summaryrefslogtreecommitdiff
path: root/drivers/gpu/nova-core
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/nova-core')
-rw-r--r--drivers/gpu/nova-core/dma.rs58
-rw-r--r--drivers/gpu/nova-core/driver.rs11
-rw-r--r--drivers/gpu/nova-core/falcon.rs588
-rw-r--r--drivers/gpu/nova-core/falcon/gsp.rs24
-rw-r--r--drivers/gpu/nova-core/falcon/hal.rs54
-rw-r--r--drivers/gpu/nova-core/falcon/hal/ga102.rs119
-rw-r--r--drivers/gpu/nova-core/falcon/sec2.rs10
-rw-r--r--drivers/gpu/nova-core/fb.rs147
-rw-r--r--drivers/gpu/nova-core/fb/hal.rs39
-rw-r--r--drivers/gpu/nova-core/fb/hal/ga100.rs57
-rw-r--r--drivers/gpu/nova-core/fb/hal/ga102.rs36
-rw-r--r--drivers/gpu/nova-core/fb/hal/tu102.rs58
-rw-r--r--drivers/gpu/nova-core/firmware.rs108
-rw-r--r--drivers/gpu/nova-core/firmware/fwsec.rs423
-rw-r--r--drivers/gpu/nova-core/gfw.rs71
-rw-r--r--drivers/gpu/nova-core/gpu.rs133
-rw-r--r--drivers/gpu/nova-core/nova_core.rs5
-rw-r--r--drivers/gpu/nova-core/regs.rs303
-rw-r--r--drivers/gpu/nova-core/regs/macros.rs65
-rw-r--r--drivers/gpu/nova-core/util.rs26
-rw-r--r--drivers/gpu/nova-core/vbios.rs1166
21 files changed, 3479 insertions, 22 deletions
diff --git a/drivers/gpu/nova-core/dma.rs b/drivers/gpu/nova-core/dma.rs
new file mode 100644
index 000000000000..94f44bcfd748
--- /dev/null
+++ b/drivers/gpu/nova-core/dma.rs
@@ -0,0 +1,58 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Simple DMA object wrapper.
+
+use core::ops::{Deref, DerefMut};
+
+use kernel::device;
+use kernel::dma::CoherentAllocation;
+use kernel::page::PAGE_SIZE;
+use kernel::prelude::*;
+
+pub(crate) struct DmaObject {
+ dma: CoherentAllocation<u8>,
+}
+
+impl DmaObject {
+ pub(crate) fn new(dev: &device::Device<device::Bound>, len: usize) -> Result<Self> {
+ let len = core::alloc::Layout::from_size_align(len, PAGE_SIZE)
+ .map_err(|_| EINVAL)?
+ .pad_to_align()
+ .size();
+ let dma = CoherentAllocation::alloc_coherent(dev, len, GFP_KERNEL | __GFP_ZERO)?;
+
+ Ok(Self { dma })
+ }
+
+ pub(crate) fn from_data(dev: &device::Device<device::Bound>, data: &[u8]) -> Result<Self> {
+ Self::new(dev, data.len()).map(|mut dma_obj| {
+ // TODO[COHA]: replace with `CoherentAllocation::write()` once available.
+ // SAFETY:
+ // - `dma_obj`'s size is at least `data.len()`.
+ // - We have just created this object and there is no other user at this stage.
+ unsafe {
+ core::ptr::copy_nonoverlapping(
+ data.as_ptr(),
+ dma_obj.dma.start_ptr_mut(),
+ data.len(),
+ );
+ }
+
+ dma_obj
+ })
+ }
+}
+
+impl Deref for DmaObject {
+ type Target = CoherentAllocation<u8>;
+
+ fn deref(&self) -> &Self::Target {
+ &self.dma
+ }
+}
+
+impl DerefMut for DmaObject {
+ fn deref_mut(&mut self) -> &mut Self::Target {
+ &mut self.dma
+ }
+}
diff --git a/drivers/gpu/nova-core/driver.rs b/drivers/gpu/nova-core/driver.rs
index 8c86101c26cb..cb68d0bc1e63 100644
--- a/drivers/gpu/nova-core/driver.rs
+++ b/drivers/gpu/nova-core/driver.rs
@@ -1,6 +1,6 @@
// SPDX-License-Identifier: GPL-2.0
-use kernel::{auxiliary, bindings, c_str, device::Core, pci, prelude::*};
+use kernel::{auxiliary, bindings, c_str, device::Core, pci, prelude::*, sync::Arc, sizes::SZ_16M};
use crate::gpu::Gpu;
@@ -11,7 +11,7 @@ pub(crate) struct NovaCore {
_reg: auxiliary::Registration,
}
-const BAR0_SIZE: usize = 8;
+const BAR0_SIZE: usize = SZ_16M;
pub(crate) type Bar0 = pci::Bar<BAR0_SIZE>;
kernel::pci_device_table!(
@@ -34,7 +34,10 @@ impl pci::Driver for NovaCore {
pdev.enable_device_mem()?;
pdev.set_master();
- let bar = pdev.iomap_region_sized::<BAR0_SIZE>(0, c_str!("nova-core/bar0"))?;
+ let bar = Arc::pin_init(
+ pdev.iomap_region_sized::<BAR0_SIZE>(0, c_str!("nova-core/bar0")),
+ GFP_KERNEL,
+ )?;
let this = KBox::pin_init(
try_pin_init!(Self {
@@ -42,7 +45,7 @@ impl pci::Driver for NovaCore {
_reg: auxiliary::Registration::new(
pdev.as_ref(),
c_str!("nova-drm"),
- 0, // TODO: Once it lands, use XArray; for now we don't use the ID.
+ 0, // TODO[XARR]: Once it lands, use XArray; for now we don't use the ID.
crate::MODULE_NAME
)?,
}),
diff --git a/drivers/gpu/nova-core/falcon.rs b/drivers/gpu/nova-core/falcon.rs
new file mode 100644
index 000000000000..50437c67c14a
--- /dev/null
+++ b/drivers/gpu/nova-core/falcon.rs
@@ -0,0 +1,588 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Falcon microprocessor base support
+
+use core::ops::Deref;
+use hal::FalconHal;
+use kernel::bindings;
+use kernel::device;
+use kernel::prelude::*;
+use kernel::time::Delta;
+use kernel::types::ARef;
+
+use crate::dma::DmaObject;
+use crate::driver::Bar0;
+use crate::gpu::Chipset;
+use crate::regs;
+use crate::util;
+
+pub(crate) mod gsp;
+mod hal;
+pub(crate) mod sec2;
+
+// TODO[FPRI]: Replace with `ToPrimitive`.
+macro_rules! impl_from_enum_to_u32 {
+ ($enum_type:ty) => {
+ impl From<$enum_type> for u32 {
+ fn from(value: $enum_type) -> Self {
+ value as u32
+ }
+ }
+ };
+}
+
+/// Revision number of a falcon core, used in the [`crate::regs::NV_PFALCON_FALCON_HWCFG1`]
+/// register.
+#[repr(u8)]
+#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
+pub(crate) enum FalconCoreRev {
+ #[default]
+ Rev1 = 1,
+ Rev2 = 2,
+ Rev3 = 3,
+ Rev4 = 4,
+ Rev5 = 5,
+ Rev6 = 6,
+ Rev7 = 7,
+}
+impl_from_enum_to_u32!(FalconCoreRev);
+
+// TODO[FPRI]: replace with `FromPrimitive`.
+impl TryFrom<u8> for FalconCoreRev {
+ type Error = Error;
+
+ fn try_from(value: u8) -> Result<Self> {
+ use FalconCoreRev::*;
+
+ let rev = match value {
+ 1 => Rev1,
+ 2 => Rev2,
+ 3 => Rev3,
+ 4 => Rev4,
+ 5 => Rev5,
+ 6 => Rev6,
+ 7 => Rev7,
+ _ => return Err(EINVAL),
+ };
+
+ Ok(rev)
+ }
+}
+
+/// Revision subversion number of a falcon core, used in the
+/// [`crate::regs::NV_PFALCON_FALCON_HWCFG1`] register.
+#[repr(u8)]
+#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
+pub(crate) enum FalconCoreRevSubversion {
+ #[default]
+ Subversion0 = 0,
+ Subversion1 = 1,
+ Subversion2 = 2,
+ Subversion3 = 3,
+}
+impl_from_enum_to_u32!(FalconCoreRevSubversion);
+
+// TODO[FPRI]: replace with `FromPrimitive`.
+impl TryFrom<u8> for FalconCoreRevSubversion {
+ type Error = Error;
+
+ fn try_from(value: u8) -> Result<Self> {
+ use FalconCoreRevSubversion::*;
+
+ let sub_version = match value & 0b11 {
+ 0 => Subversion0,
+ 1 => Subversion1,
+ 2 => Subversion2,
+ 3 => Subversion3,
+ _ => return Err(EINVAL),
+ };
+
+ Ok(sub_version)
+ }
+}
+
+/// Security model of a falcon core, used in the [`crate::regs::NV_PFALCON_FALCON_HWCFG1`]
+/// register.
+#[repr(u8)]
+#[derive(Debug, Default, Copy, Clone)]
+/// Security mode of the Falcon microprocessor.
+///
+/// See `falcon.rst` for more details.
+pub(crate) enum FalconSecurityModel {
+ /// Non-Secure: runs unsigned code without privileges.
+ #[default]
+ None = 0,
+ /// Light-Secured (LS): Runs signed code with some privileges.
+ /// Entry into this mode is only possible from 'Heavy-secure' mode, which verifies the code's
+ /// signature.
+ ///
+ /// Also known as Low-Secure, Privilege Level 2 or PL2.
+ Light = 2,
+ /// Heavy-Secured (HS): Runs signed code with full privileges.
+ /// The code's signature is verified by the Falcon Boot ROM (BROM).
+ ///
+ /// Also known as High-Secure, Privilege Level 3 or PL3.
+ Heavy = 3,
+}
+impl_from_enum_to_u32!(FalconSecurityModel);
+
+// TODO[FPRI]: replace with `FromPrimitive`.
+impl TryFrom<u8> for FalconSecurityModel {
+ type Error = Error;
+
+ fn try_from(value: u8) -> Result<Self> {
+ use FalconSecurityModel::*;
+
+ let sec_model = match value {
+ 0 => None,
+ 2 => Light,
+ 3 => Heavy,
+ _ => return Err(EINVAL),
+ };
+
+ Ok(sec_model)
+ }
+}
+
+/// Signing algorithm for a given firmware, used in the [`crate::regs::NV_PFALCON2_FALCON_MOD_SEL`]
+/// register. It is passed to the Falcon Boot ROM (BROM) as a parameter.
+#[repr(u8)]
+#[derive(Debug, Default, Copy, Clone, PartialEq, Eq)]
+pub(crate) enum FalconModSelAlgo {
+ /// AES.
+ #[expect(dead_code)]
+ Aes = 0,
+ /// RSA3K.
+ #[default]
+ Rsa3k = 1,
+}
+impl_from_enum_to_u32!(FalconModSelAlgo);
+
+// TODO[FPRI]: replace with `FromPrimitive`.
+impl TryFrom<u8> for FalconModSelAlgo {
+ type Error = Error;
+
+ fn try_from(value: u8) -> Result<Self> {
+ match value {
+ 1 => Ok(FalconModSelAlgo::Rsa3k),
+ _ => Err(EINVAL),
+ }
+ }
+}
+
+/// Valid values for the `size` field of the [`crate::regs::NV_PFALCON_FALCON_DMATRFCMD`] register.
+#[repr(u8)]
+#[derive(Debug, Default, Copy, Clone, PartialEq, Eq)]
+pub(crate) enum DmaTrfCmdSize {
+ /// 256 bytes transfer.
+ #[default]
+ Size256B = 0x6,
+}
+impl_from_enum_to_u32!(DmaTrfCmdSize);
+
+// TODO[FPRI]: replace with `FromPrimitive`.
+impl TryFrom<u8> for DmaTrfCmdSize {
+ type Error = Error;
+
+ fn try_from(value: u8) -> Result<Self> {
+ match value {
+ 0x6 => Ok(Self::Size256B),
+ _ => Err(EINVAL),
+ }
+ }
+}
+
+/// Currently active core on a dual falcon/riscv (Peregrine) controller.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
+pub(crate) enum PeregrineCoreSelect {
+ /// Falcon core is active.
+ #[default]
+ Falcon = 0,
+ /// RISC-V core is active.
+ Riscv = 1,
+}
+impl_from_enum_to_u32!(PeregrineCoreSelect);
+
+impl From<bool> for PeregrineCoreSelect {
+ fn from(value: bool) -> Self {
+ match value {
+ false => PeregrineCoreSelect::Falcon,
+ true => PeregrineCoreSelect::Riscv,
+ }
+ }
+}
+
+/// Different types of memory present in a falcon core.
+#[derive(Debug, Clone, Copy, PartialEq, Eq)]
+pub(crate) enum FalconMem {
+ /// Instruction Memory.
+ Imem,
+ /// Data Memory.
+ Dmem,
+}
+
+/// Defines the Framebuffer Interface (FBIF) aperture type.
+/// This determines the memory type for external memory access during a DMA transfer, which is
+/// performed by the Falcon's Framebuffer DMA (FBDMA) engine. See falcon.rst for more details.
+#[derive(Debug, Clone, Default)]
+pub(crate) enum FalconFbifTarget {
+ /// VRAM.
+ #[default]
+ /// Local Framebuffer (GPU's VRAM memory).
+ LocalFb = 0,
+ /// Coherent system memory (System DRAM).
+ CoherentSysmem = 1,
+ /// Non-coherent system memory (System DRAM).
+ NoncoherentSysmem = 2,
+}
+impl_from_enum_to_u32!(FalconFbifTarget);
+
+// TODO[FPRI]: replace with `FromPrimitive`.
+impl TryFrom<u8> for FalconFbifTarget {
+ type Error = Error;
+
+ fn try_from(value: u8) -> Result<Self> {
+ let res = match value {
+ 0 => Self::LocalFb,
+ 1 => Self::CoherentSysmem,
+ 2 => Self::NoncoherentSysmem,
+ _ => return Err(EINVAL),
+ };
+
+ Ok(res)
+ }
+}
+
+/// Type of memory addresses to use.
+#[derive(Debug, Clone, Default)]
+pub(crate) enum FalconFbifMemType {
+ /// Virtual memory addresses.
+ #[default]
+ Virtual = 0,
+ /// Physical memory addresses.
+ Physical = 1,
+}
+impl_from_enum_to_u32!(FalconFbifMemType);
+
+/// Conversion from a single-bit register field.
+impl From<bool> for FalconFbifMemType {
+ fn from(value: bool) -> Self {
+ match value {
+ false => Self::Virtual,
+ true => Self::Physical,
+ }
+ }
+}
+
+/// Trait defining the parameters of a given Falcon instance.
+pub(crate) trait FalconEngine: Sync {
+ /// Base I/O address for the falcon, relative from which its registers are accessed.
+ const BASE: usize;
+}
+
+/// Represents a portion of the firmware to be loaded into a particular memory (e.g. IMEM or DMEM).
+#[derive(Debug)]
+pub(crate) struct FalconLoadTarget {
+ /// Offset from the start of the source object to copy from.
+ pub(crate) src_start: u32,
+ /// Offset from the start of the destination memory to copy into.
+ pub(crate) dst_start: u32,
+ /// Number of bytes to copy.
+ pub(crate) len: u32,
+}
+
+/// Parameters for the falcon boot ROM.
+#[derive(Debug)]
+pub(crate) struct FalconBromParams {
+ /// Offset in `DMEM`` of the firmware's signature.
+ pub(crate) pkc_data_offset: u32,
+ /// Mask of engines valid for this firmware.
+ pub(crate) engine_id_mask: u16,
+ /// ID of the ucode used to infer a fuse register to validate the signature.
+ pub(crate) ucode_id: u8,
+}
+
+/// Trait for providing load parameters of falcon firmwares.
+pub(crate) trait FalconLoadParams {
+ /// Returns the load parameters for `IMEM`.
+ fn imem_load_params(&self) -> FalconLoadTarget;
+
+ /// Returns the load parameters for `DMEM`.
+ fn dmem_load_params(&self) -> FalconLoadTarget;
+
+ /// Returns the parameters to write into the BROM registers.
+ fn brom_params(&self) -> FalconBromParams;
+
+ /// Returns the start address of the firmware.
+ fn boot_addr(&self) -> u32;
+}
+
+/// Trait for a falcon firmware.
+///
+/// A falcon firmware can be loaded on a given engine, and is presented in the form of a DMA
+/// object.
+pub(crate) trait FalconFirmware: FalconLoadParams + Deref<Target = DmaObject> {
+ /// Engine on which this firmware is to be loaded.
+ type Target: FalconEngine;
+}
+
+/// Contains the base parameters common to all Falcon instances.
+pub(crate) struct Falcon<E: FalconEngine> {
+ hal: KBox<dyn FalconHal<E>>,
+ dev: ARef<device::Device>,
+}
+
+impl<E: FalconEngine + 'static> Falcon<E> {
+ /// Create a new falcon instance.
+ ///
+ /// `need_riscv` is set to `true` if the caller expects the falcon to be a dual falcon/riscv
+ /// controller.
+ pub(crate) fn new(
+ dev: &device::Device,
+ chipset: Chipset,
+ bar: &Bar0,
+ need_riscv: bool,
+ ) -> Result<Self> {
+ let hwcfg1 = regs::NV_PFALCON_FALCON_HWCFG1::read(bar, E::BASE);
+ // Check that the revision and security model contain valid values.
+ let _ = hwcfg1.core_rev()?;
+ let _ = hwcfg1.security_model()?;
+
+ if need_riscv {
+ let hwcfg2 = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE);
+ if !hwcfg2.riscv() {
+ dev_err!(
+ dev,
+ "riscv support requested on a controller that does not support it\n"
+ );
+ return Err(EINVAL);
+ }
+ }
+
+ Ok(Self {
+ hal: hal::falcon_hal(chipset)?,
+ dev: dev.into(),
+ })
+ }
+
+ /// Wait for memory scrubbing to complete.
