summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/amd/display/dc/dpp/dcn401/dcn401_dpp_dscl.c
blob: 2f92e7d4981bae68529cf522ee48ef039d0fbfe9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
/*
 * Copyright 2016 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

#include "dm_services.h"

#include "core_types.h"

#include "reg_helper.h"
#include "dcn401/dcn401_dpp.h"
#include "basics/conversion.h"


#define NUM_PHASES    64
#define HORZ_MAX_TAPS 8
#define VERT_MAX_TAPS 8
#define NUM_LEVELS    32
#define BLACK_OFFSET_RGB_Y 0x0
#define BLACK_OFFSET_CBCR  0x8000


#define REG(reg)\
	dpp->tf_regs->reg

#define CTX \
	dpp->base.ctx

#undef FN
#define FN(reg_name, field_name) \
	dpp->tf_shift->field_name, dpp->tf_mask->field_name

enum dcn401_coef_filter_type_sel {
	SCL_COEF_LUMA_VERT_FILTER = 0,
	SCL_COEF_LUMA_HORZ_FILTER = 1,
	SCL_COEF_CHROMA_VERT_FILTER = 2,
	SCL_COEF_CHROMA_HORZ_FILTER = 3,
	SCL_COEF_ALPHA_VERT_FILTER = 4,
	SCL_COEF_ALPHA_HORZ_FILTER = 5,
	SCL_COEF_VERTICAL_BLUR_SCALE = SCL_COEF_ALPHA_VERT_FILTER,
	SCL_COEF_HORIZONTAL_BLUR_SCALE = SCL_COEF_ALPHA_HORZ_FILTER
};

enum dscl_autocal_mode {
	AUTOCAL_MODE_OFF = 0,

	/* Autocal calculate the scaling ratio and initial phase and the
	 * DSCL_MODE_SEL must be set to 1
	 */
	AUTOCAL_MODE_AUTOSCALE = 1,
	/* Autocal perform auto centering without replication and the
	 * DSCL_MODE_SEL must be set to 0
	 */
	AUTOCAL_MODE_AUTOCENTER = 2,
	/* Autocal perform auto centering and auto replication and the
	 * DSCL_MODE_SEL must be set to 0
	 */
	AUTOCAL_MODE_AUTOREPLICATE = 3
};

enum dscl_mode_sel {
	DSCL_MODE_SCALING_444_BYPASS = 0,
	DSCL_MODE_SCALING_444_RGB_ENABLE = 1,
	DSCL_MODE_SCALING_444_YCBCR_ENABLE = 2,
	DSCL_MODE_SCALING_420_YCBCR_ENABLE = 3,
	DSCL_MODE_SCALING_420_LUMA_BYPASS = 4,
	DSCL_MODE_SCALING_420_CHROMA_BYPASS = 5,
	DSCL_MODE_DSCL_BYPASS = 6
};

static int dpp401_dscl_get_pixel_depth_val(enum lb_pixel_depth depth)
{
	if (depth == LB_PIXEL_DEPTH_30BPP)
		return 0; /* 10 bpc */
	else if (depth == LB_PIXEL_DEPTH_24BPP)
		return 1; /* 8 bpc */
	else if (depth == LB_PIXEL_DEPTH_18BPP)
		return 2; /* 6 bpc */
	else if (depth == LB_PIXEL_DEPTH_36BPP)
		return 3; /* 12 bpc */
	else {
		ASSERT(0);
		return -1; /* Unsupported */
	}
}

static bool dpp401_dscl_is_video_format(enum pixel_format format)
{
	if (format >= PIXEL_FORMAT_VIDEO_BEGIN
			&& format <= PIXEL_FORMAT_VIDEO_END)
		return true;
	else
		return false;
}

static bool dpp401_dscl_is_420_format(enum pixel_format format)
{
	if (format == PIXEL_FORMAT_420BPP8 ||
			format == PIXEL_FORMAT_420BPP10)
		return true;
	else
		return false;
}

static enum dscl_mode_sel dpp401_dscl_get_dscl_mode(
		struct dpp *dpp_base,
		const struct scaler_data *data,
		bool dbg_always_scale)
{
	const long long one = dc_fixpt_one.value;

	if (dpp_base->caps->dscl_data_proc_format == DSCL_DATA_PRCESSING_FIXED_FORMAT) {
		/* DSCL is processing data in fixed format */
		if (data->format == PIXEL_FORMAT_FP16)
			return DSCL_MODE_DSCL_BYPASS;
	}

	if (data->ratios.horz.value == one
			&& data->ratios.vert.value == one
			&& data->ratios.horz_c.value == one
			&& data->ratios.vert_c.value == one
			&& !dbg_always_scale)
		return DSCL_MODE_SCALING_444_BYPASS;

	if (!dpp401_dscl_is_420_format(data->format)) {
		if (dpp401_dscl_is_video_format(data->format))
			return DSCL_MODE_SCALING_444_YCBCR_ENABLE;
		else
			return DSCL_MODE_SCALING_444_RGB_ENABLE;
	}
	if (data->ratios.horz.value == one && data->ratios.vert.value == one)
		return DSCL_MODE_SCALING_420_LUMA_BYPASS;
	if (data->ratios.horz_c.value == one && data->ratios.vert_c.value == one)
		return DSCL_MODE_SCALING_420_CHROMA_BYPASS;

	return DSCL_MODE_SCALING_420_YCBCR_ENABLE;
}

static void dpp401_power_on_dscl(
	struct dpp *dpp_base,
	bool power_on)
{
	struct dcn401_dpp *dpp = TO_DCN401_DPP(dpp_base);

	if (dpp->tf_regs->DSCL_MEM_PWR_CTRL) {
		if (power_on) {
			REG_UPDATE(DSCL_MEM_PWR_CTRL, LUT_MEM_PWR_FORCE, 0);
			REG_WAIT(DSCL_MEM_PWR_STATUS, LUT_MEM_PWR_STATE, 0, 1, 5);
		} else {
			if (dpp->base.ctx->dc->debug.enable_mem_low_power.bits.dscl) {
				dpp->base.ctx->dc->optimized_required = true;
				dpp->base.deferred_reg_writes.bits.disable_dscl = true;
			} else {
				REG_UPDATE(DSCL_MEM_PWR_CTRL, LUT_MEM_PWR_FORCE, 3);
			}
		}
	}
}


static void dpp401_dscl_set_lb(
	struct dcn401_dpp *dpp,
	const struct line_buffer_params *lb_params,
	enum lb_memory_config mem_size_config)
{
	uint32_t max_partitions = 63; /* Currently hardcoded on all ASICs before DCN 3.2 */

	/* LB */
	if (dpp->base.caps->dscl_data_proc_format == DSCL_DATA_PRCESSING_FIXED_FORMAT) {
		/* DSCL caps: pixel data processed in fixed format */
		uint32_t pixel_depth = dpp401_dscl_get_pixel_depth_val(lb_params->depth);
		uint32_t dyn_pix_depth = lb_params->dynamic_pixel_depth;

		REG_SET_7(LB_DATA_FORMAT, 0,
			PIXEL_DEPTH, pixel_depth, /* Pixel depth stored in LB */
			PIXEL_EXPAN_MODE, lb_params->pixel_expan_mode, /* Pixel expansion mode */
			PIXEL_REDUCE_MODE, 1, /* Pixel reduction mode: Rounding */
			DYNAMIC_PIXEL_DEPTH, dyn_pix_depth, /* Dynamic expansion pixel depth */
			DITHER_EN, 0, /* Dithering enable: Disabled */
			INTERLEAVE_EN, lb_params->interleave_en, /* Interleave source enable */
			LB_DATA_FORMAT__ALPHA_EN, lb_params->alpha_en); /* Alpha enable */
	}	else {
		/* DSCL caps: pixel data processed in float format */
		REG_SET_2(LB_DATA_FORMAT, 0,
			INTERLEAVE_EN, lb_params->interleave_en, /* Interleave source enable */
			LB_DATA_FORMAT__ALPHA_EN, lb_params->alpha_en); /* Alpha enable */
	}

	if (dpp->base.caps->max_lb_partitions == 31)
		max_partitions = 31;

