summaryrefslogtreecommitdiff
path: root/drivers/gpu/nova-core/vbios.rs
blob: 5b5d9f38cbb3a6b1c374c1e0eee2509eb8d5660c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
// SPDX-License-Identifier: GPL-2.0

//! VBIOS extraction and parsing.

use crate::driver::Bar0;
use crate::firmware::fwsec::Bcrt30Rsa3kSignature;
use crate::firmware::FalconUCodeDescV3;
use core::convert::TryFrom;
use kernel::device;
use kernel::error::Result;
use kernel::pci;
use kernel::prelude::*;

/// The offset of the VBIOS ROM in the BAR0 space.
const ROM_OFFSET: usize = 0x300000;
/// The maximum length of the VBIOS ROM to scan into.
const BIOS_MAX_SCAN_LEN: usize = 0x100000;
/// The size to read ahead when parsing initial BIOS image headers.
const BIOS_READ_AHEAD_SIZE: usize = 1024;
/// The bit in the last image indicator byte for the PCI Data Structure that
/// indicates the last image. Bit 0-6 are reserved, bit 7 is last image bit.
const LAST_IMAGE_BIT_MASK: u8 = 0x80;

// PMU lookup table entry types. Used to locate PMU table entries
// in the Fwsec image, corresponding to falcon ucodes.
#[expect(dead_code)]
const FALCON_UCODE_ENTRY_APPID_FIRMWARE_SEC_LIC: u8 = 0x05;
#[expect(dead_code)]
const FALCON_UCODE_ENTRY_APPID_FWSEC_DBG: u8 = 0x45;
const FALCON_UCODE_ENTRY_APPID_FWSEC_PROD: u8 = 0x85;

/// Vbios Reader for constructing the VBIOS data.
struct VbiosIterator<'a> {
    pdev: &'a pci::Device,
    bar0: &'a Bar0,
    /// VBIOS data vector: As BIOS images are scanned, they are added to this vector for reference
    /// or copying into other data structures. It is the entire scanned contents of the VBIOS which
    /// progressively extends. It is used so that we do not re-read any contents that are already
    /// read as we use the cumulative length read so far, and re-read any gaps as we extend the
    /// length.
    data: KVec<u8>,
    /// Current offset of the [`Iterator`].
    current_offset: usize,
    /// Indicate whether the last image has been found.
    last_found: bool,
}

impl<'a> VbiosIterator<'a> {
    fn new(pdev: &'a pci::Device, bar0: &'a Bar0) -> Result<Self> {
        Ok(Self {
            pdev,
            bar0,
            data: KVec::new(),
            current_offset: 0,
            last_found: false,
        })
    }

    /// Read bytes from the ROM at the current end of the data vector.
    fn read_more(&mut self, len: usize) -> Result {
        let current_len = self.data.len();
        let start = ROM_OFFSET + current_len;

        // Ensure length is a multiple of 4 for 32-bit reads
        if len % core::mem::size_of::<u32>() != 0 {
            dev_err!(
                self.pdev.as_ref(),
                "VBIOS read length {} is not a multiple of 4\n",
                len
            );
            return Err(EINVAL);
        }

        self.data.reserve(len, GFP_KERNEL)?;
        // Read ROM data bytes and push directly to `data`.
        for addr in (start..start + len).step_by(core::mem::size_of::<u32>()) {
            // Read 32-bit word from the VBIOS ROM
            let word = self.bar0.try_read32(addr)?;

            // Convert the `u32` to a 4 byte array and push each byte.
            word.to_ne_bytes()
                .iter()
                .try_for_each(|&b| self.data.push(b, GFP_KERNEL))?;
        }

        Ok(())
    }

    /// Read bytes at a specific offset, filling any gap.
    fn read_more_at_offset(&mut self, offset: usize, len: usize) -> Result {
        if offset > BIOS_MAX_SCAN_LEN {
            dev_err!(self.pdev.as_ref(), "Error: exceeded BIOS scan limit.\n");
            return Err(EINVAL);
        }

        // If `offset` is beyond current data size, fill the gap first.
        let current_len = self.data.len();
        let gap_bytes = offset.saturating_sub(current_len);

        // Now read the requested bytes at the offset.
        self.read_more(gap_bytes + len)
    }

    /// Read a BIOS image at a specific offset and create a [`BiosImage`] from it.
    ///
    /// `self.data` is extended as needed and a new [`BiosImage`] is returned.
    /// `context` is a string describing the operation for error reporting.
    fn read_bios_image_at_offset(
        &mut self,
        offset: usize,
        len: usize,
        context: &str,
    ) -> Result<BiosImage> {
        let data_len = self.data.len();
        if offset + len > data_len {
            self.read_more_at_offset(offset, len).inspect_err(|e| {
                dev_err!(
                    self.pdev.as_ref(),
                    "Failed to read more at offset {:#x}: {:?}\n",
                    offset,
                    e
                )
            })?;
        }