+ fn reset_wait_mem_scrubbing(&self, bar: &Bar0) -> Result {
+ // TIMEOUT: memory scrubbing should complete in less than 20ms.
+ util::wait_on(Delta::from_millis(20), || {
+ if regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE).mem_scrubbing_done() {
+ Some(())
+ } else {
+ None
+ }
+ })
+ }
+
+ /// Reset the falcon engine.
+ fn reset_eng(&self, bar: &Bar0) -> Result {
+ let _ = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE);
+
+ // According to OpenRM's `kflcnPreResetWait_GA102` documentation, HW sometimes does not set
+ // RESET_READY so a non-failing timeout is used.
+ let _ = util::wait_on(Delta::from_micros(150), || {
+ let r = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE);
+ if r.reset_ready() {
+ Some(())
+ } else {
+ None
+ }
+ });
+
+ regs::NV_PFALCON_FALCON_ENGINE::alter(bar, E::BASE, |v| v.set_reset(true));
+
+ // TODO[DLAY]: replace with udelay() or equivalent once available.
+ // TIMEOUT: falcon engine should not take more than 10us to reset.
+ let _: Result = util::wait_on(Delta::from_micros(10), || None);
+
+ regs::NV_PFALCON_FALCON_ENGINE::alter(bar, E::BASE, |v| v.set_reset(false));
+
+ self.reset_wait_mem_scrubbing(bar)?;
+
+ Ok(())
+ }
+
+ /// Reset the controller, select the falcon core, and wait for memory scrubbing to complete.
+ pub(crate) fn reset(&self, bar: &Bar0) -> Result {
+ self.reset_eng(bar)?;
+ self.hal.select_core(self, bar)?;
+ self.reset_wait_mem_scrubbing(bar)?;
+
+ regs::NV_PFALCON_FALCON_RM::default()
+ .set_value(regs::NV_PMC_BOOT_0::read(bar).into())
+ .write(bar, E::BASE);
+
+ Ok(())
+ }
+
+ /// Perform a DMA write according to `load_offsets` from `dma_handle` into the falcon's
+ /// `target_mem`.
+ ///
+ /// `sec` is set if the loaded firmware is expected to run in secure mode.
+ fn dma_wr<F: FalconFirmware<Target = E>>(
+ &self,
+ bar: &Bar0,
+ fw: &F,
+ target_mem: FalconMem,
+ load_offsets: FalconLoadTarget,
+ sec: bool,
+ ) -> Result {
+ const DMA_LEN: u32 = 256;
+
+ // For IMEM, we want to use the start offset as a virtual address tag for each page, since
+ // code addresses in the firmware (and the boot vector) are virtual.
+ //
+ // For DMEM we can fold the start offset into the DMA handle.
+ let (src_start, dma_start) = match target_mem {
+ FalconMem::Imem => (load_offsets.src_start, fw.dma_handle()),
+ FalconMem::Dmem => (
+ 0,
+ fw.dma_handle_with_offset(load_offsets.src_start as usize)?,
+ ),
+ };
+ if dma_start % bindings::dma_addr_t::from(DMA_LEN) > 0 {
+ dev_err!(
+ self.dev,
+ "DMA transfer start addresses must be a multiple of {}",
+ DMA_LEN
+ );
+ return Err(EINVAL);
+ }
+ if load_offsets.len % DMA_LEN > 0 {
+ dev_err!(
+ self.dev,
+ "DMA transfer length must be a multiple of {}",
+ DMA_LEN
+ );
+ return Err(EINVAL);
+ }
+
+ // Set up the base source DMA address.
+
+ regs::NV_PFALCON_FALCON_DMATRFBASE::default()
+ .set_base((dma_start >> 8) as u32)
+ .write(bar, E::BASE);
+ regs::NV_PFALCON_FALCON_DMATRFBASE1::default()
+ .set_base((dma_start >> 40) as u16)
+ .write(bar, E::BASE);
+
+ let cmd = regs::NV_PFALCON_FALCON_DMATRFCMD::default()
+ .set_size(DmaTrfCmdSize::Size256B)
+ .set_imem(target_mem == FalconMem::Imem)
+ .set_sec(if sec { 1 } else { 0 });
+
+ for pos in (0..load_offsets.len).step_by(DMA_LEN as usize) {
+ // Perform a transfer of size `DMA_LEN`.
+ regs::NV_PFALCON_FALCON_DMATRFMOFFS::default()
+ .set_offs(load_offsets.dst_start + pos)
+ .write(bar, E::BASE);
+ regs::NV_PFALCON_FALCON_DMATRFFBOFFS::default()
+ .set_offs(src_start + pos)
+ .write(bar, E::BASE);
+ cmd.write(bar, E::BASE);
+
+ // Wait for the transfer to complete.
+ // TIMEOUT: arbitrarily large value, no DMA transfer to the falcon's small memories
+ // should ever take that long.
+ util::wait_on(Delta::from_secs(2), || {
+ let r = regs::NV_PFALCON_FALCON_DMATRFCMD::read(bar, E::BASE);
+ if r.idle() {
+ Some(())
+ } else {
+ None
+ }
+ })?;
+ }
+
+ Ok(())
+ }
+
+ /// Perform a DMA load into `IMEM` and `DMEM` of `fw`, and prepare the falcon to run it.
+ pub(crate) fn dma_load<F: FalconFirmware<Target = E>>(&self, bar: &Bar0, fw: &F) -> Result {
+ regs::NV_PFALCON_FBIF_CTL::alter(bar, E::BASE, |v| v.set_allow_phys_no_ctx(true));
+ regs::NV_PFALCON_FALCON_DMACTL::default().write(bar, E::BASE);
+ regs::NV_PFALCON_FBIF_TRANSCFG::alter(bar, E::BASE, |v| {
+ v.set_target(FalconFbifTarget::CoherentSysmem)
+ .set_mem_type(FalconFbifMemType::Physical)
+ });
+
+ self.dma_wr(bar, fw, FalconMem::Imem, fw.imem_load_params(), true)?;
+ self.dma_wr(bar, fw, FalconMem::Dmem, fw.dmem_load_params(), true)?;
+
+ self.hal.program_brom(self, bar, &fw.brom_params())?;
+
+ // Set `BootVec` to start of non-secure code.
+ regs::NV_PFALCON_FALCON_BOOTVEC::default()
+ .set_value(fw.boot_addr())
+ .write(bar, E::BASE);
+
+ Ok(())
+ }
+
+ /// Runs the loaded firmware and waits for its completion.
+ ///
+ /// `mbox0` and `mbox1` are optional parameters to write into the `MBOX0` and `MBOX1` registers
+ /// prior to running.
+ ///
+ /// Wait up to two seconds for the firmware to complete, and return its exit status read from
+ /// the `MBOX0` and `MBOX1` registers.
+ pub(crate) fn boot(
+ &self,
+ bar: &Bar0,
+ mbox0: Option<u32>,
+ mbox1: Option<u32>,
+ ) -> Result<(u32, u32)> {
+ if let Some(mbox0) = mbox0 {
+ regs::NV_PFALCON_FALCON_MAILBOX0::default()
+ .set_value(mbox0)
+ .write(bar, E::BASE);
+ }
+
+ if let Some(mbox1) = mbox1 {
+ regs::NV_PFALCON_FALCON_MAILBOX1::default()
+ .set_value(mbox1)
+ .write(bar, E::BASE);
+ }
+
+ match regs::NV_PFALCON_FALCON_CPUCTL::read(bar, E::BASE).alias_en() {
+ true => regs::NV_PFALCON_FALCON_CPUCTL_ALIAS::default()
+ .set_startcpu(true)
+ .write(bar, E::BASE),
+ false => regs::NV_PFALCON_FALCON_CPUCTL::default()
+ .set_startcpu(true)
+ .write(bar, E::BASE),
+ }
+
+ // TIMEOUT: arbitrarily large value, firmwares should complete in less than 2 seconds.
+ util::wait_on(Delta::from_secs(2), || {
+ let r = regs::NV_PFALCON_FALCON_CPUCTL::read(bar, E::BASE);
+ if r.halted() {
+ Some(())
+ } else {
+ None
+ }
+ })?;
+
+ let (mbox0, mbox1) = (
+ regs::NV_PFALCON_FALCON_MAILBOX0::read(bar, E::BASE).value(),
+ regs::NV_PFALCON_FALCON_MAILBOX1::read(bar, E::BASE).value(),
+ );
+
+ Ok((mbox0, mbox1))
+ }
+
+ /// Returns the fused version of the signature to use in order to run a HS firmware on this
+ /// falcon instance. `engine_id_mask` and `ucode_id` are obtained from the firmware header.
+ pub(crate) fn signature_reg_fuse_version(
+ &self,
+ bar: &Bar0,
+ engine_id_mask: u16,
+ ucode_id: u8,
+ ) -> Result<u32> {
+ self.hal
+ .signature_reg_fuse_version(self, bar, engine_id_mask, ucode_id)
+ }
+}
diff --git a/drivers/gpu/nova-core/falcon/gsp.rs b/drivers/gpu/nova-core/falcon/gsp.rs
new file mode 100644
index 000000000000..d622e9a64470
--- /dev/null
+++ b/drivers/gpu/nova-core/falcon/gsp.rs
@@ -0,0 +1,24 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use crate::{
+ driver::Bar0,
+ falcon::{Falcon, FalconEngine},
+ regs,
+};
+
+/// Type specifying the `Gsp` falcon engine. Cannot be instantiated.
+pub(crate) struct Gsp(());
+
+impl FalconEngine for Gsp {
+ const BASE: usize = 0x00110000;
+}
+
+impl Falcon<Gsp> {
+ /// Clears the SWGEN0 bit in the Falcon's IRQ status clear register to
+ /// allow GSP to signal CPU for processing new messages in message queue.
+ pub(crate) fn clear_swgen0_intr(&self, bar: &Bar0) {
+ regs::NV_PFALCON_FALCON_IRQSCLR::default()
+ .set_swgen0(true)
+ .write(bar, Gsp::BASE);
+ }
+}
diff --git a/drivers/gpu/nova-core/falcon/hal.rs b/drivers/gpu/nova-core/falcon/hal.rs
new file mode 100644
index 000000000000..b233bc365882
--- /dev/null
+++ b/drivers/gpu/nova-core/falcon/hal.rs
@@ -0,0 +1,54 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use kernel::prelude::*;
+
+use crate::driver::Bar0;
+use crate::falcon::{Falcon, FalconBromParams, FalconEngine};
+use crate::gpu::Chipset;
+
+mod ga102;
+
+/// Hardware Abstraction Layer for Falcon cores.
+///
+/// Implements chipset-specific low-level operations. The trait is generic against [`FalconEngine`]
+/// so its `BASE` parameter can be used in order to avoid runtime bound checks when accessing
+/// registers.
+pub(crate) trait FalconHal<E: FalconEngine>: Sync {
+ /// Activates the Falcon core if the engine is a risvc/falcon dual engine.
+ fn select_core(&self, _falcon: &Falcon<E>, _bar: &Bar0) -> Result {
+ Ok(())
+ }
+
+ /// Returns the fused version of the signature to use in order to run a HS firmware on this
+ /// falcon instance. `engine_id_mask` and `ucode_id` are obtained from the firmware header.
+ fn signature_reg_fuse_version(
+ &self,
+ falcon: &Falcon<E>,
+ bar: &Bar0,
+ engine_id_mask: u16,
+ ucode_id: u8,
+ ) -> Result<u32>;
+
+ /// Program the boot ROM registers prior to starting a secure firmware.
+ fn program_brom(&self, falcon: &Falcon<E>, bar: &Bar0, params: &FalconBromParams) -> Result;
+}
+
+/// Returns a boxed falcon HAL adequate for `chipset`.
+///
+/// We use a heap-allocated trait object instead of a statically defined one because the
+/// generic `FalconEngine` argument makes it difficult to define all the combinations
+/// statically.
+pub(super) fn falcon_hal<E: FalconEngine + 'static>(
+ chipset: Chipset,
+) -> Result<KBox<dyn FalconHal<E>>> {
+ use Chipset::*;
+
+ let hal = match chipset {
+ GA102 | GA103 | GA104 | GA106 | GA107 => {
+ KBox::new(ga102::Ga102::<E>::new(), GFP_KERNEL)? as KBox<dyn FalconHal<E>>
+ }
+ _ => return Err(ENOTSUPP),
+ };
+
+ Ok(hal)
+}
diff --git a/drivers/gpu/nova-core/falcon/hal/ga102.rs b/drivers/gpu/nova-core/falcon/hal/ga102.rs
new file mode 100644
index 000000000000..52c33d3f22a8
--- /dev/null
+++ b/drivers/gpu/nova-core/falcon/hal/ga102.rs
@@ -0,0 +1,119 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use core::marker::PhantomData;
+
+use kernel::device;
+use kernel::prelude::*;
+use kernel::time::Delta;
+
+use crate::driver::Bar0;
+use crate::falcon::{
+ Falcon, FalconBromParams, FalconEngine, FalconModSelAlgo, PeregrineCoreSelect,
+};
+use crate::regs;
+use crate::util;
+
+use super::FalconHal;
+
+fn select_core_ga102<E: FalconEngine>(bar: &Bar0) -> Result {
+ let bcr_ctrl = regs::NV_PRISCV_RISCV_BCR_CTRL::read(bar, E::BASE);
+ if bcr_ctrl.core_select() != PeregrineCoreSelect::Falcon {
+ regs::NV_PRISCV_RISCV_BCR_CTRL::default()
+ .set_core_select(PeregrineCoreSelect::Falcon)
+ .write(bar, E::BASE);
+
+ // TIMEOUT: falcon core should take less than 10ms to report being enabled.
+ util::wait_on(Delta::from_millis(10), || {
+ let r = regs::NV_PRISCV_RISCV_BCR_CTRL::read(bar, E::BASE);
+ if r.valid() {
+ Some(())
+ } else {
+ None
+ }
+ })?;
+ }
+
+ Ok(())
+}
+
+fn signature_reg_fuse_version_ga102(
+ dev: &device::Device,
+ bar: &Bar0,
+ engine_id_mask: u16,
+ ucode_id: u8,
+) -> Result<u32> {
+ // TODO[REGA]: The ucode fuse versions are contained in the
+ // FUSE_OPT_FPF_<ENGINE>_UCODE<X>_VERSION registers, which are an array. Our register
+ // definition macros do not allow us to manage them properly, so we need to hardcode their
+ // addresses for now. Clean this up once we support register arrays.
+
+ // Each engine has 16 ucode version registers numbered from 1 to 16.
+ if ucode_id == 0 || ucode_id > 16 {
+ dev_err!(dev, "invalid ucode id {:#x}", ucode_id);
+ return Err(EINVAL);
+ }
+
+ // Base address of the FUSE registers array corresponding to the engine.
+ let reg_fuse_base = if engine_id_mask & 0x0001 != 0 {
+ regs::NV_FUSE_OPT_FPF_SEC2_UCODE1_VERSION::OFFSET
+ } else if engine_id_mask & 0x0004 != 0 {
+ regs::NV_FUSE_OPT_FPF_NVDEC_UCODE1_VERSION::OFFSET
+ } else if engine_id_mask & 0x0400 != 0 {
+ regs::NV_FUSE_OPT_FPF_GSP_UCODE1_VERSION::OFFSET
+ } else {
+ dev_err!(dev, "unexpected engine_id_mask {:#x}", engine_id_mask);
+ return Err(EINVAL);
+ };
+
+ // Read `reg_fuse_base[ucode_id - 1]`.
+ let reg_fuse_version =
+ bar.read32(reg_fuse_base + ((ucode_id - 1) as usize * core::mem::size_of::<u32>()));
+
+ // TODO[NUMM]: replace with `last_set_bit` once it lands.
+ Ok(u32::BITS - reg_fuse_version.leading_zeros())
+}
+
+fn program_brom_ga102<E: FalconEngine>(bar: &Bar0, params: &FalconBromParams) -> Result {
+ regs::NV_PFALCON2_FALCON_BROM_PARAADDR::default()
+ .set_value(params.pkc_data_offset)
+ .write(bar, E::BASE);
+ regs::NV_PFALCON2_FALCON_BROM_ENGIDMASK::default()
+ .set_value(u32::from(params.engine_id_mask))
+ .write(bar, E::BASE);
+ regs::NV_PFALCON2_FALCON_BROM_CURR_UCODE_ID::default()
+ .set_ucode_id(params.ucode_id)
+ .write(bar, E::BASE);
+ regs::NV_PFALCON2_FALCON_MOD_SEL::default()
+ .set_algo(FalconModSelAlgo::Rsa3k)
+ .write(bar, E::BASE);
+
+ Ok(())
+}
+
+pub(super) struct Ga102<E: FalconEngine>(PhantomData<E>);
+
+impl<E: FalconEngine> Ga102<E> {
+ pub(super) fn new() -> Self {
+ Self(PhantomData)
+ }
+}
+
+impl<E: FalconEngine> FalconHal<E> for Ga102<E> {
+ fn select_core(&self, _falcon: &Falcon<E>, bar: &Bar0) -> Result {
+ select_core_ga102::<E>(bar)
+ }
+
+ fn signature_reg_fuse_version(
+ &self,
+ falcon: &Falcon<E>,
+ bar: &Bar0,
+ engine_id_mask: u16,
+ ucode_id: u8,
+ ) -> Result<u32> {
+ signature_reg_fuse_version_ga102(&falcon.dev, bar, engine_id_mask, ucode_id)
+ }
+
+ fn program_brom(&self, _falcon: &Falcon<E>, bar: &Bar0, params: &FalconBromParams) -> Result {
+ program_brom_ga102::<E>(bar, params)
+ }
+}
diff --git a/drivers/gpu/nova-core/falcon/sec2.rs b/drivers/gpu/nova-core/falcon/sec2.rs
new file mode 100644
index 000000000000..5147d9e2a7fe
--- /dev/null
+++ b/drivers/gpu/nova-core/falcon/sec2.rs
@@ -0,0 +1,10 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use crate::falcon::FalconEngine;
+
+/// Type specifying the `Sec2` falcon engine. Cannot be instantiated.
