summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/drm_pagemap.c
blob: 1da55322af126376b36bf350e9e7c16920a0285c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/*
 * Copyright © 2024-2025 Intel Corporation
 */

#include <linux/dma-mapping.h>
#include <linux/migrate.h>
#include <linux/pagemap.h>
#include <drm/drm_drv.h>
#include <drm/drm_pagemap.h>

/**
 * DOC: Overview
 *
 * The DRM pagemap layer is intended to augment the dev_pagemap functionality by
 * providing a way to populate a struct mm_struct virtual range with device
 * private pages and to provide helpers to abstract device memory allocations,
 * to migrate memory back and forth between device memory and system RAM and
 * to handle access (and in the future migration) between devices implementing
 * a fast interconnect that is not necessarily visible to the rest of the
 * system.
 *
 * Typically the DRM pagemap receives requests from one or more DRM GPU SVM
 * instances to populate struct mm_struct virtual ranges with memory, and the
 * migration is best effort only and may thus fail. The implementation should
 * also handle device unbinding by blocking (return an -ENODEV) error for new
 * population requests and after that migrate all device pages to system ram.
 */

/**
 * DOC: Migration
 *
 * Migration granularity typically follows the GPU SVM range requests, but
 * if there are clashes, due to races or due to the fact that multiple GPU
 * SVM instances have different views of the ranges used, and because of that
 * parts of a requested range is already present in the requested device memory,
 * the implementation has a variety of options. It can fail and it can choose
 * to populate only the part of the range that isn't already in device memory,
 * and it can evict the range to system before trying to migrate. Ideally an
 * implementation would just try to migrate the missing part of the range and
 * allocate just enough memory to do so.
 *
 * When migrating to system memory as a response to a cpu fault or a device
 * memory eviction request, currently a full device memory allocation is
 * migrated back to system. Moving forward this might need improvement for
 * situations where a single page needs bouncing between system memory and
 * device memory due to, for example, atomic operations.
 *
 * Key DRM pagemap components:
 *
 * - Device Memory Allocations:
 *      Embedded structure containing enough information for the drm_pagemap to
 *      migrate to / from device memory.
 *
 * - Device Memory Operations:
 *      Define the interface for driver-specific device memory operations
 *      release memory, populate pfns, and copy to / from device memory.
 */

/**
 * struct drm_pagemap_zdd - GPU SVM zone device data
 *
 * @refcount: Reference count for the zdd
 * @devmem_allocation: device memory allocation
 * @device_private_page_owner: Device private pages owner
 *
 * This structure serves as a generic wrapper installed in
 * page->zone_device_data. It provides infrastructure for looking up a device
 * memory allocation upon CPU page fault and asynchronously releasing device
 * memory once the CPU has no page references. Asynchronous release is useful
 * because CPU page references can be dropped in IRQ contexts, while releasing
 * device memory likely requires sleeping locks.
 */
struct drm_pagemap_zdd {
	struct kref refcount;
	struct drm_pagemap_devmem *devmem_allocation;
	void *device_private_page_owner;
};

/**
 * drm_pagemap_zdd_alloc() - Allocate a zdd structure.
 * @device_private_page_owner: Device private pages owner
 *
 * This function allocates and initializes a new zdd structure. It sets up the
 * reference count and initializes the destroy work.
 *
 * Return: Pointer to the allocated zdd on success, ERR_PTR() on failure.
 */
static struct drm_pagemap_zdd *
drm_pagemap_zdd_alloc(void *device_private_page_owner)
{
	struct drm_pagemap_zdd *zdd;

	zdd = kmalloc(sizeof(*zdd), GFP_KERNEL);
	if (!zdd)
		return NULL;

	kref_init(&zdd->refcount);
	zdd->devmem_allocation = NULL;
	zdd->device_private_page_owner = device_private_page_owner;

	return zdd;
}

/**
 * drm_pagemap_zdd_get() - Get a reference to a zdd structure.
 * @zdd: Pointer to the zdd structure.
 *
 * This function increments the reference count of the provided zdd structure.
 *
 * Return: Pointer to the zdd structure.
 */
static struct drm_pagemap_zdd *drm_pagemap_zdd_get(struct drm_pagemap_zdd *zdd)
{
	kref_get(&zdd->refcount);
	return zdd;
}

