summaryrefslogtreecommitdiff
path: root/kernel/trace/rv/monitors/sleep/sleep.h
blob: 2ab46fd218d232ca6084ad9bb7bacc923dd0dca7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/* SPDX-License-Identifier: GPL-2.0 */

/*
 * C implementation of Buchi automaton, automatically generated by
 * tools/verification/rvgen from the linear temporal logic specification.
 * For further information, see kernel documentation:
 *   Documentation/trace/rv/linear_temporal_logic.rst
 */

#include <linux/rv.h>

#define MONITOR_NAME sleep

enum ltl_atom {
	LTL_ABORT_SLEEP,
	LTL_BLOCK_ON_RT_MUTEX,
	LTL_CLOCK_NANOSLEEP,
	LTL_FUTEX_LOCK_PI,
	LTL_FUTEX_WAIT,
	LTL_KERNEL_THREAD,
	LTL_KTHREAD_SHOULD_STOP,
	LTL_NANOSLEEP_CLOCK_MONOTONIC,
	LTL_NANOSLEEP_CLOCK_TAI,
	LTL_NANOSLEEP_TIMER_ABSTIME,
	LTL_RT,
	LTL_SLEEP,
	LTL_TASK_IS_MIGRATION,
	LTL_TASK_IS_RCU,
	LTL_WAKE,
	LTL_WOKEN_BY_EQUAL_OR_HIGHER_PRIO,
	LTL_WOKEN_BY_HARDIRQ,
	LTL_WOKEN_BY_NMI,
	LTL_NUM_ATOM
};
static_assert(LTL_NUM_ATOM <= RV_MAX_LTL_ATOM);

static const char *ltl_atom_str(enum ltl_atom atom)
{
	static const char *const names[] = {
		"ab_sl",
		"bl_on_rt_mu",
		"cl_na",
		"fu_lo_pi",
		"fu_wa",
		"ker_th",
		"kth_sh_st",
		"na_cl_mo",
		"na_cl_ta",
		"na_ti_ab",
		"rt",
		"sl",
		"ta_mi",
		"ta_rc",
		"wak",
		"wo_eq_hi_pr",
		"wo_ha",
		"wo_nm",
	};

	return names[atom];
}

enum ltl_buchi_state {
	S0,
	S1,
	S2,
	S3,
	S4,
	S5,
	S6,
	S7,
	RV_NUM_BA_STATES
};
static_assert(RV_NUM_BA_STATES <= RV_MAX_BA_STATES);

static void ltl_start(struct task_struct *task, struct ltl_monitor *mon)
{
	bool task_is_migration = test_bit(LTL_TASK_IS_MIGRATION, mon->atoms);
	bool task_is_rcu = test_bit(LTL_TASK_IS_RCU, mon->atoms);
	bool val40 = task_is_rcu || task_is_migration;
	bool futex_lock_pi = test_bit(LTL_FUTEX_LOCK_PI, mon->atoms);
	bool val41 = futex_lock_pi || val40;
	bool block_on_rt_mutex = test_bit(LTL_BLOCK_ON_RT_MUTEX, mon->atoms);
	bool val5 = block_on_rt_mutex || val41;
	bool kthread_should_stop = test_bit(LTL_KTHREAD_SHOULD_STOP, mon->atoms);
	bool abort_sleep = test_bit(LTL_ABORT_SLEEP, mon->atoms);
	bool val32 = abort_sleep || kthread_should_stop;
	bool woken_by_nmi = test_bit(LTL_WOKEN_BY_NMI, mon->atoms);
	bool val33 = woken_by_nmi || val32;
	bool woken_by_hardirq = test_bit(LTL_WOKEN_BY_HARDIRQ, mon->atoms);
	bool val34 = woken_by_hardirq || val33;
	bool woken_by_equal_or_higher_prio = test_bit(LTL_WOKEN_BY_EQUAL_OR_HIGHER_PRIO,
	     mon->atoms);
	bool val14 = woken_by_equal_or_higher_prio || val34;
	bool wake = test_bit(LTL_WAKE, mon->atoms);
	bool val13 = !wake;
	bool kernel_thread = test_bit(LTL_KERNEL_THREAD, mon->atoms);
	bool nanosleep_clock_tai = test_bit(LTL_NANOSLEEP_CLOCK_TAI, mon->atoms);
	bool nanosleep_clock_monotonic = test_bit(LTL_NANOSLEEP_CLOCK_MONOTONIC, mon->atoms);
	bool val24 = nanosleep_clock_monotonic || nanosleep_clock_tai;
	bool nanosleep_timer_abstime = test_bit(LTL_NANOSLEEP_TIMER_ABSTIME, mon->atoms);
	bool val25 = nanosleep_timer_abstime && val24;
	bool clock_nanosleep = test_bit(LTL_CLOCK_NANOSLEEP, mon->atoms);
	bool val18 = clock_nanosleep && val25;
	bool futex_wait = test_bit(LTL_FUTEX_WAIT, mon->atoms);
	bool val9 = futex_wait || val18;
	bool val11 = val9 || kernel_thread;
	bool sleep = test_bit(LTL_SLEEP, mon->atoms);
	bool val2 = !sleep;
	bool rt = test_bit(LTL_RT, mon->atoms);
	bool val1 = !rt;
	bool val3 = val1 || val2;

