summaryrefslogtreecommitdiff
path: root/rust/kernel/alloc/kvec.rs
blob: 1a0dd852a468ccda6ea1b521bc1e7dbc8d7fc79c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
// SPDX-License-Identifier: GPL-2.0

//! Implementation of [`Vec`].

use super::{
    allocator::{KVmalloc, Kmalloc, Vmalloc},
    layout::ArrayLayout,
    AllocError, Allocator, Box, Flags,
};
use core::{
    fmt,
    marker::PhantomData,
    mem::{ManuallyDrop, MaybeUninit},
    ops::Deref,
    ops::DerefMut,
    ops::Index,
    ops::IndexMut,
    ptr,
    ptr::NonNull,
    slice,
    slice::SliceIndex,
};

mod errors;
pub use self::errors::{InsertError, PushError, RemoveError};

/// Create a [`KVec`] containing the arguments.
///
/// New memory is allocated with `GFP_KERNEL`.
///
/// # Examples
///
/// ```
/// let mut v = kernel::kvec![];
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(v, [1]);
///
/// let mut v = kernel::kvec![1; 3]?;
/// v.push(4, GFP_KERNEL)?;
/// assert_eq!(v, [1, 1, 1, 4]);
///
/// let mut v = kernel::kvec![1, 2, 3]?;
/// v.push(4, GFP_KERNEL)?;
/// assert_eq!(v, [1, 2, 3, 4]);
///
/// # Ok::<(), Error>(())
/// ```
#[macro_export]
macro_rules! kvec {
    () => (
        $crate::alloc::KVec::new()
    );
    ($elem:expr; $n:expr) => (
        $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
    );
    ($($x:expr),+ $(,)?) => (
        match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
            Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
            Err(e) => Err(e),
        }
    );
}

/// The kernel's [`Vec`] type.
///
/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
///
/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
///
/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
///
/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
/// capacity of the vector (the number of elements that currently fit into the vector), its length
/// (the number of elements that are currently stored in the vector) and the `Allocator` type used
/// to allocate (and free) the backing buffer.
///
/// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
/// and manually modified.
///
/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
/// are added to the vector.
///
/// # Invariants
///
/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
///   zero-sized types, is a dangling, well aligned pointer.
///
/// - `self.len` always represents the exact number of elements stored in the vector.
///
/// - `self.layout` represents the absolute number of elements that can be stored within the vector
///   without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
///   backing buffer to be larger than `layout`.
///
/// - `self.len()` is always less than or equal to `self.capacity()`.
///
/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
///   was allocated with (and must be freed with).
pub struct Vec<T, A: Allocator> {
    ptr: NonNull<T>,
    /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
    ///
    /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
    /// elements we can still store without reallocating.
    layout: ArrayLayout<T>,
    len: usize,
    _p: PhantomData<A>,
}

/// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
///
/// # Examples
///
/// ```
/// let mut v = KVec::new();
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(&v, &[1]);
///
/// # Ok::<(), Error>(())
/// ```
pub type KVec<T> = Vec<T, Kmalloc>;

/// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
///
/// # Examples
///
/// ```
/// let mut v = VVec::new();
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(&v, &[1]);
///
/// # Ok::<(), Error>(())
/// ```
pub type VVec<T> = Vec<T, Vmalloc>;

/// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
///
/// # Examples
///
/// ```
/// let mut v = KVVec::new();
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(&v, &[1]);
///
/// # Ok::<(), Error>(())
/// ```
pub type KVVec<T> = Vec<T, KVmalloc>;

// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
unsafe impl<T, A> Send for Vec<T, A>
where
    T: Send,
    A: Allocator,
{
}

// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
unsafe impl<T, A> Sync for Vec<T, A>
where
    T: Sync,
    A: Allocator,
{
}

impl<T, A> Vec<T, A>
where
    A: Allocator,
{
    #[inline]
    const fn is_zst() -> bool {
        core::mem::size_of::<T>() == 0
    }

    /// Returns the number of elements that can be stored within the vector without allocating
    /// additional memory.
    pub fn capacity(&self) -> usize {
        if const { Self::is_zst() } {
            usize::MAX
        } else {
            self.layout.len()
        }
    }

