summaryrefslogtreecommitdiff
path: root/drivers/gpu/nova-core/vbios.rs
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/nova-core/vbios.rs')
-rw-r--r--drivers/gpu/nova-core/vbios.rs1166
1 files changed, 1166 insertions, 0 deletions
diff --git a/drivers/gpu/nova-core/vbios.rs b/drivers/gpu/nova-core/vbios.rs
new file mode 100644
index 000000000000..5b5d9f38cbb3
--- /dev/null
+++ b/drivers/gpu/nova-core/vbios.rs
@@ -0,0 +1,1166 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! VBIOS extraction and parsing.
+
+use crate::driver::Bar0;
+use crate::firmware::fwsec::Bcrt30Rsa3kSignature;
+use crate::firmware::FalconUCodeDescV3;
+use core::convert::TryFrom;
+use kernel::device;
+use kernel::error::Result;
+use kernel::pci;
+use kernel::prelude::*;
+
+/// The offset of the VBIOS ROM in the BAR0 space.
+const ROM_OFFSET: usize = 0x300000;
+/// The maximum length of the VBIOS ROM to scan into.
+const BIOS_MAX_SCAN_LEN: usize = 0x100000;
+/// The size to read ahead when parsing initial BIOS image headers.
+const BIOS_READ_AHEAD_SIZE: usize = 1024;
+/// The bit in the last image indicator byte for the PCI Data Structure that
+/// indicates the last image. Bit 0-6 are reserved, bit 7 is last image bit.
+const LAST_IMAGE_BIT_MASK: u8 = 0x80;
+
+// PMU lookup table entry types. Used to locate PMU table entries
+// in the Fwsec image, corresponding to falcon ucodes.
+#[expect(dead_code)]
+const FALCON_UCODE_ENTRY_APPID_FIRMWARE_SEC_LIC: u8 = 0x05;
+#[expect(dead_code)]
+const FALCON_UCODE_ENTRY_APPID_FWSEC_DBG: u8 = 0x45;
+const FALCON_UCODE_ENTRY_APPID_FWSEC_PROD: u8 = 0x85;
+
+/// Vbios Reader for constructing the VBIOS data.
+struct VbiosIterator<'a> {
+ pdev: &'a pci::Device,
+ bar0: &'a Bar0,
+ /// VBIOS data vector: As BIOS images are scanned, they are added to this vector for reference
+ /// or copying into other data structures. It is the entire scanned contents of the VBIOS which
+ /// progressively extends. It is used so that we do not re-read any contents that are already
+ /// read as we use the cumulative length read so far, and re-read any gaps as we extend the
+ /// length.
+ data: KVec<u8>,
+ /// Current offset of the [`Iterator`].
+ current_offset: usize,
+ /// Indicate whether the last image has been found.
+ last_found: bool,
+}
+
+impl<'a> VbiosIterator<'a> {
+ fn new(pdev: &'a pci::Device, bar0: &'a Bar0) -> Result<Self> {
+ Ok(Self {
+ pdev,
+ bar0,
+ data: KVec::new(),
+ current_offset: 0,
+ last_found: false,
+ })
+ }
+
+ /// Read bytes from the ROM at the current end of the data vector.
+ fn read_more(&mut self, len: usize) -> Result {
+ let current_len = self.data.len();
+ let start = ROM_OFFSET + current_len;
+
+ // Ensure length is a multiple of 4 for 32-bit reads
+ if len % core::mem::size_of::<u32>() != 0 {
+ dev_err!(
+ self.pdev.as_ref(),
+ "VBIOS read length {} is not a multiple of 4\n",
+ len
+ );
+ return Err(EINVAL);
+ }
+
+ self.data.reserve(len, GFP_KERNEL)?;
+ // Read ROM data bytes and push directly to `data`.
+ for addr in (start..start + len).step_by(core::mem::size_of::<u32>()) {
+ // Read 32-bit word from the VBIOS ROM
+ let word = self.bar0.try_read32(addr)?;
+
+ // Convert the `u32` to a 4 byte array and push each byte.
+ word.to_ne_bytes()
+ .iter()
+ .try_for_each(|&b| self.data.push(b, GFP_KERNEL))?;
+ }
+
+ Ok(())
+ }
+
+ /// Read bytes at a specific offset, filling any gap.
+ fn read_more_at_offset(&mut self, offset: usize, len: usize) -> Result {
+ if offset > BIOS_MAX_SCAN_LEN {
+ dev_err!(self.pdev.as_ref(), "Error: exceeded BIOS scan limit.\n");
+ return Err(EINVAL);
+ }
+
+ // If `offset` is beyond current data size, fill the gap first.
+ let current_len = self.data.len();
+ let gap_bytes = offset.saturating_sub(current_len);
+
+ // Now read the requested bytes at the offset.
+ self.read_more(gap_bytes + len)
+ }
+
+ /// Read a BIOS image at a specific offset and create a [`BiosImage`] from it.
+ ///
+ /// `self.data` is extended as needed and a new [`BiosImage`] is returned.
+ /// `context` is a string describing the operation for error reporting.