+pub(crate) struct Sec2(());
+
+impl FalconEngine for Sec2 {
+ const BASE: usize = 0x00840000;
+}
diff --git a/drivers/gpu/nova-core/fb.rs b/drivers/gpu/nova-core/fb.rs
new file mode 100644
index 000000000000..4a702525fff4
--- /dev/null
+++ b/drivers/gpu/nova-core/fb.rs
@@ -0,0 +1,147 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use core::ops::Range;
+
+use kernel::prelude::*;
+use kernel::sizes::*;
+use kernel::types::ARef;
+use kernel::{dev_warn, device};
+
+use crate::dma::DmaObject;
+use crate::driver::Bar0;
+use crate::gpu::Chipset;
+use crate::regs;
+
+mod hal;
+
+/// Type holding the sysmem flush memory page, a page of memory to be written into the
+/// `NV_PFB_NISO_FLUSH_SYSMEM_ADDR*` registers and used to maintain memory coherency.
+///
+/// A system memory page is required for `sysmembar`, which is a GPU-initiated hardware
+/// memory-barrier operation that flushes all pending GPU-side memory writes that were done through
+/// PCIE to system memory. It is required for falcons to be reset as the reset operation involves a
+/// reset handshake. When the falcon acknowledges a reset, it writes into system memory. To ensure
+/// this write is visible to the host and prevent driver timeouts, the falcon must perform a
+/// sysmembar operation to flush its writes.
+///
+/// Because of this, the sysmem flush memory page must be registered as early as possible during
+/// driver initialization, and before any falcon is reset.
+///
+/// Users are responsible for manually calling [`Self::unregister`] before dropping this object,
+/// otherwise the GPU might still use it even after it has been freed.
+pub(crate) struct SysmemFlush {
+ /// Chipset we are operating on.
+ chipset: Chipset,
+ device: ARef<device::Device>,
+ /// Keep the page alive as long as we need it.
+ page: DmaObject,
+}
+
+impl SysmemFlush {
+ /// Allocate a memory page and register it as the sysmem flush page.
+ pub(crate) fn register(
+ dev: &device::Device<device::Bound>,
+ bar: &Bar0,
+ chipset: Chipset,
+ ) -> Result<Self> {
+ let page = DmaObject::new(dev, kernel::page::PAGE_SIZE)?;
+
+ hal::fb_hal(chipset).write_sysmem_flush_page(bar, page.dma_handle())?;
+
+ Ok(Self {
+ chipset,
+ device: dev.into(),
+ page,
+ })
+ }
+
+ /// Unregister the managed sysmem flush page.
+ ///
+ /// In order to gracefully tear down the GPU, users must make sure to call this method before
+ /// dropping the object.
+ pub(crate) fn unregister(&self, bar: &Bar0) {
+ let hal = hal::fb_hal(self.chipset);
+
+ if hal.read_sysmem_flush_page(bar) == self.page.dma_handle() {
+ let _ = hal.write_sysmem_flush_page(bar, 0).inspect_err(|e| {
+ dev_warn!(
+ &self.device,
+ "failed to unregister sysmem flush page: {:?}",
+ e
+ )
+ });
+ } else {
+ // Another page has been registered after us for some reason - warn as this is a bug.
+ dev_warn!(
+ &self.device,
+ "attempt to unregister a sysmem flush page that is not active\n"
+ );
+ }
+ }
+}
+
+/// Layout of the GPU framebuffer memory.
+///
+/// Contains ranges of GPU memory reserved for a given purpose during the GSP boot process.
+#[derive(Debug)]
+#[expect(dead_code)]
+pub(crate) struct FbLayout {
+ pub(crate) fb: Range<u64>,
+ pub(crate) vga_workspace: Range<u64>,
+ pub(crate) frts: Range<u64>,
+}
+
+impl FbLayout {
+ /// Computes the FB layout.
+ pub(crate) fn new(chipset: Chipset, bar: &Bar0) -> Result<Self> {
+ let hal = hal::fb_hal(chipset);
+
+ let fb = {
+ let fb_size = hal.vidmem_size(bar);
+
+ 0..fb_size
+ };
+
+ let vga_workspace = {
+ let vga_base = {
+ const NV_PRAMIN_SIZE: u64 = SZ_1M as u64;
+ let base = fb.end - NV_PRAMIN_SIZE;
+
+ if hal.supports_display(bar) {
+ match regs::NV_PDISP_VGA_WORKSPACE_BASE::read(bar).vga_workspace_addr() {
+ Some(addr) => {
+ if addr < base {
+ const VBIOS_WORKSPACE_SIZE: u64 = SZ_128K as u64;
+
+ // Point workspace address to end of framebuffer.
+ fb.end - VBIOS_WORKSPACE_SIZE
+ } else {
+ addr
+ }
+ }
+ None => base,
+ }
+ } else {
+ base
+ }
+ };
+
+ vga_base..fb.end
+ };
+
+ let frts = {
+ const FRTS_DOWN_ALIGN: u64 = SZ_128K as u64;
+ const FRTS_SIZE: u64 = SZ_1M as u64;
+ // TODO[NUMM]: replace with `align_down` once it lands.
+ let frts_base = (vga_workspace.start & !(FRTS_DOWN_ALIGN - 1)) - FRTS_SIZE;
+
+ frts_base..frts_base + FRTS_SIZE
+ };
+
+ Ok(Self {
+ fb,
+ vga_workspace,
+ frts,
+ })
+ }
+}
diff --git a/drivers/gpu/nova-core/fb/hal.rs b/drivers/gpu/nova-core/fb/hal.rs
new file mode 100644
index 000000000000..2f914948bb9a
--- /dev/null
+++ b/drivers/gpu/nova-core/fb/hal.rs
@@ -0,0 +1,39 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use kernel::prelude::*;
+
+use crate::driver::Bar0;
+use crate::gpu::Chipset;
+
+mod ga100;
+mod ga102;
+mod tu102;
+
+pub(crate) trait FbHal {
+ /// Returns the address of the currently-registered sysmem flush page.
+ fn read_sysmem_flush_page(&self, bar: &Bar0) -> u64;
+
+ /// Register `addr` as the address of the sysmem flush page.
+ ///
+ /// This might fail if the address is too large for the receiving register.
+ fn write_sysmem_flush_page(&self, bar: &Bar0, addr: u64) -> Result;
+
+ /// Returns `true` is display is supported.
+ fn supports_display(&self, bar: &Bar0) -> bool;
+
+ /// Returns the VRAM size, in bytes.
+ fn vidmem_size(&self, bar: &Bar0) -> u64;
+}
+
+/// Returns the HAL corresponding to `chipset`.
+pub(super) fn fb_hal(chipset: Chipset) -> &'static dyn FbHal {
+ use Chipset::*;
+
+ match chipset {
+ TU102 | TU104 | TU106 | TU117 | TU116 => tu102::TU102_HAL,
+ GA100 => ga100::GA100_HAL,
+ GA102 | GA103 | GA104 | GA106 | GA107 | AD102 | AD103 | AD104 | AD106 | AD107 => {
+ ga102::GA102_HAL
+ }
+ }
+}
diff --git a/drivers/gpu/nova-core/fb/hal/ga100.rs b/drivers/gpu/nova-core/fb/hal/ga100.rs
new file mode 100644
index 000000000000..871c42bf033a
--- /dev/null
+++ b/drivers/gpu/nova-core/fb/hal/ga100.rs
@@ -0,0 +1,57 @@
+// SPDX-License-Identifier: GPL-2.0
+
+struct Ga100;
+
+use kernel::prelude::*;
+
+use crate::driver::Bar0;
+use crate::fb::hal::FbHal;
+use crate::regs;
+
+use super::tu102::FLUSH_SYSMEM_ADDR_SHIFT;
+
+pub(super) fn read_sysmem_flush_page_ga100(bar: &Bar0) -> u64 {
+ u64::from(regs::NV_PFB_NISO_FLUSH_SYSMEM_ADDR::read(bar).adr_39_08()) << FLUSH_SYSMEM_ADDR_SHIFT
+ | u64::from(regs::NV_PFB_NISO_FLUSH_SYSMEM_ADDR_HI::read(bar).adr_63_40())
+ << FLUSH_SYSMEM_ADDR_SHIFT_HI
+}
+
+pub(super) fn write_sysmem_flush_page_ga100(bar: &Bar0, addr: u64) {
+ regs::NV_PFB_NISO_FLUSH_SYSMEM_ADDR_HI::default()
+ .set_adr_63_40((addr >> FLUSH_SYSMEM_ADDR_SHIFT_HI) as u32)
+ .write(bar);
+ regs::NV_PFB_NISO_FLUSH_SYSMEM_ADDR::default()
+ .set_adr_39_08((addr >> FLUSH_SYSMEM_ADDR_SHIFT) as u32)
+ .write(bar);
+}
+
+pub(super) fn display_enabled_ga100(bar: &Bar0) -> bool {
+ !regs::ga100::NV_FUSE_STATUS_OPT_DISPLAY::read(bar).display_disabled()
+}
+
+/// Shift applied to the sysmem address before it is written into
+/// `NV_PFB_NISO_FLUSH_SYSMEM_ADDR_HI`,
+const FLUSH_SYSMEM_ADDR_SHIFT_HI: u32 = 40;
+
+impl FbHal for Ga100 {
+ fn read_sysmem_flush_page(&self, bar: &Bar0) -> u64 {
+ read_sysmem_flush_page_ga100(bar)
+ }
+
+ fn write_sysmem_flush_page(&self, bar: &Bar0, addr: u64) -> Result {
+ write_sysmem_flush_page_ga100(bar, addr);
+
+ Ok(())
+ }
+
+ fn supports_display(&self, bar: &Bar0) -> bool {
+ display_enabled_ga100(bar)
+ }
+
+ fn vidmem_size(&self, bar: &Bar0) -> u64 {
+ super::tu102::vidmem_size_gp102(bar)
+ }
+}
+
+const GA100: Ga100 = Ga100;
+pub(super) const GA100_HAL: &dyn FbHal = &GA100;
diff --git a/drivers/gpu/nova-core/fb/hal/ga102.rs b/drivers/gpu/nova-core/fb/hal/ga102.rs
new file mode 100644
index 000000000000..a73b77e39715
--- /dev/null
+++ b/drivers/gpu/nova-core/fb/hal/ga102.rs
@@ -0,0 +1,36 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use kernel::prelude::*;
+
+use crate::driver::Bar0;
+use crate::fb::hal::FbHal;
+use crate::regs;
+
+fn vidmem_size_ga102(bar: &Bar0) -> u64 {
+ regs::NV_USABLE_FB_SIZE_IN_MB::read(bar).usable_fb_size()
+}
+
+struct Ga102;
+
+impl FbHal for Ga102 {
+ fn read_sysmem_flush_page(&self, bar: &Bar0) -> u64 {
+ super::ga100::read_sysmem_flush_page_ga100(bar)
+ }
+
+ fn write_sysmem_flush_page(&self, bar: &Bar0, addr: u64) -> Result {
+ super::ga100::write_sysmem_flush_page_ga100(bar, addr);
+
+ Ok(())
+ }
+
+ fn supports_display(&self, bar: &Bar0) -> bool {
+ super::ga100::display_enabled_ga100(bar)
+ }
+
+ fn vidmem_size(&self, bar: &Bar0) -> u64 {
+ vidmem_size_ga102(bar)
+ }
+}
+
+const GA102: Ga102 = Ga102;
+pub(super) const GA102_HAL: &dyn FbHal = &GA102;
diff --git a/drivers/gpu/nova-core/fb/hal/tu102.rs b/drivers/gpu/nova-core/fb/hal/tu102.rs
new file mode 100644
index 000000000000..b022c781caf4
--- /dev/null
+++ b/drivers/gpu/nova-core/fb/hal/tu102.rs
@@ -0,0 +1,58 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use crate::driver::Bar0;
+use crate::fb::hal::FbHal;
+use crate::regs;
+use kernel::prelude::*;
+
+/// Shift applied to the sysmem address before it is written into `NV_PFB_NISO_FLUSH_SYSMEM_ADDR`,
+/// to be used by HALs.
+pub(super) const FLUSH_SYSMEM_ADDR_SHIFT: u32 = 8;
+
+pub(super) fn read_sysmem_flush_page_gm107(bar: &Bar0) -> u64 {
+ u64::from(regs::NV_PFB_NISO_FLUSH_SYSMEM_ADDR::read(bar).adr_39_08()) << FLUSH_SYSMEM_ADDR_SHIFT
+}
+
+pub(super) fn write_sysmem_flush_page_gm107(bar: &Bar0, addr: u64) -> Result {
+ // Check that the address doesn't overflow the receiving 32-bit register.
+ if addr >> (u32::BITS + FLUSH_SYSMEM_ADDR_SHIFT) == 0 {
+ regs::NV_PFB_NISO_FLUSH_SYSMEM_ADDR::default()
+ .set_adr_39_08((addr >> FLUSH_SYSMEM_ADDR_SHIFT) as u32)
+ .write(bar);
+
+ Ok(())
+ } else {
+ Err(EINVAL)
+ }
+}
+
+pub(super) fn display_enabled_gm107(bar: &Bar0) -> bool {
+ !regs::gm107::NV_FUSE_STATUS_OPT_DISPLAY::read(bar).display_disabled()
+}
+
+pub(super) fn vidmem_size_gp102(bar: &Bar0) -> u64 {
+ regs::NV_PFB_PRI_MMU_LOCAL_MEMORY_RANGE::read(bar).usable_fb_size()
+}
+
+struct Tu102;
+
+impl FbHal for Tu102 {
+ fn read_sysmem_flush_page(&self, bar: &Bar0) -> u64 {
+ read_sysmem_flush_page_gm107(bar)
+ }
+
+ fn write_sysmem_flush_page(&self, bar: &Bar0, addr: u64) -> Result {
+ write_sysmem_flush_page_gm107(bar, addr)
+ }
+
+ fn supports_display(&self, bar: &Bar0) -> bool {
+ display_enabled_gm107(bar)
+ }
+
+ fn vidmem_size(&self, bar: &Bar0) -> u64 {
+ vidmem_size_gp102(bar)
+ }
+}
+
+const TU102: Tu102 = Tu102;
+pub(super) const TU102_HAL: &dyn FbHal = &TU102;
diff --git a/drivers/gpu/nova-core/firmware.rs b/drivers/gpu/nova-core/firmware.rs
index 4b8a38358a4f..0fdece652587 100644
--- a/drivers/gpu/nova-core/firmware.rs
+++ b/drivers/gpu/nova-core/firmware.rs
@@ -3,14 +3,20 @@
//! Contains structures and functions dedicated to the parsing, building and patching of firmwares
//! to be loaded into a given execution unit.
+use core::marker::PhantomData;
+
use kernel::device;
use kernel::firmware;
use kernel::prelude::*;
use kernel::str::CString;
+use crate::dma::DmaObject;
+use crate::falcon::FalconFirmware;
use crate::gpu;
use crate::gpu::Chipset;
+pub(crate) mod fwsec;
+
pub(crate) const FIRMWARE_VERSION: &str = "535.113.01";
/// Structure encapsulating the firmware blobs required for the GPU to operate.
@@ -41,6 +47,108 @@ impl Firmware {
}
}
+/// Structure used to describe some firmwares, notably FWSEC-FRTS.
+#[repr(C)]
+#[derive(Debug, Clone)]
+pub(crate) struct FalconUCodeDescV3 {
+ /// Header defined by `NV_BIT_FALCON_UCODE_DESC_HEADER_VDESC*` in OpenRM.
+ hdr: u32,
+ /// Stored size of the ucode after the header.
+ stored_size: u32,
+ /// Offset in `DMEM` at which the signature is expected to be found.
+ pub(crate) pkc_data_offset: u32,
+ /// Offset after the code segment at which the app headers are located.
+ pub(crate) interface_offset: u32,
+ /// Base address at which to load the code segment into `IMEM`.
+ pub(crate) imem_phys_base: u32,
+ /// Size in bytes of the code to copy into `IMEM`.
+ pub(crate) imem_load_size: u32,
+ /// Virtual `IMEM` address (i.e. `tag`) at which the code should start.
+ pub(crate) imem_virt_base: u32,
+ /// Base address at which to load the data segment into `DMEM`.
+ pub(crate) dmem_phys_base: u32,
+ /// Size in bytes of the data to copy into `DMEM`.
+ pub(crate) dmem_load_size: u32,
+ /// Mask of the falcon engines on which this firmware can run.
+ pub(crate) engine_id_mask: u16,
+ /// ID of the ucode used to infer a fuse register to validate the signature.
+ pub(crate) ucode_id: u8,
+ /// Number of signatures in this firmware.
+ pub(crate) signature_count: u8,
+ /// Versions of the signatures, used to infer a valid signature to use.
+ pub(crate) signature_versions: u16,
+ _reserved: u16,
+}
+
+impl FalconUCodeDescV3 {
+ /// Returns the size in bytes of the header.
+ pub(crate) fn size(&self) -> usize {
+ const HDR_SIZE_SHIFT: u32 = 16;
+ const HDR_SIZE_MASK: u32 = 0xffff0000;
+
+ ((self.hdr & HDR_SIZE_MASK) >> HDR_SIZE_SHIFT) as usize
+ }
+}
+
+/// Trait implemented by types defining the signed state of a firmware.
+trait SignedState {}
+
+/// Type indicating that the firmware must be signed before it can be used.
+struct Unsigned;
+impl SignedState for Unsigned {}
+
+/// Type indicating that the firmware is signed and ready to be loaded.
+struct Signed;
+impl SignedState for Signed {}
+
+/// A [`DmaObject`] containing a specific microcode ready to be loaded into a falcon.
+///
+/// This is module-local and meant for sub-modules to use internally.
+///
+/// After construction, a firmware is [`Unsigned`], and must generally be patched with a signature
+/// before it can be loaded (with an exception for development hardware). The
+/// [`Self::patch_signature`] and [`Self::no_patch_signature`] methods are used to transition the
+/// firmware to its [`Signed`] state.