    /// Returns the number of elements stored within the vector.
    #[inline]
    pub fn len(&self) -> usize {
        self.len
    }

    /// Increments `self.len` by `additional`.
    ///
    /// # Safety
    ///
    /// - `additional` must be less than or equal to `self.capacity - self.len`.
    /// - All elements within the interval [`self.len`,`self.len + additional`) must be initialized.
    #[inline]
    pub unsafe fn inc_len(&mut self, additional: usize) {
        // Guaranteed by the type invariant to never underflow.
        debug_assert!(additional <= self.capacity() - self.len());
        // INVARIANT: By the safety requirements of this method this represents the exact number of
        // elements stored within `self`.
        self.len += additional;
    }

    /// Decreases `self.len` by `count`.
    ///
    /// Returns a mutable slice to the elements forgotten by the vector. It is the caller's
    /// responsibility to drop these elements if necessary.
    ///
    /// # Safety
    ///
    /// - `count` must be less than or equal to `self.len`.
    unsafe fn dec_len(&mut self, count: usize) -> &mut [T] {
        debug_assert!(count <= self.len());
        // INVARIANT: We relinquish ownership of the elements within the range `[self.len - count,
        // self.len)`, hence the updated value of `set.len` represents the exact number of elements
        // stored within `self`.
        self.len -= count;
        // SAFETY: The memory after `self.len()` is guaranteed to contain `count` initialized
        // elements of type `T`.
        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr().add(self.len), count) }
    }

    /// Returns a slice of the entire vector.
    #[inline]
    pub fn as_slice(&self) -> &[T] {
        self
    }

    /// Returns a mutable slice of the entire vector.
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        self
    }

    /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
    /// dangling raw pointer.
    #[inline]
    pub fn as_mut_ptr(&mut self) -> *mut T {
        self.ptr.as_ptr()
    }

    /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
    /// pointer.
    #[inline]
    pub fn as_ptr(&self) -> *const T {
        self.ptr.as_ptr()
    }

    /// Returns `true` if the vector contains no elements, `false` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = KVec::new();
    /// assert!(v.is_empty());
    ///
    /// v.push(1, GFP_KERNEL);
    /// assert!(!v.is_empty());
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Creates a new, empty `Vec<T, A>`.
    ///
    /// This method does not allocate by itself.
    #[inline]
    pub const fn new() -> Self {
        // INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
        // - `ptr` is a properly aligned dangling pointer for type `T`,
        // - `layout` is an empty `ArrayLayout` (zero capacity)
        // - `len` is zero, since no elements can be or have been stored,
        // - `A` is always valid.
        Self {
            ptr: NonNull::dangling(),
            layout: ArrayLayout::empty(),
            len: 0,
            _p: PhantomData::<A>,
        }
    }

    /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
        // SAFETY:
        // - `self.len` is smaller than `self.capacity` by the type invariant and hence, the
        //   resulting pointer is guaranteed to be part of the same allocated object.
        // - `self.len` can not overflow `isize`.
        let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>;

        // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
        // and valid, but uninitialized.
        unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
    }

    /// Appends an element to the back of the [`Vec`] instance.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = KVec::new();
    /// v.push(1, GFP_KERNEL)?;
    /// assert_eq!(&v, &[1]);
    ///
    /// v.push(2, GFP_KERNEL)?;
    /// assert_eq!(&v, &[1, 2]);
    /// # Ok::<(), Error>(())
    /// ```
    pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
        self.reserve(1, flags)?;
        // SAFETY: The call to `reserve` was successful, so the capacity is at least one greater
        // than the length.
        unsafe { self.push_within_capacity_unchecked(v) };
        Ok(())
    }