	if (val3)
		__set_bit(S0, mon->states);
	if (val11 && val13)
		__set_bit(S1, mon->states);
	if (val11 && val14)
		__set_bit(S4, mon->states);
	if (val5)
		__set_bit(S5, mon->states);
}

static void
ltl_possible_next_states(struct ltl_monitor *mon, unsigned int state, unsigned long *next)
{
	bool task_is_migration = test_bit(LTL_TASK_IS_MIGRATION, mon->atoms);
	bool task_is_rcu = test_bit(LTL_TASK_IS_RCU, mon->atoms);
	bool val40 = task_is_rcu || task_is_migration;
	bool futex_lock_pi = test_bit(LTL_FUTEX_LOCK_PI, mon->atoms);
	bool val41 = futex_lock_pi || val40;
	bool block_on_rt_mutex = test_bit(LTL_BLOCK_ON_RT_MUTEX, mon->atoms);
	bool val5 = block_on_rt_mutex || val41;
	bool kthread_should_stop = test_bit(LTL_KTHREAD_SHOULD_STOP, mon->atoms);
	bool abort_sleep = test_bit(LTL_ABORT_SLEEP, mon->atoms);
	bool val32 = abort_sleep || kthread_should_stop;
	bool woken_by_nmi = test_bit(LTL_WOKEN_BY_NMI, mon->atoms);
	bool val33 = woken_by_nmi || val32;
	bool woken_by_hardirq = test_bit(LTL_WOKEN_BY_HARDIRQ, mon->atoms);
	bool val34 = woken_by_hardirq || val33;
	bool woken_by_equal_or_higher_prio = test_bit(LTL_WOKEN_BY_EQUAL_OR_HIGHER_PRIO,
	     mon->atoms);
	bool val14 = woken_by_equal_or_higher_prio || val34;
	bool wake = test_bit(LTL_WAKE, mon->atoms);
	bool val13 = !wake;
	bool kernel_thread = test_bit(LTL_KERNEL_THREAD, mon->atoms);
	bool nanosleep_clock_tai = test_bit(LTL_NANOSLEEP_CLOCK_TAI, mon->atoms);
	bool nanosleep_clock_monotonic = test_bit(LTL_NANOSLEEP_CLOCK_MONOTONIC, mon->atoms);
	bool val24 = nanosleep_clock_monotonic || nanosleep_clock_tai;
	bool nanosleep_timer_abstime = test_bit(LTL_NANOSLEEP_TIMER_ABSTIME, mon->atoms);
	bool val25 = nanosleep_timer_abstime && val24;
	bool clock_nanosleep = test_bit(LTL_CLOCK_NANOSLEEP, mon->atoms);
	bool val18 = clock_nanosleep && val25;
	bool futex_wait = test_bit(LTL_FUTEX_WAIT, mon->atoms);
	bool val9 = futex_wait || val18;
	bool val11 = val9 || kernel_thread;
	bool sleep = test_bit(LTL_SLEEP, mon->atoms);
	bool val2 = !sleep;
	bool rt = test_bit(LTL_RT, mon->atoms);
	bool val1 = !rt;
	bool val3 = val1 || val2;

	switch (state) {
	case S0:
		if (val3)
			__set_bit(S0, next);
		if (val11 && val13)
			__set_bit(S1, next);
		if (val11 && val14)
			__set_bit(S4, next);
		if (val5)
			__set_bit(S5, next);
		break;
	case S1:
		if (val11 && val13)
			__set_bit(S1, next);
		if (val13 && val3)
			__set_bit(S2, next);
		if (val14 && val3)
			__set_bit(S3, next);
		if (val11 && val14)
			__set_bit(S4, next);
		if (val13 && val5)
			__set_bit(S6, next);
		if (val14 && val5)
			__set_bit(S7, next);
		break;
	case S2:
		if (val11 && val13)
			__set_bit(S1, next);
		if (val13 && val3)
			__set_bit(S2, next);
		if (val14 && val3)
			__set_bit(S3, next);
		if (val11 && val14)
			__set_bit(S4, next);
		if (val13 && val5)
			__set_bit(S6, next);
		if (val14 && val5)
			__set_bit(S7, next);
		break;
	case S3:
		if (val3)
			__set_bit(S0, next);
		if (val11 && val13)
			__set_bit(S1, next);
		if (val11 && val14)
			__set_bit(S4, next);
		if (val5)
			__set_bit(S5, next);
		break;
	case S4:
		if (val3)
			__set_bit(S0, next);
		if (val11 && val13)
			__set_bit(S1, next);
		if (val11 && val14)
			__set_bit(S4, next);
		if (val5)
			__set_bit(S5, next);
		break;
	case S5:
		if (val3)
			__set_bit(S0, next);
		if (val11 && val13)
			__set_bit(S1, next);
		if (val11 && val14)
			__set_bit(S4, next);
		if (val5)
			__set_bit(S5, next);
		break;
	case S6:
		if (val11 && val13)
			__set_bit(S1, next);
		if (val13 && val3)
			__set_bit(S2, next);
		if (val14 && val3)
			__set_bit(S3, next);
		if (val11 && val14)
			__set_bit(S4, next);
		if (val13 && val5)
			__set_bit(S6, next);
		if (val14 && val5)
			__set_bit(S7, next);
		break;
	case S7:
		if (val3)
			__set_bit(S0, next);
		if (val11 && val13)
			__set_bit(S1, next);
		if (val11 && val14)
			__set_bit(S4, next);
		if (val5)
			__set_bit(S5, next);
		break;
	}
}