+struct FirmwareDmaObject<F: FalconFirmware, S: SignedState>(DmaObject, PhantomData<(F, S)>);
+
+/// Trait for signatures to be patched directly into a given firmware.
+///
+/// This is module-local and meant for sub-modules to use internally.
+trait FirmwareSignature<F: FalconFirmware>: AsRef<[u8]> {}
+
+impl<F: FalconFirmware> FirmwareDmaObject<F, Unsigned> {
+ /// Patches the firmware at offset `sig_base_img` with `signature`.
+ fn patch_signature<S: FirmwareSignature<F>>(
+ mut self,
+ signature: &S,
+ sig_base_img: usize,
+ ) -> Result<FirmwareDmaObject<F, Signed>> {
+ let signature_bytes = signature.as_ref();
+ if sig_base_img + signature_bytes.len() > self.0.size() {
+ return Err(EINVAL);
+ }
+
+ // SAFETY: We are the only user of this object, so there cannot be any race.
+ let dst = unsafe { self.0.start_ptr_mut().add(sig_base_img) };
+
+ // SAFETY: `signature` and `dst` are valid, properly aligned, and do not overlap.
+ unsafe {
+ core::ptr::copy_nonoverlapping(signature_bytes.as_ptr(), dst, signature_bytes.len())
+ };
+
+ Ok(FirmwareDmaObject(self.0, PhantomData))
+ }
+
+ /// Mark the firmware as signed without patching it.
+ ///
+ /// This method is used to explicitly confirm that we do not need to sign the firmware, while
+ /// allowing us to continue as if it was. This is typically only needed for development
+ /// hardware.
+ fn no_patch_signature(self) -> FirmwareDmaObject<F, Signed> {
+ FirmwareDmaObject(self.0, PhantomData)
+ }
+}
+
pub(crate) struct ModInfoBuilder<const N: usize>(firmware::ModInfoBuilder<N>);
impl<const N: usize> ModInfoBuilder<N> {
diff --git a/drivers/gpu/nova-core/firmware/fwsec.rs b/drivers/gpu/nova-core/firmware/fwsec.rs
new file mode 100644
index 000000000000..0dff3cfa90af
--- /dev/null
+++ b/drivers/gpu/nova-core/firmware/fwsec.rs
@@ -0,0 +1,423 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! FWSEC is a High Secure firmware that is extracted from the BIOS and performs the first step of
+//! the GSP startup by creating the WPR2 memory region and copying critical areas of the VBIOS into
+//! it after authenticating them, ensuring they haven't been tampered with. It runs on the GSP
+//! falcon.
+//!
+//! Before being run, it needs to be patched in two areas:
+//!
+//! - The command to be run, as this firmware can perform several tasks ;
+//! - The ucode signature, so the GSP falcon can run FWSEC in HS mode.
+
+use core::marker::PhantomData;
+use core::mem::{align_of, size_of};
+use core::ops::Deref;
+
+use kernel::device::{self, Device};
+use kernel::prelude::*;
+use kernel::transmute::FromBytes;
+
+use crate::dma::DmaObject;
+use crate::driver::Bar0;
+use crate::falcon::gsp::Gsp;
+use crate::falcon::{Falcon, FalconBromParams, FalconFirmware, FalconLoadParams, FalconLoadTarget};
+use crate::firmware::{FalconUCodeDescV3, FirmwareDmaObject, FirmwareSignature, Signed, Unsigned};
+use crate::vbios::Vbios;
+
+const NVFW_FALCON_APPIF_ID_DMEMMAPPER: u32 = 0x4;
+
+#[repr(C)]
+#[derive(Debug)]
+struct FalconAppifHdrV1 {
+ version: u8,
+ header_size: u8,
+ entry_size: u8,
+ entry_count: u8,
+}
+// SAFETY: any byte sequence is valid for this struct.
+unsafe impl FromBytes for FalconAppifHdrV1 {}
+
+#[repr(C, packed)]
+#[derive(Debug)]
+struct FalconAppifV1 {
+ id: u32,
+ dmem_base: u32,
+}
+// SAFETY: any byte sequence is valid for this struct.
+unsafe impl FromBytes for FalconAppifV1 {}
+
+#[derive(Debug)]
+#[repr(C, packed)]
+struct FalconAppifDmemmapperV3 {
+ signature: u32,
+ version: u16,
+ size: u16,
+ cmd_in_buffer_offset: u32,
+ cmd_in_buffer_size: u32,
+ cmd_out_buffer_offset: u32,
+ cmd_out_buffer_size: u32,
+ nvf_img_data_buffer_offset: u32,
+ nvf_img_data_buffer_size: u32,
+ printf_buffer_hdr: u32,
+ ucode_build_time_stamp: u32,
+ ucode_signature: u32,
+ init_cmd: u32,
+ ucode_feature: u32,
+ ucode_cmd_mask0: u32,
+ ucode_cmd_mask1: u32,
+ multi_tgt_tbl: u32,
+}
+// SAFETY: any byte sequence is valid for this struct.
+unsafe impl FromBytes for FalconAppifDmemmapperV3 {}
+
+#[derive(Debug)]
+#[repr(C, packed)]
+struct ReadVbios {
+ ver: u32,
+ hdr: u32,
+ addr: u64,
+ size: u32,
+ flags: u32,
+}
+// SAFETY: any byte sequence is valid for this struct.
+unsafe impl FromBytes for ReadVbios {}
+
+#[derive(Debug)]
+#[repr(C, packed)]
+struct FrtsRegion {
+ ver: u32,
+ hdr: u32,
+ addr: u32,
+ size: u32,
+ ftype: u32,
+}
+// SAFETY: any byte sequence is valid for this struct.
+unsafe impl FromBytes for FrtsRegion {}
+
+const NVFW_FRTS_CMD_REGION_TYPE_FB: u32 = 2;
+
+#[repr(C, packed)]
+struct FrtsCmd {
+ read_vbios: ReadVbios,
+ frts_region: FrtsRegion,
+}
+// SAFETY: any byte sequence is valid for this struct.
+unsafe impl FromBytes for FrtsCmd {}
+
+const NVFW_FALCON_APPIF_DMEMMAPPER_CMD_FRTS: u32 = 0x15;
+const NVFW_FALCON_APPIF_DMEMMAPPER_CMD_SB: u32 = 0x19;
+
+/// Command for the [`FwsecFirmware`] to execute.
+pub(crate) enum FwsecCommand {
+ /// Asks [`FwsecFirmware`] to carve out the WPR2 area and place a verified copy of the VBIOS
+ /// image into it.
+ Frts { frts_addr: u64, frts_size: u64 },
+ /// Asks [`FwsecFirmware`] to load pre-OS apps on the PMU.
+ #[expect(dead_code)]
+ Sb,
+}
+
+/// Size of the signatures used in FWSEC.
+const BCRT30_RSA3K_SIG_SIZE: usize = 384;
+
+/// A single signature that can be patched into a FWSEC image.
+#[repr(transparent)]
+pub(crate) struct Bcrt30Rsa3kSignature([u8; BCRT30_RSA3K_SIG_SIZE]);
+
+/// SAFETY: A signature is just an array of bytes.
+unsafe impl FromBytes for Bcrt30Rsa3kSignature {}
+
+impl From<[u8; BCRT30_RSA3K_SIG_SIZE]> for Bcrt30Rsa3kSignature {
+ fn from(sig: [u8; BCRT30_RSA3K_SIG_SIZE]) -> Self {
+ Self(sig)
+ }
+}
+
+impl AsRef<[u8]> for Bcrt30Rsa3kSignature {
+ fn as_ref(&self) -> &[u8] {
+ &self.0
+ }
+}
+
+impl FirmwareSignature<FwsecFirmware> for Bcrt30Rsa3kSignature {}
+
+/// Reinterpret the area starting from `offset` in `fw` as an instance of `T` (which must implement
+/// [`FromBytes`]) and return a reference to it.
+///
+/// # Safety
+///
+/// Callers must ensure that the region of memory returned is not written for as long as the
+/// returned reference is alive.
+///
+/// TODO[TRSM][COHA]: Remove this and `transmute_mut` once `CoherentAllocation::as_slice` is
+/// available and we have a way to transmute objects implementing FromBytes, e.g.:
+/// https://lore.kernel.org/lkml/20250330234039.29814-1-christiansantoslima21@gmail.com/
+unsafe fn transmute<'a, 'b, T: Sized + FromBytes>(
+ fw: &'a DmaObject,
+ offset: usize,
+) -> Result<&'b T> {
+ if offset + size_of::<T>() > fw.size() {
+ return Err(EINVAL);
+ }
+ if (fw.start_ptr() as usize + offset) % align_of::<T>() != 0 {
+ return Err(EINVAL);
+ }
+
+ // SAFETY: we have checked that the pointer is properly aligned that its pointed memory is
+ // large enough the contains an instance of `T`, which implements `FromBytes`.
+ Ok(unsafe { &*(fw.start_ptr().add(offset).cast::<T>()) })
+}
+
+/// Reinterpret the area starting from `offset` in `fw` as a mutable instance of `T` (which must
+/// implement [`FromBytes`]) and return a reference to it.
+///
+/// # Safety
+///
+/// Callers must ensure that the region of memory returned is not read or written for as long as
+/// the returned reference is alive.
+unsafe fn transmute_mut<'a, 'b, T: Sized + FromBytes>(
+ fw: &'a mut DmaObject,
+ offset: usize,
+) -> Result<&'b mut T> {
+ if offset + size_of::<T>() > fw.size() {
+ return Err(EINVAL);
+ }
+ if (fw.start_ptr_mut() as usize + offset) % align_of::<T>() != 0 {
+ return Err(EINVAL);
+ }
+
+ // SAFETY: we have checked that the pointer is properly aligned that its pointed memory is
+ // large enough the contains an instance of `T`, which implements `FromBytes`.
+ Ok(unsafe { &mut *(fw.start_ptr_mut().add(offset).cast::<T>()) })
+}
+
+/// The FWSEC microcode, extracted from the BIOS and to be run on the GSP falcon.
+///
+/// It is responsible for e.g. carving out the WPR2 region as the first step of the GSP bootflow.
+pub(crate) struct FwsecFirmware {
+ /// Descriptor of the firmware.
+ desc: FalconUCodeDescV3,
+ /// GPU-accessible DMA object containing the firmware.
+ ucode: FirmwareDmaObject<Self, Signed>,
+}
+
+// We need to load full DMEM pages.
+const DMEM_LOAD_SIZE_ALIGN: u32 = 256;
+
+impl FalconLoadParams for FwsecFirmware {
+ fn imem_load_params(&self) -> FalconLoadTarget {
+ FalconLoadTarget {
+ src_start: 0,
+ dst_start: self.desc.imem_phys_base,
+ len: self.desc.imem_load_size,
+ }
+ }
+
+ fn dmem_load_params(&self) -> FalconLoadTarget {
+ FalconLoadTarget {
+ src_start: self.desc.imem_load_size,
+ dst_start: self.desc.dmem_phys_base,
+ // TODO[NUMM]: replace with `align_up` once it lands.
+ len: self
+ .desc
+ .dmem_load_size
+ .next_multiple_of(DMEM_LOAD_SIZE_ALIGN),
+ }
+ }
+
+ fn brom_params(&self) -> FalconBromParams {
+ FalconBromParams {
+ pkc_data_offset: self.desc.pkc_data_offset,
+ engine_id_mask: self.desc.engine_id_mask,
+ ucode_id: self.desc.ucode_id,
+ }
+ }
+
+ fn boot_addr(&self) -> u32 {
+ 0
+ }
+}
+
+impl Deref for FwsecFirmware {
+ type Target = DmaObject;
+
+ fn deref(&self) -> &Self::Target {
+ &self.ucode.0
+ }
+}
+
+impl FalconFirmware for FwsecFirmware {
+ type Target = Gsp;
+}
+
+impl FirmwareDmaObject<FwsecFirmware, Unsigned> {
+ fn new_fwsec(dev: &Device<device::Bound>, bios: &Vbios, cmd: FwsecCommand) -> Result<Self> {
+ let desc = bios.fwsec_image().header(dev)?;
+ let ucode = bios.fwsec_image().ucode(dev, desc)?;
+ let mut dma_object = DmaObject::from_data(dev, ucode)?;
+
+ let hdr_offset = (desc.imem_load_size + desc.interface_offset) as usize;
+ // SAFETY: we have exclusive access to `dma_object`.
+ let hdr: &FalconAppifHdrV1 = unsafe { transmute(&dma_object, hdr_offset) }?;
+
+ if hdr.version != 1 {
+ return Err(EINVAL);
+ }
+
+ // Find the DMEM mapper section in the firmware.
+ for i in 0..hdr.entry_count as usize {
+ let app: &FalconAppifV1 =
+ // SAFETY: we have exclusive access to `dma_object`.
+ unsafe {
+ transmute(
+ &dma_object,
+ hdr_offset + hdr.header_size as usize + i * hdr.entry_size as usize
+ )
+ }?;
+
+ if app.id != NVFW_FALCON_APPIF_ID_DMEMMAPPER {
+ continue;
+ }
+
+ // SAFETY: we have exclusive access to `dma_object`.
+ let dmem_mapper: &mut FalconAppifDmemmapperV3 = unsafe {
+ transmute_mut(
+ &mut dma_object,
+ (desc.imem_load_size + app.dmem_base) as usize,
+ )
+ }?;
+
+ // SAFETY: we have exclusive access to `dma_object`.
+ let frts_cmd: &mut FrtsCmd = unsafe {
+ transmute_mut(
+ &mut dma_object,
+ (desc.imem_load_size + dmem_mapper.cmd_in_buffer_offset) as usize,
+ )
+ }?;
+
+ frts_cmd.read_vbios = ReadVbios {
+ ver: 1,
+ hdr: size_of::<ReadVbios>() as u32,
+ addr: 0,
+ size: 0,
+ flags: 2,
+ };
+
+ dmem_mapper.init_cmd = match cmd {
+ FwsecCommand::Frts {
+ frts_addr,
+ frts_size,
+ } => {
+ frts_cmd.frts_region = FrtsRegion {
+ ver: 1,
+ hdr: size_of::<FrtsRegion>() as u32,
+ addr: (frts_addr >> 12) as u32,
+ size: (frts_size >> 12) as u32,
+ ftype: NVFW_FRTS_CMD_REGION_TYPE_FB,
+ };
+
+ NVFW_FALCON_APPIF_DMEMMAPPER_CMD_FRTS
+ }
+ FwsecCommand::Sb => NVFW_FALCON_APPIF_DMEMMAPPER_CMD_SB,
+ };
+
+ // Return early as we found and patched the DMEMMAPPER region.
+ return Ok(Self(dma_object, PhantomData));
+ }
+
+ Err(ENOTSUPP)
+ }
+}
+
+impl FwsecFirmware {
+ /// Extract the Fwsec firmware from `bios` and patch it to run on `falcon` with the `cmd`
+ /// command.
+ pub(crate) fn new(
+ dev: &Device<device::Bound>,
+ falcon: &Falcon<Gsp>,
+ bar: &Bar0,
+ bios: &Vbios,
+ cmd: FwsecCommand,
+ ) -> Result<Self> {
+ let ucode_dma = FirmwareDmaObject::<Self, _>::new_fwsec(dev, bios, cmd)?;
+
+ // Patch signature if needed.
+ let desc = bios.fwsec_image().header(dev)?;
+ let ucode_signed = if desc.signature_count != 0 {
+ let sig_base_img = (desc.imem_load_size + desc.pkc_data_offset) as usize;
+ let desc_sig_versions = u32::from(desc.signature_versions);
+ let reg_fuse_version =
+ falcon.signature_reg_fuse_version(bar, desc.engine_id_mask, desc.ucode_id)?;
+ dev_dbg!(
+ dev,
+ "desc_sig_versions: {:#x}, reg_fuse_version: {}\n",
+ desc_sig_versions,
+ reg_fuse_version
+ );
+ let signature_idx = {
+ let reg_fuse_version_bit = 1 << reg_fuse_version;
+
+ // Check if the fuse version is supported by the firmware.
+ if desc_sig_versions & reg_fuse_version_bit == 0 {
+ dev_err!(
+ dev,
+ "no matching signature: {:#x} {:#x}\n",
+ reg_fuse_version_bit,
+ desc_sig_versions,
+ );
+ return Err(EINVAL);
+ }
+
+ // `desc_sig_versions` has one bit set per included signature. Thus, the index of
+ // the signature to patch is the number of bits in `desc_sig_versions` set to `1`
+ // before `reg_fuse_version_bit`.
+
+ // Mask of the bits of `desc_sig_versions` to preserve.
+ let reg_fuse_version_mask = reg_fuse_version_bit.wrapping_sub(1);
+
+ (desc_sig_versions & reg_fuse_version_mask).count_ones() as usize
+ };
+
+ dev_dbg!(dev, "patching signature with index {}\n", signature_idx);
+ let signature = bios
+ .fwsec_image()
+ .sigs(dev, desc)
+ .and_then(|sigs| sigs.get(signature_idx).ok_or(EINVAL))?;
+
+ ucode_dma.patch_signature(signature, sig_base_img)?
+ } else {
+ ucode_dma.no_patch_signature()
+ };
+
+ Ok(FwsecFirmware {
+ desc: desc.clone(),
+ ucode: ucode_signed,
+ })
+ }
+
+ /// Loads the FWSEC firmware into `falcon` and execute it.
+ pub(crate) fn run(
+ &self,
+ dev: &Device<device::Bound>,
+ falcon: &Falcon<Gsp>,
+ bar: &Bar0,
+ ) -> Result<()> {
+ // Reset falcon, load the firmware, and run it.