/**
 * drm_pagemap_zdd_destroy() - Destroy a zdd structure.
 * @ref: Pointer to the reference count structure.
 *
 * This function queues the destroy_work of the zdd for asynchronous destruction.
 */
static void drm_pagemap_zdd_destroy(struct kref *ref)
{
	struct drm_pagemap_zdd *zdd =
		container_of(ref, struct drm_pagemap_zdd, refcount);
	struct drm_pagemap_devmem *devmem = zdd->devmem_allocation;

	if (devmem) {
		complete_all(&devmem->detached);
		if (devmem->ops->devmem_release)
			devmem->ops->devmem_release(devmem);
	}
	kfree(zdd);
}

/**
 * drm_pagemap_zdd_put() - Put a zdd reference.
 * @zdd: Pointer to the zdd structure.
 *
 * This function decrements the reference count of the provided zdd structure
 * and schedules its destruction if the count drops to zero.
 */
static void drm_pagemap_zdd_put(struct drm_pagemap_zdd *zdd)
{
	kref_put(&zdd->refcount, drm_pagemap_zdd_destroy);
}

/**
 * drm_pagemap_migration_unlock_put_page() - Put a migration page
 * @page: Pointer to the page to put
 *
 * This function unlocks and puts a page.
 */
static void drm_pagemap_migration_unlock_put_page(struct page *page)
{
	unlock_page(page);
	put_page(page);
}

/**
 * drm_pagemap_migration_unlock_put_pages() - Put migration pages
 * @npages: Number of pages
 * @migrate_pfn: Array of migrate page frame numbers
 *
 * This function unlocks and puts an array of pages.
 */
static void drm_pagemap_migration_unlock_put_pages(unsigned long npages,
						   unsigned long *migrate_pfn)
{
	unsigned long i;

	for (i = 0; i < npages; ++i) {
		struct page *page;

		if (!migrate_pfn[i])
			continue;

		page = migrate_pfn_to_page(migrate_pfn[i]);
		drm_pagemap_migration_unlock_put_page(page);
		migrate_pfn[i] = 0;
	}
}

/**
 * drm_pagemap_get_devmem_page() - Get a reference to a device memory page
 * @page: Pointer to the page
 * @zdd: Pointer to the GPU SVM zone device data
 *
 * This function associates the given page with the specified GPU SVM zone
 * device data and initializes it for zone device usage.
 */
static void drm_pagemap_get_devmem_page(struct page *page,
					struct drm_pagemap_zdd *zdd)
{
	page->zone_device_data = drm_pagemap_zdd_get(zdd);
	zone_device_page_init(page);
}

/**
 * drm_pagemap_migrate_map_pages() - Map migration pages for GPU SVM migration
 * @dev: The device for which the pages are being mapped
 * @dma_addr: Array to store DMA addresses corresponding to mapped pages
 * @migrate_pfn: Array of migrate page frame numbers to map
 * @npages: Number of pages to map
 * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
 *
 * This function maps pages of memory for migration usage in GPU SVM. It
 * iterates over each page frame number provided in @migrate_pfn, maps the
 * corresponding page, and stores the DMA address in the provided @dma_addr
 * array.
 *
 * Returns: 0 on success, -EFAULT if an error occurs during mapping.
 */
static int drm_pagemap_migrate_map_pages(struct device *dev,
					 dma_addr_t *dma_addr,
					 unsigned long *migrate_pfn,
					 unsigned long npages,
					 enum dma_data_direction dir)
{
	unsigned long i;

	for (i = 0; i < npages; ++i) {
		struct page *page = migrate_pfn_to_page(migrate_pfn[i]);

		if (!page)
			continue;

		if (WARN_ON_ONCE(is_zone_device_page(page)))
			return -EFAULT;