+ fn read_bios_image_at_offset(
+ &mut self,
+ offset: usize,
+ len: usize,
+ context: &str,
+ ) -> Result<BiosImage> {
+ let data_len = self.data.len();
+ if offset + len > data_len {
+ self.read_more_at_offset(offset, len).inspect_err(|e| {
+ dev_err!(
+ self.pdev.as_ref(),
+ "Failed to read more at offset {:#x}: {:?}\n",
+ offset,
+ e
+ )
+ })?;
+ }
+
+ BiosImage::new(self.pdev, &self.data[offset..offset + len]).inspect_err(|err| {
+ dev_err!(
+ self.pdev.as_ref(),
+ "Failed to {} at offset {:#x}: {:?}\n",
+ context,
+ offset,
+ err
+ )
+ })
+ }
+}
+
+impl<'a> Iterator for VbiosIterator<'a> {
+ type Item = Result<BiosImage>;
+
+ /// Iterate over all VBIOS images until the last image is detected or offset
+ /// exceeds scan limit.
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.last_found {
+ return None;
+ }
+
+ if self.current_offset > BIOS_MAX_SCAN_LEN {
+ dev_err!(
+ self.pdev.as_ref(),
+ "Error: exceeded BIOS scan limit, stopping scan\n"
+ );
+ return None;
+ }
+
+ // Parse image headers first to get image size.
+ let image_size = match self.read_bios_image_at_offset(
+ self.current_offset,
+ BIOS_READ_AHEAD_SIZE,
+ "parse initial BIOS image headers",
+ ) {
+ Ok(image) => image.image_size_bytes(),
+ Err(e) => return Some(Err(e)),
+ };
+
+ // Now create a new `BiosImage` with the full image data.
+ let full_image = match self.read_bios_image_at_offset(
+ self.current_offset,
+ image_size,
+ "parse full BIOS image",
+ ) {
+ Ok(image) => image,
+ Err(e) => return Some(Err(e)),
+ };
+
+ self.last_found = full_image.is_last();
+
+ // Advance to next image (aligned to 512 bytes).
+ self.current_offset += image_size;
+ // TODO[NUMM]: replace with `align_up` once it lands.
+ self.current_offset = self.current_offset.next_multiple_of(512);
+
+ Some(Ok(full_image))
+ }
+}
+
+pub(crate) struct Vbios {
+ fwsec_image: FwSecBiosImage,
+}
+
+impl Vbios {
+ /// Probe for VBIOS extraction.
+ ///
+ /// Once the VBIOS object is built, `bar0` is not read for [`Vbios`] purposes anymore.
+ pub(crate) fn new(pdev: &pci::Device, bar0: &Bar0) -> Result<Vbios> {
+ // Images to extract from iteration
+ let mut pci_at_image: Option<PciAtBiosImage> = None;
+ let mut first_fwsec_image: Option<FwSecBiosBuilder> = None;
+ let mut second_fwsec_image: Option<FwSecBiosBuilder> = None;
+
+ // Parse all VBIOS images in the ROM
+ for image_result in VbiosIterator::new(pdev, bar0)? {
+ let full_image = image_result?;
+
+ dev_dbg!(
+ pdev.as_ref(),
+ "Found BIOS image: size: {:#x}, type: {}, last: {}\n",
+ full_image.image_size_bytes(),
+ full_image.image_type_str(),
+ full_image.is_last()
+ );
+
+ // Get references to images we will need after the loop, in order to
+ // setup the falcon data offset.
+ match full_image {
+ BiosImage::PciAt(image) => {
+ pci_at_image = Some(image);
+ }
+ BiosImage::FwSec(image) => {
+ if first_fwsec_image.is_none() {
+ first_fwsec_image = Some(image);
+ } else {
+ second_fwsec_image = Some(image);
+ }
+ }
+ // For now we don't need to handle these
+ BiosImage::Efi(_image) => {}
+ BiosImage::Nbsi(_image) => {}
+ }
+ }
+
+ // Using all the images, setup the falcon data pointer in Fwsec.
+ if let (Some(mut second), Some(first), Some(pci_at)) =
+ (second_fwsec_image, first_fwsec_image, pci_at_image)
+ {
+ second
+ .setup_falcon_data(pdev, &pci_at, &first)
+ .inspect_err(|e| dev_err!(pdev.as_ref(), "Falcon data setup failed: {:?}\n", e))?;
+ Ok(Vbios {
+ fwsec_image: second.build(pdev)?,
+ })
+ } else {
+ dev_err!(
+ pdev.as_ref(),
+ "Missing required images for falcon data setup, skipping\n"
+ );
+ Err(EINVAL)
+ }
+ }
+
+ pub(crate) fn fwsec_image(&self) -> &FwSecBiosImage {
+ &self.fwsec_image
+ }
+}
+
+/// PCI Data Structure as defined in PCI Firmware Specification
+#[derive(Debug, Clone)]
+#[repr(C)]
+struct PcirStruct {
+ /// PCI Data Structure signature ("PCIR" or "NPDS")
+ signature: [u8; 4],
+ /// PCI Vendor ID (e.g., 0x10DE for NVIDIA)
+ vendor_id: u16,
+ /// PCI Device ID
+ device_id: u16,
+ /// Device List Pointer
+ device_list_ptr: u16,
+ /// PCI Data Structure Length
+ pci_data_struct_len: u16,
+ /// PCI Data Structure Revision
+ pci_data_struct_rev: u8,
+ /// Class code (3 bytes, 0x03 for display controller)
+ class_code: [u8; 3],
+ /// Size of this image in 512-byte blocks
+ image_len: u16,
+ /// Revision Level of the Vendor's ROM
+ vendor_rom_rev: u16,
+ /// ROM image type (0x00 = PC-AT compatible, 0x03 = EFI, 0x70 = NBSI)
+ code_type: u8,
+ /// Last image indicator (0x00 = Not last image, 0x80 = Last image)
+ last_image: u8,
+ /// Maximum Run-time Image Length (units of 512 bytes)
+ max_runtime_image_len: u16,
+}
+
+impl PcirStruct {
+ fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ if data.len() < core::mem::size_of::<PcirStruct>() {
+ dev_err!(pdev.as_ref(), "Not enough data for PcirStruct\n");
+ return Err(EINVAL);
+ }
+
+ let mut signature = [0u8; 4];
+ signature.copy_from_slice(&data[0..4]);
+
+ // Signature should be "PCIR" (0x52494350) or "NPDS" (0x5344504e).