+ falcon
+ .reset(bar)
+ .inspect_err(|e| dev_err!(dev, "Failed to reset GSP falcon: {:?}\n", e))?;
+ falcon
+ .dma_load(bar, self)
+ .inspect_err(|e| dev_err!(dev, "Failed to load FWSEC firmware: {:?}\n", e))?;
+ let (mbox0, _) = falcon
+ .boot(bar, Some(0), None)
+ .inspect_err(|e| dev_err!(dev, "Failed to boot FWSEC firmware: {:?}\n", e))?;
+ if mbox0 != 0 {
+ dev_err!(dev, "FWSEC firmware returned error {}\n", mbox0);
+ Err(EIO)
+ } else {
+ Ok(())
+ }
+ }
+}
diff --git a/drivers/gpu/nova-core/gfw.rs b/drivers/gpu/nova-core/gfw.rs
new file mode 100644
index 000000000000..8ac1ed187199
--- /dev/null
+++ b/drivers/gpu/nova-core/gfw.rs
@@ -0,0 +1,71 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! GPU Firmware (`GFW`) support, a.k.a `devinit`.
+//!
+//! Upon reset, the GPU runs some firmware code from the BIOS to setup its core parameters. Most of
+//! the GPU is considered unusable until this step is completed, so we must wait on it before
+//! performing driver initialization.
+//!
+//! A clarification about devinit terminology: devinit is a sequence of register read/writes after
+//! reset that performs tasks such as:
+//! 1. Programming VRAM memory controller timings.
+//! 2. Power sequencing.
+//! 3. Clock and PLL configuration.
+//! 4. Thermal management.
+//!
+//! devinit itself is a 'script' which is interpreted by an interpreter program typically running
+//! on the PMU microcontroller.
+//!
+//! Note that the devinit sequence also needs to run during suspend/resume.
+
+use kernel::bindings;
+use kernel::prelude::*;
+use kernel::time::Delta;
+
+use crate::driver::Bar0;
+use crate::regs;
+use crate::util;
+
+/// Wait for the `GFW` (GPU firmware) boot completion signal (`GFW_BOOT`), or a 4 seconds timeout.
+///
+/// Upon GPU reset, several microcontrollers (such as PMU, SEC2, GSP etc) run some firmware code to
+/// setup its core parameters. Most of the GPU is considered unusable until this step is completed,
+/// so it must be waited on very early during driver initialization.
+///
+/// The `GFW` code includes several components that need to execute before the driver loads. These
+/// components are located in the VBIOS ROM and executed in a sequence on these different
+/// microcontrollers. The devinit sequence typically runs on the PMU, and the FWSEC runs on the
+/// GSP.
+///
+/// This function waits for a signal indicating that core initialization is complete. Before this
+/// signal is received, little can be done with the GPU. This signal is set by the FWSEC running on
+/// the GSP in Heavy-secured mode.
+pub(crate) fn wait_gfw_boot_completion(bar: &Bar0) -> Result {
+ // Before accessing the completion status in `NV_PGC6_AON_SECURE_SCRATCH_GROUP_05`, we must
+ // first check `NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_PRIV_LEVEL_MASK`. This is because
+ // `NV_PGC6_AON_SECURE_SCRATCH_GROUP_05` becomes accessible only after the secure firmware
+ // (FWSEC) lowers the privilege level to allow CPU (LS/Light-secured) access. We can only
+ // safely read the status register from CPU (LS/Light-secured) once the mask indicates
+ // that the privilege level has been lowered.
+ //
+ // TIMEOUT: arbitrarily large value. GFW starts running immediately after the GPU is put out of
+ // reset, and should complete in less time than that.
+ util::wait_on(Delta::from_secs(4), || {
+ // Check that FWSEC has lowered its protection level before reading the GFW_BOOT status.
+ let gfw_booted = regs::NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_PRIV_LEVEL_MASK::read(bar)
+ .read_protection_level0()
+ && regs::NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_0_GFW_BOOT::read(bar).completed();
+
+ if gfw_booted {
+ Some(())
+ } else {
+ // TODO[DLAY]: replace with [1] once it merges.
+ // [1] https://lore.kernel.org/rust-for-linux/20250423192857.199712-6-fujita.tomonori@gmail.com/
+ //
+ // SAFETY: `msleep()` is safe to call with any parameter.
+ unsafe { bindings::msleep(1) };
+
+ None
+ }
+ })
+}
diff --git a/drivers/gpu/nova-core/gpu.rs b/drivers/gpu/nova-core/gpu.rs
index 60b86f370284..b5c9786619a9 100644
--- a/drivers/gpu/nova-core/gpu.rs
+++ b/drivers/gpu/nova-core/gpu.rs
@@ -1,11 +1,17 @@
// SPDX-License-Identifier: GPL-2.0
-use kernel::{device, devres::Devres, error::code::*, pci, prelude::*};
+use kernel::{device, devres::Devres, error::code::*, pci, prelude::*, sync::Arc};
use crate::driver::Bar0;
+use crate::falcon::{gsp::Gsp, sec2::Sec2, Falcon};
+use crate::fb::FbLayout;
+use crate::fb::SysmemFlush;
+use crate::firmware::fwsec::{FwsecCommand, FwsecFirmware};
use crate::firmware::{Firmware, FIRMWARE_VERSION};
+use crate::gfw;
use crate::regs;
use crate::util;
+use crate::vbios::Vbios;
use core::fmt;
macro_rules! define_chipset {
@@ -31,7 +37,7 @@ macro_rules! define_chipset {
];
}
- // TODO replace with something like derive(FromPrimitive)
+ // TODO[FPRI]: replace with something like derive(FromPrimitive)
impl TryFrom<u32> for Chipset {
type Error = kernel::error::Error;
@@ -157,18 +163,109 @@ impl Spec {
}
/// Structure holding the resources required to operate the GPU.
-#[pin_data]
+#[pin_data(PinnedDrop)]
pub(crate) struct Gpu {
spec: Spec,
/// MMIO mapping of PCI BAR 0
- bar: Devres<Bar0>,
+ bar: Arc<Devres<Bar0>>,
fw: Firmware,
+ /// System memory page required for flushing all pending GPU-side memory writes done through
+ /// PCIE into system memory, via sysmembar (A GPU-initiated HW memory-barrier operation).
+ sysmem_flush: SysmemFlush,
+}
+
+#[pinned_drop]
+impl PinnedDrop for Gpu {
+ fn drop(self: Pin<&mut Self>) {
+ // Unregister the sysmem flush page before we release it.
+ self.bar
+ .try_access_with(|b| self.sysmem_flush.unregister(b));
+ }
}
impl Gpu {
+ /// Helper function to load and run the FWSEC-FRTS firmware and confirm that it has properly
+ /// created the WPR2 region.
+ ///
+ /// TODO: this needs to be moved into a larger type responsible for booting the whole GSP
+ /// (`GspBooter`?).
+ fn run_fwsec_frts(
+ dev: &device::Device<device::Bound>,
+ falcon: &Falcon<Gsp>,
+ bar: &Bar0,
+ bios: &Vbios,
+ fb_layout: &FbLayout,
+ ) -> Result<()> {
+ // Check that the WPR2 region does not already exists - if it does, we cannot run
+ // FWSEC-FRTS until the GPU is reset.
+ if regs::NV_PFB_PRI_MMU_WPR2_ADDR_HI::read(bar).higher_bound() != 0 {
+ dev_err!(
+ dev,
+ "WPR2 region already exists - GPU needs to be reset to proceed\n"
+ );
+ return Err(EBUSY);
+ }
+
+ let fwsec_frts = FwsecFirmware::new(
+ dev,
+ falcon,
+ bar,
+ bios,
+ FwsecCommand::Frts {
+ frts_addr: fb_layout.frts.start,
+ frts_size: fb_layout.frts.end - fb_layout.frts.start,
+ },
+ )?;
+
+ // Run FWSEC-FRTS to create the WPR2 region.
+ fwsec_frts.run(dev, falcon, bar)?;
+
+ // SCRATCH_E contains the error code for FWSEC-FRTS.
+ let frts_status = regs::NV_PBUS_SW_SCRATCH_0E::read(bar).frts_err_code();
+ if frts_status != 0 {
+ dev_err!(
+ dev,
+ "FWSEC-FRTS returned with error code {:#x}",
+ frts_status
+ );
+
+ return Err(EIO);
+ }
+
+ // Check that the WPR2 region has been created as we requested.
+ let (wpr2_lo, wpr2_hi) = (
+ regs::NV_PFB_PRI_MMU_WPR2_ADDR_LO::read(bar).lower_bound(),
+ regs::NV_PFB_PRI_MMU_WPR2_ADDR_HI::read(bar).higher_bound(),
+ );
+
+ match (wpr2_lo, wpr2_hi) {
+ (_, 0) => {
+ dev_err!(dev, "WPR2 region not created after running FWSEC-FRTS\n");
+
+ Err(EIO)
+ }
+ (wpr2_lo, _) if wpr2_lo != fb_layout.frts.start => {
+ dev_err!(
+ dev,
+ "WPR2 region created at unexpected address {:#x}; expected {:#x}\n",
+ wpr2_lo,
+ fb_layout.frts.start,
+ );
+
+ Err(EIO)
+ }
+ (wpr2_lo, wpr2_hi) => {
+ dev_dbg!(dev, "WPR2: {:#x}-{:#x}\n", wpr2_lo, wpr2_hi);
+ dev_dbg!(dev, "GPU instance built\n");
+
+ Ok(())
+ }
+ }
+ }
+
pub(crate) fn new(
pdev: &pci::Device<device::Bound>,
- devres_bar: Devres<Bar0>,
+ devres_bar: Arc<Devres<Bar0>>,
) -> Result<impl PinInit<Self>> {
let bar = devres_bar.access(pdev.as_ref())?;
let spec = Spec::new(bar)?;
@@ -182,10 +279,34 @@ impl Gpu {
spec.revision
);
+ // We must wait for GFW_BOOT completion before doing any significant setup on the GPU.
+ gfw::wait_gfw_boot_completion(bar)
+ .inspect_err(|_| dev_err!(pdev.as_ref(), "GFW boot did not complete"))?;
+
+ let sysmem_flush = SysmemFlush::register(pdev.as_ref(), bar, spec.chipset)?;
+
+ let gsp_falcon = Falcon::<Gsp>::new(
+ pdev.as_ref(),
+ spec.chipset,
+ bar,
+ spec.chipset > Chipset::GA100,
+ )?;
+ gsp_falcon.clear_swgen0_intr(bar);
+
+ let _sec2_falcon = Falcon::<Sec2>::new(pdev.as_ref(), spec.chipset, bar, true)?;
+
+ let fb_layout = FbLayout::new(spec.chipset, bar)?;
+ dev_dbg!(pdev.as_ref(), "{:#x?}\n", fb_layout);
+
+ let bios = Vbios::new(pdev, bar)?;
+
+ Self::run_fwsec_frts(pdev.as_ref(), &gsp_falcon, bar, &bios, &fb_layout)?;
+
Ok(pin_init!(Self {
spec,
bar: devres_bar,
- fw
+ fw,
+ sysmem_flush,
}))
}
}
diff --git a/drivers/gpu/nova-core/nova_core.rs b/drivers/gpu/nova-core/nova_core.rs
index 618632f0abcc..de14f2e92636 100644
--- a/drivers/gpu/nova-core/nova_core.rs
+++ b/drivers/gpu/nova-core/nova_core.rs
@@ -2,11 +2,16 @@
//! Nova Core GPU Driver
+mod dma;
mod driver;
+mod falcon;
+mod fb;
mod firmware;
+mod gfw;
mod gpu;
mod regs;
mod util;
+mod vbios;
pub(crate) const MODULE_NAME: &kernel::str::CStr = <LocalModule as kernel::ModuleMetadata>::NAME;
diff --git a/drivers/gpu/nova-core/regs.rs b/drivers/gpu/nova-core/regs.rs
index 5a1273230306..5ccfb61f850a 100644
--- a/drivers/gpu/nova-core/regs.rs
+++ b/drivers/gpu/nova-core/regs.rs
@@ -7,10 +7,14 @@
#[macro_use]
mod macros;
+use crate::falcon::{
+ DmaTrfCmdSize, FalconCoreRev, FalconCoreRevSubversion, FalconFbifMemType, FalconFbifTarget,
+ FalconModSelAlgo, FalconSecurityModel, PeregrineCoreSelect,
+};
use crate::gpu::{Architecture, Chipset};
use kernel::prelude::*;
-/* PMC */
+// PMC
register!(NV_PMC_BOOT_0 @ 0x00000000, "Basic revision information about the GPU" {
3:0 minor_revision as u8, "Minor revision of the chip";
@@ -37,3 +41,300 @@ impl NV_PMC_BOOT_0 {
.and_then(Chipset::try_from)
}
}
+
+// PBUS
+
+// TODO[REGA]: this is an array of registers.
+register!(NV_PBUS_SW_SCRATCH_0E@0x00001438 {
+ 31:16 frts_err_code as u16;
+});
+
+// PFB
+
+// The following two registers together hold the physical system memory address that is used by the
+// GPU to perform sysmembar operations (see `fb::SysmemFlush`).
+
+register!(NV_PFB_NISO_FLUSH_SYSMEM_ADDR @ 0x00100c10 {
+ 31:0 adr_39_08 as u32;
+});
+
+register!(NV_PFB_NISO_FLUSH_SYSMEM_ADDR_HI @ 0x00100c40 {
+ 23:0 adr_63_40 as u32;
+});
+
+register!(NV_PFB_PRI_MMU_LOCAL_MEMORY_RANGE @ 0x00100ce0 {
+ 3:0 lower_scale as u8;
+ 9:4 lower_mag as u8;
+ 30:30 ecc_mode_enabled as bool;
+});
+
+impl NV_PFB_PRI_MMU_LOCAL_MEMORY_RANGE {
+ /// Returns the usable framebuffer size, in bytes.
+ pub(crate) fn usable_fb_size(self) -> u64 {
+ let size = (u64::from(self.lower_mag()) << u64::from(self.lower_scale()))
+ * kernel::sizes::SZ_1M as u64;
+
+ if self.ecc_mode_enabled() {
+ // Remove the amount of memory reserved for ECC (one per 16 units).
+ size / 16 * 15
+ } else {
+ size
+ }
+ }
+}
+
+register!(NV_PFB_PRI_MMU_WPR2_ADDR_LO@0x001fa824 {
+ 31:4 lo_val as u32, "Bits 12..40 of the lower (inclusive) bound of the WPR2 region";
+});
+
+impl NV_PFB_PRI_MMU_WPR2_ADDR_LO {
+ /// Returns the lower (inclusive) bound of the WPR2 region.
+ pub(crate) fn lower_bound(self) -> u64 {
+ u64::from(self.lo_val()) << 12
+ }
+}
+
+register!(NV_PFB_PRI_MMU_WPR2_ADDR_HI@0x001fa828 {
+ 31:4 hi_val as u32, "Bits 12..40 of the higher (exclusive) bound of the WPR2 region";
+});
+
+impl NV_PFB_PRI_MMU_WPR2_ADDR_HI {
+ /// Returns the higher (exclusive) bound of the WPR2 region.
+ ///
+ /// A value of zero means the WPR2 region is not set.
+ pub(crate) fn higher_bound(self) -> u64 {
+ u64::from(self.hi_val()) << 12
+ }
+}
+
+// PGC6 register space.
+//
+// `GC6` is a GPU low-power state where VRAM is in self-refresh and the GPU is powered down (except
+// for power rails needed to keep self-refresh working and important registers and hardware
+// blocks).
+//
+// These scratch registers remain powered on even in a low-power state and have a designated group
+// number.
+
+// Privilege level mask register. It dictates whether the host CPU has privilege to access the
+// `PGC6_AON_SECURE_SCRATCH_GROUP_05` register (which it needs to read GFW_BOOT).
+register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_PRIV_LEVEL_MASK @ 0x00118128,
+ "Privilege level mask register" {
+ 0:0 read_protection_level0 as bool, "Set after FWSEC lowers its protection level";
+});
+
+// TODO[REGA]: This is an array of registers.
+register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_05 @ 0x00118234 {
+ 31:0 value as u32;
+});
+
+register!(
+ NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_0_GFW_BOOT => NV_PGC6_AON_SECURE_SCRATCH_GROUP_05,
+ "Scratch group 05 register 0 used as GFW boot progress indicator" {
+ 7:0 progress as u8, "Progress of GFW boot (0xff means completed)";
+ }
+);
+
+impl NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_0_GFW_BOOT {
+ /// Returns `true` if GFW boot is completed.
+ pub(crate) fn completed(self) -> bool {
+ self.progress() == 0xff
+ }
+}
+
+register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_42 @ 0x001183a4 {
+ 31:0 value as u32;
+});
+
+register!(
+ NV_USABLE_FB_SIZE_IN_MB => NV_PGC6_AON_SECURE_SCRATCH_GROUP_42,
+ "Scratch group 42 register used as framebuffer size" {
+ 31:0 value as u32, "Usable framebuffer size, in megabytes";
+ }
+);
+
+impl NV_USABLE_FB_SIZE_IN_MB {
+ /// Returns the usable framebuffer size, in bytes.
+ pub(crate) fn usable_fb_size(self) -> u64 {
+ u64::from(self.value()) * kernel::sizes::SZ_1M as u64
+ }
+}
+
+// PDISP
+
+register!(NV_PDISP_VGA_WORKSPACE_BASE @ 0x00625f04 {
+ 3:3 status_valid as bool, "Set if the `addr` field is valid";
+ 31:8 addr as u32, "VGA workspace base address divided by 0x10000";
+});
+
+impl NV_PDISP_VGA_WORKSPACE_BASE {
+ /// Returns the base address of the VGA workspace, or `None` if none exists.