    /// Appends an element to the back of the [`Vec`] instance without reallocating.
    ///
    /// Fails if the vector does not have capacity for the new element.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = KVec::with_capacity(10, GFP_KERNEL)?;
    /// for i in 0..10 {
    ///     v.push_within_capacity(i)?;
    /// }
    ///
    /// assert!(v.push_within_capacity(10).is_err());
    /// # Ok::<(), Error>(())
    /// ```
    pub fn push_within_capacity(&mut self, v: T) -> Result<(), PushError<T>> {
        if self.len() < self.capacity() {
            // SAFETY: The length is less than the capacity.
            unsafe { self.push_within_capacity_unchecked(v) };
            Ok(())
        } else {
            Err(PushError(v))
        }
    }

    /// Appends an element to the back of the [`Vec`] instance without reallocating.
    ///
    /// # Safety
    ///
    /// The length must be less than the capacity.
    unsafe fn push_within_capacity_unchecked(&mut self, v: T) {
        let spare = self.spare_capacity_mut();

        // SAFETY: By the safety requirements, `spare` is non-empty.
        unsafe { spare.get_unchecked_mut(0) }.write(v);

        // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
        // by 1. We also know that the new length is <= capacity because the caller guarantees that
        // the length is less than the capacity at the beginning of this function.
        unsafe { self.inc_len(1) };
    }

    /// Inserts an element at the given index in the [`Vec`] instance.
    ///
    /// Fails if the vector does not have capacity for the new element. Panics if the index is out
    /// of bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// use kernel::alloc::kvec::InsertError;
    ///
    /// let mut v = KVec::with_capacity(5, GFP_KERNEL)?;
    /// for i in 0..5 {
    ///     v.insert_within_capacity(0, i)?;
    /// }
    ///
    /// assert!(matches!(v.insert_within_capacity(0, 5), Err(InsertError::OutOfCapacity(_))));
    /// assert!(matches!(v.insert_within_capacity(1000, 5), Err(InsertError::IndexOutOfBounds(_))));
    /// assert_eq!(v, [4, 3, 2, 1, 0]);
    /// # Ok::<(), Error>(())
    /// ```
    pub fn insert_within_capacity(
        &mut self,
        index: usize,
        element: T,
    ) -> Result<(), InsertError<T>> {
        let len = self.len();
        if index > len {
            return Err(InsertError::IndexOutOfBounds(element));
        }

        if len >= self.capacity() {
            return Err(InsertError::OutOfCapacity(element));
        }

        // SAFETY: This is in bounds since `index <= len < capacity`.
        let p = unsafe { self.as_mut_ptr().add(index) };
        // INVARIANT: This breaks the Vec invariants by making `index` contain an invalid element,
        // but we restore the invariants below.
        // SAFETY: Both the src and dst ranges end no later than one element after the length.
        // Since the length is less than the capacity, both ranges are in bounds of the allocation.
        unsafe { ptr::copy(p, p.add(1), len - index) };
        // INVARIANT: This restores the Vec invariants.
        // SAFETY: The pointer is in-bounds of the allocation.
        unsafe { ptr::write(p, element) };
        // SAFETY: Index `len` contains a valid element due to the above copy and write.
        unsafe { self.inc_len(1) };
        Ok(())
    }

    /// Removes the last element from a vector and returns it, or `None` if it is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = KVec::new();
    /// v.push(1, GFP_KERNEL)?;
    /// v.push(2, GFP_KERNEL)?;
    /// assert_eq!(&v, &[1, 2]);
    ///
    /// assert_eq!(v.pop(), Some(2));
    /// assert_eq!(v.pop(), Some(1));
    /// assert_eq!(v.pop(), None);
    /// # Ok::<(), Error>(())
    /// ```
    pub fn pop(&mut self) -> Option<T> {
        if self.is_empty() {
            return None;
        }

        let removed: *mut T = {
            // SAFETY: We just checked that the length is at least one.
            let slice = unsafe { self.dec_len(1) };
            // SAFETY: The argument to `dec_len` was 1 so this returns a slice of length 1.
            unsafe { slice.get_unchecked_mut(0) }
        };

        // SAFETY: The guarantees of `dec_len` allow us to take ownership of this value.
        Some(unsafe { removed.read() })
    }