+ if &signature != b"PCIR" && &signature != b"NPDS" {
+ dev_err!(
+ pdev.as_ref(),
+ "Invalid signature for PcirStruct: {:?}\n",
+ signature
+ );
+ return Err(EINVAL);
+ }
+
+ let mut class_code = [0u8; 3];
+ class_code.copy_from_slice(&data[13..16]);
+
+ let image_len = u16::from_le_bytes([data[16], data[17]]);
+ if image_len == 0 {
+ dev_err!(pdev.as_ref(), "Invalid image length: 0\n");
+ return Err(EINVAL);
+ }
+
+ Ok(PcirStruct {
+ signature,
+ vendor_id: u16::from_le_bytes([data[4], data[5]]),
+ device_id: u16::from_le_bytes([data[6], data[7]]),
+ device_list_ptr: u16::from_le_bytes([data[8], data[9]]),
+ pci_data_struct_len: u16::from_le_bytes([data[10], data[11]]),
+ pci_data_struct_rev: data[12],
+ class_code,
+ image_len,
+ vendor_rom_rev: u16::from_le_bytes([data[18], data[19]]),
+ code_type: data[20],
+ last_image: data[21],
+ max_runtime_image_len: u16::from_le_bytes([data[22], data[23]]),
+ })
+ }
+
+ /// Check if this is the last image in the ROM.
+ fn is_last(&self) -> bool {
+ self.last_image & LAST_IMAGE_BIT_MASK != 0
+ }
+
+ /// Calculate image size in bytes from 512-byte blocks.
+ fn image_size_bytes(&self) -> usize {
+ self.image_len as usize * 512
+ }
+}
+
+/// BIOS Information Table (BIT) Header.
+///
+/// This is the head of the BIT table, that is used to locate the Falcon data. The BIT table (with
+/// its header) is in the [`PciAtBiosImage`] and the falcon data it is pointing to is in the
+/// [`FwSecBiosImage`].
+#[derive(Debug, Clone, Copy)]
+#[expect(dead_code)]
+struct BitHeader {
+ /// 0h: BIT Header Identifier (BMP=0x7FFF/BIT=0xB8FF)
+ id: u16,
+ /// 2h: BIT Header Signature ("BIT\0")
+ signature: [u8; 4],
+ /// 6h: Binary Coded Decimal Version, ex: 0x0100 is 1.00.
+ bcd_version: u16,
+ /// 8h: Size of BIT Header (in bytes)
+ header_size: u8,
+ /// 9h: Size of BIT Tokens (in bytes)
+ token_size: u8,
+ /// 10h: Number of token entries that follow
+ token_entries: u8,
+ /// 11h: BIT Header Checksum
+ checksum: u8,
+}
+
+impl BitHeader {
+ fn new(data: &[u8]) -> Result<Self> {
+ if data.len() < 12 {
+ return Err(EINVAL);
+ }
+
+ let mut signature = [0u8; 4];
+ signature.copy_from_slice(&data[2..6]);
+
+ // Check header ID and signature
+ let id = u16::from_le_bytes([data[0], data[1]]);
+ if id != 0xB8FF || &signature != b"BIT\0" {
+ return Err(EINVAL);
+ }
+
+ Ok(BitHeader {
+ id,
+ signature,
+ bcd_version: u16::from_le_bytes([data[6], data[7]]),
+ header_size: data[8],
+ token_size: data[9],
+ token_entries: data[10],
+ checksum: data[11],
+ })
+ }
+}
+
+/// BIT Token Entry: Records in the BIT table followed by the BIT header.
+#[derive(Debug, Clone, Copy)]
+#[expect(dead_code)]
+struct BitToken {
+ /// 00h: Token identifier
+ id: u8,
+ /// 01h: Version of the token data
+ data_version: u8,
+ /// 02h: Size of token data in bytes
+ data_size: u16,
+ /// 04h: Offset to the token data
+ data_offset: u16,
+}
+
+// Define the token ID for the Falcon data
+const BIT_TOKEN_ID_FALCON_DATA: u8 = 0x70;
+
+impl BitToken {
+ /// Find a BIT token entry by BIT ID in a PciAtBiosImage
+ fn from_id(image: &PciAtBiosImage, token_id: u8) -> Result<Self> {
+ let header = &image.bit_header;
+
+ // Offset to the first token entry
+ let tokens_start = image.bit_offset + header.header_size as usize;
+
+ for i in 0..header.token_entries as usize {
+ let entry_offset = tokens_start + (i * header.token_size as usize);
+
+ // Make sure we don't go out of bounds
+ if entry_offset + header.token_size as usize > image.base.data.len() {
+ return Err(EINVAL);
+ }
+
+ // Check if this token has the requested ID
+ if image.base.data[entry_offset] == token_id {
+ return Ok(BitToken {
+ id: image.base.data[entry_offset],
+ data_version: image.base.data[entry_offset + 1],
+ data_size: u16::from_le_bytes([
+ image.base.data[entry_offset + 2],
+ image.base.data[entry_offset + 3],
+ ]),
+ data_offset: u16::from_le_bytes([
+ image.base.data[entry_offset + 4],
+ image.base.data[entry_offset + 5],
+ ]),
+ });
+ }
+ }
+
+ // Token not found
+ Err(ENOENT)
+ }
+}
+
+/// PCI ROM Expansion Header as defined in PCI Firmware Specification.
+///
+/// This is header is at the beginning of every image in the set of images in the ROM. It contains
+/// a pointer to the PCI Data Structure which describes the image. For "NBSI" images (NoteBook
+/// System Information), the ROM header deviates from the standard and contains an offset to the
+/// NBSI image however we do not yet parse that in this module and keep it for future reference.
+#[derive(Debug, Clone, Copy)]
+#[expect(dead_code)]
+struct PciRomHeader {
+ /// 00h: Signature (0xAA55)
+ signature: u16,
+ /// 02h: Reserved bytes for processor architecture unique data (20 bytes)
+ reserved: [u8; 20],
+ /// 16h: NBSI Data Offset (NBSI-specific, offset from header to NBSI image)
+ nbsi_data_offset: Option<u16>,
+ /// 18h: Pointer to PCI Data Structure (offset from start of ROM image)
+ pci_data_struct_offset: u16,
+ /// 1Ah: Size of block (this is NBSI-specific)
+ size_of_block: Option<u32>,
+}
+
+impl PciRomHeader {
+ fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ if data.len() < 26 {
+ // Need at least 26 bytes to read pciDataStrucPtr and sizeOfBlock.
+ return Err(EINVAL);
+ }
+
+ let signature = u16::from_le_bytes([data[0], data[1]]);
+
+ // Check for valid ROM signatures.
+ match signature {
+ 0xAA55 | 0xBB77 | 0x4E56 => {}
+ _ => {
+ dev_err!(pdev.as_ref(), "ROM signature unknown {:#x}\n", signature);
+ return Err(EINVAL);
+ }
+ }
+
+ // Read the pointer to the PCI Data Structure at offset 0x18.
+ let pci_data_struct_ptr = u16::from_le_bytes([data[24], data[25]]);
+
+ // Try to read optional fields if enough data.
+ let mut size_of_block = None;
+ let mut nbsi_data_offset = None;
+
+ if data.len() >= 30 {
+ // Read size_of_block at offset 0x1A.
+ size_of_block = Some(
+ u32::from(data[29]) << 24
+ | u32::from(data[28]) << 16
+ | u32::from(data[27]) << 8
+ | u32::from(data[26]),
+ );
+ }
+
+ // For NBSI images, try to read the nbsiDataOffset at offset 0x16.
+ if data.len() >= 24 {
+ nbsi_data_offset = Some(u16::from_le_bytes([data[22], data[23]]));
+ }
+
+ Ok(PciRomHeader {
+ signature,
+ reserved: [0u8; 20],
+ pci_data_struct_offset: pci_data_struct_ptr,
+ size_of_block,
+ nbsi_data_offset,
+ })
+ }
+}
+
+/// NVIDIA PCI Data Extension Structure.
+///
+/// This is similar to the PCI Data Structure, but is Nvidia-specific and is placed right after the
+/// PCI Data Structure. It contains some fields that are redundant with the PCI Data Structure, but
+/// are needed for traversing the BIOS images. It is expected to be present in all BIOS images
+/// except for NBSI images.
+#[derive(Debug, Clone)]
+#[repr(C)]
+struct NpdeStruct {
+ /// 00h: Signature ("NPDE")
+ signature: [u8; 4],
+ /// 04h: NVIDIA PCI Data Extension Revision
+ npci_data_ext_rev: u16,
+ /// 06h: NVIDIA PCI Data Extension Length
+ npci_data_ext_len: u16,
+ /// 08h: Sub-image Length (in 512-byte units)
+ subimage_len: u16,
+ /// 0Ah: Last image indicator flag
+ last_image: u8,
+}
+
+impl NpdeStruct {
+ fn new(pdev: &pci::Device, data: &[u8]) -> Option<Self> {
+ if data.len() < core::mem::size_of::<Self>() {
+ dev_dbg!(pdev.as_ref(), "Not enough data for NpdeStruct\n");
+ return None;
+ }
+
+ let mut signature = [0u8; 4];
+ signature.copy_from_slice(&data[0..4]);
+
+ // Signature should be "NPDE" (0x4544504E).
+ if &signature != b"NPDE" {
+ dev_dbg!(
+ pdev.as_ref(),
+ "Invalid signature for NpdeStruct: {:?}\n",
+ signature
+ );
+ return None;
+ }
+
+ let subimage_len = u16::from_le_bytes([data[8], data[9]]);
+ if subimage_len == 0 {
+ dev_dbg!(pdev.as_ref(), "Invalid subimage length: 0\n");
+ return None;
+ }
+
+ Some(NpdeStruct {
+ signature,
+ npci_data_ext_rev: u16::from_le_bytes([data[4], data[5]]),
+ npci_data_ext_len: u16::from_le_bytes([data[6], data[7]]),
+ subimage_len,
+ last_image: data[10],
+ })
+ }
+
+ /// Check if this is the last image in the ROM.