        BiosImage::new(self.pdev, &self.data[offset..offset + len]).inspect_err(|err| {
            dev_err!(
                self.pdev.as_ref(),
                "Failed to {} at offset {:#x}: {:?}\n",
                context,
                offset,
                err
            )
        })
    }
}

impl<'a> Iterator for VbiosIterator<'a> {
    type Item = Result<BiosImage>;

    /// Iterate over all VBIOS images until the last image is detected or offset
    /// exceeds scan limit.
    fn next(&mut self) -> Option<Self::Item> {
        if self.last_found {
            return None;
        }

        if self.current_offset > BIOS_MAX_SCAN_LEN {
            dev_err!(
                self.pdev.as_ref(),
                "Error: exceeded BIOS scan limit, stopping scan\n"
            );
            return None;
        }

        // Parse image headers first to get image size.
        let image_size = match self.read_bios_image_at_offset(
            self.current_offset,
            BIOS_READ_AHEAD_SIZE,
            "parse initial BIOS image headers",
        ) {
            Ok(image) => image.image_size_bytes(),
            Err(e) => return Some(Err(e)),
        };

        // Now create a new `BiosImage` with the full image data.
        let full_image = match self.read_bios_image_at_offset(
            self.current_offset,
            image_size,
            "parse full BIOS image",
        ) {
            Ok(image) => image,
            Err(e) => return Some(Err(e)),
        };

        self.last_found = full_image.is_last();

        // Advance to next image (aligned to 512 bytes).
        self.current_offset += image_size;
        // TODO[NUMM]: replace with `align_up` once it lands.
        self.current_offset = self.current_offset.next_multiple_of(512);

        Some(Ok(full_image))
    }
}

pub(crate) struct Vbios {
    fwsec_image: FwSecBiosImage,
}

impl Vbios {
    /// Probe for VBIOS extraction.
    ///
    /// Once the VBIOS object is built, `bar0` is not read for [`Vbios`] purposes anymore.
    pub(crate) fn new(pdev: &pci::Device, bar0: &Bar0) -> Result<Vbios> {
        // Images to extract from iteration
        let mut pci_at_image: Option<PciAtBiosImage> = None;
        let mut first_fwsec_image: Option<FwSecBiosBuilder> = None;
        let mut second_fwsec_image: Option<FwSecBiosBuilder> = None;

        // Parse all VBIOS images in the ROM
        for image_result in VbiosIterator::new(pdev, bar0)? {
            let full_image = image_result?;

            dev_dbg!(
                pdev.as_ref(),
                "Found BIOS image: size: {:#x}, type: {}, last: {}\n",
                full_image.image_size_bytes(),
                full_image.image_type_str(),
                full_image.is_last()
            );

            // Get references to images we will need after the loop, in order to
            // setup the falcon data offset.
            match full_image {
                BiosImage::PciAt(image) => {
                    pci_at_image = Some(image);
                }
                BiosImage::FwSec(image) => {
                    if first_fwsec_image.is_none() {
                        first_fwsec_image = Some(image);
                    } else {
                        second_fwsec_image = Some(image);
                    }
                }
                // For now we don't need to handle these
                BiosImage::Efi(_image) => {}
                BiosImage::Nbsi(_image) => {}
            }
        }

        // Using all the images, setup the falcon data pointer in Fwsec.
        if let (Some(mut second), Some(first), Some(pci_at)) =
            (second_fwsec_image, first_fwsec_image, pci_at_image)
        {
            second
                .setup_falcon_data(pdev, &pci_at, &first)
                .inspect_err(|e| dev_err!(pdev.as_ref(), "Falcon data setup failed: {:?}\n", e))?;
            Ok(Vbios {
                fwsec_image: second.build(pdev)?,
            })
        } else {
            dev_err!(
                pdev.as_ref(),
                "Missing required images for falcon data setup, skipping\n"
            );
            Err(EINVAL)
        }
    }

    pub(crate) fn fwsec_image(&self) -> &FwSecBiosImage {
        &self.fwsec_image
    }
}

/// PCI Data Structure as defined in PCI Firmware Specification
#[derive(Debug, Clone)]
#[repr(C)]
struct PcirStruct {
    /// PCI Data Structure signature ("PCIR" or "NPDS")
    signature: [u8; 4],
    /// PCI Vendor ID (e.g., 0x10DE for NVIDIA)
    vendor_id: u16,
    /// PCI Device ID
    device_id: u16,
    /// Device List Pointer
    device_list_ptr: u16,
    /// PCI Data Structure Length
    pci_data_struct_len: u16,
    /// PCI Data Structure Revision
    pci_data_struct_rev: u8,
    /// Class code (3 bytes, 0x03 for display controller)
    class_code: [u8; 3],
    /// Size of this image in 512-byte blocks
    image_len: u16,
    /// Revision Level of the Vendor's ROM
    vendor_rom_rev: u16,
    /// ROM image type (0x00 = PC-AT compatible, 0x03 = EFI, 0x70 = NBSI)
    code_type: u8,
    /// Last image indicator (0x00 = Not last image, 0x80 = Last image)
    last_image: u8,
    /// Maximum Run-time Image Length (units of 512 bytes)
    max_runtime_image_len: u16,
}

impl PcirStruct {
    fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
        if data.len() < core::mem::size_of::<PcirStruct>() {
            dev_err!(pdev.as_ref(), "Not enough data for PcirStruct\n");
            return Err(EINVAL);
        }

        let mut signature = [0u8; 4];
        signature.copy_from_slice(&data[0..4]);

        // Signature should be "PCIR" (0x52494350) or "NPDS" (0x5344504e).
        if &signature != b"PCIR" && &signature != b"NPDS" {
            dev_err!(
                pdev.as_ref(),
                "Invalid signature for PcirStruct: {:?}\n",
                signature
            );
            return Err(EINVAL);
        }

        let mut class_code = [0u8; 3];
        class_code.copy_from_slice(&data[13..16]);

        let image_len = u16::from_le_bytes([data[16], data[17]]);
        if image_len == 0 {
            dev_err!(pdev.as_ref(), "Invalid image length: 0\n");
            return Err(EINVAL);
        }

        Ok(PcirStruct {
            signature,
            vendor_id: u16::from_le_bytes([data[4], data[5]]),
            device_id: u16::from_le_bytes([data[6], data[7]]),
            device_list_ptr: u16::from_le_bytes([data[8], data[9]]),
            pci_data_struct_len: u16::from_le_bytes([data[10], data[11]]),
            pci_data_struct_rev: data[12],
            class_code,
            image_len,
            vendor_rom_rev: u16::from_le_bytes([data[18], data[19]]),
            code_type: data[20],
            last_image: data[21],
            max_runtime_image_len: u16::from_le_bytes([data[22], data[23]]),
        })
    }

    /// Check if this is the last image in the ROM.
    fn is_last(&self) -> bool {
        self.last_image & LAST_IMAGE_BIT_MASK != 0
    }

    /// Calculate image size in bytes from 512-byte blocks.
    fn image_size_bytes(&self) -> usize {
        self.image_len as usize * 512
    }
}

/// BIOS Information Table (BIT) Header.
///
/// This is the head of the BIT table, that is used to locate the Falcon data. The BIT table (with
/// its header) is in the [`PciAtBiosImage`] and the falcon data it is pointing to is in the
/// [`FwSecBiosImage`].
#[derive(Debug, Clone, Copy)]
#[expect(dead_code)]
struct BitHeader {
    /// 0h: BIT Header Identifier (BMP=0x7FFF/BIT=0xB8FF)
    id: u16,
    /// 2h: BIT Header Signature ("BIT\0")
    signature: [u8; 4],
    /// 6h: Binary Coded Decimal Version, ex: 0x0100 is 1.00.
    bcd_version: u16,
    /// 8h: Size of BIT Header (in bytes)
    header_size: u8,
    /// 9h: Size of BIT Tokens (in bytes)
    token_size: u8,
    /// 10h: Number of token entries that follow
    token_entries: u8,
    /// 11h: BIT Header Checksum
    checksum: u8,
}

impl BitHeader {
    fn new(data: &[u8]) -> Result<Self> {
        if data.len() < 12 {
            return Err(EINVAL);
        }

        let mut signature = [0u8; 4];
        signature.copy_from_slice(&data[2..6]);

        // Check header ID and signature
        let id = u16::from_le_bytes([data[0], data[1]]);
        if id != 0xB8FF || &signature != b"BIT\0" {
            return Err(EINVAL);
        }

        Ok(BitHeader {
            id,
            signature,
            bcd_version: u16::from_le_bytes([data[6], data[7]]),
            header_size: data[8],
            token_size: data[9],
            token_entries: data[10],
            checksum: data[11],
        })
    }
}

/// BIT Token Entry: Records in the BIT table followed by the BIT header.
#[derive(Debug, Clone, Copy)]
#[expect(dead_code)]
struct BitToken {
    /// 00h: Token identifier
    id: u8,
    /// 01h: Version of the token data
    data_version: u8,
    /// 02h: Size of token data in bytes
    data_size: u16,
    /// 04h: Offset to the token data
    data_offset: u16,
}

// Define the token ID for the Falcon data
const BIT_TOKEN_ID_FALCON_DATA: u8 = 0x70;

impl BitToken {
    /// Find a BIT token entry by BIT ID in a PciAtBiosImage
    fn from_id(image: &PciAtBiosImage, token_id: u8) -> Result<Self> {
        let header = &image.bit_header;

        // Offset to the first token entry
        let tokens_start = image.bit_offset + header.header_size as usize;

        for i in 0..header.token_entries as usize {
            let entry_offset = tokens_start + (i * header.token_size as usize);

            // Make sure we don't go out of bounds
            if entry_offset + header.token_size as usize > image.base.data.len() {
                return Err(EINVAL);
            }

            // Check if this token has the requested ID
            if image.base.data[entry_offset] == token_id {
                return Ok(BitToken {
                    id: image.base.data[entry_offset],
                    data_version: image.base.data[entry_offset + 1],
                    data_size: u16::from_le_bytes([
                        image.base.data[entry_offset + 2],
                        image.base.data[entry_offset + 3],
                    ]),
                    data_offset: u16::from_le_bytes([
                        image.base.data[entry_offset + 4],
                        image.base.data[entry_offset + 5],
                    ]),
                });
            }
        }

        // Token not found
        Err(ENOENT)
    }
}

/// PCI ROM Expansion Header as defined in PCI Firmware Specification.
///
/// This is header is at the beginning of every image in the set of images in the ROM. It contains
/// a pointer to the PCI Data Structure which describes the image. For "NBSI" images (NoteBook
/// System Information), the ROM header deviates from the standard and contains an offset to the
/// NBSI image however we do not yet parse that in this module and keep it for future reference.
#[derive(Debug, Clone, Copy)]
#[expect(dead_code)]
struct PciRomHeader {
    /// 00h: Signature (0xAA55)
    signature: u16,
    /// 02h: Reserved bytes for processor architecture unique data (20 bytes)
    reserved: [u8; 20],
    /// 16h: NBSI Data Offset (NBSI-specific, offset from header to NBSI image)
    nbsi_data_offset: Option<u16>,
    /// 18h: Pointer to PCI Data Structure (offset from start of ROM image)
    pci_data_struct_offset: u16,
    /// 1Ah: Size of block (this is NBSI-specific)
    size_of_block: Option<u32>,
}

impl PciRomHeader {
    fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
        if data.len() < 26 {
            // Need at least 26 bytes to read pciDataStrucPtr and sizeOfBlock.
            return Err(EINVAL);
        }

        let signature = u16::from_le_bytes([data[0], data[1]]);

        // Check for valid ROM signatures.
        match signature {
            0xAA55 | 0xBB77 | 0x4E56 => {}
            _ => {
                dev_err!(pdev.as_ref(), "ROM signature unknown {:#x}\n", signature);
                return Err(EINVAL);
            }
        }

        // Read the pointer to the PCI Data Structure at offset 0x18.
        let pci_data_struct_ptr = u16::from_le_bytes([data[24], data[25]]);

        // Try to read optional fields if enough data.
        let mut size_of_block = None;
        let mut nbsi_data_offset = None;

        if data.len() >= 30 {
            // Read size_of_block at offset 0x1A.
            size_of_block = Some(
                u32::from(data[29]) << 24
                    | u32::from(data[28]) << 16
                    | u32::from(data[27]) << 8
                    | u32::from(data[26]),
            );
        }

        // For NBSI images, try to read the nbsiDataOffset at offset 0x16.
        if data.len() >= 24 {
            nbsi_data_offset = Some(u16::from_le_bytes([data[22], data[23]]));
        }

        Ok(PciRomHeader {
            signature,
            reserved: [0u8; 20],
            pci_data_struct_offset: pci_data_struct_ptr,
            size_of_block,
            nbsi_data_offset,
        })
    }
}

/// NVIDIA PCI Data Extension Structure.
///
/// This is similar to the PCI Data Structure, but is Nvidia-specific and is placed right after the
/// PCI Data Structure. It contains some fields that are redundant with the PCI Data Structure, but
/// are needed for traversing the BIOS images. It is expected to be present in all BIOS images
/// except for NBSI images.
#[derive(Debug, Clone)]
#[repr(C)]
struct NpdeStruct {
    /// 00h: Signature ("NPDE")
    signature: [u8; 4],
    /// 04h: NVIDIA PCI Data Extension Revision
    npci_data_ext_rev: u16,
    /// 06h: NVIDIA PCI Data Extension Length
    npci_data_ext_len: u16,
    /// 08h: Sub-image Length (in 512-byte units)
    subimage_len: u16,
    /// 0Ah: Last image indicator flag
    last_image: u8,
}

impl NpdeStruct {
    fn new(pdev: &pci::Device, data: &[u8]) -> Option<Self> {
        if data.len() < core::mem::size_of::<Self>() {
            dev_dbg!(pdev.as_ref(), "Not enough data for NpdeStruct\n");
            return None;
        }

        let mut signature = [0u8; 4];
        signature.copy_from_slice(&data[0..4]);

        // Signature should be "NPDE" (0x4544504E).
        if &signature != b"NPDE" {
            dev_dbg!(
                pdev.as_ref(),
                "Invalid signature for NpdeStruct: {:?}\n",
                signature
            );
            return None;
        }

        let subimage_len = u16::from_le_bytes([data[8], data[9]]);
        if subimage_len == 0 {
            dev_dbg!(pdev.as_ref(), "Invalid subimage length: 0\n");
            return None;
        }

        Some(NpdeStruct {
            signature,
            npci_data_ext_rev: u16::from_le_bytes([data[4], data[5]]),
            npci_data_ext_len: u16::from_le_bytes([data[6], data[7]]),
            subimage_len,
            last_image: data[10],
        })
    }

    /// Check if this is the last image in the ROM.
    fn is_last(&self) -> bool {
        self.last_image & LAST_IMAGE_BIT_MASK != 0
    }