	REG_SET_2(LB_MEMORY_CTRL, 0,
		MEMORY_CONFIG, mem_size_config,
		LB_MAX_PARTITIONS, max_partitions);
}

static const uint16_t *dpp401_dscl_get_filter_coeffs_64p(int taps, struct fixed31_32 ratio)
{
	if (taps == 8)
		return get_filter_8tap_64p(ratio);
	else if (taps == 7)
		return get_filter_7tap_64p(ratio);
	else if (taps == 6)
		return get_filter_6tap_64p(ratio);
	else if (taps == 5)
		return get_filter_5tap_64p(ratio);
	else if (taps == 4)
		return get_filter_4tap_64p(ratio);
	else if (taps == 3)
		return get_filter_3tap_64p(ratio);
	else if (taps == 2)
		return get_filter_2tap_64p();
	else if (taps == 1)
		return NULL;
	else {
		/* should never happen, bug */
		BREAK_TO_DEBUGGER();
		return NULL;
	}
}

static void dpp401_dscl_set_scaler_filter(
		struct dcn401_dpp *dpp,
		uint32_t taps,
		enum dcn401_coef_filter_type_sel filter_type,
		const uint16_t *filter)
{
	const int tap_pairs = (taps + 1) / 2;
	int phase;
	int pair;
	uint16_t odd_coef, even_coef;

	REG_SET_3(SCL_COEF_RAM_TAP_SELECT, 0,
		SCL_COEF_RAM_TAP_PAIR_IDX, 0,
		SCL_COEF_RAM_PHASE, 0,
		SCL_COEF_RAM_FILTER_TYPE, filter_type);

	for (phase = 0; phase < (NUM_PHASES / 2 + 1); phase++) {
		for (pair = 0; pair < tap_pairs; pair++) {
			even_coef = filter[phase * taps + 2 * pair];
			if ((pair * 2 + 1) < taps)
				odd_coef = filter[phase * taps + 2 * pair + 1];
			else
				odd_coef = 0;

			REG_SET_4(SCL_COEF_RAM_TAP_DATA, 0,
				/* Even tap coefficient (bits 1:0 fixed to 0) */
				SCL_COEF_RAM_EVEN_TAP_COEF, even_coef,
				/* Write/read control for even coefficient */
				SCL_COEF_RAM_EVEN_TAP_COEF_EN, 1,
				/* Odd tap coefficient (bits 1:0 fixed to 0) */
				SCL_COEF_RAM_ODD_TAP_COEF, odd_coef,
				/* Write/read control for odd coefficient */
				SCL_COEF_RAM_ODD_TAP_COEF_EN, 1);
		}
	}

}

static void dpp401_dscl_set_scl_filter(
		struct dcn401_dpp *dpp,
		const struct scaler_data *scl_data,
		bool chroma_coef_mode,
		bool force_coeffs_update)
{
	bool h_2tap_hardcode_coef_en = false;
	bool v_2tap_hardcode_coef_en = false;
	bool h_2tap_sharp_en = false;
	bool v_2tap_sharp_en = false;
	uint32_t h_2tap_sharp_factor = scl_data->sharpness.horz;
	uint32_t v_2tap_sharp_factor = scl_data->sharpness.vert;
	bool coef_ram_current;
	const uint16_t *filter_h = NULL;
	const uint16_t *filter_v = NULL;
	const uint16_t *filter_h_c = NULL;
	const uint16_t *filter_v_c = NULL;

	if ((dpp->base.ctx->dc->config.use_spl) && (!dpp->base.ctx->dc->debug.disable_spl)) {
		filter_h = scl_data->dscl_prog_data.filter_h;
		filter_v = scl_data->dscl_prog_data.filter_v;
		if (chroma_coef_mode) {
			filter_h_c = scl_data->dscl_prog_data.filter_h_c;
			filter_v_c = scl_data->dscl_prog_data.filter_v_c;
		}
	} else {
		filter_h = dpp401_dscl_get_filter_coeffs_64p(
			scl_data->taps.h_taps, scl_data->ratios.horz);
		filter_v = dpp401_dscl_get_filter_coeffs_64p(
			scl_data->taps.v_taps, scl_data->ratios.vert);
		if (chroma_coef_mode) {
			filter_h_c = dpp401_dscl_get_filter_coeffs_64p(
				scl_data->taps.h_taps_c, scl_data->ratios.horz_c);
			filter_v_c = dpp401_dscl_get_filter_coeffs_64p(
				scl_data->taps.v_taps_c, scl_data->ratios.vert_c);
		}
	}

	h_2tap_hardcode_coef_en = scl_data->taps.h_taps < 3
					&& scl_data->taps.h_taps_c < 3
		&& (scl_data->taps.h_taps > 1 && scl_data->taps.h_taps_c > 1);
	v_2tap_hardcode_coef_en = scl_data->taps.v_taps < 3
					&& scl_data->taps.v_taps_c < 3
		&& (scl_data->taps.v_taps > 1 && scl_data->taps.v_taps_c > 1);

	h_2tap_sharp_en = h_2tap_hardcode_coef_en && h_2tap_sharp_factor != 0;
	v_2tap_sharp_en = v_2tap_hardcode_coef_en && v_2tap_sharp_factor != 0;

	REG_UPDATE_6(DSCL_2TAP_CONTROL,
		SCL_H_2TAP_HARDCODE_COEF_EN, h_2tap_hardcode_coef_en,
		SCL_H_2TAP_SHARP_EN, h_2tap_sharp_en,
		SCL_H_2TAP_SHARP_FACTOR, h_2tap_sharp_factor,
		SCL_V_2TAP_HARDCODE_COEF_EN, v_2tap_hardcode_coef_en,
		SCL_V_2TAP_SHARP_EN, v_2tap_sharp_en,
		SCL_V_2TAP_SHARP_FACTOR, v_2tap_sharp_factor);

	if (!v_2tap_hardcode_coef_en || !h_2tap_hardcode_coef_en) {
		bool filter_updated = false;

		filter_updated = (filter_h && (filter_h != dpp->filter_h))
				|| (filter_v && (filter_v != dpp->filter_v));

		if (chroma_coef_mode) {
			filter_updated = filter_updated || (filter_h_c && (filter_h_c != dpp->filter_h_c))
							|| (filter_v_c && (filter_v_c != dpp->filter_v_c));
		}

		if ((filter_updated) || (force_coeffs_update)) {
			uint32_t scl_mode = REG_READ(SCL_MODE);

			if (!h_2tap_hardcode_coef_en && filter_h) {
				dpp401_dscl_set_scaler_filter(
					dpp, scl_data->taps.h_taps,
					SCL_COEF_LUMA_HORZ_FILTER, filter_h);
			}
			dpp->filter_h = filter_h;
			if (!v_2tap_hardcode_coef_en && filter_v) {
				dpp401_dscl_set_scaler_filter(
					dpp, scl_data->taps.v_taps,
					SCL_COEF_LUMA_VERT_FILTER, filter_v);
			}
			dpp->filter_v = filter_v;
			if (chroma_coef_mode) {
				if (!h_2tap_hardcode_coef_en && filter_h_c) {
					dpp401_dscl_set_scaler_filter(
						dpp, scl_data->taps.h_taps_c,
						SCL_COEF_CHROMA_HORZ_FILTER, filter_h_c);
				}
				if (!v_2tap_hardcode_coef_en && filter_v_c) {
					dpp401_dscl_set_scaler_filter(
						dpp, scl_data->taps.v_taps_c,
						SCL_COEF_CHROMA_VERT_FILTER, filter_v_c);
				}
			}
			dpp->filter_h_c = filter_h_c;
			dpp->filter_v_c = filter_v_c;

			coef_ram_current = get_reg_field_value_ex(
				scl_mode, dpp->tf_mask->SCL_COEF_RAM_SELECT_CURRENT,
				dpp->tf_shift->SCL_COEF_RAM_SELECT_CURRENT);

			/* Swap coefficient RAM and set chroma coefficient mode */
			REG_SET_2(SCL_MODE, scl_mode,
					SCL_COEF_RAM_SELECT, !coef_ram_current,
					SCL_CHROMA_COEF_MODE, chroma_coef_mode);
		}
	}
}

// TODO: Fix defined but not used error
//static int dpp401_dscl_get_lb_depth_bpc(enum lb_pixel_depth depth)
//{
//	if (depth == LB_PIXEL_DEPTH_30BPP)
//		return 10;
//	else if (depth == LB_PIXEL_DEPTH_24BPP)
//		return 8;
//	else if (depth == LB_PIXEL_DEPTH_18BPP)
//		return 6;
//	else if (depth == LB_PIXEL_DEPTH_36BPP)
//		return 12;
//	else {
//		BREAK_TO_DEBUGGER();
//		return -1; /* Unsupported */
//	}
//}

// TODO: Fix defined but not used error
//void dpp401_dscl_calc_lb_num_partitions(
//		const struct scaler_data *scl_data,
//		enum lb_memory_config lb_config,
//		int *num_part_y,
//		int *num_part_c)
//{
//	int lb_memory_size, lb_memory_size_c, lb_memory_size_a, num_partitions_a,
//	lb_bpc, memory_line_size_y, memory_line_size_c, memory_line_size_a;
//
//	int line_size = scl_data->viewport.width < scl_data->recout.width ?
//			scl_data->viewport.width : scl_data->recout.width;
//	int line_size_c = scl_data->viewport_c.width < scl_data->recout.width ?
//			scl_data->viewport_c.width : scl_data->recout.width;
//
//	if (line_size == 0)
//		line_size = 1;
//
//	if (line_size_c == 0)
//		line_size_c = 1;
//
//
//	lb_bpc = dpp401_dscl_get_lb_depth_bpc(scl_data->lb_params.depth);
//	memory_line_size_y = (line_size * lb_bpc + 71) / 72; /* +71 to ceil */
//	memory_line_size_c = (line_size_c * lb_bpc + 71) / 72; /* +71 to ceil */
//	memory_line_size_a = (line_size + 5) / 6; /* +5 to ceil */
//
//	if (lb_config == LB_MEMORY_CONFIG_1) {
//		lb_memory_size = 816;
//		lb_memory_size_c = 816;
//		lb_memory_size_a = 984;
//	} else if (lb_config == LB_MEMORY_CONFIG_2) {
//		lb_memory_size = 1088;
//		lb_memory_size_c = 1088;
//		lb_memory_size_a = 1312;
//	} else if (lb_config == LB_MEMORY_CONFIG_3) {
//		/* 420 mode: using 3rd mem from Y, Cr and Cb */
//		lb_memory_size = 816 + 1088 + 848 + 848 + 848;
//		lb_memory_size_c = 816 + 1088;
//		lb_memory_size_a = 984 + 1312 + 456;
//	} else {
//		lb_memory_size = 816 + 1088 + 848;
//		lb_memory_size_c = 816 + 1088 + 848;
//		lb_memory_size_a = 984 + 1312 + 456;
//	}
//	*num_part_y = lb_memory_size / memory_line_size_y;
//	*num_part_c = lb_memory_size_c / memory_line_size_c;
//	num_partitions_a = lb_memory_size_a / memory_line_size_a;
//
//	if (scl_data->lb_params.alpha_en
//			&& (num_partitions_a < *num_part_y))
//		*num_part_y = num_partitions_a;
//
//	if (*num_part_y > 64)
//		*num_part_y = 64;
//	if (*num_part_c > 64)
//		*num_part_c = 64;
//
//}

static bool dpp401_dscl_is_lb_conf_valid(int ceil_vratio, int num_partitions, int vtaps)
{
	if (ceil_vratio > 2)
		return vtaps <= (num_partitions - ceil_vratio + 2);
	else
		return vtaps <= num_partitions;
}

/*find first match configuration which meets the min required lb size*/
static enum lb_memory_config dpp401_dscl_find_lb_memory_config(struct dcn401_dpp *dpp,
		const struct scaler_data *scl_data)
{
	int num_part_y, num_part_c;
	int vtaps = scl_data->taps.v_taps;
	int vtaps_c = scl_data->taps.v_taps_c;
	int ceil_vratio = dc_fixpt_ceil(scl_data->ratios.vert);
	int ceil_vratio_c = dc_fixpt_ceil(scl_data->ratios.vert_c);

	if (dpp->base.ctx->dc->debug.use_max_lb) {
		if (scl_data->format == PIXEL_FORMAT_420BPP8
				|| scl_data->format == PIXEL_FORMAT_420BPP10)
			return LB_MEMORY_CONFIG_3;
		return LB_MEMORY_CONFIG_0;
	}

	dpp->base.caps->dscl_calc_lb_num_partitions(
			scl_data, LB_MEMORY_CONFIG_1, &num_part_y, &num_part_c);

	if (dpp401_dscl_is_lb_conf_valid(ceil_vratio, num_part_y, vtaps)
			&& dpp401_dscl_is_lb_conf_valid(ceil_vratio_c, num_part_c, vtaps_c))
		return LB_MEMORY_CONFIG_1;

	dpp->base.caps->dscl_calc_lb_num_partitions(
			scl_data, LB_MEMORY_CONFIG_2, &num_part_y, &num_part_c);

	if (dpp401_dscl_is_lb_conf_valid(ceil_vratio, num_part_y, vtaps)
			&& dpp401_dscl_is_lb_conf_valid(ceil_vratio_c, num_part_c, vtaps_c))
		return LB_MEMORY_CONFIG_2;

	if (scl_data->format == PIXEL_FORMAT_420BPP8
			|| scl_data->format == PIXEL_FORMAT_420BPP10) {
		dpp->base.caps->dscl_calc_lb_num_partitions(
				scl_data, LB_MEMORY_CONFIG_3, &num_part_y, &num_part_c);

		if (dpp401_dscl_is_lb_conf_valid(ceil_vratio, num_part_y, vtaps)
				&& dpp401_dscl_is_lb_conf_valid(ceil_vratio_c, num_part_c, vtaps_c))
			return LB_MEMORY_CONFIG_3;
	}

	dpp->base.caps->dscl_calc_lb_num_partitions(
			scl_data, LB_MEMORY_CONFIG_0, &num_part_y, &num_part_c);

	/*Ensure we can support the requested number of vtaps*/
	ASSERT(dpp401_dscl_is_lb_conf_valid(ceil_vratio, num_part_y, vtaps)
			&& dpp401_dscl_is_lb_conf_valid(ceil_vratio_c, num_part_c, vtaps_c));

	return LB_MEMORY_CONFIG_0;
}


static void dpp401_dscl_set_manual_ratio_init(
		struct dcn401_dpp *dpp, const struct scaler_data *data)
{
	uint32_t init_frac = 0;
	uint32_t init_int = 0;
	if ((dpp->base.ctx->dc->config.use_spl) && (!dpp->base.ctx->dc->debug.disable_spl)) {
		REG_SET(SCL_HORZ_FILTER_SCALE_RATIO, 0,
			SCL_H_SCALE_RATIO, data->dscl_prog_data.ratios.h_scale_ratio);

		REG_SET(SCL_VERT_FILTER_SCALE_RATIO, 0,
			SCL_V_SCALE_RATIO, data->dscl_prog_data.ratios.v_scale_ratio);

		REG_SET(SCL_HORZ_FILTER_SCALE_RATIO_C, 0,
			SCL_H_SCALE_RATIO_C, data->dscl_prog_data.ratios.h_scale_ratio_c);

		REG_SET(SCL_VERT_FILTER_SCALE_RATIO_C, 0,
			SCL_V_SCALE_RATIO_C, data->dscl_prog_data.ratios.v_scale_ratio_c);

		REG_SET_2(SCL_HORZ_FILTER_INIT, 0,
				SCL_H_INIT_FRAC, data->dscl_prog_data.init.h_filter_init_frac,
				SCL_H_INIT_INT, data->dscl_prog_data.init.h_filter_init_int);

		REG_SET_2(SCL_HORZ_FILTER_INIT_C, 0,
				SCL_H_INIT_FRAC_C, data->dscl_prog_data.init.h_filter_init_frac_c,
				SCL_H_INIT_INT_C, data->dscl_prog_data.init.h_filter_init_int_c);

		REG_SET_2(SCL_VERT_FILTER_INIT, 0,
				SCL_V_INIT_FRAC, data->dscl_prog_data.init.v_filter_init_frac,
				SCL_V_INIT_INT, data->dscl_prog_data.init.v_filter_init_int);

		if (REG(SCL_VERT_FILTER_INIT_BOT)) {
			REG_SET_2(SCL_VERT_FILTER_INIT_BOT, 0,
					SCL_V_INIT_FRAC_BOT, data->dscl_prog_data.init.v_filter_init_bot_frac,
					SCL_V_INIT_INT_BOT, data->dscl_prog_data.init.v_filter_init_bot_int);
		}

		REG_SET_2(SCL_VERT_FILTER_INIT_C, 0,
				SCL_V_INIT_FRAC_C, data->dscl_prog_data.init.v_filter_init_frac_c,
				SCL_V_INIT_INT_C, data->dscl_prog_data.init.v_filter_init_int_c);

		if (REG(SCL_VERT_FILTER_INIT_BOT_C)) {
			REG_SET_2(SCL_VERT_FILTER_INIT_BOT_C, 0,
					SCL_V_INIT_FRAC_BOT_C, data->dscl_prog_data.init.v_filter_init_bot_frac_c,
					SCL_V_INIT_INT_BOT_C, data->dscl_prog_data.init.v_filter_init_bot_int_c);
		}
		return;
	}
	REG_SET(SCL_HORZ_FILTER_SCALE_RATIO, 0,
			SCL_H_SCALE_RATIO, dc_fixpt_u3d19(data->ratios.horz) << 5);

	REG_SET(SCL_VERT_FILTER_SCALE_RATIO, 0,
			SCL_V_SCALE_RATIO, dc_fixpt_u3d19(data->ratios.vert) << 5);

	REG_SET(SCL_HORZ_FILTER_SCALE_RATIO_C, 0,
			SCL_H_SCALE_RATIO_C, dc_fixpt_u3d19(data->ratios.horz_c) << 5);

	REG_SET(SCL_VERT_FILTER_SCALE_RATIO_C, 0,
			SCL_V_SCALE_RATIO_C, dc_fixpt_u3d19(data->ratios.vert_c) << 5);

	/*
	 * 0.24 format for fraction, first five bits zeroed
	 */
	init_frac = dc_fixpt_u0d19(data->inits.h) << 5;
	init_int = dc_fixpt_floor(data->inits.h);
	REG_SET_2(SCL_HORZ_FILTER_INIT, 0,
		SCL_H_INIT_FRAC, init_frac,
		SCL_H_INIT_INT, init_int);

	init_frac = dc_fixpt_u0d19(data->inits.h_c) << 5;
	init_int = dc_fixpt_floor(data->inits.h_c);
	REG_SET_2(SCL_HORZ_FILTER_INIT_C, 0,
		SCL_H_INIT_FRAC_C, init_frac,
		SCL_H_INIT_INT_C, init_int);

	init_frac = dc_fixpt_u0d19(data->inits.v) << 5;
	init_int = dc_fixpt_floor(data->inits.v);
	REG_SET_2(SCL_VERT_FILTER_INIT, 0,
		SCL_V_INIT_FRAC, init_frac,
		SCL_V_INIT_INT, init_int);

	if (REG(SCL_VERT_FILTER_INIT_BOT)) {
		struct fixed31_32 bot = dc_fixpt_add(data->inits.v, data->ratios.vert);

		init_frac = dc_fixpt_u0d19(bot) << 5;
		init_int = dc_fixpt_floor(bot);
		REG_SET_2(SCL_VERT_FILTER_INIT_BOT, 0,
			SCL_V_INIT_FRAC_BOT, init_frac,
			SCL_V_INIT_INT_BOT, init_int);
	}

	init_frac = dc_fixpt_u0d19(data->inits.v_c) << 5;
	init_int = dc_fixpt_floor(data->inits.v_c);
	REG_SET_2(SCL_VERT_FILTER_INIT_C, 0,
		SCL_V_INIT_FRAC_C, init_frac,
		SCL_V_INIT_INT_C, init_int);

	if (REG(SCL_VERT_FILTER_INIT_BOT_C)) {
		struct fixed31_32 bot = dc_fixpt_add(data->inits.v_c, data->ratios.vert_c);

		init_frac = dc_fixpt_u0d19(bot) << 5;
		init_int = dc_fixpt_floor(bot);
		REG_SET_2(SCL_VERT_FILTER_INIT_BOT_C, 0,
			SCL_V_INIT_FRAC_BOT_C, init_frac,
			SCL_V_INIT_INT_BOT_C, init_int);
	}
}

/**
 * dpp401_dscl_set_recout - Set the first pixel of RECOUT in the OTG active area
 *
 * @dpp: DPP data struct
 * @recout: Rectangle information
 *
 * This function sets the MPC RECOUT_START and RECOUT_SIZE registers based on
 * the values specified in the recount parameter.
 *
 * Note: This function only have effect if AutoCal is disabled.
 */
static void dpp401_dscl_set_recout(struct dcn401_dpp *dpp,
				 const struct rect *recout)
{
	REG_SET_2(RECOUT_START, 0,
		  /* First pixel of RECOUT in the active OTG area */
		  RECOUT_START_X, recout->x,
		  /* First line of RECOUT in the active OTG area */
		  RECOUT_START_Y, recout->y);

	REG_SET_2(RECOUT_SIZE, 0,
		  /* Number of RECOUT horizontal pixels */
		  RECOUT_WIDTH, recout->width,
		  /* Number of RECOUT vertical lines */
		  RECOUT_HEIGHT, recout->height);
}
/**
 * dpp401_dscl_program_easf_v - Program EASF_V
 *
 * @dpp_base: High level DPP struct
 * @scl_data: scalaer_data info
 *
 * This is the primary function to program vertical EASF registers
 *
 */
static void dpp401_dscl_program_easf_v(struct dpp *dpp_base, const struct scaler_data *scl_data)
{
	struct dcn401_dpp *dpp = TO_DCN401_DPP(dpp_base);

	PERF_TRACE();
	/* DSCL_EASF_V_MODE */
	REG_SET_3(DSCL_EASF_V_MODE, 0,
			SCL_EASF_V_EN, scl_data->dscl_prog_data.easf_v_en,
			SCL_EASF_V_2TAP_SHARP_FACTOR, scl_data->dscl_prog_data.easf_v_sharp_factor,
			SCL_EASF_V_RINGEST_FORCE_EN, scl_data->dscl_prog_data.easf_v_ring);

	if (!scl_data->dscl_prog_data.easf_v_en) {
		PERF_TRACE();
		return;
	}

	/* DSCL_EASF_V_BF_CNTL */
	REG_SET_6(DSCL_EASF_V_BF_CNTL, 0,
			SCL_EASF_V_BF1_EN, scl_data->dscl_prog_data.easf_v_bf1_en,
			SCL_EASF_V_BF2_MODE, scl_data->dscl_prog_data.easf_v_bf2_mode,
			SCL_EASF_V_BF3_MODE, scl_data->dscl_prog_data.easf_v_bf3_mode,
			SCL_EASF_V_BF2_FLAT1_GAIN, scl_data->dscl_prog_data.easf_v_bf2_flat1_gain,
			SCL_EASF_V_BF2_FLAT2_GAIN, scl_data->dscl_prog_data.easf_v_bf2_flat2_gain,
			SCL_EASF_V_BF2_ROC_GAIN, scl_data->dscl_prog_data.easf_v_bf2_roc_gain);
	/* DSCL_EASF_V_RINGEST_3TAP_CNTLn */
	REG_SET_2(DSCL_EASF_V_RINGEST_3TAP_CNTL1, 0,
		SCL_EASF_V_RINGEST_3TAP_DNTILT_UPTILT, scl_data->dscl_prog_data.easf_v_ringest_3tap_dntilt_uptilt,
		SCL_EASF_V_RINGEST_3TAP_UPTILT_MAXVAL, scl_data->dscl_prog_data.easf_v_ringest_3tap_uptilt_max);
	REG_SET_2(DSCL_EASF_V_RINGEST_3TAP_CNTL2, 0,
		SCL_EASF_V_RINGEST_3TAP_DNTILT_SLOPE, scl_data->dscl_prog_data.easf_v_ringest_3tap_dntilt_slope,
		SCL_EASF_V_RINGEST_3TAP_UPTILT1_SLOPE, scl_data->dscl_prog_data.easf_v_ringest_3tap_uptilt1_slope);
	REG_SET_2(DSCL_EASF_V_RINGEST_3TAP_CNTL3, 0,
		SCL_EASF_V_RINGEST_3TAP_UPTILT2_SLOPE, scl_data->dscl_prog_data.easf_v_ringest_3tap_uptilt2_slope,
		SCL_EASF_V_RINGEST_3TAP_UPTILT2_OFFSET, scl_data->dscl_prog_data.easf_v_ringest_3tap_uptilt2_offset);
	/* DSCL_EASF_V_RINGEST_EVENTAP_REDUCE */
	REG_SET_2(DSCL_EASF_V_RINGEST_EVENTAP_REDUCE, 0,
		SCL_EASF_V_RINGEST_EVENTAP_REDUCEG1, scl_data->dscl_prog_data.easf_v_ringest_eventap_reduceg1,
		SCL_EASF_V_RINGEST_EVENTAP_REDUCEG2, scl_data->dscl_prog_data.easf_v_ringest_eventap_reduceg2);
	/* DSCL_EASF_V_RINGEST_EVENTAP_GAIN */
	REG_SET_2(DSCL_EASF_V_RINGEST_EVENTAP_GAIN, 0,
		SCL_EASF_V_RINGEST_EVENTAP_GAIN1, scl_data->dscl_prog_data.easf_v_ringest_eventap_gain1,
		SCL_EASF_V_RINGEST_EVENTAP_GAIN2, scl_data->dscl_prog_data.easf_v_ringest_eventap_gain2);
	/* DSCL_EASF_V_BF_FINAL_MAX_MIN */
	REG_SET_4(DSCL_EASF_V_BF_FINAL_MAX_MIN, 0,
			SCL_EASF_V_BF_MAXA, scl_data->dscl_prog_data.easf_v_bf_maxa,
			SCL_EASF_V_BF_MAXB, scl_data->dscl_prog_data.easf_v_bf_maxb,
			SCL_EASF_V_BF_MINA, scl_data->dscl_prog_data.easf_v_bf_mina,
			SCL_EASF_V_BF_MINB, scl_data->dscl_prog_data.easf_v_bf_minb);
	/* DSCL_EASF_V_BF1_PWL_SEGn */
	REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG0, 0,
			SCL_EASF_V_BF1_PWL_IN_SEG0, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg0,
			SCL_EASF_V_BF1_PWL_BASE_SEG0, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg0,
			SCL_EASF_V_BF1_PWL_SLOPE_SEG0, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg0);
	REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG1, 0,
			SCL_EASF_V_BF1_PWL_IN_SEG1, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg1,
			SCL_EASF_V_BF1_PWL_BASE_SEG1, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg1,
			SCL_EASF_V_BF1_PWL_SLOPE_SEG1, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg1);
	REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG2, 0,
			SCL_EASF_V_BF1_PWL_IN_SEG2, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg2,
			SCL_EASF_V_BF1_PWL_BASE_SEG2, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg2,
			SCL_EASF_V_BF1_PWL_SLOPE_SEG2, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg2);
	REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG3, 0,
			SCL_EASF_V_BF1_PWL_IN_SEG3, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg3,
			SCL_EASF_V_BF1_PWL_BASE_SEG3, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg3,
			SCL_EASF_V_BF1_PWL_SLOPE_SEG3, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg3);
	REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG4, 0,
			SCL_EASF_V_BF1_PWL_IN_SEG4, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg4,
			SCL_EASF_V_BF1_PWL_BASE_SEG4, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg4,
			SCL_EASF_V_BF1_PWL_SLOPE_SEG4, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg4);
	REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG5, 0,
			SCL_EASF_V_BF1_PWL_IN_SEG5, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg5,
			SCL_EASF_V_BF1_PWL_BASE_SEG5, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg5,
			SCL_EASF_V_BF1_PWL_SLOPE_SEG5, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg5);
	REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG6, 0,
			SCL_EASF_V_BF1_PWL_IN_SEG6, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg6,
			SCL_EASF_V_BF1_PWL_BASE_SEG6, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg6,
			SCL_EASF_V_BF1_PWL_SLOPE_SEG6, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg6);
	REG_SET_2(DSCL_EASF_V_BF1_PWL_SEG7, 0,
			SCL_EASF_V_BF1_PWL_IN_SEG7, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg7,
			SCL_EASF_V_BF1_PWL_BASE_SEG7, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg7);
	/* DSCL_EASF_V_BF3_PWL_SEGn */
	REG_SET_3(DSCL_EASF_V_BF3_PWL_SEG0, 0,
			SCL_EASF_V_BF3_PWL_IN_SEG0, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set0,
			SCL_EASF_V_BF3_PWL_BASE_SEG0, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set0,
			SCL_EASF_V_BF3_PWL_SLOPE_SEG0, scl_data->dscl_prog_data.easf_v_bf3_pwl_slope_set0);
	REG_SET_3(DSCL_EASF_V_BF3_PWL_SEG1, 0,
			SCL_EASF_V_BF3_PWL_IN_SEG1, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set1,
			SCL_EASF_V_BF3_PWL_BASE_SEG1, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set1,
			SCL_EASF_V_BF3_PWL_SLOPE_SEG1, scl_data->dscl_prog_data.easf_v_bf3_pwl_slope_set1);
	REG_SET_3(DSCL_EASF_V_BF3_PWL_SEG2, 0,
			SCL_EASF_V_BF3_PWL_IN_SEG2, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set2,
			SCL_EASF_V_BF3_PWL_BASE_SEG2, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set2,
			SCL_EASF_V_BF3_PWL_SLOPE_SEG2, scl_data->dscl_prog_data.easf_v_bf3_pwl_slope_set2);
	REG_SET_3(DSCL_EASF_V_BF3_PWL_SEG3, 0,
			SCL_EASF_V_BF3_PWL_IN_SEG3, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set3,
			SCL_EASF_V_BF3_PWL_BASE_SEG3, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set3,
			SCL_EASF_V_BF3_PWL_SLOPE_SEG3, scl_data->dscl_prog_data.easf_v_bf3_pwl_slope_set3);
	REG_SET_3(DSCL_EASF_V_BF3_PWL_SEG4, 0,
			SCL_EASF_V_BF3_PWL_IN_SEG4, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set4,
			SCL_EASF_V_BF3_PWL_BASE_SEG4, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set4,
			SCL_EASF_V_BF3_PWL_SLOPE_SEG4, scl_data->dscl_prog_data.easf_v_bf3_pwl_slope_set4);
	REG_SET_2(DSCL_EASF_V_BF3_PWL_SEG5, 0,
			SCL_EASF_V_BF3_PWL_IN_SEG5, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set5,
			SCL_EASF_V_BF3_PWL_BASE_SEG5, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set5);
	PERF_TRACE();
}
/**
 * dpp401_dscl_program_easf_h - Program EASF_H
 *
 * @dpp_base: High level DPP struct
 * @scl_data: scalaer_data info
 *
 * This is the primary function to program horizontal EASF registers
 *
 */
static void dpp401_dscl_program_easf_h(struct dpp *dpp_base, const struct scaler_data *scl_data)
{
	struct dcn401_dpp *dpp = TO_DCN401_DPP(dpp_base);

	PERF_TRACE();
	/* DSCL_EASF_H_MODE */
	REG_SET_3(DSCL_EASF_H_MODE, 0,
			SCL_EASF_H_EN, scl_data->dscl_prog_data.easf_h_en,
			SCL_EASF_H_2TAP_SHARP_FACTOR, scl_data->dscl_prog_data.easf_h_sharp_factor,
			SCL_EASF_H_RINGEST_FORCE_EN, scl_data->dscl_prog_data.easf_h_ring);

	if (!scl_data->dscl_prog_data.easf_h_en) {
		PERF_TRACE();
		return;
	}

	/* DSCL_EASF_H_BF_CNTL */
	REG_SET_6(DSCL_EASF_H_BF_CNTL, 0,
			SCL_EASF_H_BF1_EN, scl_data->dscl_prog_data.easf_h_bf1_en,
			SCL_EASF_H_BF2_MODE, scl_data->dscl_prog_data.easf_h_bf2_mode,
			SCL_EASF_H_BF3_MODE, scl_data->dscl_prog_data.easf_h_bf3_mode,
			SCL_EASF_H_BF2_FLAT1_GAIN, scl_data->dscl_prog_data.easf_h_bf2_flat1_gain,
			SCL_EASF_H_BF2_FLAT2_GAIN, scl_data->dscl_prog_data.easf_h_bf2_flat2_gain,
			SCL_EASF_H_BF2_ROC_GAIN, scl_data->dscl_prog_data.easf_h_bf2_roc_gain);
	/* DSCL_EASF_H_RINGEST_EVENTAP_REDUCE */
	REG_SET_2(DSCL_EASF_H_RINGEST_EVENTAP_REDUCE, 0,
			SCL_EASF_H_RINGEST_EVENTAP_REDUCEG1, scl_data->dscl_prog_data.easf_h_ringest_eventap_reduceg1,
			SCL_EASF_H_RINGEST_EVENTAP_REDUCEG2, scl_data->dscl_prog_data.easf_h_ringest_eventap_reduceg2);
	/* DSCL_EASF_H_RINGEST_EVENTAP_GAIN */
	REG_SET_2(DSCL_EASF_H_RINGEST_EVENTAP_GAIN, 0,
			SCL_EASF_H_RINGEST_EVENTAP_GAIN1, scl_data->dscl_prog_data.easf_h_ringest_eventap_gain1,
			SCL_EASF_H_RINGEST_EVENTAP_GAIN2, scl_data->dscl_prog_data.easf_h_ringest_eventap_gain2);
	/* DSCL_EASF_H_BF_FINAL_MAX_MIN */
	REG_SET_4(DSCL_EASF_H_BF_FINAL_MAX_MIN, 0,
			SCL_EASF_H_BF_MAXA, scl_data->dscl_prog_data.easf_h_bf_maxa,
			SCL_EASF_H_BF_MAXB, scl_data->dscl_prog_data.easf_h_bf_maxb,
			SCL_EASF_H_BF_MINA, scl_data->dscl_prog_data.easf_h_bf_mina,
			SCL_EASF_H_BF_MINB, scl_data->dscl_prog_data.easf_h_bf_minb);
	/* DSCL_EASF_H_BF1_PWL_SEGn */
	REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG0, 0,
			SCL_EASF_H_BF1_PWL_IN_SEG0, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg0,
			SCL_EASF_H_BF1_PWL_BASE_SEG0, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg0,
			SCL_EASF_H_BF1_PWL_SLOPE_SEG0, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg0);
	REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG1, 0,
			SCL_EASF_H_BF1_PWL_IN_SEG1, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg1,
			SCL_EASF_H_BF1_PWL_BASE_SEG1, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg1,
			SCL_EASF_H_BF1_PWL_SLOPE_SEG1, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg1);
	REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG2, 0,
			SCL_EASF_H_BF1_PWL_IN_SEG2, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg2,
			SCL_EASF_H_BF1_PWL_BASE_SEG2, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg2,
			SCL_EASF_H_BF1_PWL_SLOPE_SEG2, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg2);
	REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG3, 0,
			SCL_EASF_H_BF1_PWL_IN_SEG3, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg3,
			SCL_EASF_H_BF1_PWL_BASE_SEG3, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg3,
			SCL_EASF_H_BF1_PWL_SLOPE_SEG3, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg3);
	REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG4, 0,
			SCL_EASF_H_BF1_PWL_IN_SEG4, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg4,
			SCL_EASF_H_BF1_PWL_BASE_SEG4, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg4,
			SCL_EASF_H_BF1_PWL_SLOPE_SEG4, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg4);
	REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG5, 0,
			SCL_EASF_H_BF1_PWL_IN_SEG5, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg5,
			SCL_EASF_H_BF1_PWL_BASE_SEG5, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg5,
			SCL_EASF_H_BF1_PWL_SLOPE_SEG5, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg5);
	REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG6, 0,
			SCL_EASF_H_BF1_PWL_IN_SEG6, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg6,
			SCL_EASF_H_BF1_PWL_BASE_SEG6, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg6,
			SCL_EASF_H_BF1_PWL_SLOPE_SEG6, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg6);
	REG_SET_2(DSCL_EASF_H_BF1_PWL_SEG7, 0,
			SCL_EASF_H_BF1_PWL_IN_SEG7, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg7,
			SCL_EASF_H_BF1_PWL_BASE_SEG7, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg7);
	/* DSCL_EASF_H_BF3_PWL_SEGn */
	REG_SET_3(DSCL_EASF_H_BF3_PWL_SEG0, 0,
			SCL_EASF_H_BF3_PWL_IN_SEG0, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set0,
			SCL_EASF_H_BF3_PWL_BASE_SEG0, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set0,
			SCL_EASF_H_BF3_PWL_SLOPE_SEG0, scl_data->dscl_prog_data.easf_h_bf3_pwl_slope_set0);
	REG_SET_3(DSCL_EASF_H_BF3_PWL_SEG1, 0,
			SCL_EASF_H_BF3_PWL_IN_SEG1, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set1,
			SCL_EASF_H_BF3_PWL_BASE_SEG1, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set1,
			SCL_EASF_H_BF3_PWL_SLOPE_SEG1, scl_data->dscl_prog_data.easf_h_bf3_pwl_slope_set1);
	REG_SET_3(DSCL_EASF_H_BF3_PWL_SEG2, 0,
			SCL_EASF_H_BF3_PWL_IN_SEG2, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set2,
			SCL_EASF_H_BF3_PWL_BASE_SEG2, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set2,
			SCL_EASF_H_BF3_PWL_SLOPE_SEG2, scl_data->dscl_prog_data.easf_h_bf3_pwl_slope_set2);
	REG_SET_3(DSCL_EASF_H_BF3_PWL_SEG3, 0,
			SCL_EASF_H_BF3_PWL_IN_SEG3, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set3,
			SCL_EASF_H_BF3_PWL_BASE_SEG3, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set3,
			SCL_EASF_H_BF3_PWL_SLOPE_SEG3, scl_data->dscl_prog_data.easf_h_bf3_pwl_slope_set3);
	REG_SET_3(DSCL_EASF_H_BF3_PWL_SEG4, 0,
			SCL_EASF_H_BF3_PWL_IN_SEG4, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set4,
			SCL_EASF_H_BF3_PWL_BASE_SEG4, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set4,
			SCL_EASF_H_BF3_PWL_SLOPE_SEG4, scl_data->dscl_prog_data.easf_h_bf3_pwl_slope_set4);
	REG_SET_2(DSCL_EASF_H_BF3_PWL_SEG5, 0,
			SCL_EASF_H_BF3_PWL_IN_SEG5, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set5,
			SCL_EASF_H_BF3_PWL_BASE_SEG5, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set5);
	PERF_TRACE();
}
/**
 * dpp401_dscl_program_easf - Program EASF
 *
 * @dpp_base: High level DPP struct
 * @scl_data: scalaer_data info
 *
 * This is the primary function to program EASF
 *
 */
static void dpp401_dscl_program_easf(struct dpp *dpp_base, const struct scaler_data *scl_data)
{
	struct dcn401_dpp *dpp = TO_DCN401_DPP(dpp_base);

	PERF_TRACE();
	/* DSCL_SC_MODE */
	REG_SET_2(DSCL_SC_MODE, 0,
			SCL_SC_MATRIX_MODE, scl_data->dscl_prog_data.easf_matrix_mode,
			SCL_SC_LTONL_EN, scl_data->dscl_prog_data.easf_ltonl_en);
	/* DSCL_EASF_SC_MATRIX_C0C1, DSCL_EASF_SC_MATRIX_C2C3 */
	REG_SET_2(DSCL_SC_MATRIX_C0C1, 0,
			SCL_SC_MATRIX_C0, scl_data->dscl_prog_data.easf_matrix_c0,
			SCL_SC_MATRIX_C1, scl_data->dscl_prog_data.easf_matrix_c1);
	REG_SET_2(DSCL_SC_MATRIX_C2C3, 0,
			SCL_SC_MATRIX_C2, scl_data->dscl_prog_data.easf_matrix_c2,
			SCL_SC_MATRIX_C3, scl_data->dscl_prog_data.easf_matrix_c3);
	dpp401_dscl_program_easf_v(dpp_base, scl_data);
	dpp401_dscl_program_easf_h(dpp_base, scl_data);
	PERF_TRACE();
}
/**
 * dpp401_dscl_disable_easf - Disable EASF when no scaling (1:1)
 *
 * @dpp_base: High level DPP struct
 * @scl_data: scalaer_data info
 *
 * When we have 1:1 scaling, we need to disable EASF
 *
 */
static void dpp401_dscl_disable_easf(struct dpp *dpp_base, const struct scaler_data *scl_data)
{
	struct dcn401_dpp *dpp = TO_DCN401_DPP(dpp_base);

	PERF_TRACE();
	/* DSCL_EASF_V_MODE */
	REG_UPDATE(DSCL_EASF_V_MODE,
			SCL_EASF_V_EN, scl_data->dscl_prog_data.easf_v_en);
	/* DSCL_EASF_H_MODE */
	REG_UPDATE(DSCL_EASF_H_MODE,
			SCL_EASF_H_EN, scl_data->dscl_prog_data.easf_h_en);
	PERF_TRACE();
}
static void dpp401_dscl_set_isharp_filter(
	struct dcn401_dpp *dpp, const uint32_t *filter)
{
	int level;
	uint32_t filter_data;
	if (filter == NULL)
		return;

	REG_UPDATE(ISHARP_DELTA_CTRL,
		ISHARP_DELTA_LUT_HOST_SELECT, 0);
	/* LUT data write is auto-indexed.  Write index once */
	REG_SET(ISHARP_DELTA_INDEX, 0,
			ISHARP_DELTA_INDEX, 0);
	for (level = 0; level < NUM_LEVELS; level++)	{
		filter_data = filter[level];
		REG_SET(ISHARP_DELTA_DATA, 0,
				ISHARP_DELTA_DATA, filter_data);
	}
} // dpp401_dscl_set_isharp_filter
/**
 * dpp401_dscl_program_isharp - Program isharp
 *
 * @dpp_base: High level DPP struct
 * @scl_data: scalaer_data info
 * @program_isharp_1dlut: flag to program isharp 1D LUT
 * @bs_coeffs_updated: Blur and Scale Coefficients update flag
 *
 * This is the primary function to program isharp
 *
 */
static void dpp401_dscl_program_isharp(struct dpp *dpp_base,
		const struct scaler_data *scl_data,
		bool program_isharp_1dlut,
		bool *bs_coeffs_updated)
{
	struct dcn401_dpp *dpp = TO_DCN401_DPP(dpp_base);
	*bs_coeffs_updated = false;

	PERF_TRACE();
	/* ISHARP_MODE */
	REG_SET_6(ISHARP_MODE, 0,
		ISHARP_EN, scl_data->dscl_prog_data.isharp_en,
		ISHARP_NOISEDET_EN, scl_data->dscl_prog_data.isharp_noise_det.enable,
		ISHARP_NOISEDET_MODE, scl_data->dscl_prog_data.isharp_noise_det.mode,
		ISHARP_LBA_MODE, scl_data->dscl_prog_data.isharp_lba.mode,
		ISHARP_FMT_MODE, scl_data->dscl_prog_data.isharp_fmt.mode,
		ISHARP_FMT_NORM, scl_data->dscl_prog_data.isharp_fmt.norm);

	/* Skip remaining register programming if ISHARP is disabled */
	if (!scl_data->dscl_prog_data.isharp_en) {
		PERF_TRACE();
		return;
	}

	/* ISHARP_NOISEDET_THRESHOLD */
	REG_SET_2(ISHARP_NOISEDET_THRESHOLD, 0,
		ISHARP_NOISEDET_UTHRE, scl_data->dscl_prog_data.isharp_noise_det.uthreshold,
		ISHARP_NOISEDET_DTHRE, scl_data->dscl_prog_data.isharp_noise_det.dthreshold);

	/* ISHARP_NOISE_GAIN_PWL */
	REG_SET_3(ISHARP_NOISE_GAIN_PWL, 0,
		ISHARP_NOISEDET_PWL_START_IN, scl_data->dscl_prog_data.isharp_noise_det.pwl_start_in,
		ISHARP_NOISEDET_PWL_END_IN, scl_data->dscl_prog_data.isharp_noise_det.pwl_end_in,
		ISHARP_NOISEDET_PWL_SLOPE, scl_data->dscl_prog_data.isharp_noise_det.pwl_slope);

	/* ISHARP_LBA: IN_SEG, BASE_SEG, SLOPE_SEG */
	REG_SET_3(ISHARP_LBA_PWL_SEG0, 0,
		ISHARP_LBA_PWL_IN_SEG0, scl_data->dscl_prog_data.isharp_lba.in_seg[0],
		ISHARP_LBA_PWL_BASE_SEG0, scl_data->dscl_prog_data.isharp_lba.base_seg[0],
		ISHARP_LBA_PWL_SLOPE_SEG0, scl_data->dscl_prog_data.isharp_lba.slope_seg[0]);
	REG_SET_3(ISHARP_LBA_PWL_SEG1, 0,
		ISHARP_LBA_PWL_IN_SEG1, scl_data->dscl_prog_data.isharp_lba.in_seg[1],
		ISHARP_LBA_PWL_BASE_SEG1, scl_data->dscl_prog_data.isharp_lba.base_seg[1],
		ISHARP_LBA_PWL_SLOPE_SEG1, scl_data->dscl_prog_data.isharp_lba.slope_seg[1]);
	REG_SET_3(ISHARP_LBA_PWL_SEG2, 0,
		ISHARP_LBA_PWL_IN_SEG2, scl_data->dscl_prog_data.isharp_lba.in_seg[2],
		ISHARP_LBA_PWL_BASE_SEG2, scl_data->dscl_prog_data.isharp_lba.base_seg[2],
		ISHARP_LBA_PWL_SLOPE_SEG2, scl_data->dscl_prog_data.isharp_lba.slope_seg[2]);
	REG_SET_3(ISHARP_LBA_PWL_SEG3, 0,
		ISHARP_LBA_PWL_IN_SEG3, scl_data->dscl_prog_data.isharp_lba.in_seg[3],
		ISHARP_LBA_PWL_BASE_SEG3, scl_data->dscl_prog_data.isharp_lba.base_seg[3],
		ISHARP_LBA_PWL_SLOPE_SEG3, scl_data->dscl_prog_data.isharp_lba.slope_seg[3]);
	REG_SET_3(ISHARP_LBA_PWL_SEG4, 0,
		ISHARP_LBA_PWL_IN_SEG4, scl_data->dscl_prog_data.isharp_lba.in_seg[4],
		ISHARP_LBA_PWL_BASE_SEG4, scl_data->dscl_prog_data.isharp_lba.base_seg[4],
		ISHARP_LBA_PWL_SLOPE_SEG4, scl_data->dscl_prog_data.isharp_lba.slope_seg[4]);
	REG_SET_2(ISHARP_LBA_PWL_SEG5, 0,
		ISHARP_LBA_PWL_IN_SEG5, scl_data->dscl_prog_data.isharp_lba.in_seg[5],
		ISHARP_LBA_PWL_BASE_SEG5, scl_data->dscl_prog_data.isharp_lba.base_seg[5]);

	/* ISHARP_DELTA_LUT */
	if (!program_isharp_1dlut)
		dpp401_dscl_set_isharp_filter(dpp, scl_data->dscl_prog_data.isharp_delta);

	/* ISHARP_NLDELTA_SOFT_CLIP */
	REG_SET_6(ISHARP_NLDELTA_SOFT_CLIP, 0,
		ISHARP_NLDELTA_SCLIP_EN_P, scl_data->dscl_prog_data.isharp_nldelta_sclip.enable_p,
		ISHARP_NLDELTA_SCLIP_PIVOT_P, scl_data->dscl_prog_data.isharp_nldelta_sclip.pivot_p,
		ISHARP_NLDELTA_SCLIP_SLOPE_P, scl_data->dscl_prog_data.isharp_nldelta_sclip.slope_p,
		ISHARP_NLDELTA_SCLIP_EN_N, scl_data->dscl_prog_data.isharp_nldelta_sclip.enable_n,
		ISHARP_NLDELTA_SCLIP_PIVOT_N, scl_data->dscl_prog_data.isharp_nldelta_sclip.pivot_n,
		ISHARP_NLDELTA_SCLIP_SLOPE_N, scl_data->dscl_prog_data.isharp_nldelta_sclip.slope_n);