    /// Removes the element at the given index.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = kernel::kvec![1, 2, 3]?;
    /// assert_eq!(v.remove(1)?, 2);
    /// assert_eq!(v, [1, 3]);
    /// # Ok::<(), Error>(())
    /// ```
    pub fn remove(&mut self, i: usize) -> Result<T, RemoveError> {
        let value = {
            let value_ref = self.get(i).ok_or(RemoveError)?;
            // INVARIANT: This breaks the invariants by invalidating the value at index `i`, but we
            // restore the invariants below.
            // SAFETY: The value at index `i` is valid, because otherwise we would have already
            // failed with `RemoveError`.
            unsafe { ptr::read(value_ref) }
        };

        // SAFETY: We checked that `i` is in-bounds.
        let p = unsafe { self.as_mut_ptr().add(i) };

        // INVARIANT: After this call, the invalid value is at the last slot, so the Vec invariants
        // are restored after the below call to `dec_len(1)`.
        // SAFETY: `p.add(1).add(self.len - i - 1)` is `i+1+len-i-1 == len` elements after the
        // beginning of the vector, so this is in-bounds of the vector's allocation.
        unsafe { ptr::copy(p.add(1), p, self.len - i - 1) };

        // SAFETY: Since the check at the beginning of this call did not fail with `RemoveError`,
        // the length is at least one.
        unsafe { self.dec_len(1) };

        Ok(value)
    }

    /// Creates a new [`Vec`] instance with at least the given capacity.
    ///
    /// # Examples
    ///
    /// ```
    /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
    ///
    /// assert!(v.capacity() >= 20);
    /// # Ok::<(), Error>(())
    /// ```
    pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
        let mut v = Vec::new();

        v.reserve(capacity, flags)?;

        Ok(v)
    }

    /// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = kernel::kvec![1, 2, 3]?;
    /// v.reserve(1, GFP_KERNEL)?;
    ///
    /// let (mut ptr, mut len, cap) = v.into_raw_parts();
    ///
    /// // SAFETY: We've just reserved memory for another element.
    /// unsafe { ptr.add(len).write(4) };
    /// len += 1;
    ///
    /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
    /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
    /// // from the exact same raw parts.
    /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
    ///
    /// assert_eq!(v, [1, 2, 3, 4]);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    ///
    /// # Safety
    ///
    /// If `T` is a ZST:
    ///
    /// - `ptr` must be a dangling, well aligned pointer.
    ///
    /// Otherwise:
    ///
    /// - `ptr` must have been allocated with the allocator `A`.
    /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
    /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
    /// - The allocated size in bytes must not be larger than `isize::MAX`.
    /// - `length` must be less than or equal to `capacity`.
    /// - The first `length` elements must be initialized values of type `T`.
    ///
    /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
    /// `cap` and `len`.
    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
        let layout = if Self::is_zst() {
            ArrayLayout::empty()
        } else {
            // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
            // smaller than `isize::MAX`.
            unsafe { ArrayLayout::new_unchecked(capacity) }
        };

        // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
        // covered by the safety requirements of this function.
        Self {
            // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
            // memory allocation, allocated with `A`.
            ptr: unsafe { NonNull::new_unchecked(ptr) },
            layout,
            len: length,
            _p: PhantomData::<A>,
        }
    }

    /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
    ///
    /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
    /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
    /// elements and free the allocation, if any.
    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
        let mut me = ManuallyDrop::new(self);
        let len = me.len();
        let capacity = me.capacity();
        let ptr = me.as_mut_ptr();
        (ptr, len, capacity)
    }

    /// Clears the vector, removing all values.
    ///
    /// Note that this method has no effect on the allocated capacity
    /// of the vector.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = kernel::kvec![1, 2, 3]?;
    ///
    /// v.clear();
    ///
    /// assert!(v.is_empty());
    /// # Ok::<(), Error>(())
    /// ```
    #[inline]
    pub fn clear(&mut self) {
        self.truncate(0);
    }