+ pub(crate) fn vga_workspace_addr(self) -> Option<u64> {
+ if self.status_valid() {
+ Some(u64::from(self.addr()) << 16)
+ } else {
+ None
+ }
+ }
+}
+
+// FUSE
+
+register!(NV_FUSE_OPT_FPF_NVDEC_UCODE1_VERSION @ 0x00824100 {
+ 15:0 data as u16;
+});
+
+register!(NV_FUSE_OPT_FPF_SEC2_UCODE1_VERSION @ 0x00824140 {
+ 15:0 data as u16;
+});
+
+register!(NV_FUSE_OPT_FPF_GSP_UCODE1_VERSION @ 0x008241c0 {
+ 15:0 data as u16;
+});
+
+// PFALCON
+
+register!(NV_PFALCON_FALCON_IRQSCLR @ +0x00000004 {
+ 4:4 halt as bool;
+ 6:6 swgen0 as bool;
+});
+
+register!(NV_PFALCON_FALCON_MAILBOX0 @ +0x00000040 {
+ 31:0 value as u32;
+});
+
+register!(NV_PFALCON_FALCON_MAILBOX1 @ +0x00000044 {
+ 31:0 value as u32;
+});
+
+register!(NV_PFALCON_FALCON_RM @ +0x00000084 {
+ 31:0 value as u32;
+});
+
+register!(NV_PFALCON_FALCON_HWCFG2 @ +0x000000f4 {
+ 10:10 riscv as bool;
+ 12:12 mem_scrubbing as bool, "Set to 0 after memory scrubbing is completed";
+ 31:31 reset_ready as bool, "Signal indicating that reset is completed (GA102+)";
+});
+
+impl NV_PFALCON_FALCON_HWCFG2 {
+ /// Returns `true` if memory scrubbing is completed.
+ pub(crate) fn mem_scrubbing_done(self) -> bool {
+ !self.mem_scrubbing()
+ }
+}
+
+register!(NV_PFALCON_FALCON_CPUCTL @ +0x00000100 {
+ 1:1 startcpu as bool;
+ 4:4 halted as bool;
+ 6:6 alias_en as bool;
+});
+
+register!(NV_PFALCON_FALCON_BOOTVEC @ +0x00000104 {
+ 31:0 value as u32;
+});
+
+register!(NV_PFALCON_FALCON_DMACTL @ +0x0000010c {
+ 0:0 require_ctx as bool;
+ 1:1 dmem_scrubbing as bool;
+ 2:2 imem_scrubbing as bool;
+ 6:3 dmaq_num as u8;
+ 7:7 secure_stat as bool;
+});
+
+register!(NV_PFALCON_FALCON_DMATRFBASE @ +0x00000110 {
+ 31:0 base as u32;
+});
+
+register!(NV_PFALCON_FALCON_DMATRFMOFFS @ +0x00000114 {
+ 23:0 offs as u32;
+});
+
+register!(NV_PFALCON_FALCON_DMATRFCMD @ +0x00000118 {
+ 0:0 full as bool;
+ 1:1 idle as bool;
+ 3:2 sec as u8;
+ 4:4 imem as bool;
+ 5:5 is_write as bool;
+ 10:8 size as u8 ?=> DmaTrfCmdSize;
+ 14:12 ctxdma as u8;
+ 16:16 set_dmtag as u8;
+});
+
+register!(NV_PFALCON_FALCON_DMATRFFBOFFS @ +0x0000011c {
+ 31:0 offs as u32;
+});
+
+register!(NV_PFALCON_FALCON_DMATRFBASE1 @ +0x00000128 {
+ 8:0 base as u16;
+});
+
+register!(NV_PFALCON_FALCON_HWCFG1 @ +0x0000012c {
+ 3:0 core_rev as u8 ?=> FalconCoreRev, "Core revision";
+ 5:4 security_model as u8 ?=> FalconSecurityModel, "Security model";
+ 7:6 core_rev_subversion as u8 ?=> FalconCoreRevSubversion, "Core revision subversion";
+});
+
+register!(NV_PFALCON_FALCON_CPUCTL_ALIAS @ +0x00000130 {
+ 1:1 startcpu as bool;
+});
+
+// Actually known as `NV_PSEC_FALCON_ENGINE` and `NV_PGSP_FALCON_ENGINE` depending on the falcon
+// instance.
+register!(NV_PFALCON_FALCON_ENGINE @ +0x000003c0 {
+ 0:0 reset as bool;
+});
+
+// TODO[REGA]: this is an array of registers.
+register!(NV_PFALCON_FBIF_TRANSCFG @ +0x00000600 {
+ 1:0 target as u8 ?=> FalconFbifTarget;
+ 2:2 mem_type as bool => FalconFbifMemType;
+});
+
+register!(NV_PFALCON_FBIF_CTL @ +0x00000624 {
+ 7:7 allow_phys_no_ctx as bool;
+});
+
+register!(NV_PFALCON2_FALCON_MOD_SEL @ +0x00001180 {
+ 7:0 algo as u8 ?=> FalconModSelAlgo;
+});
+
+register!(NV_PFALCON2_FALCON_BROM_CURR_UCODE_ID @ +0x00001198 {
+ 7:0 ucode_id as u8;
+});
+
+register!(NV_PFALCON2_FALCON_BROM_ENGIDMASK @ +0x0000119c {
+ 31:0 value as u32;
+});
+
+// TODO[REGA]: this is an array of registers.
+register!(NV_PFALCON2_FALCON_BROM_PARAADDR @ +0x00001210 {
+ 31:0 value as u32;
+});
+
+// PRISCV
+
+register!(NV_PRISCV_RISCV_BCR_CTRL @ +0x00001668 {
+ 0:0 valid as bool;
+ 4:4 core_select as bool => PeregrineCoreSelect;
+ 8:8 br_fetch as bool;
+});
+
+// The modules below provide registers that are not identical on all supported chips. They should
+// only be used in HAL modules.
+
+pub(crate) mod gm107 {
+ // FUSE
+
+ register!(NV_FUSE_STATUS_OPT_DISPLAY @ 0x00021c04 {
+ 0:0 display_disabled as bool;
+ });
+}
+
+pub(crate) mod ga100 {
+ // FUSE
+
+ register!(NV_FUSE_STATUS_OPT_DISPLAY @ 0x00820c04 {
+ 0:0 display_disabled as bool;
+ });
+}
diff --git a/drivers/gpu/nova-core/regs/macros.rs b/drivers/gpu/nova-core/regs/macros.rs
index 7ecc70efb3cd..cdf668073480 100644
--- a/drivers/gpu/nova-core/regs/macros.rs
+++ b/drivers/gpu/nova-core/regs/macros.rs
@@ -71,6 +71,20 @@
/// pr_info!("CPU CTL: {:#x}", cpuctl);
/// cpuctl.set_start(true).write(&bar, CPU_BASE);
/// ```
+///
+/// It is also possible to create a alias register by using the `=> ALIAS` syntax. This is useful
+/// for cases where a register's interpretation depends on the context:
+///
+/// ```no_run
+/// register!(SCRATCH_0 @ 0x0000100, "Scratch register 0" {
+/// 31:0 value as u32, "Raw value";
+///
+/// register!(SCRATCH_0_BOOT_STATUS => SCRATCH_0, "Boot status of the firmware" {
+/// 0:0 completed as bool, "Whether the firmware has completed booting";
+/// ```
+///
+/// In this example, `SCRATCH_0_BOOT_STATUS` uses the same I/O address as `SCRATCH_0`, while also
+/// providing its own `completed` method.
macro_rules! register {
// Creates a register at a fixed offset of the MMIO space.
(
@@ -78,25 +92,49 @@ macro_rules! register {
$($fields:tt)*
}
) => {
- register!(@common $name $(, $comment)?);
+ register!(@common $name @ $offset $(, $comment)?);
register!(@field_accessors $name { $($fields)* });
register!(@io $name @ $offset);
};
+ // Creates a alias register of fixed offset register `alias` with its own fields.
+ (
+ $name:ident => $alias:ident $(, $comment:literal)? {
+ $($fields:tt)*
+ }
+ ) => {
+ register!(@common $name @ $alias::OFFSET $(, $comment)?);
+ register!(@field_accessors $name { $($fields)* });
+ register!(@io $name @ $alias::OFFSET);
+ };
+
// Creates a register at a relative offset from a base address.
(
$name:ident @ + $offset:literal $(, $comment:literal)? {
$($fields:tt)*
}
) => {
- register!(@common $name $(, $comment)?);
+ register!(@common $name @ $offset $(, $comment)?);
register!(@field_accessors $name { $($fields)* });
register!(@io$name @ + $offset);
};
+ // Creates a alias register of relative offset register `alias` with its own fields.
+ (
+ $name:ident => + $alias:ident $(, $comment:literal)? {
+ $($fields:tt)*
+ }
+ ) => {
+ register!(@common $name @ $alias::OFFSET $(, $comment)?);
+ register!(@field_accessors $name { $($fields)* });
+ register!(@io $name @ + $alias::OFFSET);
+ };
+
+ // All rules below are helpers.
+
// Defines the wrapper `$name` type, as well as its relevant implementations (`Debug`, `BitOr`,
// and conversion to regular `u32`).
- (@common $name:ident $(, $comment:literal)?) => {
+ (@common $name:ident @ $offset:expr $(, $comment:literal)?) => {
$(
#[doc=$comment]
)?
@@ -104,7 +142,12 @@ macro_rules! register {
#[derive(Clone, Copy, Default)]
pub(crate) struct $name(u32);
- // TODO: display the raw hex value, then the value of all the fields. This requires
+ #[allow(dead_code)]
+ impl $name {
+ pub(crate) const OFFSET: usize = $offset;
+ }
+
+ // TODO[REGA]: display the raw hex value, then the value of all the fields. This requires
// matching the fields, which will complexify the syntax considerably...
impl ::core::fmt::Debug for $name {
fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
@@ -114,7 +157,7 @@ macro_rules! register {
}
}
- impl core::ops::BitOr for $name {
+ impl ::core::ops::BitOr for $name {
type Output = Self;
fn bitor(self, rhs: Self) -> Self::Output {
@@ -161,7 +204,7 @@ macro_rules! register {
(@check_field_bounds $hi:tt:$lo:tt $field:ident as bool) => {
#[allow(clippy::eq_op)]
const _: () = {
- kernel::build_assert!(
+ ::kernel::build_assert!(
$hi == $lo,
concat!("boolean field `", stringify!($field), "` covers more than one bit")
);
@@ -172,7 +215,7 @@ macro_rules! register {
(@check_field_bounds $hi:tt:$lo:tt $field:ident as $type:tt) => {
#[allow(clippy::eq_op)]
const _: () = {
- kernel::build_assert!(
+ ::kernel::build_assert!(
$hi >= $lo,
concat!("field `", stringify!($field), "`'s MSB is smaller than its LSB")
);
@@ -234,7 +277,7 @@ macro_rules! register {
@leaf_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:ty
{ $process:expr } $to_type:ty => $res_type:ty $(, $comment:literal)?;
) => {
- kernel::macros::paste!(
+ ::kernel::macros::paste!(
const [<$field:upper>]: ::core::ops::RangeInclusive<u8> = $lo..=$hi;
const [<$field:upper _MASK>]: u32 = ((((1 << $hi) - 1) << 1) + 1) - ((1 << $lo) - 1);
const [<$field:upper _SHIFT>]: u32 = Self::[<$field:upper _MASK>].trailing_zeros();
@@ -246,7 +289,7 @@ macro_rules! register {
)?
#[inline]
pub(crate) fn $field(self) -> $res_type {
- kernel::macros::paste!(
+ ::kernel::macros::paste!(
const MASK: u32 = $name::[<$field:upper _MASK>];
const SHIFT: u32 = $name::[<$field:upper _SHIFT>];
);
@@ -255,7 +298,7 @@ macro_rules! register {
$process(field)
}
- kernel::macros::paste!(
+ ::kernel::macros::paste!(
$(
#[doc="Sets the value of this field:"]
#[doc=$comment]
@@ -273,7 +316,7 @@ macro_rules! register {
};
// Creates the IO accessors for a fixed offset register.
- (@io $name:ident @ $offset:literal) => {
+ (@io $name:ident @ $offset:expr) => {
#[allow(dead_code)]
impl $name {
#[inline]
diff --git a/drivers/gpu/nova-core/util.rs b/drivers/gpu/nova-core/util.rs
index 332a64cfc6a9..64fb13760764 100644
--- a/drivers/gpu/nova-core/util.rs
+++ b/drivers/gpu/nova-core/util.rs
@@ -1,5 +1,8 @@
// SPDX-License-Identifier: GPL-2.0
+use kernel::prelude::*;
+use kernel::time::{Delta, Instant};
+
pub(crate) const fn to_lowercase_bytes<const N: usize>(s: &str) -> [u8; N] {
let src = s.as_bytes();
let mut dst = [0; N];
@@ -19,3 +22,26 @@ pub(crate) const fn const_bytes_to_str(bytes: &[u8]) -> &str {
Err(_) => kernel::build_error!("Bytes are not valid UTF-8."),
}
}
+
+/// Wait until `cond` is true or `timeout` elapsed.
+///
+/// When `cond` evaluates to `Some`, its return value is returned.
+///
+/// `Err(ETIMEDOUT)` is returned if `timeout` has been reached without `cond` evaluating to
+/// `Some`.
+///
+/// TODO[DLAY]: replace with `read_poll_timeout` once it is available.
+/// (https://lore.kernel.org/lkml/20250220070611.214262-8-fujita.tomonori@gmail.com/)
+pub(crate) fn wait_on<R, F: Fn() -> Option<R>>(timeout: Delta, cond: F) -> Result<R> {
+ let start_time = Instant::now();
+
+ loop {
+ if let Some(ret) = cond() {
+ return Ok(ret);
+ }
+
+ if start_time.elapsed().as_nanos() > timeout.as_nanos() {
+ return Err(ETIMEDOUT);
+ }
+ }
+}
diff --git a/drivers/gpu/nova-core/vbios.rs b/drivers/gpu/nova-core/vbios.rs
new file mode 100644
index 000000000000..5b5d9f38cbb3
--- /dev/null
+++ b/drivers/gpu/nova-core/vbios.rs
@@ -0,0 +1,1166 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! VBIOS extraction and parsing.
+
+use crate::driver::Bar0;
+use crate::firmware::fwsec::Bcrt30Rsa3kSignature;
+use crate::firmware::FalconUCodeDescV3;
+use core::convert::TryFrom;
+use kernel::device;
+use kernel::error::Result;
+use kernel::pci;
+use kernel::prelude::*;
+
+/// The offset of the VBIOS ROM in the BAR0 space.
+const ROM_OFFSET: usize = 0x300000;
+/// The maximum length of the VBIOS ROM to scan into.
+const BIOS_MAX_SCAN_LEN: usize = 0x100000;
+/// The size to read ahead when parsing initial BIOS image headers.
+const BIOS_READ_AHEAD_SIZE: usize = 1024;
+/// The bit in the last image indicator byte for the PCI Data Structure that
+/// indicates the last image. Bit 0-6 are reserved, bit 7 is last image bit.
+const LAST_IMAGE_BIT_MASK: u8 = 0x80;
+
+// PMU lookup table entry types. Used to locate PMU table entries
+// in the Fwsec image, corresponding to falcon ucodes.
+#[expect(dead_code)]
+const FALCON_UCODE_ENTRY_APPID_FIRMWARE_SEC_LIC: u8 = 0x05;
+#[expect(dead_code)]
+const FALCON_UCODE_ENTRY_APPID_FWSEC_DBG: u8 = 0x45;
+const FALCON_UCODE_ENTRY_APPID_FWSEC_PROD: u8 = 0x85;
+
+/// Vbios Reader for constructing the VBIOS data.
+struct VbiosIterator<'a> {
+ pdev: &'a pci::Device,
+ bar0: &'a Bar0,
+ /// VBIOS data vector: As BIOS images are scanned, they are added to this vector for reference
+ /// or copying into other data structures. It is the entire scanned contents of the VBIOS which
+ /// progressively extends. It is used so that we do not re-read any contents that are already
+ /// read as we use the cumulative length read so far, and re-read any gaps as we extend the
+ /// length.
+ data: KVec<u8>,
+ /// Current offset of the [`Iterator`].
+ current_offset: usize,
+ /// Indicate whether the last image has been found.
+ last_found: bool,
+}
+
+impl<'a> VbiosIterator<'a> {
+ fn new(pdev: &'a pci::Device, bar0: &'a Bar0) -> Result<Self> {
+ Ok(Self {
+ pdev,
+ bar0,
+ data: KVec::new(),
+ current_offset: 0,
+ last_found: false,
+ })
+ }
+
+ /// Read bytes from the ROM at the current end of the data vector.
+ fn read_more(&mut self, len: usize) -> Result {
+ let current_len = self.data.len();
+ let start = ROM_OFFSET + current_len;
+
+ // Ensure length is a multiple of 4 for 32-bit reads
+ if len % core::mem::size_of::<u32>() != 0 {
+ dev_err!(
+ self.pdev.as_ref(),
+ "VBIOS read length {} is not a multiple of 4\n",
+ len
+ );
+ return Err(EINVAL);
+ }
+
+ self.data.reserve(len, GFP_KERNEL)?;
+ // Read ROM data bytes and push directly to `data`.
+ for addr in (start..start + len).step_by(core::mem::size_of::<u32>()) {
+ // Read 32-bit word from the VBIOS ROM
+ let word = self.bar0.try_read32(addr)?;
+
+ // Convert the `u32` to a 4 byte array and push each byte.
+ word.to_ne_bytes()
+ .iter()
+ .try_for_each(|&b| self.data.push(b, GFP_KERNEL))?;
+ }
+
+ Ok(())
+ }
+
+ /// Read bytes at a specific offset, filling any gap.
+ fn read_more_at_offset(&mut self, offset: usize, len: usize) -> Result {
+ if offset > BIOS_MAX_SCAN_LEN {
+ dev_err!(self.pdev.as_ref(), "Error: exceeded BIOS scan limit.\n");
+ return Err(EINVAL);
+ }
+
+ // If `offset` is beyond current data size, fill the gap first.
+ let current_len = self.data.len();
+ let gap_bytes = offset.saturating_sub(current_len);
+
+ // Now read the requested bytes at the offset.
+ self.read_more(gap_bytes + len)
+ }
+
+ /// Read a BIOS image at a specific offset and create a [`BiosImage`] from it.
+ ///
+ /// `self.data` is extended as needed and a new [`BiosImage`] is returned.
+ /// `context` is a string describing the operation for error reporting.