	/* Blur and Scale Coefficients - SCL_COEF_RAM_TAP_SELECT */
	if (scl_data->dscl_prog_data.isharp_en) {
		if (scl_data->dscl_prog_data.filter_blur_scale_v) {
			dpp401_dscl_set_scaler_filter(
				dpp, scl_data->taps.v_taps,
				SCL_COEF_VERTICAL_BLUR_SCALE,
				scl_data->dscl_prog_data.filter_blur_scale_v);
			*bs_coeffs_updated = true;
		}
		if (scl_data->dscl_prog_data.filter_blur_scale_h) {
			dpp401_dscl_set_scaler_filter(
				dpp, scl_data->taps.h_taps,
				SCL_COEF_HORIZONTAL_BLUR_SCALE,
				scl_data->dscl_prog_data.filter_blur_scale_h);
			*bs_coeffs_updated = true;
		}
	}
	PERF_TRACE();
} // dpp401_dscl_program_isharp
/**
 * dpp401_dscl_set_scaler_manual_scale - Manually program scaler and line buffer
 *
 * @dpp_base: High level DPP struct
 * @scl_data: scalaer_data info
 *
 * This is the primary function to program scaler and line buffer in manual
 * scaling mode. To execute the required operations for manual scale, we need
 * to disable AutoCal first.
 */
void dpp401_dscl_set_scaler_manual_scale(struct dpp *dpp_base,
				       const struct scaler_data *scl_data)
{
	enum lb_memory_config lb_config;
	struct dcn401_dpp *dpp = TO_DCN401_DPP(dpp_base);
	const struct rect *rect = &scl_data->recout;
	uint32_t mpc_width = scl_data->h_active;
	uint32_t mpc_height = scl_data->v_active;
	uint32_t v_num_taps = scl_data->taps.v_taps - 1;
	uint32_t v_num_taps_c = scl_data->taps.v_taps_c - 1;
	uint32_t h_num_taps = scl_data->taps.h_taps - 1;
	uint32_t h_num_taps_c = scl_data->taps.h_taps_c - 1;
	enum dscl_mode_sel dscl_mode = dpp401_dscl_get_dscl_mode(
			dpp_base, scl_data, dpp_base->ctx->dc->debug.always_scale);
	bool ycbcr = scl_data->format >= PIXEL_FORMAT_VIDEO_BEGIN
				&& scl_data->format <= PIXEL_FORMAT_VIDEO_END;
	bool program_isharp_1dlut = false;
	bool bs_coeffs_updated = false;


	if (memcmp(&dpp->scl_data, scl_data, sizeof(*scl_data)) == 0)
		return;

	PERF_TRACE();

	/* If only sharpness has changed, then only update 1dlut, then return */
	if (scl_data->dscl_prog_data.isharp_en &&
		(dpp->scl_data.dscl_prog_data.sharpness_level
		!= scl_data->dscl_prog_data.sharpness_level)) {
		/* ISHARP_DELTA_LUT */
		dpp401_dscl_set_isharp_filter(dpp, scl_data->dscl_prog_data.isharp_delta);
		dpp->scl_data.dscl_prog_data.sharpness_level = scl_data->dscl_prog_data.sharpness_level;
		memcpy(dpp->scl_data.dscl_prog_data.isharp_delta, scl_data->dscl_prog_data.isharp_delta,
			sizeof(uint32_t) * ISHARP_LUT_TABLE_SIZE);

		if (memcmp(&dpp->scl_data, scl_data, sizeof(*scl_data)) == 0)
			return;
		program_isharp_1dlut = true;
	}

	dpp->scl_data = *scl_data;

	if ((dpp->base.ctx->dc->config.use_spl) && (!dpp->base.ctx->dc->debug.disable_spl)) {
		dscl_mode = (enum dscl_mode_sel) scl_data->dscl_prog_data.dscl_mode;
		rect = (struct rect *)&scl_data->dscl_prog_data.recout;
		mpc_width = scl_data->dscl_prog_data.mpc_size.width;
		mpc_height = scl_data->dscl_prog_data.mpc_size.height;
		v_num_taps = scl_data->dscl_prog_data.taps.v_taps;
		v_num_taps_c = scl_data->dscl_prog_data.taps.v_taps_c;
		h_num_taps = scl_data->dscl_prog_data.taps.h_taps;
		h_num_taps_c = scl_data->dscl_prog_data.taps.h_taps_c;
	}
	if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.dscl) {
		if (dscl_mode != DSCL_MODE_DSCL_BYPASS)
			dpp401_power_on_dscl(dpp_base, true);
	}

	/* Autocal off */
	REG_SET_3(DSCL_AUTOCAL, 0,
		AUTOCAL_MODE, AUTOCAL_MODE_OFF,
		AUTOCAL_NUM_PIPE, 0,
		AUTOCAL_PIPE_ID, 0);

	/*clean scaler boundary mode when Autocal off*/
	REG_SET(DSCL_CONTROL, 0,
		SCL_BOUNDARY_MODE, 0);

	/* Recout */
	dpp401_dscl_set_recout(dpp, rect);

	/* MPC Size */
	REG_SET_2(MPC_SIZE, 0,
		/* Number of horizontal pixels of MPC */
			 MPC_WIDTH, mpc_width,
		/* Number of vertical lines of MPC */
			 MPC_HEIGHT, mpc_height);

	/* SCL mode */
	REG_UPDATE(SCL_MODE, DSCL_MODE, dscl_mode);

	if (dscl_mode == DSCL_MODE_DSCL_BYPASS) {
		if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.dscl)
			dpp401_power_on_dscl(dpp_base, false);
		return;
	}

	/* LB */
	lb_config =  dpp401_dscl_find_lb_memory_config(dpp, scl_data);
	dpp401_dscl_set_lb(dpp, &scl_data->lb_params, lb_config);

	if (dscl_mode == DSCL_MODE_SCALING_444_BYPASS) {
		if (dpp->base.ctx->dc->config.prefer_easf)
			dpp401_dscl_disable_easf(dpp_base, scl_data);
		dpp401_dscl_program_isharp(dpp_base, scl_data, program_isharp_1dlut, &bs_coeffs_updated);
		return;
	}

	/* Black offsets */
	if (REG(SCL_BLACK_OFFSET)) {
		if (ycbcr)
			REG_SET_2(SCL_BLACK_OFFSET, 0,
					SCL_BLACK_OFFSET_RGB_Y, BLACK_OFFSET_RGB_Y,
					SCL_BLACK_OFFSET_CBCR, BLACK_OFFSET_CBCR);
		else

			REG_SET_2(SCL_BLACK_OFFSET, 0,
					SCL_BLACK_OFFSET_RGB_Y, BLACK_OFFSET_RGB_Y,
					SCL_BLACK_OFFSET_CBCR, BLACK_OFFSET_RGB_Y);
	}

	/* Manually calculate scale ratio and init values */
	dpp401_dscl_set_manual_ratio_init(dpp, scl_data);

	/* HTaps/VTaps */
	REG_SET_4(SCL_TAP_CONTROL, 0,
		SCL_V_NUM_TAPS, v_num_taps,
		SCL_H_NUM_TAPS, h_num_taps,
		SCL_V_NUM_TAPS_C, v_num_taps_c,
		SCL_H_NUM_TAPS_C, h_num_taps_c);

	/* ISharp configuration
	 * - B&S coeffs are written to same coeff RAM as WB scaler coeffs
	 * - coeff RAM toggle is in EASF programming
	 * - if we are only programming B&S coeffs, then need to reprogram
	 *   WB scaler coeffs and toggle coeff RAM together
	 */
	//if (dpp->base.ctx->dc->config.prefer_easf)
	dpp401_dscl_program_isharp(dpp_base, scl_data, program_isharp_1dlut, &bs_coeffs_updated);

	dpp401_dscl_set_scl_filter(dpp, scl_data, ycbcr, bs_coeffs_updated);
	/* Edge adaptive scaler function configuration */
	if (dpp->base.ctx->dc->config.prefer_easf)
		dpp401_dscl_program_easf(dpp_base, scl_data);
	PERF_TRACE();
}