    /// Ensures that the capacity exceeds the length by at least `additional` elements.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = KVec::new();
    /// v.push(1, GFP_KERNEL)?;
    ///
    /// v.reserve(10, GFP_KERNEL)?;
    /// let cap = v.capacity();
    /// assert!(cap >= 10);
    ///
    /// v.reserve(10, GFP_KERNEL)?;
    /// let new_cap = v.capacity();
    /// assert_eq!(new_cap, cap);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
        let len = self.len();
        let cap = self.capacity();

        if cap - len >= additional {
            return Ok(());
        }

        if Self::is_zst() {
            // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
            return Err(AllocError);
        }

        // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
        // multiplication by two won't overflow.
        let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
        let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;

        // SAFETY:
        // - `ptr` is valid because it's either `None` or comes from a previous call to
        //   `A::realloc`.
        // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
        let ptr = unsafe {
            A::realloc(
                Some(self.ptr.cast()),
                layout.into(),
                self.layout.into(),
                flags,
            )?
        };

        // INVARIANT:
        // - `layout` is some `ArrayLayout::<T>`,
        // - `ptr` has been created by `A::realloc` from `layout`.
        self.ptr = ptr.cast();
        self.layout = layout;

        Ok(())
    }

    /// Shortens the vector, setting the length to `len` and drops the removed values.
    /// If `len` is greater than or equal to the current length, this does nothing.
    ///
    /// This has no effect on the capacity and will not allocate.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = kernel::kvec![1, 2, 3]?;
    /// v.truncate(1);
    /// assert_eq!(v.len(), 1);
    /// assert_eq!(&v, &[1]);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    pub fn truncate(&mut self, len: usize) {
        if let Some(count) = self.len().checked_sub(len) {
            // SAFETY: `count` is `self.len() - len` so it is guaranteed to be less than or
            // equal to `self.len()`.
            let ptr: *mut [T] = unsafe { self.dec_len(count) };

            // SAFETY: the contract of `dec_len` guarantees that the elements in `ptr` are
            // valid elements whose ownership has been transferred to the caller.
            unsafe { ptr::drop_in_place(ptr) };
        }
    }

    /// Takes ownership of all items in this vector without consuming the allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = kernel::kvec![0, 1, 2, 3]?;
    ///
    /// for (i, j) in v.drain_all().enumerate() {
    ///     assert_eq!(i, j);
    /// }
    ///
    /// assert!(v.capacity() >= 4);
    /// # Ok::<(), Error>(())
    /// ```
    pub fn drain_all(&mut self) -> DrainAll<'_, T> {
        // SAFETY: This does not underflow the length.
        let elems = unsafe { self.dec_len(self.len()) };
        // INVARIANT: The first `len` elements of the spare capacity are valid values, and as we
        // just set the length to zero, we may transfer ownership to the `DrainAll` object.
        DrainAll {
            elements: elems.iter_mut(),
        }
    }

    /// Removes all elements that don't match the provided closure.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = kernel::kvec![1, 2, 3, 4]?;
    /// v.retain(|i| *i % 2 == 0);
    /// assert_eq!(v, [2, 4]);
    /// # Ok::<(), Error>(())
    /// ```
    pub fn retain(&mut self, mut f: impl FnMut(&mut T) -> bool) {
        let mut num_kept = 0;
        let mut next_to_check = 0;
        while let Some(to_check) = self.get_mut(next_to_check) {
            if f(to_check) {
                self.swap(num_kept, next_to_check);
                num_kept += 1;
            }
            next_to_check += 1;
        }
        self.truncate(num_kept);
    }
}

impl<T: Clone, A: Allocator> Vec<T, A> {
    /// Extend the vector by `n` clones of `value`.
    pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
        if n == 0 {
            return Ok(());
        }

        self.reserve(n, flags)?;

        let spare = self.spare_capacity_mut();

        for item in spare.iter_mut().take(n - 1) {
            item.write(value.clone());
        }

        // We can write the last element directly without cloning needlessly.
        spare[n - 1].write(value);

        // SAFETY:
        // - `self.len() + n < self.capacity()` due to the call to reserve above,
        // - the loop and the line above initialized the next `n` elements.
        unsafe { self.inc_len(n) };