+ fn is_last(&self) -> bool {
+ self.last_image & LAST_IMAGE_BIT_MASK != 0
+ }
+
+ /// Calculate image size in bytes from 512-byte blocks.
+ fn image_size_bytes(&self) -> usize {
+ self.subimage_len as usize * 512
+ }
+
+ /// Try to find NPDE in the data, the NPDE is right after the PCIR.
+ fn find_in_data(
+ pdev: &pci::Device,
+ data: &[u8],
+ rom_header: &PciRomHeader,
+ pcir: &PcirStruct,
+ ) -> Option<Self> {
+ // Calculate the offset where NPDE might be located
+ // NPDE should be right after the PCIR structure, aligned to 16 bytes
+ let pcir_offset = rom_header.pci_data_struct_offset as usize;
+ let npde_start = (pcir_offset + pcir.pci_data_struct_len as usize + 0x0F) & !0x0F;
+
+ // Check if we have enough data
+ if npde_start + core::mem::size_of::<Self>() > data.len() {
+ dev_dbg!(pdev.as_ref(), "Not enough data for NPDE\n");
+ return None;
+ }
+
+ // Try to create NPDE from the data
+ NpdeStruct::new(pdev, &data[npde_start..])
+ }
+}
+
+// Use a macro to implement BiosImage enum and methods. This avoids having to
+// repeat each enum type when implementing functions like base() in BiosImage.
+macro_rules! bios_image {
+ (
+ $($variant:ident: $class:ident),* $(,)?
+ ) => {
+ // BiosImage enum with variants for each image type
+ enum BiosImage {
+ $($variant($class)),*
+ }
+
+ impl BiosImage {
+ /// Get a reference to the common BIOS image data regardless of type
+ fn base(&self) -> &BiosImageBase {
+ match self {
+ $(Self::$variant(img) => &img.base),*
+ }
+ }
+
+ /// Returns a string representing the type of BIOS image
+ fn image_type_str(&self) -> &'static str {
+ match self {
+ $(Self::$variant(_) => stringify!($variant)),*
+ }
+ }
+ }
+ }
+}
+
+impl BiosImage {
+ /// Check if this is the last image.
+ fn is_last(&self) -> bool {
+ let base = self.base();
+
+ // For NBSI images (type == 0x70), return true as they're
+ // considered the last image
+ if matches!(self, Self::Nbsi(_)) {
+ return true;
+ }
+
+ // For other image types, check the NPDE first if available
+ if let Some(ref npde) = base.npde {
+ return npde.is_last();
+ }
+
+ // Otherwise, fall back to checking the PCIR last_image flag
+ base.pcir.is_last()
+ }
+
+ /// Get the image size in bytes.
+ fn image_size_bytes(&self) -> usize {
+ let base = self.base();
+
+ // Prefer NPDE image size if available
+ if let Some(ref npde) = base.npde {
+ return npde.image_size_bytes();
+ }
+
+ // Otherwise, fall back to the PCIR image size
+ base.pcir.image_size_bytes()
+ }
+
+ /// Create a [`BiosImageBase`] from a byte slice and convert it to a [`BiosImage`] which
+ /// triggers the constructor of the specific BiosImage enum variant.
+ fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ let base = BiosImageBase::new(pdev, data)?;
+ let image = base.into_image().inspect_err(|e| {
+ dev_err!(pdev.as_ref(), "Failed to create BiosImage: {:?}\n", e);
+ })?;
+
+ Ok(image)
+ }
+}
+
+bios_image! {
+ PciAt: PciAtBiosImage, // PCI-AT compatible BIOS image
+ Efi: EfiBiosImage, // EFI (Extensible Firmware Interface)
+ Nbsi: NbsiBiosImage, // NBSI (Nvidia Bios System Interface)
+ FwSec: FwSecBiosBuilder, // FWSEC (Firmware Security)
+}
+
+/// The PciAt BIOS image is typically the first BIOS image type found in the BIOS image chain.
+///
+/// It contains the BIT header and the BIT tokens.
+struct PciAtBiosImage {
+ base: BiosImageBase,
+ bit_header: BitHeader,
+ bit_offset: usize,
+}
+
+struct EfiBiosImage {
+ base: BiosImageBase,
+ // EFI-specific fields can be added here in the future.
+}
+
+struct NbsiBiosImage {
+ base: BiosImageBase,
+ // NBSI-specific fields can be added here in the future.
+}
+
+struct FwSecBiosBuilder {
+ base: BiosImageBase,
+ /// These are temporary fields that are used during the construction of the
+ /// [`FwSecBiosBuilder`].
+ ///
+ /// Once FwSecBiosBuilder is constructed, the `falcon_ucode_offset` will be copied into a new
+ /// [`FwSecBiosImage`].
+ ///
+ /// The offset of the Falcon data from the start of Fwsec image.
+ falcon_data_offset: Option<usize>,
+ /// The [`PmuLookupTable`] starts at the offset of the falcon data pointer.
+ pmu_lookup_table: Option<PmuLookupTable>,
+ /// The offset of the Falcon ucode.
+ falcon_ucode_offset: Option<usize>,
+}
+
+/// The [`FwSecBiosImage`] structure contains the PMU table and the Falcon Ucode.
+///
+/// The PMU table contains voltage/frequency tables as well as a pointer to the Falcon Ucode.
+pub(crate) struct FwSecBiosImage {
+ base: BiosImageBase,
+ /// The offset of the Falcon ucode.
+ falcon_ucode_offset: usize,
+}
+
+// Convert from BiosImageBase to BiosImage
+impl TryFrom<BiosImageBase> for BiosImage {
+ type Error = Error;
+
+ fn try_from(base: BiosImageBase) -> Result<Self> {
+ match base.pcir.code_type {
+ 0x00 => Ok(BiosImage::PciAt(base.try_into()?)),
+ 0x03 => Ok(BiosImage::Efi(EfiBiosImage { base })),
+ 0x70 => Ok(BiosImage::Nbsi(NbsiBiosImage { base })),
+ 0xE0 => Ok(BiosImage::FwSec(FwSecBiosBuilder {
+ base,
+ falcon_data_offset: None,
+ pmu_lookup_table: None,
+ falcon_ucode_offset: None,
+ })),
+ _ => Err(EINVAL),
+ }
+ }
+}
+
+/// BIOS Image structure containing various headers and reference fields to all BIOS images.
+///
+/// Each BiosImage type has a BiosImageBase type along with other image-specific fields. Note that
+/// Rust favors composition of types over inheritance.
+#[derive(Debug)]
+#[expect(dead_code)]
+struct BiosImageBase {
+ /// PCI ROM Expansion Header
+ rom_header: PciRomHeader,
+ /// PCI Data Structure
+ pcir: PcirStruct,
+ /// NVIDIA PCI Data Extension (optional)
+ npde: Option<NpdeStruct>,
+ /// Image data (includes ROM header and PCIR)
+ data: KVec<u8>,
+}
+
+impl BiosImageBase {
+ fn into_image(self) -> Result<BiosImage> {
+ BiosImage::try_from(self)
+ }
+
+ /// Creates a new BiosImageBase from raw byte data.
+ fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ // Ensure we have enough data for the ROM header.
+ if data.len() < 26 {
+ dev_err!(pdev.as_ref(), "Not enough data for ROM header\n");
+ return Err(EINVAL);
+ }
+
+ // Parse the ROM header.
+ let rom_header = PciRomHeader::new(pdev, &data[0..26])
+ .inspect_err(|e| dev_err!(pdev.as_ref(), "Failed to create PciRomHeader: {:?}\n", e))?;
+
+ // Get the PCI Data Structure using the pointer from the ROM header.
+ let pcir_offset = rom_header.pci_data_struct_offset as usize;
+ let pcir_data = data
+ .get(pcir_offset..pcir_offset + core::mem::size_of::<PcirStruct>())
+ .ok_or(EINVAL)
+ .inspect_err(|_| {
+ dev_err!(
+ pdev.as_ref(),
+ "PCIR offset {:#x} out of bounds (data length: {})\n",
+ pcir_offset,
+ data.len()
+ );
+ dev_err!(
+ pdev.as_ref(),
+ "Consider reading more data for construction of BiosImage\n"
+ );
+ })?;
+
+ let pcir = PcirStruct::new(pdev, pcir_data)
+ .inspect_err(|e| dev_err!(pdev.as_ref(), "Failed to create PcirStruct: {:?}\n", e))?;
+
+ // Look for NPDE structure if this is not an NBSI image (type != 0x70).
+ let npde = NpdeStruct::find_in_data(pdev, data, &rom_header, &pcir);
+
+ // Create a copy of the data.
+ let mut data_copy = KVec::new();
+ data_copy.extend_from_slice(data, GFP_KERNEL)?;
+
+ Ok(BiosImageBase {
+ rom_header,
+ pcir,
+ npde,
+ data: data_copy,
+ })
+ }
+}
+
+impl PciAtBiosImage {
+ /// Find a byte pattern in a slice.
+ fn find_byte_pattern(haystack: &[u8], needle: &[u8]) -> Result<usize> {
+ haystack
+ .windows(needle.len())
+ .position(|window| window == needle)
+ .ok_or(EINVAL)
+ }
+
+ /// Find the BIT header in the [`PciAtBiosImage`].
+ fn find_bit_header(data: &[u8]) -> Result<(BitHeader, usize)> {
+ let bit_pattern = [0xff, 0xb8, b'B', b'I', b'T', 0x00];
+ let bit_offset = Self::find_byte_pattern(data, &bit_pattern)?;
+ let bit_header = BitHeader::new(&data[bit_offset..])?;
+
+ Ok((bit_header, bit_offset))
+ }
+
+ /// Get a BIT token entry from the BIT table in the [`PciAtBiosImage`]
+ fn get_bit_token(&self, token_id: u8) -> Result<BitToken> {
+ BitToken::from_id(self, token_id)
+ }
+
+ /// Find the Falcon data pointer structure in the [`PciAtBiosImage`].
+ ///
+ /// This is just a 4 byte structure that contains a pointer to the Falcon data in the FWSEC
+ /// image.
+ fn falcon_data_ptr(&self, pdev: &pci::Device) -> Result<u32> {
+ let token = self.get_bit_token(BIT_TOKEN_ID_FALCON_DATA)?;
+
+ // Make sure we don't go out of bounds
+ if token.data_offset as usize + 4 > self.base.data.len() {
+ return Err(EINVAL);
+ }
+
+ // read the 4 bytes at the offset specified in the token
+ let offset = token.data_offset as usize;
+ let bytes: [u8; 4] = self.base.data[offset..offset + 4].try_into().map_err(|_| {
+ dev_err!(pdev.as_ref(), "Failed to convert data slice to array");
+ EINVAL
+ })?;
+
+ let data_ptr = u32::from_le_bytes(bytes);
+
+ if (data_ptr as usize) < self.base.data.len() {
+ dev_err!(pdev.as_ref(), "Falcon data pointer out of bounds\n");
+ return Err(EINVAL);
+ }
+
+ Ok(data_ptr)
+ }
+}
+
+impl TryFrom<BiosImageBase> for PciAtBiosImage {
+ type Error = Error;
+
+ fn try_from(base: BiosImageBase) -> Result<Self> {
+ let data_slice = &base.data;
+ let (bit_header, bit_offset) = PciAtBiosImage::find_bit_header(data_slice)?;
+
+ Ok(PciAtBiosImage {
+ base,
+ bit_header,
+ bit_offset,
+ })
+ }
+}
+
+/// The [`PmuLookupTableEntry`] structure is a single entry in the [`PmuLookupTable`].
+///
+/// See the [`PmuLookupTable`] description for more information.
+#[expect(dead_code)]
+struct PmuLookupTableEntry {
+ application_id: u8,
+ target_id: u8,
+ data: u32,
+}
+
+impl PmuLookupTableEntry {
+ fn new(data: &[u8]) -> Result<Self> {
+ if data.len() < 6 {
+ return Err(EINVAL);
+ }
+
+ Ok(PmuLookupTableEntry {
+ application_id: data[0],
+ target_id: data[1],
+ data: u32::from_le_bytes(data[2..6].try_into().map_err(|_| EINVAL)?),
+ })
+ }
+}
+
+/// The [`PmuLookupTableEntry`] structure is used to find the [`PmuLookupTableEntry`] for a given
+/// application ID.
+///
+/// The table of entries is pointed to by the falcon data pointer in the BIT table, and is used to
+/// locate the Falcon Ucode.
+#[expect(dead_code)]
+struct PmuLookupTable {
+ version: u8,
+ header_len: u8,
+ entry_len: u8,
+ entry_count: u8,
+ table_data: KVec<u8>,
+}
+
+impl PmuLookupTable {
+ fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ if data.len() < 4 {
+ return Err(EINVAL);
+ }
+
+ let header_len = data[1] as usize;
+ let entry_len = data[2] as usize;
+ let entry_count = data[3] as usize;
+
+ let required_bytes = header_len + (entry_count * entry_len);
+
+ if data.len() < required_bytes {
+ dev_err!(
+ pdev.as_ref(),
+ "PmuLookupTable data length less than required\n"
+ );
+ return Err(EINVAL);
+ }
+
+ // Create a copy of only the table data
+ let table_data = {
+ let mut ret = KVec::new();
+ ret.extend_from_slice(&data[header_len..required_bytes], GFP_KERNEL)?;
+ ret
+ };
+
+ // Debug logging of entries (dumps the table data to dmesg)
+ for i in (header_len..required_bytes).step_by(entry_len) {
+ dev_dbg!(
+ pdev.as_ref(),
+ "PMU entry: {:02x?}\n",
+ &data[i..][..entry_len]
+ );
+ }
+
+ Ok(PmuLookupTable {
+ version: data[0],
+ header_len: header_len as u8,
+ entry_len: entry_len as u8,
+ entry_count: entry_count as u8,
+ table_data,
+ })
+ }
+
+ fn lookup_index(&self, idx: u8) -> Result<PmuLookupTableEntry> {
+ if idx >= self.entry_count {
+ return Err(EINVAL);
+ }
+
+ let index = (idx as usize) * self.entry_len as usize;
+ PmuLookupTableEntry::new(&self.table_data[index..])
+ }
+
+ // find entry by type value
+ fn find_entry_by_type(&self, entry_type: u8) -> Result<PmuLookupTableEntry> {
+ for i in 0..self.entry_count {
+ let entry = self.lookup_index(i)?;
+ if entry.application_id == entry_type {
+ return Ok(entry);
+ }
+ }
+
+ Err(EINVAL)
+ }
+}
+
+impl FwSecBiosBuilder {
+ fn setup_falcon_data(
+ &mut self,
+ pdev: &pci::Device,
+ pci_at_image: &PciAtBiosImage,
+ first_fwsec: &FwSecBiosBuilder,
+ ) -> Result {
+ let mut offset = pci_at_image.falcon_data_ptr(pdev)? as usize;
+ let mut pmu_in_first_fwsec = false;
+
+ // The falcon data pointer assumes that the PciAt and FWSEC images
+ // are contiguous in memory. However, testing shows the EFI image sits in
+ // between them. So calculate the offset from the end of the PciAt image
+ // rather than the start of it. Compensate.
+ offset -= pci_at_image.base.data.len();
+
+ // The offset is now from the start of the first Fwsec image, however
+ // the offset points to a location in the second Fwsec image. Since
+ // the fwsec images are contiguous, subtract the length of the first Fwsec
+ // image from the offset to get the offset to the start of the second
+ // Fwsec image.
+ if offset < first_fwsec.base.data.len() {
+ pmu_in_first_fwsec = true;
+ } else {
+ offset -= first_fwsec.base.data.len();
+ }
+
+ self.falcon_data_offset = Some(offset);
+
+ if pmu_in_first_fwsec {
+ self.pmu_lookup_table =
+ Some(PmuLookupTable::new(pdev, &first_fwsec.base.data[offset..])?);
+ } else {
+ self.pmu_lookup_table = Some(PmuLookupTable::new(pdev, &self.base.data[offset..])?);
+ }
+
+ match self
+ .pmu_lookup_table
+ .as_ref()
+ .ok_or(EINVAL)?