+ fn read_bios_image_at_offset(
+ &mut self,
+ offset: usize,
+ len: usize,
+ context: &str,
+ ) -> Result<BiosImage> {
+ let data_len = self.data.len();
+ if offset + len > data_len {
+ self.read_more_at_offset(offset, len).inspect_err(|e| {
+ dev_err!(
+ self.pdev.as_ref(),
+ "Failed to read more at offset {:#x}: {:?}\n",
+ offset,
+ e
+ )
+ })?;
+ }
+
+ BiosImage::new(self.pdev, &self.data[offset..offset + len]).inspect_err(|err| {
+ dev_err!(
+ self.pdev.as_ref(),
+ "Failed to {} at offset {:#x}: {:?}\n",
+ context,
+ offset,
+ err
+ )
+ })
+ }
+}
+
+impl<'a> Iterator for VbiosIterator<'a> {
+ type Item = Result<BiosImage>;
+
+ /// Iterate over all VBIOS images until the last image is detected or offset
+ /// exceeds scan limit.
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.last_found {
+ return None;
+ }
+
+ if self.current_offset > BIOS_MAX_SCAN_LEN {
+ dev_err!(
+ self.pdev.as_ref(),
+ "Error: exceeded BIOS scan limit, stopping scan\n"
+ );
+ return None;
+ }
+
+ // Parse image headers first to get image size.
+ let image_size = match self.read_bios_image_at_offset(
+ self.current_offset,
+ BIOS_READ_AHEAD_SIZE,
+ "parse initial BIOS image headers",
+ ) {
+ Ok(image) => image.image_size_bytes(),
+ Err(e) => return Some(Err(e)),
+ };
+
+ // Now create a new `BiosImage` with the full image data.
+ let full_image = match self.read_bios_image_at_offset(
+ self.current_offset,
+ image_size,
+ "parse full BIOS image",
+ ) {
+ Ok(image) => image,
+ Err(e) => return Some(Err(e)),
+ };
+
+ self.last_found = full_image.is_last();
+
+ // Advance to next image (aligned to 512 bytes).
+ self.current_offset += image_size;
+ // TODO[NUMM]: replace with `align_up` once it lands.
+ self.current_offset = self.current_offset.next_multiple_of(512);
+
+ Some(Ok(full_image))
+ }
+}
+
+pub(crate) struct Vbios {
+ fwsec_image: FwSecBiosImage,
+}
+
+impl Vbios {
+ /// Probe for VBIOS extraction.
+ ///
+ /// Once the VBIOS object is built, `bar0` is not read for [`Vbios`] purposes anymore.
+ pub(crate) fn new(pdev: &pci::Device, bar0: &Bar0) -> Result<Vbios> {
+ // Images to extract from iteration
+ let mut pci_at_image: Option<PciAtBiosImage> = None;
+ let mut first_fwsec_image: Option<FwSecBiosBuilder> = None;
+ let mut second_fwsec_image: Option<FwSecBiosBuilder> = None;
+
+ // Parse all VBIOS images in the ROM
+ for image_result in VbiosIterator::new(pdev, bar0)? {
+ let full_image = image_result?;
+
+ dev_dbg!(
+ pdev.as_ref(),
+ "Found BIOS image: size: {:#x}, type: {}, last: {}\n",
+ full_image.image_size_bytes(),
+ full_image.image_type_str(),
+ full_image.is_last()
+ );
+
+ // Get references to images we will need after the loop, in order to
+ // setup the falcon data offset.
+ match full_image {
+ BiosImage::PciAt(image) => {
+ pci_at_image = Some(image);
+ }
+ BiosImage::FwSec(image) => {
+ if first_fwsec_image.is_none() {
+ first_fwsec_image = Some(image);
+ } else {
+ second_fwsec_image = Some(image);
+ }
+ }
+ // For now we don't need to handle these
+ BiosImage::Efi(_image) => {}
+ BiosImage::Nbsi(_image) => {}
+ }
+ }
+
+ // Using all the images, setup the falcon data pointer in Fwsec.
+ if let (Some(mut second), Some(first), Some(pci_at)) =
+ (second_fwsec_image, first_fwsec_image, pci_at_image)
+ {
+ second
+ .setup_falcon_data(pdev, &pci_at, &first)
+ .inspect_err(|e| dev_err!(pdev.as_ref(), "Falcon data setup failed: {:?}\n", e))?;
+ Ok(Vbios {
+ fwsec_image: second.build(pdev)?,
+ })
+ } else {
+ dev_err!(
+ pdev.as_ref(),
+ "Missing required images for falcon data setup, skipping\n"
+ );
+ Err(EINVAL)
+ }
+ }
+
+ pub(crate) fn fwsec_image(&self) -> &FwSecBiosImage {
+ &self.fwsec_image
+ }
+}
+
+/// PCI Data Structure as defined in PCI Firmware Specification
+#[derive(Debug, Clone)]
+#[repr(C)]
+struct PcirStruct {
+ /// PCI Data Structure signature ("PCIR" or "NPDS")
+ signature: [u8; 4],
+ /// PCI Vendor ID (e.g., 0x10DE for NVIDIA)
+ vendor_id: u16,
+ /// PCI Device ID
+ device_id: u16,
+ /// Device List Pointer
+ device_list_ptr: u16,
+ /// PCI Data Structure Length
+ pci_data_struct_len: u16,
+ /// PCI Data Structure Revision
+ pci_data_struct_rev: u8,
+ /// Class code (3 bytes, 0x03 for display controller)
+ class_code: [u8; 3],
+ /// Size of this image in 512-byte blocks
+ image_len: u16,
+ /// Revision Level of the Vendor's ROM
+ vendor_rom_rev: u16,
+ /// ROM image type (0x00 = PC-AT compatible, 0x03 = EFI, 0x70 = NBSI)
+ code_type: u8,
+ /// Last image indicator (0x00 = Not last image, 0x80 = Last image)
+ last_image: u8,
+ /// Maximum Run-time Image Length (units of 512 bytes)
+ max_runtime_image_len: u16,
+}
+
+impl PcirStruct {
+ fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ if data.len() < core::mem::size_of::<PcirStruct>() {
+ dev_err!(pdev.as_ref(), "Not enough data for PcirStruct\n");
+ return Err(EINVAL);
+ }
+
+ let mut signature = [0u8; 4];
+ signature.copy_from_slice(&data[0..4]);
+
+ // Signature should be "PCIR" (0x52494350) or "NPDS" (0x5344504e).
+ if &signature != b"PCIR" && &signature != b"NPDS" {
+ dev_err!(
+ pdev.as_ref(),
+ "Invalid signature for PcirStruct: {:?}\n",
+ signature
+ );
+ return Err(EINVAL);
+ }
+
+ let mut class_code = [0u8; 3];
+ class_code.copy_from_slice(&data[13..16]);
+
+ let image_len = u16::from_le_bytes([data[16], data[17]]);
+ if image_len == 0 {
+ dev_err!(pdev.as_ref(), "Invalid image length: 0\n");
+ return Err(EINVAL);
+ }
+
+ Ok(PcirStruct {
+ signature,
+ vendor_id: u16::from_le_bytes([data[4], data[5]]),
+ device_id: u16::from_le_bytes([data[6], data[7]]),
+ device_list_ptr: u16::from_le_bytes([data[8], data[9]]),
+ pci_data_struct_len: u16::from_le_bytes([data[10], data[11]]),
+ pci_data_struct_rev: data[12],
+ class_code,
+ image_len,
+ vendor_rom_rev: u16::from_le_bytes([data[18], data[19]]),
+ code_type: data[20],
+ last_image: data[21],
+ max_runtime_image_len: u16::from_le_bytes([data[22], data[23]]),
+ })
+ }
+
+ /// Check if this is the last image in the ROM.
+ fn is_last(&self) -> bool {
+ self.last_image & LAST_IMAGE_BIT_MASK != 0
+ }
+
+ /// Calculate image size in bytes from 512-byte blocks.
+ fn image_size_bytes(&self) -> usize {
+ self.image_len as usize * 512
+ }
+}
+
+/// BIOS Information Table (BIT) Header.
+///
+/// This is the head of the BIT table, that is used to locate the Falcon data. The BIT table (with
+/// its header) is in the [`PciAtBiosImage`] and the falcon data it is pointing to is in the
+/// [`FwSecBiosImage`].
+#[derive(Debug, Clone, Copy)]
+#[expect(dead_code)]
+struct BitHeader {
+ /// 0h: BIT Header Identifier (BMP=0x7FFF/BIT=0xB8FF)
+ id: u16,
+ /// 2h: BIT Header Signature ("BIT\0")
+ signature: [u8; 4],
+ /// 6h: Binary Coded Decimal Version, ex: 0x0100 is 1.00.
+ bcd_version: u16,
+ /// 8h: Size of BIT Header (in bytes)
+ header_size: u8,
+ /// 9h: Size of BIT Tokens (in bytes)
+ token_size: u8,
+ /// 10h: Number of token entries that follow
+ token_entries: u8,
+ /// 11h: BIT Header Checksum
+ checksum: u8,
+}
+
+impl BitHeader {
+ fn new(data: &[u8]) -> Result<Self> {
+ if data.len() < 12 {
+ return Err(EINVAL);
+ }
+
+ let mut signature = [0u8; 4];
+ signature.copy_from_slice(&data[2..6]);
+
+ // Check header ID and signature
+ let id = u16::from_le_bytes([data[0], data[1]]);
+ if id != 0xB8FF || &signature != b"BIT\0" {
+ return Err(EINVAL);
+ }
+
+ Ok(BitHeader {
+ id,
+ signature,
+ bcd_version: u16::from_le_bytes([data[6], data[7]]),
+ header_size: data[8],
+ token_size: data[9],
+ token_entries: data[10],
+ checksum: data[11],
+ })
+ }
+}
+
+/// BIT Token Entry: Records in the BIT table followed by the BIT header.
+#[derive(Debug, Clone, Copy)]
+#[expect(dead_code)]
+struct BitToken {
+ /// 00h: Token identifier
+ id: u8,
+ /// 01h: Version of the token data
+ data_version: u8,
+ /// 02h: Size of token data in bytes
+ data_size: u16,
+ /// 04h: Offset to the token data
+ data_offset: u16,
+}
+
+// Define the token ID for the Falcon data
+const BIT_TOKEN_ID_FALCON_DATA: u8 = 0x70;
+
+impl BitToken {
+ /// Find a BIT token entry by BIT ID in a PciAtBiosImage
+ fn from_id(image: &PciAtBiosImage, token_id: u8) -> Result<Self> {
+ let header = &image.bit_header;
+
+ // Offset to the first token entry
+ let tokens_start = image.bit_offset + header.header_size as usize;
+
+ for i in 0..header.token_entries as usize {
+ let entry_offset = tokens_start + (i * header.token_size as usize);
+
+ // Make sure we don't go out of bounds
+ if entry_offset + header.token_size as usize > image.base.data.len() {
+ return Err(EINVAL);
+ }
+
+ // Check if this token has the requested ID
+ if image.base.data[entry_offset] == token_id {
+ return Ok(BitToken {
+ id: image.base.data[entry_offset],
+ data_version: image.base.data[entry_offset + 1],
+ data_size: u16::from_le_bytes([
+ image.base.data[entry_offset + 2],
+ image.base.data[entry_offset + 3],
+ ]),
+ data_offset: u16::from_le_bytes([
+ image.base.data[entry_offset + 4],
+ image.base.data[entry_offset + 5],
+ ]),
+ });
+ }
+ }
+
+ // Token not found
+ Err(ENOENT)
+ }
+}
+
+/// PCI ROM Expansion Header as defined in PCI Firmware Specification.
+///
+/// This is header is at the beginning of every image in the set of images in the ROM. It contains
+/// a pointer to the PCI Data Structure which describes the image. For "NBSI" images (NoteBook
+/// System Information), the ROM header deviates from the standard and contains an offset to the
+/// NBSI image however we do not yet parse that in this module and keep it for future reference.
+#[derive(Debug, Clone, Copy)]
+#[expect(dead_code)]
+struct PciRomHeader {
+ /// 00h: Signature (0xAA55)
+ signature: u16,
+ /// 02h: Reserved bytes for processor architecture unique data (20 bytes)
+ reserved: [u8; 20],
+ /// 16h: NBSI Data Offset (NBSI-specific, offset from header to NBSI image)
+ nbsi_data_offset: Option<u16>,
+ /// 18h: Pointer to PCI Data Structure (offset from start of ROM image)
+ pci_data_struct_offset: u16,
+ /// 1Ah: Size of block (this is NBSI-specific)
+ size_of_block: Option<u32>,
+}
+
+impl PciRomHeader {
+ fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ if data.len() < 26 {
+ // Need at least 26 bytes to read pciDataStrucPtr and sizeOfBlock.
+ return Err(EINVAL);
+ }
+
+ let signature = u16::from_le_bytes([data[0], data[1]]);
+
+ // Check for valid ROM signatures.
+ match signature {
+ 0xAA55 | 0xBB77 | 0x4E56 => {}
+ _ => {
+ dev_err!(pdev.as_ref(), "ROM signature unknown {:#x}\n", signature);
+ return Err(EINVAL);
+ }
+ }
+
+ // Read the pointer to the PCI Data Structure at offset 0x18.
+ let pci_data_struct_ptr = u16::from_le_bytes([data[24], data[25]]);
+
+ // Try to read optional fields if enough data.
+ let mut size_of_block = None;
+ let mut nbsi_data_offset = None;
+
+ if data.len() >= 30 {
+ // Read size_of_block at offset 0x1A.
+ size_of_block = Some(
+ u32::from(data[29]) << 24
+ | u32::from(data[28]) << 16
+ | u32::from(data[27]) << 8
+ | u32::from(data[26]),
+ );
+ }
+
+ // For NBSI images, try to read the nbsiDataOffset at offset 0x16.
+ if data.len() >= 24 {
+ nbsi_data_offset = Some(u16::from_le_bytes([data[22], data[23]]));
+ }
+
+ Ok(PciRomHeader {
+ signature,
+ reserved: [0u8; 20],
+ pci_data_struct_offset: pci_data_struct_ptr,
+ size_of_block,
+ nbsi_data_offset,
+ })
+ }
+}
+
+/// NVIDIA PCI Data Extension Structure.
+///
+/// This is similar to the PCI Data Structure, but is Nvidia-specific and is placed right after the
+/// PCI Data Structure. It contains some fields that are redundant with the PCI Data Structure, but
+/// are needed for traversing the BIOS images. It is expected to be present in all BIOS images
+/// except for NBSI images.
+#[derive(Debug, Clone)]
+#[repr(C)]
+struct NpdeStruct {
+ /// 00h: Signature ("NPDE")
+ signature: [u8; 4],
+ /// 04h: NVIDIA PCI Data Extension Revision
+ npci_data_ext_rev: u16,
+ /// 06h: NVIDIA PCI Data Extension Length
+ npci_data_ext_len: u16,
+ /// 08h: Sub-image Length (in 512-byte units)
+ subimage_len: u16,
+ /// 0Ah: Last image indicator flag
+ last_image: u8,
+}
+
+impl NpdeStruct {
+ fn new(pdev: &pci::Device, data: &[u8]) -> Option<Self> {
+ if data.len() < core::mem::size_of::<Self>() {
+ dev_dbg!(pdev.as_ref(), "Not enough data for NpdeStruct\n");
+ return None;
+ }
+
+ let mut signature = [0u8; 4];
+ signature.copy_from_slice(&data[0..4]);
+
+ // Signature should be "NPDE" (0x4544504E).
+ if &signature != b"NPDE" {
+ dev_dbg!(
+ pdev.as_ref(),
+ "Invalid signature for NpdeStruct: {:?}\n",
+ signature
+ );
+ return None;
+ }
+
+ let subimage_len = u16::from_le_bytes([data[8], data[9]]);
+ if subimage_len == 0 {
+ dev_dbg!(pdev.as_ref(), "Invalid subimage length: 0\n");
+ return None;
+ }
+
+ Some(NpdeStruct {
+ signature,
+ npci_data_ext_rev: u16::from_le_bytes([data[4], data[5]]),
+ npci_data_ext_len: u16::from_le_bytes([data[6], data[7]]),
+ subimage_len,
+ last_image: data[10],
+ })
+ }
+
+ /// Check if this is the last image in the ROM.
+ fn is_last(&self) -> bool {
+ self.last_image & LAST_IMAGE_BIT_MASK != 0
+ }
+
+ /// Calculate image size in bytes from 512-byte blocks.
+ fn image_size_bytes(&self) -> usize {
+ self.subimage_len as usize * 512
+ }
+
+ /// Try to find NPDE in the data, the NPDE is right after the PCIR.
+ fn find_in_data(
+ pdev: &pci::Device,
+ data: &[u8],
+ rom_header: &PciRomHeader,
+ pcir: &PcirStruct,
+ ) -> Option<Self> {
+ // Calculate the offset where NPDE might be located
+ // NPDE should be right after the PCIR structure, aligned to 16 bytes
+ let pcir_offset = rom_header.pci_data_struct_offset as usize;
+ let npde_start = (pcir_offset + pcir.pci_data_struct_len as usize + 0x0F) & !0x0F;
+
+ // Check if we have enough data
+ if npde_start + core::mem::size_of::<Self>() > data.len() {
+ dev_dbg!(pdev.as_ref(), "Not enough data for NPDE\n");
+ return None;
+ }
+
+ // Try to create NPDE from the data
+ NpdeStruct::new(pdev, &data[npde_start..])
+ }
+}
+
+// Use a macro to implement BiosImage enum and methods. This avoids having to
+// repeat each enum type when implementing functions like base() in BiosImage.
+macro_rules! bios_image {
+ (
+ $($variant:ident: $class:ident),* $(,)?
+ ) => {
+ // BiosImage enum with variants for each image type
+ enum BiosImage {
+ $($variant($class)),*
+ }
+
+ impl BiosImage {
+ /// Get a reference to the common BIOS image data regardless of type
+ fn base(&self) -> &BiosImageBase {
+ match self {
+ $(Self::$variant(img) => &img.base),*
+ }
+ }
+
+ /// Returns a string representing the type of BIOS image
+ fn image_type_str(&self) -> &'static str {
+ match self {
+ $(Self::$variant(_) => stringify!($variant)),*
+ }
+ }
+ }
+ }
+}
+
+impl BiosImage {
+ /// Check if this is the last image.
