a `NodeRef` that refers to the `Node` in process B. When process A releases the
/// refcount, we destroy the NodeRef, which decrements the ref-count in process A.
///
/// This type is also used for some other cases. For example, a transaction allocation holds a
/// refcount on the target node, and this is implemented by storing a `NodeRef` in the allocation
/// so that the destructor of the allocation will drop a refcount of the `Node`.
pub(crate) struct NodeRef {
pub(crate) node: DArc<Node>,
/// How many times does this NodeRef hold a refcount on the Node?
strong_node_count: usize,
weak_node_count: usize,
/// How many times does userspace hold a refcount on this NodeRef?
strong_count: usize,
weak_count: usize,
}
impl NodeRef {
pub(crate) fn new(node: DArc<Node>, strong_count: usize, weak_count: usize) -> Self {
Self {
node,
strong_node_count: strong_count,
weak_node_count: weak_count,
strong_count,
weak_count,
}
}
pub(crate) fn absorb(&mut self, mut other: Self) {
assert!(
Arc::ptr_eq(&self.node, &other.node),
"absorb called with differing nodes"
);
self.strong_node_count += other.strong_node_count;
self.weak_node_count += other.weak_node_count;
self.strong_count += other.strong_count;
self.weak_count += other.weak_count;
other.strong_count = 0;
other.weak_count = 0;
other.strong_node_count = 0;
other.weak_node_count = 0;
if self.strong_node_count >= 2 || self.weak_node_count >= 2 {
let mut guard = self.node.owner.inner.lock();
let inner = self.node.inner.access_mut(&mut guard);
if self.strong_node_count >= 2 {
inner.strong.count -= self.strong_node_count - 1;
self.strong_node_count = 1;
assert_ne!(inner.strong.count, 0);
}
if self.weak_node_count >= 2 {
inner.weak.count -= self.weak_node_count - 1;
self.weak_node_count = 1;
assert_ne!(inner.weak.count, 0);
}
}
}
pub(crate) fn get_count(&self) -> (usize, usize) {
(self.strong_count, self.weak_count)
}
pub(crate) fn clone(&self, strong: bool) -> Result<NodeRef> {
if strong && self.strong_count == 0 {
return Err(EINVAL);
}
Ok(self
.node
.owner
.inner
.lock()
.new_node_ref(self.node.clone(), strong, None))
}
/// Updates (increments or decrements) the number of references held against the node. If the
/// count being updated transitions from 0 to 1 or from 1 to 0, the node is notified by having
/// its `update_refcount` function called.
///
/// Returns whether `self` should be removed (when both counts are zero).
pub(crate) fn update(&mut self, inc: bool, strong: bool) -> bool {
if strong && self.strong_count == 0 {
return false;
}
let (count, node_count, other_count) = if strong {
(
&mut self.strong_count,
&mut self.strong_node_count,
self.weak_count,
)
} else {
(
&mut self.weak_count,
&mut self.weak_node_count,
self.strong_count,
)
};
if inc {
if *count == 0 {
*node_count = 1;
self.node.update_refcount(true, 1, strong);
}
*count += 1;
} else {
if *count == 0 {
pr_warn!(
"pid {} performed invalid decrement on ref\n",
kernel::current!().pid()
);
return false;
}
*count -= 1;
if *count == 0 {
self.node.update_refcount(false, *node_count, strong);
*node_count = 0;
return other_count == 0;
}
}
false
}
}
impl Drop for NodeRef {
// This destructor is called conditionally from `Allocation::drop`. That branch is often
// mispredicted. Inlining this method call reduces the cost of those branch mispredictions.
#[inline(always)]
fn drop(&mut self) {
if self.strong_node_count > 0 {
self.node
.update_refcount(false, self.strong_node_count, true);
}
if self.weak_node_count > 0 {
self.node
.update_refcount(false, self.weak_node_count, false);
}
}
}
struct NodeDeathInner {
dead: bool,
cleared: bool,
notification_done: bool,
/// Indicates whether the normal flow was interrupted by removing the handle. In this case, we
/// need behave as if the death notification didn't exist (i.e., we don't deliver anything to
/// the user.
aborted: bool,
}
/// Used to deliver notifications when a process dies.
///
/// A process can request to be notified when a process dies using `BC_REQUEST_DEATH_NOTIFICATION`.
/// This will make the driver send a `BR_DEAD_BINDER` to userspace when the process dies (or
/// immediately if it is already dead). Userspace is supposed to respond with `BC_DEAD_BINDER_DONE`
/// once it has processed the notification.
///
/// Userspace can unregister from death notifications using the `BC_CLEAR_DEATH_NOTIFICATION`
/// command. In this case, the kernel will respond with `BR_CLEAR_DEATH_NOTIFICATION_DONE` once the
/// notification has been removed. Note that if the remote process dies before the kernel has
/// responded with `BR_CLEAR_DEATH_NOTIFICATION_DONE`, then the kernel will still send a
/// `BR_DEAD_BINDER`, which userspace must be able to process. In this case, the kernel will wait
/// for the `BC_DEAD_BINDER_DONE` command before it sends `BR_CLEAR_DEATH_NOTIFICATION_DONE`.
///
/// Note that even if the kernel sends a `BR_DEAD_BINDER`, this does not remove the death
/// notification. Userspace must still remove it manually using `BC_CLEAR_DEATH_NOTIFICATION`.
///
/// If a process uses `BC_RELEASE` to destroy its last refcount on a node that has an active death
/// registration, then the death registration is immediately deleted (we implement this using the
/// `aborted` field). However, userspace is not supposed to delete a `NodeRef` without first
/// deregistering death notifications, so this codepath is not executed under normal circumstances.