        Ok(())
    }

    /// Pushes clones of the elements of slice into the [`Vec`] instance.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = KVec::new();
    /// v.push(1, GFP_KERNEL)?;
    ///
    /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
    /// assert_eq!(&v, &[1, 20, 30, 40]);
    ///
    /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
    /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
    /// # Ok::<(), Error>(())
    /// ```
    pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
        self.reserve(other.len(), flags)?;
        for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
            slot.write(item.clone());
        }

        // SAFETY:
        // - `other.len()` spare entries have just been initialized, so it is safe to increase
        //   the length by the same number.
        // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
        //   call.
        unsafe { self.inc_len(other.len()) };
        Ok(())
    }

    /// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
    pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
        let mut v = Self::with_capacity(n, flags)?;

        v.extend_with(n, value, flags)?;

        Ok(v)
    }

    /// Resizes the [`Vec`] so that `len` is equal to `new_len`.
    ///
    /// If `new_len` is smaller than `len`, the `Vec` is [`Vec::truncate`]d.
    /// If `new_len` is larger, each new slot is filled with clones of `value`.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = kernel::kvec![1, 2, 3]?;
    /// v.resize(1, 42, GFP_KERNEL)?;
    /// assert_eq!(&v, &[1]);
    ///
    /// v.resize(3, 42, GFP_KERNEL)?;
    /// assert_eq!(&v, &[1, 42, 42]);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    pub fn resize(&mut self, new_len: usize, value: T, flags: Flags) -> Result<(), AllocError> {
        match new_len.checked_sub(self.len()) {
            Some(n) => self.extend_with(n, value, flags),
            None => {
                self.truncate(new_len);
                Ok(())
            }
        }
    }
}

impl<T, A> Drop for Vec<T, A>
where
    A: Allocator,
{
    fn drop(&mut self) {
        // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
        unsafe {
            ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
                self.as_mut_ptr(),
                self.len,
            ))
        };

        // SAFETY:
        // - `self.ptr` was previously allocated with `A`.
        // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
        unsafe { A::free(self.ptr.cast(), self.layout.into()) };
    }
}

impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
where
    A: Allocator,
{
    fn from(b: Box<[T; N], A>) -> Vec<T, A> {
        let len = b.len();
        let ptr = Box::into_raw(b);

        // SAFETY:
        // - `b` has been allocated with `A`,
        // - `ptr` fulfills the alignment requirements for `T`,
        // - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
        // - all elements within `b` are initialized values of `T`,
        // - `len` does not exceed `isize::MAX`.
        unsafe { Vec::from_raw_parts(ptr as _, len, len) }
    }
}

impl<T> Default for KVec<T> {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T, A> Deref for Vec<T, A>
where
    A: Allocator,
{
    type Target = [T];

    #[inline]
    fn deref(&self) -> &[T] {
        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
        // initialized elements of type `T`.
        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
    }
}

impl<T, A> DerefMut for Vec<T, A>
where
    A: Allocator,
{
    #[inline]
    fn deref_mut(&mut self) -> &mut [T] {
        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
        // initialized elements of type `T`.
        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
    }
}

impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}

impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
where
    A: Allocator,
{
    type Output = I::Output;

    #[inline]
    fn index(&self, index: I) -> &Self::Output {
        Index::index(&**self, index)
    }
}

impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
where
    A: Allocator,
{
    #[inline]
    fn index_mut(&mut self, index: I) -> &mut Self::Output {
        IndexMut::index_mut(&mut **self, index)
    }
}

macro_rules! impl_slice_eq {
    ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
        $(
            impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
            where
                T: PartialEq<U>,
            {
                #[inline]
                fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
            }
        )*
    }
}

impl_slice_eq! {
    [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
    [A: Allocator] Vec<T, A>, &[U],
    [A: Allocator] Vec<T, A>, &mut [U],
    [A: Allocator] &[T], Vec<U, A>,
    [A: Allocator] &mut [T], Vec<U, A>,
    [A: Allocator] Vec<T, A>, [U],
    [A: Allocator] [T], Vec<U, A>,
    [A: Allocator, const N: usize] Vec<T, A>, [U; N],
    [A: Allocator, const N: usize] Vec<T, A>, &[U; N],
}

impl<'a, T, A> IntoIterator for &'a Vec<T, A>
where
    A: Allocator,
{
    type Item = &'a T;
    type IntoIter = slice::Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
where
    A: Allocator,
{
    type Item = &'a mut T;
    type IntoIter = slice::IterMut<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

/// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
///
/// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
/// [`IntoIterator`] trait).
///
/// # Examples
///
/// ```
/// let v = kernel::kvec![0, 1, 2]?;
/// let iter = v.into_iter();
///
/// # Ok::<(), Error>(())
/// ```
pub struct IntoIter<T, A: Allocator> {
    ptr: *mut T,
    buf: NonNull<T>,
    len: usize,
    layout: ArrayLayout<T>,
    _p: PhantomData<A>,
}

impl<T, A> IntoIter<T, A>
where
    A: Allocator,
{
    fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
        let me = ManuallyDrop::new(self);
        let ptr = me.ptr;
        let buf = me.buf;
        let len = me.len;
        let cap = me.layout.len();
        (ptr, buf, len, cap)
    }

    /// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
    ///
    /// # Examples
    ///
    /// ```
    /// let v = kernel::kvec![1, 2, 3]?;
    /// let mut it = v.into_iter();
    ///
    /// assert_eq!(it.next(), Some(1));
    ///
    /// let v = it.collect(GFP_KERNEL);
    /// assert_eq!(v, [2, 3]);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    ///
    /// # Implementation details
    ///
    /// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
    /// in the kernel, namely:
    ///
    /// - Rust's specialization feature is unstable. This prevents us to optimize for the special
    ///   case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
    /// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
    ///   doesn't require this type to be `'static`.
    /// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
    ///   we can't properly handle allocation failures.
    /// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
    ///   flags.
    ///
    /// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
    /// `Vec` again.
    ///
    /// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
    /// buffer. However, this backing buffer may be shrunk to the actual count of elements.
    pub fn collect(self, flags: Flags) -> Vec<T, A> {
        let old_layout = self.layout;
        let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
        let has_advanced = ptr != buf.as_ptr();

        if has_advanced {
            // Copy the contents we have advanced to at the beginning of the buffer.
            //
            // SAFETY:
            // - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
            // - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
            // - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
            //   each other,
            // - both `ptr` and `buf.ptr()` are properly aligned.
            unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
            ptr = buf.as_ptr();

            // SAFETY: `len` is guaranteed to be smaller than `self.layout.len()` by the type
            // invariant.
            let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };

            // SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed by
            // the type invariant to be smaller than `cap`. Depending on `realloc` this operation
            // may shrink the buffer or leave it as it is.
            ptr = match unsafe {
                A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags)
            } {
                // If we fail to shrink, which likely can't even happen, continue with the existing
                // buffer.
                Err(_) => ptr,
                Ok(ptr) => {
                    cap = len;
                    ptr.as_ptr().cast()
                }
            };
        }

        // SAFETY: If the iterator has been advanced, the advanced elements have been copied to
        // the beginning of the buffer and `len` has been adjusted accordingly.
        //
        // - `ptr` is guaranteed to point to the start of the backing buffer.
        // - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
        // - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
        //   `Vec`.
        unsafe { Vec::from_raw_parts(ptr, len, cap) }
    }
}

impl<T, A> Iterator for IntoIter<T, A>
where
    A: Allocator,
{
    type Item = T;

    /// # Examples
    ///
    /// ```
    /// let v = kernel::kvec![1, 2, 3]?;
    /// let mut it = v.into_iter();
    ///
    /// assert_eq!(it.next(), Some(1));
    /// assert_eq!(it.next(), Some(2));
    /// assert_eq!(it.next(), Some(3));
    /// assert_eq!(it.next(), None);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    fn next(&mut self) -> Option<T> {
        if self.len == 0 {
            return None;
        }

        let current = self.ptr;

        // SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
        // by one guarantees that.
        unsafe { self.ptr = self.ptr.add(1) };

        self.len -= 1;

        // SAFETY: `current` is guaranteed to point at a valid element within the buffer.
        Some(unsafe { current.read() })
    }