+ fn is_last(&self) -> bool {
+ let base = self.base();
+
+ // For NBSI images (type == 0x70), return true as they're
+ // considered the last image
+ if matches!(self, Self::Nbsi(_)) {
+ return true;
+ }
+
+ // For other image types, check the NPDE first if available
+ if let Some(ref npde) = base.npde {
+ return npde.is_last();
+ }
+
+ // Otherwise, fall back to checking the PCIR last_image flag
+ base.pcir.is_last()
+ }
+
+ /// Get the image size in bytes.
+ fn image_size_bytes(&self) -> usize {
+ let base = self.base();
+
+ // Prefer NPDE image size if available
+ if let Some(ref npde) = base.npde {
+ return npde.image_size_bytes();
+ }
+
+ // Otherwise, fall back to the PCIR image size
+ base.pcir.image_size_bytes()
+ }
+
+ /// Create a [`BiosImageBase`] from a byte slice and convert it to a [`BiosImage`] which
+ /// triggers the constructor of the specific BiosImage enum variant.
+ fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ let base = BiosImageBase::new(pdev, data)?;
+ let image = base.into_image().inspect_err(|e| {
+ dev_err!(pdev.as_ref(), "Failed to create BiosImage: {:?}\n", e);
+ })?;
+
+ Ok(image)
+ }
+}
+
+bios_image! {
+ PciAt: PciAtBiosImage, // PCI-AT compatible BIOS image
+ Efi: EfiBiosImage, // EFI (Extensible Firmware Interface)
+ Nbsi: NbsiBiosImage, // NBSI (Nvidia Bios System Interface)
+ FwSec: FwSecBiosBuilder, // FWSEC (Firmware Security)
+}
+
+/// The PciAt BIOS image is typically the first BIOS image type found in the BIOS image chain.
+///
+/// It contains the BIT header and the BIT tokens.
+struct PciAtBiosImage {
+ base: BiosImageBase,
+ bit_header: BitHeader,
+ bit_offset: usize,
+}
+
+struct EfiBiosImage {
+ base: BiosImageBase,
+ // EFI-specific fields can be added here in the future.
+}
+
+struct NbsiBiosImage {
+ base: BiosImageBase,
+ // NBSI-specific fields can be added here in the future.
+}
+
+struct FwSecBiosBuilder {
+ base: BiosImageBase,
+ /// These are temporary fields that are used during the construction of the
+ /// [`FwSecBiosBuilder`].
+ ///
+ /// Once FwSecBiosBuilder is constructed, the `falcon_ucode_offset` will be copied into a new
+ /// [`FwSecBiosImage`].
+ ///
+ /// The offset of the Falcon data from the start of Fwsec image.
+ falcon_data_offset: Option<usize>,
+ /// The [`PmuLookupTable`] starts at the offset of the falcon data pointer.
+ pmu_lookup_table: Option<PmuLookupTable>,
+ /// The offset of the Falcon ucode.
+ falcon_ucode_offset: Option<usize>,
+}
+
+/// The [`FwSecBiosImage`] structure contains the PMU table and the Falcon Ucode.
+///
+/// The PMU table contains voltage/frequency tables as well as a pointer to the Falcon Ucode.
+pub(crate) struct FwSecBiosImage {
+ base: BiosImageBase,
+ /// The offset of the Falcon ucode.
+ falcon_ucode_offset: usize,
+}
+
+// Convert from BiosImageBase to BiosImage
+impl TryFrom<BiosImageBase> for BiosImage {
+ type Error = Error;
+
+ fn try_from(base: BiosImageBase) -> Result<Self> {
+ match base.pcir.code_type {
+ 0x00 => Ok(BiosImage::PciAt(base.try_into()?)),
+ 0x03 => Ok(BiosImage::Efi(EfiBiosImage { base })),
+ 0x70 => Ok(BiosImage::Nbsi(NbsiBiosImage { base })),
+ 0xE0 => Ok(BiosImage::FwSec(FwSecBiosBuilder {
+ base,
+ falcon_data_offset: None,
+ pmu_lookup_table: None,
+ falcon_ucode_offset: None,
+ })),
+ _ => Err(EINVAL),
+ }
+ }
+}
+
+/// BIOS Image structure containing various headers and reference fields to all BIOS images.
+///
+/// Each BiosImage type has a BiosImageBase type along with other image-specific fields. Note that
+/// Rust favors composition of types over inheritance.
+#[derive(Debug)]
+#[expect(dead_code)]
+struct BiosImageBase {
+ /// PCI ROM Expansion Header
+ rom_header: PciRomHeader,
+ /// PCI Data Structure
+ pcir: PcirStruct,
+ /// NVIDIA PCI Data Extension (optional)
+ npde: Option<NpdeStruct>,
+ /// Image data (includes ROM header and PCIR)
+ data: KVec<u8>,
+}
+
+impl BiosImageBase {
+ fn into_image(self) -> Result<BiosImage> {
+ BiosImage::try_from(self)
+ }
+
+ /// Creates a new BiosImageBase from raw byte data.
+ fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ // Ensure we have enough data for the ROM header.
+ if data.len() < 26 {
+ dev_err!(pdev.as_ref(), "Not enough data for ROM header\n");
+ return Err(EINVAL);
+ }
+
+ // Parse the ROM header.
+ let rom_header = PciRomHeader::new(pdev, &data[0..26])
+ .inspect_err(|e| dev_err!(pdev.as_ref(), "Failed to create PciRomHeader: {:?}\n", e))?;
+
+ // Get the PCI Data Structure using the pointer from the ROM header.
+ let pcir_offset = rom_header.pci_data_struct_offset as usize;
+ let pcir_data = data
+ .get(pcir_offset..pcir_offset + core::mem::size_of::<PcirStruct>())
+ .ok_or(EINVAL)
+ .inspect_err(|_| {
+ dev_err!(
+ pdev.as_ref(),
+ "PCIR offset {:#x} out of bounds (data length: {})\n",
+ pcir_offset,
+ data.len()
+ );
+ dev_err!(
+ pdev.as_ref(),
+ "Consider reading more data for construction of BiosImage\n"
+ );
+ })?;
+
+ let pcir = PcirStruct::new(pdev, pcir_data)
+ .inspect_err(|e| dev_err!(pdev.as_ref(), "Failed to create PcirStruct: {:?}\n", e))?;
+
+ // Look for NPDE structure if this is not an NBSI image (type != 0x70).
+ let npde = NpdeStruct::find_in_data(pdev, data, &rom_header, &pcir);
+
+ // Create a copy of the data.
+ let mut data_copy = KVec::new();
+ data_copy.extend_from_slice(data, GFP_KERNEL)?;
+
+ Ok(BiosImageBase {
+ rom_header,
+ pcir,
+ npde,
+ data: data_copy,
+ })
+ }
+}
+
+impl PciAtBiosImage {
+ /// Find a byte pattern in a slice.
+ fn find_byte_pattern(haystack: &[u8], needle: &[u8]) -> Result<usize> {
+ haystack
+ .windows(needle.len())
+ .position(|window| window == needle)
+ .ok_or(EINVAL)
+ }
+
+ /// Find the BIT header in the [`PciAtBiosImage`].
+ fn find_bit_header(data: &[u8]) -> Result<(BitHeader, usize)> {
+ let bit_pattern = [0xff, 0xb8, b'B', b'I', b'T', 0x00];
+ let bit_offset = Self::find_byte_pattern(data, &bit_pattern)?;
+ let bit_header = BitHeader::new(&data[bit_offset..])?;
+
+ Ok((bit_header, bit_offset))
+ }
+
+ /// Get a BIT token entry from the BIT table in the [`PciAtBiosImage`]
+ fn get_bit_token(&self, token_id: u8) -> Result<BitToken> {
+ BitToken::from_id(self, token_id)
+ }
+
+ /// Find the Falcon data pointer structure in the [`PciAtBiosImage`].
+ ///
+ /// This is just a 4 byte structure that contains a pointer to the Falcon data in the FWSEC
+ /// image.
+ fn falcon_data_ptr(&self, pdev: &pci::Device) -> Result<u32> {
+ let token = self.get_bit_token(BIT_TOKEN_ID_FALCON_DATA)?;
+
+ // Make sure we don't go out of bounds
+ if token.data_offset as usize + 4 > self.base.data.len() {
+ return Err(EINVAL);
+ }
+
+ // read the 4 bytes at the offset specified in the token
+ let offset = token.data_offset as usize;
+ let bytes: [u8; 4] = self.base.data[offset..offset + 4].try_into().map_err(|_| {
+ dev_err!(pdev.as_ref(), "Failed to convert data slice to array");
+ EINVAL
+ })?;
+
+ let data_ptr = u32::from_le_bytes(bytes);
+
+ if (data_ptr as usize) < self.base.data.len() {
+ dev_err!(pdev.as_ref(), "Falcon data pointer out of bounds\n");
+ return Err(EINVAL);
+ }
+
+ Ok(data_ptr)
+ }
+}
+
+impl TryFrom<BiosImageBase> for PciAtBiosImage {
+ type Error = Error;
+
+ fn try_from(base: BiosImageBase) -> Result<Self> {
+ let data_slice = &base.data;
+ let (bit_header, bit_offset) = PciAtBiosImage::find_bit_header(data_slice)?;
+
+ Ok(PciAtBiosImage {
+ base,
+ bit_header,
+ bit_offset,
+ })
+ }
+}
+
+/// The [`PmuLookupTableEntry`] structure is a single entry in the [`PmuLookupTable`].
+///
+/// See the [`PmuLookupTable`] description for more information.
+#[expect(dead_code)]
+struct PmuLookupTableEntry {
+ application_id: u8,
+ target_id: u8,
+ data: u32,
+}
+
+impl PmuLookupTableEntry {
+ fn new(data: &[u8]) -> Result<Self> {
+ if data.len() < 6 {
+ return Err(EINVAL);
+ }
+
+ Ok(PmuLookupTableEntry {
+ application_id: data[0],
+ target_id: data[1],
+ data: u32::from_le_bytes(data[2..6].try_into().map_err(|_| EINVAL)?),
+ })
+ }
+}
+
+/// The [`PmuLookupTableEntry`] structure is used to find the [`PmuLookupTableEntry`] for a given
+/// application ID.
+///
+/// The table of entries is pointed to by the falcon data pointer in the BIT table, and is used to
+/// locate the Falcon Ucode.
+#[expect(dead_code)]
+struct PmuLookupTable {
+ version: u8,
+ header_len: u8,
+ entry_len: u8,
+ entry_count: u8,
+ table_data: KVec<u8>,
+}
+
+impl PmuLookupTable {
+ fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ if data.len() < 4 {
+ return Err(EINVAL);
+ }
+
+ let header_len = data[1] as usize;
+ let entry_len = data[2] as usize;
+ let entry_count = data[3] as usize;
+
+ let required_bytes = header_len + (entry_count * entry_len);
+
+ if data.len() < required_bytes {
+ dev_err!(
+ pdev.as_ref(),
+ "PmuLookupTable data length less than required\n"
+ );
+ return Err(EINVAL);
+ }
+
+ // Create a copy of only the table data
+ let table_data = {
+ let mut ret = KVec::new();
+ ret.extend_from_slice(&data[header_len..required_bytes], GFP_KERNEL)?;
+ ret
+ };
+
+ // Debug logging of entries (dumps the table data to dmesg)
+ for i in (header_len..required_bytes).step_by(entry_len) {
+ dev_dbg!(
+ pdev.as_ref(),
+ "PMU entry: {:02x?}\n",
+ &data[i..][..entry_len]
+ );
+ }
+
+ Ok(PmuLookupTable {
+ version: data[0],
+ header_len: header_len as u8,
+ entry_len: entry_len as u8,
+ entry_count: entry_count as u8,
+ table_data,
+ })
+ }
+
+ fn lookup_index(&self, idx: u8) -> Result<PmuLookupTableEntry> {
+ if idx >= self.entry_count {
+ return Err(EINVAL);
+ }
+
+ let index = (idx as usize) * self.entry_len as usize;
+ PmuLookupTableEntry::new(&self.table_data[index..])
+ }
+
+ // find entry by type value
+ fn find_entry_by_type(&self, entry_type: u8) -> Result<PmuLookupTableEntry> {
+ for i in 0..self.entry_count {
+ let entry = self.lookup_index(i)?;
+ if entry.application_id == entry_type {
+ return Ok(entry);
+ }
+ }
+
+ Err(EINVAL)
+ }
+}
+
+impl FwSecBiosBuilder {
+ fn setup_falcon_data(
+ &mut self,
+ pdev: &pci::Device,
+ pci_at_image: &PciAtBiosImage,
+ first_fwsec: &FwSecBiosBuilder,
+ ) -> Result {
+ let mut offset = pci_at_image.falcon_data_ptr(pdev)? as usize;
+ let mut pmu_in_first_fwsec = false;
+
+ // The falcon data pointer assumes that the PciAt and FWSEC images
+ // are contiguous in memory. However, testing shows the EFI image sits in
+ // between them. So calculate the offset from the end of the PciAt image
+ // rather than the start of it. Compensate.
+ offset -= pci_at_image.base.data.len();
+
+ // The offset is now from the start of the first Fwsec image, however
+ // the offset points to a location in the second Fwsec image. Since
+ // the fwsec images are contiguous, subtract the length of the first Fwsec
+ // image from the offset to get the offset to the start of the second
+ // Fwsec image.
+ if offset < first_fwsec.base.data.len() {
+ pmu_in_first_fwsec = true;
+ } else {
+ offset -= first_fwsec.base.data.len();
+ }
+
+ self.falcon_data_offset = Some(offset);
+
+ if pmu_in_first_fwsec {
+ self.pmu_lookup_table =
+ Some(PmuLookupTable::new(pdev, &first_fwsec.base.data[offset..])?);
+ } else {
+ self.pmu_lookup_table = Some(PmuLookupTable::new(pdev, &self.base.data[offset..])?);
+ }
+
+ match self
+ .pmu_lookup_table
+ .as_ref()
+ .ok_or(EINVAL)?
+ .find_entry_by_type(FALCON_UCODE_ENTRY_APPID_FWSEC_PROD)
+ {
+ Ok(entry) => {
+ let mut ucode_offset = entry.data as usize;
+ ucode_offset -= pci_at_image.base.data.len();
+ if ucode_offset < first_fwsec.base.data.len() {
+ dev_err!(pdev.as_ref(), "Falcon Ucode offset not in second Fwsec.\n");
+ return Err(EINVAL);
+ }
+ ucode_offset -= first_fwsec.base.data.len();
+ self.falcon_ucode_offset = Some(ucode_offset);
+ }
+ Err(e) => {
+ dev_err!(
+ pdev.as_ref(),
+ "PmuLookupTableEntry not found, error: {:?}\n",
+ e
+ );
+ return Err(EINVAL);
+ }
+ }
+ Ok(())
+ }
+
+ /// Build the final FwSecBiosImage from this builder
+ fn build(self, pdev: &pci::Device) -> Result<FwSecBiosImage> {
+ let ret = FwSecBiosImage {
+ base: self.base,
+ falcon_ucode_offset: self.falcon_ucode_offset.ok_or(EINVAL)?,
+ };
+
+ if cfg!(debug_assertions) {
+ // Print the desc header for debugging
+ let desc = ret.header(pdev.as_ref())?;
+ dev_dbg!(pdev.as_ref(), "PmuLookupTableEntry desc: {:#?}\n", desc);
+ }
+
+ Ok(ret)
+ }
+}
+
+impl FwSecBiosImage {
+ /// Get the FwSec header ([`FalconUCodeDescV3`]).
+ pub(crate) fn header(&self, dev: &device::Device) -> Result<&FalconUCodeDescV3> {
+ // Get the falcon ucode offset that was found in setup_falcon_data.
+ let falcon_ucode_offset = self.falcon_ucode_offset;
+
+ // Make sure the offset is within the data bounds.
+ if falcon_ucode_offset + core::mem::size_of::<FalconUCodeDescV3>() > self.base.data.len() {
+ dev_err!(dev, "fwsec-frts header not contained within BIOS bounds\n");
+ return Err(ERANGE);
+ }
+
+ // Read the first 4 bytes to get the version.
+ let hdr_bytes: [u8; 4] = self.base.data[falcon_ucode_offset..falcon_ucode_offset + 4]
+ .try_into()
+ .map_err(|_| EINVAL)?;
+ let hdr = u32::from_le_bytes(hdr_bytes);
+ let ver = (hdr & 0xff00) >> 8;
+
+ if ver != 3 {
+ dev_err!(dev, "invalid fwsec firmware version: {:?}\n", ver);
+ return Err(EINVAL);
+ }
+
+ // Return a reference to the FalconUCodeDescV3 structure.
+ //
+ // SAFETY: We have checked that `falcon_ucode_offset + size_of::<FalconUCodeDescV3>` is
+ // within the bounds of `data`. Also, this data vector is from ROM, and the `data` field
+ // in `BiosImageBase` is immutable after construction.
+ Ok(unsafe {
+ &*(self
+ .base
+ .data
+ .as_ptr()
+ .add(falcon_ucode_offset)
+ .cast::<FalconUCodeDescV3>())
+ })
+ }
+
+ /// Get the ucode data as a byte slice
+ pub(crate) fn ucode(&self, dev: &device::Device, desc: &FalconUCodeDescV3) -> Result<&[u8]> {
+ let falcon_ucode_offset = self.falcon_ucode_offset;
+
+ // The ucode data follows the descriptor.
+ let ucode_data_offset = falcon_ucode_offset + desc.size();
+ let size = (desc.imem_load_size + desc.dmem_load_size) as usize;
+
+ // Get the data slice, checking bounds in a single operation.
+ self.base
+ .data
+ .get(ucode_data_offset..ucode_data_offset + size)
+ .ok_or(ERANGE)
+ .inspect_err(|_| dev_err!(dev, "fwsec ucode data not contained within BIOS bounds\n"))
+ }
+
+ /// Get the signatures as a byte slice
+ pub(crate) fn sigs(
+ &self,
+ dev: &device::Device,
+ desc: &FalconUCodeDescV3,
+ ) -> