1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
|
// SPDX-License-Identifier: GPL-2.0-only
/* Miscellaneous routines.
*
* Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#include <linux/swap.h>
#include "internal.h"
/**
* netfs_alloc_folioq_buffer - Allocate buffer space into a folio queue
* @mapping: Address space to set on the folio (or NULL).
* @_buffer: Pointer to the folio queue to add to (may point to a NULL; updated).
* @_cur_size: Current size of the buffer (updated).
* @size: Target size of the buffer.
* @gfp: The allocation constraints.
*/
int netfs_alloc_folioq_buffer(struct address_space *mapping,
struct folio_queue **_buffer,
size_t *_cur_size, ssize_t size, gfp_t gfp)
{
struct folio_queue *tail = *_buffer, *p;
size = round_up(size, PAGE_SIZE);
if (*_cur_size >= size)
return 0;
if (tail)
while (tail->next)
tail = tail->next;
do {
struct folio *folio;
int order = 0, slot;
if (!tail || folioq_full(tail)) {
p = netfs_folioq_alloc(0, GFP_NOFS, netfs_trace_folioq_alloc_buffer);
if (!p)
return -ENOMEM;
if (tail) {
tail->next = p;
p->prev = tail;
} else {
*_buffer = p;
}
tail = p;
}
if (size - *_cur_size > PAGE_SIZE)
order = umin(ilog2(size - *_cur_size) - PAGE_SHIFT,
MAX_PAGECACHE_ORDER);
folio = folio_alloc(gfp, order);
if (!folio && order > 0)
folio = folio_alloc(gfp, 0);
if (!folio)
return -ENOMEM;
folio->mapping = mapping;
folio->index = *_cur_size / PAGE_SIZE;
trace_netfs_folio(folio, netfs_folio_trace_alloc_buffer);
slot = folioq_append_mark(tail, folio);
*_cur_size += folioq_folio_size(tail, slot);
} while (*_cur_size < size);
return 0;
}
EXPORT_SYMBOL(netfs_alloc_folioq_buffer);
/**
* netfs_free_folioq_buffer - Free a folio queue.
* @fq: The start of the folio queue to free
*
* Free up a chain of folio_queues and, if marked, the marked folios they point
* to.
*/
void netfs_free_folioq_buffer(struct folio_queue *fq)
{
struct folio_queue *next;
struct folio_batch fbatch;
folio_batch_init(&fbatch);
for (; fq; fq = next) {
for (int slot = 0; slot < folioq_count(fq); slot++) {
struct folio *folio = folioq_folio(fq, slot);
if (!folio ||
!folioq_is_marked(fq, slot))
continue;
trace_netfs_folio(folio, netfs_folio_trace_put);
if (folio_batch_add(&fbatch, folio))
folio_batch_release(&fbatch);
}
netfs_stat_d(&netfs_n_folioq);
next = fq->next;
kfree(fq);
}
folio_batch_release(&fbatch);
}
EXPORT_SYMBOL(netfs_free_folioq_buffer);
/*
* Reset the subrequest iterator to refer just to the region remaining to be
* read. The iterator may or may not have been advanced by socket ops or
* extraction ops to an extent that may or may not match the amount actually
* read.
*/
void netfs_reset_iter(struct netfs_io_subrequest *subreq)
{
struct iov_iter *io_iter = &subreq->io_iter;
size_t remain = subreq->len - subreq->transferred;
if (io_iter->count > remain)
iov_iter_advance(io_iter, io_iter->count - remain);
else if (io_iter->count < remain)
iov_iter_revert(io_iter, remain - io_iter->count);
iov_iter_truncate(&subreq->io_iter, remain);
}
/**
* netfs_dirty_folio - Mark folio dirty and pin a cache object for writeback
* @mapping: The mapping the folio belongs to.
* @folio: The folio being dirtied.
*
* Set the dirty flag on a folio and pin an in-use cache object in memory so
* that writeback can later write to it. This is intended to be called from
* the filesystem's ->dirty_folio() method.