    /// Calculate image size in bytes from 512-byte blocks.
    fn image_size_bytes(&self) -> usize {
        self.subimage_len as usize * 512
    }

    /// Try to find NPDE in the data, the NPDE is right after the PCIR.
    fn find_in_data(
        pdev: &pci::Device,
        data: &[u8],
        rom_header: &PciRomHeader,
        pcir: &PcirStruct,
    ) -> Option<Self> {
        // Calculate the offset where NPDE might be located
        // NPDE should be right after the PCIR structure, aligned to 16 bytes
        let pcir_offset = rom_header.pci_data_struct_offset as usize;
        let npde_start = (pcir_offset + pcir.pci_data_struct_len as usize + 0x0F) & !0x0F;

        // Check if we have enough data
        if npde_start + core::mem::size_of::<Self>() > data.len() {
            dev_dbg!(pdev.as_ref(), "Not enough data for NPDE\n");
            return None;
        }

        // Try to create NPDE from the data
        NpdeStruct::new(pdev, &data[npde_start..])
    }
}

// Use a macro to implement BiosImage enum and methods. This avoids having to
// repeat each enum type when implementing functions like base() in BiosImage.
macro_rules! bios_image {
    (
        $($variant:ident: $class:ident),* $(,)?
    ) => {
        // BiosImage enum with variants for each image type
        enum BiosImage {
            $($variant($class)),*
        }

        impl BiosImage {
            /// Get a reference to the common BIOS image data regardless of type
            fn base(&self) -> &BiosImageBase {
                match self {
                    $(Self::$variant(img) => &img.base),*
                }
            }

            /// Returns a string representing the type of BIOS image
            fn image_type_str(&self) -> &'static str {
                match self {
                    $(Self::$variant(_) => stringify!($variant)),*
                }
            }
        }
    }
}

impl BiosImage {
    /// Check if this is the last image.
    fn is_last(&self) -> bool {
        let base = self.base();

        // For NBSI images (type == 0x70), return true as they're
        // considered the last image
        if matches!(self, Self::Nbsi(_)) {
            return true;
        }

        // For other image types, check the NPDE first if available
        if let Some(ref npde) = base.npde {
            return npde.is_last();
        }

        // Otherwise, fall back to checking the PCIR last_image flag
        base.pcir.is_last()
    }

    /// Get the image size in bytes.
    fn image_size_bytes(&self) -> usize {
        let base = self.base();

        // Prefer NPDE image size if available
        if let Some(ref npde) = base.npde {
            return npde.image_size_bytes();
        }

        // Otherwise, fall back to the PCIR image size
        base.pcir.image_size_bytes()
    }

    /// Create a [`BiosImageBase`] from a byte slice and convert it to a [`BiosImage`] which
    /// triggers the constructor of the specific BiosImage enum variant.
    fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
        let base = BiosImageBase::new(pdev, data)?;
        let image = base.into_image().inspect_err(|e| {
            dev_err!(pdev.as_ref(), "Failed to create BiosImage: {:?}\n", e);
        })?;

        Ok(image)
    }
}

bios_image! {
    PciAt: PciAtBiosImage,   // PCI-AT compatible BIOS image
    Efi: EfiBiosImage,       // EFI (Extensible Firmware Interface)
    Nbsi: NbsiBiosImage,     // NBSI (Nvidia Bios System Interface)
    FwSec: FwSecBiosBuilder, // FWSEC (Firmware Security)
}

/// The PciAt BIOS image is typically the first BIOS image type found in the BIOS image chain.
///
/// It contains the BIT header and the BIT tokens.
struct PciAtBiosImage {
    base: BiosImageBase,
    bit_header: BitHeader,
    bit_offset: usize,
}

struct EfiBiosImage {
    base: BiosImageBase,
    // EFI-specific fields can be added here in the future.
}

struct NbsiBiosImage {
    base: BiosImageBase,
    // NBSI-specific fields can be added here in the future.
}

struct FwSecBiosBuilder {
    base: BiosImageBase,
    /// These are temporary fields that are used during the construction of the
    /// [`FwSecBiosBuilder`].
    ///
    /// Once FwSecBiosBuilder is constructed, the `falcon_ucode_offset` will be copied into a new
    /// [`FwSecBiosImage`].
    ///
    /// The offset of the Falcon data from the start of Fwsec image.
    falcon_data_offset: Option<usize>,
    /// The [`PmuLookupTable`] starts at the offset of the falcon data pointer.
    pmu_lookup_table: Option<PmuLookupTable>,
    /// The offset of the Falcon ucode.
    falcon_ucode_offset: Option<usize>,
}

/// The [`FwSecBiosImage`] structure contains the PMU table and the Falcon Ucode.
///
/// The PMU table contains voltage/frequency tables as well as a pointer to the Falcon Ucode.
pub(crate) struct FwSecBiosImage {
    base: BiosImageBase,
    /// The offset of the Falcon ucode.
    falcon_ucode_offset: usize,
}

// Convert from BiosImageBase to BiosImage
impl TryFrom<BiosImageBase> for BiosImage {
    type Error = Error;

    fn try_from(base: BiosImageBase) -> Result<Self> {
        match base.pcir.code_type {
            0x00 => Ok(BiosImage::PciAt(base.try_into()?)),
            0x03 => Ok(BiosImage::Efi(EfiBiosImage { base })),
            0x70 => Ok(BiosImage::Nbsi(NbsiBiosImage { base })),
            0xE0 => Ok(BiosImage::FwSec(FwSecBiosBuilder {
                base,
                falcon_data_offset: None,
                pmu_lookup_table: None,
                falcon_ucode_offset: None,
            })),
            _ => Err(EINVAL),
        }
    }
}

/// BIOS Image structure containing various headers and reference fields to all BIOS images.
///
/// Each BiosImage type has a BiosImageBase type along with other image-specific fields. Note that
/// Rust favors composition of types over inheritance.
#[derive(Debug)]
#[expect(dead_code)]
struct BiosImageBase {
    /// PCI ROM Expansion Header
    rom_header: PciRomHeader,
    /// PCI Data Structure
    pcir: PcirStruct,
    /// NVIDIA PCI Data Extension (optional)
    npde: Option<NpdeStruct>,
    /// Image data (includes ROM header and PCIR)
    data: KVec<u8>,
}

impl BiosImageBase {
    fn into_image(self) -> Result<BiosImage> {
        BiosImage::try_from(self)
    }

    /// Creates a new BiosImageBase from raw byte data.
    fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
        // Ensure we have enough data for the ROM header.
        if data.len() < 26 {
            dev_err!(pdev.as_ref(), "Not enough data for ROM header\n");
            return Err(EINVAL);
        }

        // Parse the ROM header.
        let rom_header = PciRomHeader::new(pdev, &data[0..26])
            .inspect_err(|e| dev_err!(pdev.as_ref(), "Failed to create PciRomHeader: {:?}\n", e))?;

        // Get the PCI Data Structure using the pointer from the ROM header.
        let pcir_offset = rom_header.pci_data_struct_offset as usize;
        let pcir_data = data
            .get(pcir_offset..pcir_offset + core::mem::size_of::<PcirStruct>())
            .ok_or(EINVAL)
            .inspect_err(|_| {
                dev_err!(
                    pdev.as_ref(),
                    "PCIR offset {:#x} out of bounds (data length: {})\n",
                    pcir_offset,
                    data.len()
                );
                dev_err!(
                    pdev.as_ref(),
                    "Consider reading more data for construction of BiosImage\n"
                );
            })?;

        let pcir = PcirStruct::new(pdev, pcir_data)
            .inspect_err(|e| dev_err!(pdev.as_ref(), "Failed to create PcirStruct: {:?}\n", e))?;

        // Look for NPDE structure if this is not an NBSI image (type != 0x70).
        let npde = NpdeStruct::find_in_data(pdev, data, &rom_header, &pcir);

        // Create a copy of the data.
        let mut data_copy = KVec::new();
        data_copy.extend_from_slice(data, GFP_KERNEL)?;

        Ok(BiosImageBase {
            rom_header,
            pcir,
            npde,
            data: data_copy,
        })
    }
}

impl PciAtBiosImage {
    /// Find a byte pattern in a slice.
    fn find_byte_pattern(haystack: &[u8], needle: &[u8]) -> Result<usize> {
        haystack
            .windows(needle.len())
            .position(|window| window == needle)
            .ok_or(EINVAL)
    }

    /// Find the BIT header in the [`PciAtBiosImage`].
    fn find_bit_header(data: &[u8]) -> Result<(BitHeader, usize)> {
        let bit_pattern = [0xff, 0xb8, b'B', b'I', b'T', 0x00];
        let bit_offset = Self::find_byte_pattern(data, &bit_pattern)?;
        let bit_header = BitHeader::new(&data[bit_offset..])?;

        Ok((bit_header, bit_offset))
    }

    /// Get a BIT token entry from the BIT table in the [`PciAtBiosImage`]
    fn get_bit_token(&self, token_id: u8) -> Result<BitToken> {
        BitToken::from_id(self, token_id)
    }

    /// Find the Falcon data pointer structure in the [`PciAtBiosImage`].
    ///
    /// This is just a 4 byte structure that contains a pointer to the Falcon data in the FWSEC
    /// image.
    fn falcon_data_ptr(&self, pdev: &pci::Device) -> Result<u32> {
        let token = self.get_bit_token(BIT_TOKEN_ID_FALCON_DATA)?;

        // Make sure we don't go out of bounds
        if token.data_offset as usize + 4 > self.base.data.len() {
            return Err(EINVAL);
        }

        // read the 4 bytes at the offset specified in the token
        let offset = token.data_offset as usize;
        let bytes: [u8; 4] = self.base.data[offset..offset + 4].try_into().map_err(|_| {
            dev_err!(pdev.as_ref(), "Failed to convert data slice to array");
            EINVAL
        })?;

        let data_ptr = u32::from_le_bytes(bytes);

        if (data_ptr as usize) < self.base.data.len() {
            dev_err!(pdev.as_ref(), "Falcon data pointer out of bounds\n");
            return Err(EINVAL);
        }

        Ok(data_ptr)
    }
}

impl TryFrom<BiosImageBase> for PciAtBiosImage {
    type Error = Error;

    fn try_from(base: BiosImageBase) -> Result<Self> {
        let data_slice = &base.data;
        let (bit_header, bit_offset) = PciAtBiosImage::find_bit_header(data_slice)?;

        Ok(PciAtBiosImage {
            base,
            bit_header,
            bit_offset,
        })
    }
}

/// The [`PmuLookupTableEntry`] structure is a single entry in the [`PmuLookupTable`].
///
/// See the [`PmuLookupTable`] description for more information.
#[expect(dead_code)]
struct PmuLookupTableEntry {
    application_id: u8,
    target_id: u8,
    data: u32,
}

impl PmuLookupTableEntry {
    fn new(data: &[u8]) -> Result<Self> {
        if data.len() < 6 {
            return Err(EINVAL);
        }

        Ok(PmuLookupTableEntry {
            application_id: data[0],
            target_id: data[1],
            data: u32::from_le_bytes(data[2..6].try_into().map_err(|_| EINVAL)?),
        })
    }
}

/// The [`PmuLookupTableEntry`] structure is used to find the [`PmuLookupTableEntry`] for a given
/// application ID.
///
/// The table of entries is pointed to by the falcon data pointer in the BIT table, and is used to
/// locate the Falcon Ucode.
#[expect(dead_code)]
struct PmuLookupTable {
    version: u8,
    header_len: u8,
    entry_len: u8,
    entry_count: u8,
    table_data: KVec<u8>,
}

impl PmuLookupTable {
    fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
        if data.len() < 4 {
            return Err(EINVAL);
        }

        let header_len = data[1] as usize;
        let entry_len = data[2] as usize;
        let entry_count = data[3] as usize;

        let required_bytes = header_len + (entry_count * entry_len);

        if data.len() < required_bytes {
            dev_err!(
                pdev.as_ref(),
                "PmuLookupTable data length less than required\n"
            );
            return Err(EINVAL);
        }

        // Create a copy of only the table data
        let table_data = {
            let mut ret = KVec::new();
            ret.extend_from_slice(&data[header_len..required_bytes], GFP_KERNEL)?;
            ret
        };

        // Debug logging of entries (dumps the table data to dmesg)
        for i in (header_len..required_bytes).step_by(entry_len) {
            dev_dbg!(
                pdev.as_ref(),
                "PMU entry: {:02x?}\n",
                &data[i..][..entry_len]
            );
        }

        Ok(PmuLookupTable {
            version: data[0],
            header_len: header_len as u8,
            entry_len: entry_len as u8,
            entry_count: entry_count as u8,
            table_data,
        })
    }

    fn lookup_index(&self, idx: u8) -> Result<PmuLookupTableEntry> {
        if idx >= self.entry_count {
            return Err(EINVAL);
        }

        let index = (idx as usize) * self.entry_len as usize;
        PmuLookupTableEntry::new(&self.table_data[index..])
    }

    // find entry by type value
    fn find_entry_by_type(&self, entry_type: u8) -> Result<PmuLookupTableEntry> {
        for i in 0..self.entry_count {
            let entry = self.lookup_index(i)?;
            if entry.application_id == entry_type {
                return Ok(entry);
            }
        }

        Err(EINVAL)
    }
}

impl FwSecBiosBuilder {
    fn setup_falcon_data(
        &mut self,
        pdev: &pci::Device,
        pci_at_image: &PciAtBiosImage,
        first_fwsec: &FwSecBiosBuilder,
    ) -> Result {
        let mut offset = pci_at_image.falcon_data_ptr(pdev)? as usize;
        let mut pmu_in_first_fwsec = false;

        // The falcon data pointer assumes that the PciAt and FWSEC images
        // are contiguous in memory. However, testing shows the EFI image sits in
        // between them. So calculate the offset from the end of the PciAt image
        // rather than the start of it. Compensate.
        offset -= pci_at_image.base.data.len();

        // The offset is now from the start of the first Fwsec image, however
        // the offset points to a location in the second Fwsec image. Since
        // the fwsec images are contiguous, subtract the length of the first Fwsec
        // image from the offset to get the offset to the start of the second
        // Fwsec image.
        if offset < first_fwsec.base.data.len() {
            pmu_in_first_fwsec = true;
        } else {
            offset -= first_fwsec.base.data.len();
        }

        self.falcon_data_offset = Some(offset);

        if pmu_in_first_fwsec {
            self.pmu_lookup_table =
                Some(PmuLookupTable::new(pdev, &first_fwsec.base.data[offset..])?);
        } else {
            self.pmu_lookup_table = Some(PmuLookupTable::new(pdev, &self.base.data[offset..])?);
        }