#[pin_data]
pub(crate) struct NodeDeath {
node: DArc<Node>,
process: Arc<Process>,
pub(crate) cookie: u64,
#[pin]
links_track: AtomicTracker<0>,
/// Used by the owner `Node` to store a list of registered death notifications.
///
/// # Invariants
///
/// Only ever used with the `death_list` list of `self.node`.
#[pin]
death_links: ListLinks<1>,
/// Used by the process to keep track of the death notifications for which we have sent a
/// `BR_DEAD_BINDER` but not yet received a `BC_DEAD_BINDER_DONE`.
///
/// # Invariants
///
/// Only ever used with the `delivered_deaths` list of `self.process`.
#[pin]
delivered_links: ListLinks<2>,
#[pin]
delivered_links_track: AtomicTracker<2>,
#[pin]
inner: SpinLock<NodeDeathInner>,
}
impl NodeDeath {
/// Constructs a new node death notification object.
pub(crate) fn new(
node: DArc<Node>,
process: Arc<Process>,
cookie: u64,
) -> impl PinInit<DTRWrap<Self>> {
DTRWrap::new(pin_init!(
Self {
node,
process,
cookie,
links_track <- AtomicTracker::new(),
death_links <- ListLinks::new(),
delivered_links <- ListLinks::new(),
delivered_links_track <- AtomicTracker::new(),
inner <- kernel::new_spinlock!(NodeDeathInner {
dead: false,
cleared: false,
notification_done: false,
aborted: false,
}, "NodeDeath::inner"),
}
))
}
/// Sets the cleared flag to `true`.
///
/// It removes `self` from the node's death notification list if needed.
///
/// Returns whether it needs to be queued.
pub(crate) fn set_cleared(self: &DArc<Self>, abort: bool) -> bool {
let (needs_removal, needs_queueing) = {
// Update state and determine if we need to queue a work item. We only need to do it
// when the node is not dead or if the user already completed the death notification.
let mut inner = self.inner.lock();
if abort {
inner.aborted = true;
}
if inner.cleared {
// Already cleared.
return false;
}
inner.cleared = true;
(!inner.dead, !inner.dead || inner.notification_done)
};
// Remove death notification from node.
if needs_removal {
let mut owner_inner = self.node.owner.inner.lock();
let node_inner = self.node.inner.access_mut(&mut owner_inner);
// SAFETY: A `NodeDeath` is never inserted into the death list of any node other than
// its owner, so it is either in this death list or in no death list.
unsafe { node_inner.death_list.remove(self) };
}
needs_queueing
}
/// Sets the 'notification done' flag to `true`.
pub(crate) fn set_notification_done(self: DArc<Self>, thread: &Thread) {
let needs_queueing = {
let mut inner = self.inner.lock();
inner.notification_done = true;
inner.cleared
};
if needs_queueing {
if let Some(death) = ListArc::try_from_arc_or_drop(self) {
let _ = thread.push_work_if_looper(death);
}
}
}
/// Sets the 'dead' flag to `true` and queues work item if needed.
pub(crate) fn set_dead(self: DArc<Self>) {
let needs_queueing = {
let mut inner = self.inner.lock();
if inner.cleared {
false
} else {
inner.dead = true;
true
}
};
if needs_queueing {
// Push the death notification to the target process. There is nothing else to do if
// it's already dead.
if let Some(death) = ListArc::try_from_arc_or_drop(self) {
let process = death.process.clone();
let _ = process.push_work(death);
}
}
}
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<0> for NodeDeath {
tracked_by links_track: AtomicTracker;
}
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<1> for DTRWrap<NodeDeath> { untracked; }
}
kernel::list::impl_list_item! {
impl ListItem<1> for DTRWrap<NodeDeath> {
using ListLinks { self.wrapped.death_links };
}
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<2> for DTRWrap<NodeDeath> {
tracked_by wrapped: NodeDeath;
}
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<2> for NodeDeath {
tracked_by delivered_links_track: AtomicTracker<2>;
}
}
kernel::list::impl_list_item! {
impl ListItem<2> for DTRWrap<NodeDeath> {
using ListLinks { self.wrapped.delivered_links };
}
}
impl DeliverToRead for NodeDeath {
fn do_work(
self: DArc<Self>,
_thread: &Thread,
writer: &mut BinderReturnWriter<'_>,
) -> Result<bool> {
let done = {
let inner = self.inner.lock();
if inner.aborted {
return Ok(true);
}
inner.cleared && (!inner.dead || inner.notification_done)
};
let cookie = self.cookie;
let cmd = if done {
BR_CLEAR_DEATH_NOTIFICATION_DONE
} else {
let process = self.process.clone();
let mut process_inner = process.inner.lock();
let inner = self.inner.lock();
if inner.aborted {
return Ok(true);
}
// We're still holding the inner lock, so it cannot be aborted while we insert it into
// the delivered list.
process_inner.death_delivered(self.clone());
BR_DEAD_BINDER
};
writer.write_code(cmd)?;
writer.write_payload(&cookie)?;
// DEAD_BINDER notifications can cause transactions, so stop processing work items when we
// get to a death notification.
Ok(cmd != BR_DEAD_BINDER)
}
fn cancel(self: DArc<Self>) {}
fn should_sync_wakeup(&self) -> bool {
false
}
#[inline(never)]
fn debug_print(&self, m: &SeqFile, prefix: &str, _tprefix: &str) -> Result<()> {
let inner = self.inner.lock();
let dead_binder = inner.dead && !inner.notification_done;
if dead_binder {
if inner.cleared {
seq_print!(m, "{}has cleared dead binder\n", prefix);
} else {
seq_print!(m, "{}has dead binder\n", prefix);
}
} else {
seq_print!(m, "{}has cleared death notification\n", prefix);
}
Ok(())
}
}
|