		dma_addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
		if (dma_mapping_error(dev, dma_addr[i]))
			return -EFAULT;
	}

	return 0;
}

/**
 * drm_pagemap_migrate_unmap_pages() - Unmap pages previously mapped for GPU SVM migration
 * @dev: The device for which the pages were mapped
 * @dma_addr: Array of DMA addresses corresponding to mapped pages
 * @npages: Number of pages to unmap
 * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
 *
 * This function unmaps previously mapped pages of memory for GPU Shared Virtual
 * Memory (SVM). It iterates over each DMA address provided in @dma_addr, checks
 * if it's valid and not already unmapped, and unmaps the corresponding page.
 */
static void drm_pagemap_migrate_unmap_pages(struct device *dev,
					    dma_addr_t *dma_addr,
					    unsigned long npages,
					    enum dma_data_direction dir)
{
	unsigned long i;

	for (i = 0; i < npages; ++i) {
		if (!dma_addr[i] || dma_mapping_error(dev, dma_addr[i]))
			continue;

		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
	}
}

static unsigned long
npages_in_range(unsigned long start, unsigned long end)
{
	return (end - start) >> PAGE_SHIFT;
}

/**
 * drm_pagemap_migrate_to_devmem() - Migrate a struct mm_struct range to device memory
 * @devmem_allocation: The device memory allocation to migrate to.
 * The caller should hold a reference to the device memory allocation,
 * and the reference is consumed by this function unless it returns with
 * an error.
 * @mm: Pointer to the struct mm_struct.
 * @start: Start of the virtual address range to migrate.
 * @end: End of the virtual address range to migrate.
 * @timeslice_ms: The time requested for the migrated pagemap pages to
 * be present in @mm before being allowed to be migrated back.
 * @pgmap_owner: Not used currently, since only system memory is considered.
 *
 * This function migrates the specified virtual address range to device memory.
 * It performs the necessary setup and invokes the driver-specific operations for
 * migration to device memory. Expected to be called while holding the mmap lock in
 * at least read mode.
 *
 * Note: The @timeslice_ms parameter can typically be used to force data to
 * remain in pagemap pages long enough for a GPU to perform a task and to prevent
 * a migration livelock. One alternative would be for the GPU driver to block
 * in a mmu_notifier for the specified amount of time, but adding the
 * functionality to the pagemap is likely nicer to the system as a whole.
 *
 * Return: %0 on success, negative error code on failure.
 */
int drm_pagemap_migrate_to_devmem(struct drm_pagemap_devmem *devmem_allocation,
				  struct mm_struct *mm,
				  unsigned long start, unsigned long end,
				  unsigned long timeslice_ms,
				  void *pgmap_owner)
{
	const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
	struct migrate_vma migrate = {
		.start		= start,
		.end		= end,
		.pgmap_owner	= pgmap_owner,
		.flags		= MIGRATE_VMA_SELECT_SYSTEM,
	};
	unsigned long i, npages = npages_in_range(start, end);
	struct vm_area_struct *vas;
	struct drm_pagemap_zdd *zdd = NULL;
	struct page **pages;
	dma_addr_t *dma_addr;
	void *buf;
	int err;

	mmap_assert_locked(mm);

	if (!ops->populate_devmem_pfn || !ops->copy_to_devmem ||
	    !ops->copy_to_ram)
		return -EOPNOTSUPP;

	vas = vma_lookup(mm, start);
	if (!vas) {
		err = -ENOENT;
		goto err_out;
	}

	if (end > vas->vm_end || start < vas->vm_start) {
		err = -EINVAL;
		goto err_out;
	}

	if (!vma_is_anonymous(vas)) {
		err = -EBUSY;
		goto err_out;
	}

	buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*dma_addr) +
		       sizeof(*pages), GFP_KERNEL);
	if (!buf) {
		err = -ENOMEM;
		goto err_out;
	}
	dma_addr = buf + (2 * sizeof(*migrate.src) * npages);
	pages = buf + (2 * sizeof(*migrate.src) + sizeof(*dma_addr)) * npages;

	zdd = drm_pagemap_zdd_alloc(pgmap_owner);
	if (!zdd) {
		err = -ENOMEM;
		goto err_free;
	}

	migrate.vma = vas;
	migrate.src = buf;
	migrate.dst = migrate.src + npages;

	err = migrate_vma_setup(&migrate);
	if (err)
		goto err_free;

	if (!migrate.cpages) {
		err = -EFAULT;
		goto err_free;
	}

	if (migrate.cpages != npages) {
		err = -EBUSY;
		goto err_finalize;
	}

	err = ops->populate_devmem_pfn(devmem_allocation, npages, migrate.dst);
	if (err)
		goto err_finalize;

	err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, dma_addr,
					    migrate.src, npages, DMA_TO_DEVICE);
	if (err)
		goto err_finalize;

	for (i = 0; i < npages; ++i) {
		struct page *page = pfn_to_page(migrate.dst[i]);

		pages[i] = page;
		migrate.dst[i] = migrate_pfn(migrate.dst[i]);
		drm_pagemap_get_devmem_page(page, zdd);
	}

	err = ops->copy_to_devmem(pages, dma_addr, npages);
	if (err)
		goto err_finalize;

	/* Upon success bind devmem allocation to range and zdd */
	devmem_allocation->timeslice_expiration = get_jiffies_64() +
		msecs_to_jiffies(timeslice_ms);
	zdd->devmem_allocation = devmem_allocation;	/* Owns ref */

err_finalize:
	if (err)
		drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
	migrate_vma_pages(&migrate);
	migrate_vma_finalize(&migrate);
	drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, dma_addr, npages,
					DMA_TO_DEVICE);
err_free:
	if (zdd)
		drm_pagemap_zdd_put(zdd);
	kvfree(buf);
err_out:
	return err;
}
EXPORT_SYMBOL_GPL(drm_pagemap_migrate_to_devmem);

/**
 * drm_pagemap_migrate_populate_ram_pfn() - Populate RAM PFNs for a VM area
 * @vas: Pointer to the VM area structure, can be NULL
 * @fault_page: Fault page
 * @npages: Number of pages to populate
 * @mpages: Number of pages to migrate
 * @src_mpfn: Source array of migrate PFNs
 * @mpfn: Array of migrate PFNs to populate
 * @addr: Start address for PFN allocation
 *
 * This function populates the RAM migrate page frame numbers (PFNs) for the
 * specified VM area structure. It allocates and locks pages in the VM area for
 * RAM usage. If vas is non-NULL use alloc_page_vma for allocation, if NULL use
 * alloc_page for allocation.
 *
 * Return: 0 on success, negative error code on failure.
 */
static int drm_pagemap_migrate_populate_ram_pfn(struct vm_area_struct *vas,
						struct page *fault_page,
						unsigned long npages,
						unsigned long *mpages,
						unsigned long *src_mpfn,
						unsigned long *mpfn,
						unsigned long addr)
{
	unsigned long i;

	for (i = 0; i < npages; ++i, addr += PAGE_SIZE) {
		struct page *page, *src_page;

		if (!(src_mpfn[i] & MIGRATE_PFN_MIGRATE))
			continue;

		src_page = migrate_pfn_to_page(src_mpfn[i]);
		if (!src_page)
			continue;

		if (fault_page) {
			if (src_page->zone_device_data !=
			    fault_page->zone_device_data)
				continue;
		}

		if (vas)
			page = alloc_page_vma(GFP_HIGHUSER, vas, addr);
		else
			page = alloc_page(GFP_HIGHUSER);

		if (!page)
			goto free_pages;

		mpfn[i] = migrate_pfn(page_to_pfn(page));
	}

	for (i = 0; i < npages; ++i) {
		struct page *page = migrate_pfn_to_page(mpfn[i]);

		if (!page)
			continue;

		WARN_ON_ONCE(!trylock_page(page));
		++*mpages;
	}

	return 0;

free_pages:
	for (i = 0; i < npages; ++i) {
		struct page *page = migrate_pfn_to_page(mpfn[i]);

		if (!page)
			continue;

		put_page(page);
		mpfn[i] = 0;
	}
	return -ENOMEM;
}

/**
 * drm_pagemap_evict_to_ram() - Evict GPU SVM range to RAM
 * @devmem_allocation: Pointer to the device memory allocation
 *
 * Similar to __drm_pagemap_migrate_to_ram but does not require mmap lock and
 * migration done via migrate_device_* functions.
 *
 * Return: 0 on success, negative error code on failure.
 */
int drm_pagemap_evict_to_ram(struct drm_pagemap_devmem *devmem_allocation)
{
	const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
	unsigned long npages, mpages = 0;
	struct page **pages;
	unsigned long *src, *dst;
	dma_addr_t *dma_addr;
	void *buf;
	int i, err = 0;
	unsigned int retry_count = 2;

	npages = devmem_allocation->size >> PAGE_SHIFT;

retry:
	if (!mmget_not_zero(devmem_allocation->mm))
		return -EFAULT;

	buf = kvcalloc(npages, 2 * sizeof(*src) + sizeof(*dma_addr) +
		       sizeof(*pages), GFP_KERNEL);
	if (!buf) {
		err = -ENOMEM;
		goto err_out;
	}
	src = buf;
	dst = buf + (sizeof(*src) * npages);
	dma_addr = buf + (2 * sizeof(*src) * npages);
	pages = buf + (2 * sizeof(*src) + sizeof(*dma_addr)) * npages;

	err = ops->populate_devmem_pfn(devmem_allocation, npages, src);
	if (err)
		goto err_free;

	err = migrate_device_pfns(src, npages);
	if (err)
		goto err_free;

	err = drm_pagemap_migrate_populate_ram_pfn(NULL, NULL, npages, &mpages,
						   src, dst, 0);
	if (err || !mpages)
		goto err_finalize;

	err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, dma_addr,
					    dst, npages, DMA_FROM_DEVICE);
	if (err)
		goto err_finalize;

	for (i = 0; i < npages; ++i)
		pages[i] = migrate_pfn_to_page(src[i]);

	err = ops->copy_to_ram(pages, dma_addr, npages);
	if (err)
		goto err_finalize;

err_finalize:
	if (err)
		drm_pagemap_migration_unlock_put_pages(npages, dst);
	migrate_device_pages(src, dst, npages);
	migrate_device_finalize(src, dst, npages);
	drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, dma_addr, npages,
					DMA_FROM_DEVICE);
err_free:
	kvfree(buf);
err_out:
	mmput_async(devmem_allocation->mm);

	if (completion_done(&devmem_allocation->detached))
		return 0;

	if (retry_count--) {
		cond_resched();
		goto retry;
	}

	return err ?: -EBUSY;
}
EXPORT_SYMBOL_GPL(drm_pagemap_evict_to_ram);

/**
 * __drm_pagemap_migrate_to_ram() - Migrate GPU SVM range to RAM (internal)
 * @vas: Pointer to the VM area structure
 * @device_private_page_owner: Device private pages owner
 * @page: Pointer to the page for fault handling (can be NULL)
 * @fault_addr: Fault address
 * @size: Size of migration
 *
 * This internal function performs the migration of the specified GPU SVM range
 * to RAM. It sets up the migration, populates + dma maps RAM PFNs, and
 * invokes the driver-specific operations for migration to RAM.
 *
 * Return: 0 on success, negative error code on failure.
 */
static int __drm_pagemap_migrate_to_ram(struct vm_area_struct *vas,
					void *device_private_page_owner,
					struct page *page,
					unsigned long fault_addr,
					unsigned long size)
{
	struct migrate_vma migrate = {
		.vma		= vas,
		.pgmap_owner	= device_private_page_owner,
		.flags		= MIGRATE_VMA_SELECT_DEVICE_PRIVATE |
		MIGRATE_VMA_SELECT_DEVICE_COHERENT,
		.fault_page	= page,
	};
	struct drm_pagemap_zdd *zdd;
	const struct drm_pagemap_devmem_ops *ops;
	struct device *dev = NULL;
	unsigned long npages, mpages = 0;
	struct page **pages;
	dma_addr_t *dma_addr;
	unsigned long start, end;
	void *buf;
	int i, err = 0;