+ .find_entry_by_type(FALCON_UCODE_ENTRY_APPID_FWSEC_PROD)
+ {
+ Ok(entry) => {
+ let mut ucode_offset = entry.data as usize;
+ ucode_offset -= pci_at_image.base.data.len();
+ if ucode_offset < first_fwsec.base.data.len() {
+ dev_err!(pdev.as_ref(), "Falcon Ucode offset not in second Fwsec.\n");
+ return Err(EINVAL);
+ }
+ ucode_offset -= first_fwsec.base.data.len();
+ self.falcon_ucode_offset = Some(ucode_offset);
+ }
+ Err(e) => {
+ dev_err!(
+ pdev.as_ref(),
+ "PmuLookupTableEntry not found, error: {:?}\n",
+ e
+ );
+ return Err(EINVAL);
+ }
+ }
+ Ok(())
+ }
+
+ /// Build the final FwSecBiosImage from this builder
+ fn build(self, pdev: &pci::Device) -> Result<FwSecBiosImage> {
+ let ret = FwSecBiosImage {
+ base: self.base,
+ falcon_ucode_offset: self.falcon_ucode_offset.ok_or(EINVAL)?,
+ };
+
+ if cfg!(debug_assertions) {
+ // Print the desc header for debugging
+ let desc = ret.header(pdev.as_ref())?;
+ dev_dbg!(pdev.as_ref(), "PmuLookupTableEntry desc: {:#?}\n", desc);
+ }
+
+ Ok(ret)
+ }
+}
+
+impl FwSecBiosImage {
+ /// Get the FwSec header ([`FalconUCodeDescV3`]).
+ pub(crate) fn header(&self, dev: &device::Device) -> Result<&FalconUCodeDescV3> {
+ // Get the falcon ucode offset that was found in setup_falcon_data.
+ let falcon_ucode_offset = self.falcon_ucode_offset;
+
+ // Make sure the offset is within the data bounds.
+ if falcon_ucode_offset + core::mem::size_of::<FalconUCodeDescV3>() > self.base.data.len() {
+ dev_err!(dev, "fwsec-frts header not contained within BIOS bounds\n");
+ return Err(ERANGE);
+ }
+
+ // Read the first 4 bytes to get the version.
+ let hdr_bytes: [u8; 4] = self.base.data[falcon_ucode_offset..falcon_ucode_offset + 4]
+ .try_into()
+ .map_err(|_| EINVAL)?;
+ let hdr = u32::from_le_bytes(hdr_bytes);
+ let ver = (hdr & 0xff00) >> 8;
+
+ if ver != 3 {
+ dev_err!(dev, "invalid fwsec firmware version: {:?}\n", ver);
+ return Err(EINVAL);
+ }
+
+ // Return a reference to the FalconUCodeDescV3 structure.
+ //
+ // SAFETY: We have checked that `falcon_ucode_offset + size_of::<FalconUCodeDescV3>` is
+ // within the bounds of `data`. Also, this data vector is from ROM, and the `data` field
+ // in `BiosImageBase` is immutable after construction.
+ Ok(unsafe {
+ &*(self
+ .base
+ .data
+ .as_ptr()
+ .add(falcon_ucode_offset)
+ .cast::<FalconUCodeDescV3>())
+ })
+ }
+
+ /// Get the ucode data as a byte slice
+ pub(crate) fn ucode(&self, dev: &device::Device, desc: &FalconUCodeDescV3) -> Result<&[u8]> {
+ let falcon_ucode_offset = self.falcon_ucode_offset;
+
+ // The ucode data follows the descriptor.
+ let ucode_data_offset = falcon_ucode_offset + desc.size();
+ let size = (desc.imem_load_size + desc.dmem_load_size) as usize;
+
+ // Get the data slice, checking bounds in a single operation.
+ self.base
+ .data
+ .get(ucode_data_offset..ucode_data_offset + size)
+ .ok_or(ERANGE)
+ .inspect_err(|_| dev_err!(dev, "fwsec ucode data not contained within BIOS bounds\n"))
+ }
+
+ /// Get the signatures as a byte slice
+ pub(crate) fn sigs(
+ &self,
+ dev: &device::Device,
+ desc: &FalconUCodeDescV3,
+ ) -> Result<&[Bcrt30Rsa3kSignature]> {
+ // The signatures data follows the descriptor.
+ let sigs_data_offset = self.falcon_ucode_offset + core::mem::size_of::<FalconUCodeDescV3>();
+ let sigs_size =
+ desc.signature_count as usize * core::mem::size_of::<Bcrt30Rsa3kSignature>();
+
+ // Make sure the data is within bounds.
+ if sigs_data_offset + sigs_size > self.base.data.len() {
+ dev_err!(
+ dev,
+ "fwsec signatures data not contained within BIOS bounds\n"
+ );
+ return Err(ERANGE);
+ }
+
+ // SAFETY: we checked that `data + sigs_data_offset + (signature_count *
+ // sizeof::<Bcrt30Rsa3kSignature>()` is within the bounds of `data`.
+ Ok(unsafe {
+ core::slice::from_raw_parts(
+ self.base
+ .data
+ .as_ptr()
+ .add(sigs_data_offset)
+ .cast::<Bcrt30Rsa3kSignature>(),
+ desc.signature_count as usize,
+ )
+ })
+ }
+}