*
* Return: true if the dirty flag was set on the folio, false otherwise.
*/
bool netfs_dirty_folio(struct address_space *mapping, struct folio *folio)
{
struct inode *inode = mapping->host;
struct netfs_inode *ictx = netfs_inode(inode);
struct fscache_cookie *cookie = netfs_i_cookie(ictx);
bool need_use = false;
_enter("");
if (!filemap_dirty_folio(mapping, folio))
return false;
if (!fscache_cookie_valid(cookie))
return true;
if (!(inode->i_state & I_PINNING_NETFS_WB)) {
spin_lock(&inode->i_lock);
if (!(inode->i_state & I_PINNING_NETFS_WB)) {
inode->i_state |= I_PINNING_NETFS_WB;
need_use = true;
}
spin_unlock(&inode->i_lock);
if (need_use)
fscache_use_cookie(cookie, true);
}
return true;
}
EXPORT_SYMBOL(netfs_dirty_folio);
/**
* netfs_unpin_writeback - Unpin writeback resources
* @inode: The inode on which the cookie resides
* @wbc: The writeback control
*
* Unpin the writeback resources pinned by netfs_dirty_folio(). This is
* intended to be called as/by the netfs's ->write_inode() method.
*/
int netfs_unpin_writeback(struct inode *inode, struct writeback_control *wbc)
{
struct fscache_cookie *cookie = netfs_i_cookie(netfs_inode(inode));
if (wbc->unpinned_netfs_wb)
fscache_unuse_cookie(cookie, NULL, NULL);
return 0;
}
EXPORT_SYMBOL(netfs_unpin_writeback);
/**
* netfs_clear_inode_writeback - Clear writeback resources pinned by an inode
* @inode: The inode to clean up
* @aux: Auxiliary data to apply to the inode
*
* Clear any writeback resources held by an inode when the inode is evicted.
* This must be called before clear_inode() is called.
*/
void netfs_clear_inode_writeback(struct inode *inode, const void *aux)
{
struct fscache_cookie *cookie = netfs_i_cookie(netfs_inode(inode));
if (inode->i_state & I_PINNING_NETFS_WB) {
loff_t i_size = i_size_read(inode);
fscache_unuse_cookie(cookie, aux, &i_size);
}
}
EXPORT_SYMBOL(netfs_clear_inode_writeback);
/**
* netfs_invalidate_folio - Invalidate or partially invalidate a folio
* @folio: Folio proposed for release
* @offset: Offset of the invalidated region
* @length: Length of the invalidated region
*
* Invalidate part or all of a folio for a network filesystem. The folio will
* be removed afterwards if the invalidated region covers the entire folio.
*/
void netfs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
{
struct netfs_folio *finfo;
struct netfs_inode *ctx = netfs_inode(folio_inode(folio));
size_t flen = folio_size(folio);
_enter("{%lx},%zx,%zx", folio->index, offset, length);
if (offset == 0 && length == flen) {
unsigned long long i_size = i_size_read(&ctx->inode);
unsigned long long fpos = folio_pos(folio), end;
end = umin(fpos + flen, i_size);
if (fpos < i_size && end > ctx->zero_point)
ctx->zero_point = end;
}
folio_wait_private_2(folio); /* [DEPRECATED] */
if (!folio_test_private(folio))
return;
finfo = netfs_folio_info(folio);
if (offset == 0 && length >= flen)
goto erase_completely;
if (finfo) {
/* We have a partially uptodate page from a streaming write. */
unsigned int fstart = finfo->dirty_offset;
unsigned int fend = fstart + finfo->dirty_len;
unsigned int iend = offset + length;
if (offset >= fend)
return;
if (iend <= fstart)
return;
/* The invalidation region overlaps the data. If the region
* covers the start of the data, we either move along the start
* or just erase the data entirely.
*/
if (offset <= fstart) {
if (iend >= fend)
goto erase_completely;
/* Move the start of the data. */
finfo->dirty_len = fend - iend;
finfo->dirty_offset = offset;
return;
}
/* Reduce the length of the data if the invalidation region
* covers the tail part.