        match self
            .pmu_lookup_table
            .as_ref()
            .ok_or(EINVAL)?
            .find_entry_by_type(FALCON_UCODE_ENTRY_APPID_FWSEC_PROD)
        {
            Ok(entry) => {
                let mut ucode_offset = entry.data as usize;
                ucode_offset -= pci_at_image.base.data.len();
                if ucode_offset < first_fwsec.base.data.len() {
                    dev_err!(pdev.as_ref(), "Falcon Ucode offset not in second Fwsec.\n");
                    return Err(EINVAL);
                }
                ucode_offset -= first_fwsec.base.data.len();
                self.falcon_ucode_offset = Some(ucode_offset);
            }
            Err(e) => {
                dev_err!(
                    pdev.as_ref(),
                    "PmuLookupTableEntry not found, error: {:?}\n",
                    e
                );
                return Err(EINVAL);
            }
        }
        Ok(())
    }

    /// Build the final FwSecBiosImage from this builder
    fn build(self, pdev: &pci::Device) -> Result<FwSecBiosImage> {
        let ret = FwSecBiosImage {
            base: self.base,
            falcon_ucode_offset: self.falcon_ucode_offset.ok_or(EINVAL)?,
        };

        if cfg!(debug_assertions) {
            // Print the desc header for debugging
            let desc = ret.header(pdev.as_ref())?;
            dev_dbg!(pdev.as_ref(), "PmuLookupTableEntry desc: {:#?}\n", desc);
        }

        Ok(ret)
    }
}

impl FwSecBiosImage {
    /// Get the FwSec header ([`FalconUCodeDescV3`]).
    pub(crate) fn header(&self, dev: &device::Device) -> Result<&FalconUCodeDescV3> {
        // Get the falcon ucode offset that was found in setup_falcon_data.
        let falcon_ucode_offset = self.falcon_ucode_offset;

        // Make sure the offset is within the data bounds.
        if falcon_ucode_offset + core::mem::size_of::<FalconUCodeDescV3>() > self.base.data.len() {
            dev_err!(dev, "fwsec-frts header not contained within BIOS bounds\n");
            return Err(ERANGE);
        }

        // Read the first 4 bytes to get the version.
        let hdr_bytes: [u8; 4] = self.base.data[falcon_ucode_offset..falcon_ucode_offset + 4]
            .try_into()
            .map_err(|_| EINVAL)?;
        let hdr = u32::from_le_bytes(hdr_bytes);
        let ver = (hdr & 0xff00) >> 8;

        if ver != 3 {
            dev_err!(dev, "invalid fwsec firmware version: {:?}\n", ver);
            return Err(EINVAL);
        }

        // Return a reference to the FalconUCodeDescV3 structure.
        //
        // SAFETY: We have checked that `falcon_ucode_offset + size_of::<FalconUCodeDescV3>` is
        // within the bounds of `data`. Also, this data vector is from ROM, and the `data` field
        // in `BiosImageBase` is immutable after construction.
        Ok(unsafe {
            &*(self
                .base
                .data
                .as_ptr()
                .add(falcon_ucode_offset)
                .cast::<FalconUCodeDescV3>())
        })
    }

    /// Get the ucode data as a byte slice
    pub(crate) fn ucode(&self, dev: &device::Device, desc: &FalconUCodeDescV3) -> Result<&[u8]> {
        let falcon_ucode_offset = self.falcon_ucode_offset;

        // The ucode data follows the descriptor.
        let ucode_data_offset = falcon_ucode_offset + desc.size();
        let size = (desc.imem_load_size + desc.dmem_load_size) as usize;

        // Get the data slice, checking bounds in a single operation.
        self.base
            .data
            .get(ucode_data_offset..ucode_data_offset + size)
            .ok_or(ERANGE)
            .inspect_err(|_| dev_err!(dev, "fwsec ucode data not contained within BIOS bounds\n"))
    }

    /// Get the signatures as a byte slice
    pub(crate) fn sigs(
        &self,
        dev: &device::Device,
        desc: &FalconUCodeDescV3,
    ) -> Result<&[Bcrt30Rsa3kSignature]> {
        // The signatures data follows the descriptor.
        let sigs_data_offset = self.falcon_ucode_offset + core::mem::size_of::<FalconUCodeDescV3>();
        let sigs_size =
            desc.signature_count as usize * core::mem::size_of::<Bcrt30Rsa3kSignature>();

        // Make sure the data is within bounds.
        if sigs_data_offset + sigs_size > self.base.data.len() {
            dev_err!(
                dev,
                "fwsec signatures data not contained within BIOS bounds\n"
            );
            return Err(ERANGE);
        }

        // SAFETY: we checked that `data + sigs_data_offset + (signature_count *
        // sizeof::<Bcrt30Rsa3kSignature>()` is within the bounds of `data`.
        Ok(unsafe {
            core::slice::from_raw_parts(
                self.base
                    .data
                    .as_ptr()
                    .add(sigs_data_offset)
                    .cast::<Bcrt30Rsa3kSignature>(),
                desc.signature_count as usize,
            )
        })
    }
}