	if (page) {
		zdd = page->zone_device_data;
		if (time_before64(get_jiffies_64(),
				  zdd->devmem_allocation->timeslice_expiration))
			return 0;
	}

	start = ALIGN_DOWN(fault_addr, size);
	end = ALIGN(fault_addr + 1, size);

	/* Corner where VMA area struct has been partially unmapped */
	if (start < vas->vm_start)
		start = vas->vm_start;
	if (end > vas->vm_end)
		end = vas->vm_end;

	migrate.start = start;
	migrate.end = end;
	npages = npages_in_range(start, end);

	buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*dma_addr) +
		       sizeof(*pages), GFP_KERNEL);
	if (!buf) {
		err = -ENOMEM;
		goto err_out;
	}
	dma_addr = buf + (2 * sizeof(*migrate.src) * npages);
	pages = buf + (2 * sizeof(*migrate.src) + sizeof(*dma_addr)) * npages;

	migrate.vma = vas;
	migrate.src = buf;
	migrate.dst = migrate.src + npages;

	err = migrate_vma_setup(&migrate);
	if (err)
		goto err_free;

	/* Raced with another CPU fault, nothing to do */
	if (!migrate.cpages)
		goto err_free;

	if (!page) {
		for (i = 0; i < npages; ++i) {
			if (!(migrate.src[i] & MIGRATE_PFN_MIGRATE))
				continue;

			page = migrate_pfn_to_page(migrate.src[i]);
			break;
		}

		if (!page)
			goto err_finalize;
	}
	zdd = page->zone_device_data;
	ops = zdd->devmem_allocation->ops;
	dev = zdd->devmem_allocation->dev;

	err = drm_pagemap_migrate_populate_ram_pfn(vas, page, npages, &mpages,
						   migrate.src, migrate.dst,
						   start);
	if (err)
		goto err_finalize;

	err = drm_pagemap_migrate_map_pages(dev, dma_addr, migrate.dst, npages,
					    DMA_FROM_DEVICE);
	if (err)
		goto err_finalize;

	for (i = 0; i < npages; ++i)
		pages[i] = migrate_pfn_to_page(migrate.src[i]);

	err = ops->copy_to_ram(pages, dma_addr, npages);
	if (err)
		goto err_finalize;

err_finalize:
	if (err)
		drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
	migrate_vma_pages(&migrate);
	migrate_vma_finalize(&migrate);
	if (dev)
		drm_pagemap_migrate_unmap_pages(dev, dma_addr, npages,
						DMA_FROM_DEVICE);
err_free:
	kvfree(buf);
err_out:

	return err;
}

/**
 * drm_pagemap_page_free() - Put GPU SVM zone device data associated with a page
 * @page: Pointer to the page
 *
 * This function is a callback used to put the GPU SVM zone device data
 * associated with a page when it is being released.
 */
static void drm_pagemap_page_free(struct page *page)
{
	drm_pagemap_zdd_put(page->zone_device_data);
}

/**
 * drm_pagemap_migrate_to_ram() - Migrate a virtual range to RAM (page fault handler)
 * @vmf: Pointer to the fault information structure
 *
 * This function is a page fault handler used to migrate a virtual range
 * to ram. The device memory allocation in which the device page is found is
 * migrated in its entirety.
 *
 * Returns:
 * VM_FAULT_SIGBUS on failure, 0 on success.
 */
static vm_fault_t drm_pagemap_migrate_to_ram(struct vm_fault *vmf)
{
	struct drm_pagemap_zdd *zdd = vmf->page->zone_device_data;
	int err;

	err = __drm_pagemap_migrate_to_ram(vmf->vma,
					   zdd->device_private_page_owner,
					   vmf->page, vmf->address,
					   zdd->devmem_allocation->size);

	return err ? VM_FAULT_SIGBUS : 0;
}

static const struct dev_pagemap_ops drm_pagemap_pagemap_ops = {
	.page_free = drm_pagemap_page_free,
	.migrate_to_ram = drm_pagemap_migrate_to_ram,
};