    /// # Examples
    ///
    /// ```
    /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
    /// let mut iter = v.into_iter();
    /// let size = iter.size_hint().0;
    ///
    /// iter.next();
    /// assert_eq!(iter.size_hint().0, size - 1);
    ///
    /// iter.next();
    /// assert_eq!(iter.size_hint().0, size - 2);
    ///
    /// iter.next();
    /// assert_eq!(iter.size_hint().0, size - 3);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
}

impl<T, A> Drop for IntoIter<T, A>
where
    A: Allocator,
{
    fn drop(&mut self) {
        // SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
        unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };

        // SAFETY:
        // - `self.buf` was previously allocated with `A`.
        // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
        unsafe { A::free(self.buf.cast(), self.layout.into()) };
    }
}

impl<T, A> IntoIterator for Vec<T, A>
where
    A: Allocator,
{
    type Item = T;
    type IntoIter = IntoIter<T, A>;

    /// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
    /// vector (from start to end).
    ///
    /// # Examples
    ///
    /// ```
    /// let v = kernel::kvec![1, 2]?;
    /// let mut v_iter = v.into_iter();
    ///
    /// let first_element: Option<u32> = v_iter.next();
    ///
    /// assert_eq!(first_element, Some(1));
    /// assert_eq!(v_iter.next(), Some(2));
    /// assert_eq!(v_iter.next(), None);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    ///
    /// ```
    /// let v = kernel::kvec![];
    /// let mut v_iter = v.into_iter();
    ///
    /// let first_element: Option<u32> = v_iter.next();
    ///
    /// assert_eq!(first_element, None);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        let buf = self.ptr;
        let layout = self.layout;
        let (ptr, len, _) = self.into_raw_parts();

        IntoIter {
            ptr,
            buf,
            len,
            layout,
            _p: PhantomData::<A>,
        }
    }
}

/// An iterator that owns all items in a vector, but does not own its allocation.
///
/// # Invariants
///
/// Every `&mut T` returned by the iterator references a `T` that the iterator may take ownership
/// of.
pub struct DrainAll<'vec, T> {
    elements: slice::IterMut<'vec, T>,
}

impl<'vec, T> Iterator for DrainAll<'vec, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        let elem: *mut T = self.elements.next()?;
        // SAFETY: By the type invariants, we may take ownership of this value.
        Some(unsafe { elem.read() })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.elements.size_hint()
    }
}

impl<'vec, T> Drop for DrainAll<'vec, T> {
    fn drop(&mut self) {
        if core::mem::needs_drop::<T>() {
            let iter = core::mem::take(&mut self.elements);
            let ptr: *mut [T] = iter.into_slice();
            // SAFETY: By the type invariants, we own these values so we may destroy them.
            unsafe { ptr::drop_in_place(ptr) };
        }
    }
}

#[macros::kunit_tests(rust_kvec_kunit)]
mod tests {
    use super::*;
    use crate::prelude::*;

    #[test]
    fn test_kvec_retain() {
        /// Verify correctness for one specific function.
        #[expect(clippy::needless_range_loop)]
        fn verify(c: &[bool]) {
            let mut vec1: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
            let mut vec2: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();

            for i in 0..c.len() {
                vec1.push_within_capacity(i).unwrap();
                if c[i] {
                    vec2.push_within_capacity(i).unwrap();
                }
            }

            vec1.retain(|i| c[*i]);

            assert_eq!(vec1, vec2);
        }

        /// Add one to a binary integer represented as a boolean array.
        fn add(value: &mut [bool]) {
            let mut carry = true;
            for v in value {
                let new_v = carry != *v;
                carry = carry && *v;
                *v = new_v;
            }
        }

        // This boolean array represents a function from index to boolean. We check that `retain`
        // behaves correctly for all possible boolean arrays of every possible length less than
        // ten.
        let mut func = KVec::with_capacity(10, GFP_KERNEL).unwrap();
        for len in 0..10 {
            for _ in 0u32..1u32 << len {
                verify(&func);
                add(&mut func);
            }
            func.push_within_capacity(false).unwrap();
        }
    }
}