*/
if (iend >= fend) {
finfo->dirty_len = offset - fstart;
return;
}
/* A partial write was split. The caller has already zeroed
* it, so just absorb the hole.
*/
}
return;
erase_completely:
netfs_put_group(netfs_folio_group(folio));
folio_detach_private(folio);
folio_clear_uptodate(folio);
kfree(finfo);
return;
}
EXPORT_SYMBOL(netfs_invalidate_folio);
/**
* netfs_release_folio - Try to release a folio
* @folio: Folio proposed for release
* @gfp: Flags qualifying the release
*
* Request release of a folio and clean up its private state if it's not busy.
* Returns true if the folio can now be released, false if not
*/
bool netfs_release_folio(struct folio *folio, gfp_t gfp)
{
struct netfs_inode *ctx = netfs_inode(folio_inode(folio));
unsigned long long end;
if (folio_test_dirty(folio))
return false;
end = umin(folio_pos(folio) + folio_size(folio), i_size_read(&ctx->inode));
if (end > ctx->zero_point)
ctx->zero_point = end;
if (folio_test_private(folio))
return false;
if (unlikely(folio_test_private_2(folio))) { /* [DEPRECATED] */
if (current_is_kswapd() || !(gfp & __GFP_FS))
return false;
folio_wait_private_2(folio);
}
fscache_note_page_release(netfs_i_cookie(ctx));
return true;
}
EXPORT_SYMBOL(netfs_release_folio);
/*
* Wake the collection work item.
*/
void netfs_wake_collector(struct netfs_io_request *rreq)
{
if (test_bit(NETFS_RREQ_OFFLOAD_COLLECTION, &rreq->flags) &&
!test_bit(NETFS_RREQ_RETRYING, &rreq->flags)) {
queue_work(system_unbound_wq, &rreq->work);
} else {
trace_netfs_rreq(rreq, netfs_rreq_trace_wake_queue);
wake_up(&rreq->waitq);
}
}
/*
* Mark a subrequest as no longer being in progress and, if need be, wake the
* collector.
*/
void netfs_subreq_clear_in_progress(struct netfs_io_subrequest *subreq)
{
struct netfs_io_request *rreq = subreq->rreq;
struct netfs_io_stream *stream = &rreq->io_streams[subreq->stream_nr];
clear_bit_unlock(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
smp_mb__after_atomic(); /* Clear IN_PROGRESS before task state */
/* If we are at the head of the queue, wake up the collector. */
if (list_is_first(&subreq->rreq_link, &stream->subrequests) ||
test_bit(NETFS_RREQ_RETRYING, &rreq->flags))
netfs_wake_collector(rreq);
}
/*
* Wait for all outstanding I/O in a stream to quiesce.
*/
void netfs_wait_for_in_progress_stream(struct netfs_io_request *rreq,
struct netfs_io_stream *stream)
{
struct netfs_io_subrequest *subreq;
DEFINE_WAIT(myself);
list_for_each_entry(subreq, &stream->subrequests, rreq_link) {
if (!test_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags))
continue;
trace_netfs_rreq(rreq, netfs_rreq_trace_wait_queue);
for (;;) {
prepare_to_wait(&rreq->waitq, &myself, TASK_UNINTERRUPTIBLE);
if (!test_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags))
break;
trace_netfs_sreq(subreq, netfs_sreq_trace_wait_for);
schedule();
trace_netfs_rreq(rreq, netfs_rreq_trace_woke_queue);
}
}
finish_wait(&rreq->waitq, &myself);
}
/*
* Perform collection in app thread if not offloaded to workqueue.
*/
static int netfs_collect_in_app(struct netfs_io_request *rreq,
bool (*collector)(struct netfs_io_request *rreq))
{
bool need_collect = false, inactive = true;
for (int i = 0; i < NR_IO_STREAMS; i++) {
struct netfs_io_subrequest *subreq;
struct netfs_io_stream *stream = &rreq->io_streams[i];
if (!stream->active)
continue;
inactive = false;
trace_netfs_collect_stream(rreq, stream);
subreq = list_first_entry_or_null(&stream->subrequests,
struct netfs_io_subrequest,
rreq_link);
if (subreq &&
(!test_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags) ||
test_bit(NETFS_SREQ_MADE_PROGRESS, &subreq->flags))) {
need_collect = true;
break;
}
}
if (!need_collect && !inactive)
return 0; /* Sleep */
__set_current_state(TASK_RUNNING);
if (collector(rreq)) {
/* Drop the ref from the NETFS_RREQ_IN_PROGRESS flag. */
netfs_put_request(rreq, netfs_rreq_trace_put_work_ip);
return 1; /* Done */
}
if (inactive) {
WARN(true, "Failed to collect inactive req R=%08x\n",
rreq->debug_id);
cond_resched();
}
return 2; /* Again */
}
/*
* Wait for a request to complete, successfully or otherwise.
*/
static ssize_t netfs_wait_for_request(struct netfs_io_request *rreq,
bool (*collector)(struct netfs_io_request *rreq))
{
DEFINE_WAIT(myself);
ssize_t ret;
for (;;) {
trace_netfs_rreq(rreq, netfs_rreq_trace_wait_queue);
prepare_to_wait(&rreq->waitq, &myself, TASK_UNINTERRUPTIBLE);
if (!test_bit(NETFS_RREQ_OFFLOAD_COLLECTION, &rreq->flags)) {
switch (netfs_collect_in_app(rreq, collector)) {
case 0:
break;
case 1:
goto all_collected;
case 2:
continue;
}
}
if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags))
break;
schedule();
trace_netfs_rreq(rreq, netfs_rreq_trace_woke_queue);
}
all_collected:
finish_wait(&rreq->waitq, &myself);
ret = rreq->error;
if (ret == 0) {
ret = rreq->transferred;
switch (rreq->origin) {
case NETFS_DIO_READ:
case NETFS_DIO_WRITE:
case NETFS_READ_SINGLE:
case NETFS_UNBUFFERED_READ:
case NETFS_UNBUFFERED_WRITE:
break;
default:
if (rreq->submitted < rreq->len) {
trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
ret = -EIO;
}
break;
}
}
return ret;
}
ssize_t netfs_wait_for_read(struct netfs_io_request *rreq)
{
return netfs_wait_for_request(rreq, netfs_read_collection);
}
ssize_t netfs_wait_for_write(struct netfs_io_request *rreq)
{
return netfs_wait_for_request(rreq, netfs_write_collection);
}
/*
* Wait for a paused operation to unpause or complete in some manner.
*/
static void netfs_wait_for_pause(struct netfs_io_request *rreq,
bool (*collector)(struct netfs_io_request *rreq))
{
DEFINE_WAIT(myself);
trace_netfs_rreq(rreq, netfs_rreq_trace_wait_pause);
for (;;) {
trace_netfs_rreq(rreq, netfs_rreq_trace_wait_queue);
prepare_to_wait(&rreq->waitq, &myself, TASK_UNINTERRUPTIBLE);
if (!test_bit(NETFS_RREQ_OFFLOAD_COLLECTION, &rreq->flags)) {
switch (netfs_collect_in_app(rreq, collector)) {
case 0:
break;
case 1:
goto all_collected;
case 2:
continue;
}
}
if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags) ||
!test_bit(NETFS_RREQ_PAUSE, &rreq->flags))
break;
schedule();
trace_netfs_rreq(rreq, netfs_rreq_trace_woke_queue);
}
all_collected:
finish_wait(&rreq->waitq, &myself);
}
void netfs_wait_for_paused_read(struct netfs_io_request *rreq)
{
return netfs_wait_for_pause(rreq, netfs_read_collection);
}
void netfs_wait_for_paused_write(struct netfs_io_request *rreq)
{
return netfs_wait_for_pause(rreq, netfs_write_collection);
}
|