/**
 * drm_pagemap_pagemap_ops_get() - Retrieve GPU SVM device page map operations
 *
 * Returns:
 * Pointer to the GPU SVM device page map operations structure.
 */
const struct dev_pagemap_ops *drm_pagemap_pagemap_ops_get(void)
{
	return &drm_pagemap_pagemap_ops;
}
EXPORT_SYMBOL_GPL(drm_pagemap_pagemap_ops_get);

/**
 * drm_pagemap_devmem_init() - Initialize a drm_pagemap device memory allocation
 *
 * @devmem_allocation: The struct drm_pagemap_devmem to initialize.
 * @dev: Pointer to the device structure which device memory allocation belongs to
 * @mm: Pointer to the mm_struct for the address space
 * @ops: Pointer to the operations structure for GPU SVM device memory
 * @dpagemap: The struct drm_pagemap we're allocating from.
 * @size: Size of device memory allocation
 */
void drm_pagemap_devmem_init(struct drm_pagemap_devmem *devmem_allocation,
			     struct device *dev, struct mm_struct *mm,
			     const struct drm_pagemap_devmem_ops *ops,
			     struct drm_pagemap *dpagemap, size_t size)
{
	init_completion(&devmem_allocation->detached);
	devmem_allocation->dev = dev;
	devmem_allocation->mm = mm;
	devmem_allocation->ops = ops;
	devmem_allocation->dpagemap = dpagemap;
	devmem_allocation->size = size;
}
EXPORT_SYMBOL_GPL(drm_pagemap_devmem_init);

/**
 * drm_pagemap_page_to_dpagemap() - Return a pointer the drm_pagemap of a page
 * @page: The struct page.
 *
 * Return: A pointer to the struct drm_pagemap of a device private page that
 * was populated from the struct drm_pagemap. If the page was *not* populated
 * from a struct drm_pagemap, the result is undefined and the function call
 * may result in dereferencing and invalid address.
 */
struct drm_pagemap *drm_pagemap_page_to_dpagemap(struct page *page)
{
	struct drm_pagemap_zdd *zdd = page->zone_device_data;

	return zdd->devmem_allocation->dpagemap;
}
EXPORT_SYMBOL_GPL(drm_pagemap_page_to_dpagemap);

/**
 * drm_pagemap_populate_mm() - Populate a virtual range with device memory pages
 * @dpagemap: Pointer to the drm_pagemap managing the device memory
 * @start: Start of the virtual range to populate.
 * @end: End of the virtual range to populate.
 * @mm: Pointer to the virtual address space.
 * @timeslice_ms: The time requested for the migrated pagemap pages to
 * be present in @mm before being allowed to be migrated back.
 *
 * Attempt to populate a virtual range with device memory pages,
 * clearing them or migrating data from the existing pages if necessary.
 * The function is best effort only, and implementations may vary
 * in how hard they try to satisfy the request.
 *
 * Return: %0 on success, negative error code on error. If the hardware
 * device was removed / unbound the function will return %-ENODEV.
 */
int drm_pagemap_populate_mm(struct drm_pagemap *dpagemap,
			    unsigned long start, unsigned long end,
			    struct mm_struct *mm,
			    unsigned long timeslice_ms)
{
	int err;

	if (!mmget_not_zero(mm))
		return -EFAULT;
	mmap_read_lock(mm);
	err = dpagemap->ops->populate_mm(dpagemap, start, end, mm,
					 timeslice_ms);
	mmap_read_unlock(mm);
	mmput(mm);

	return err;
}
EXPORT_SYMBOL(drm_pagemap_populate_mm);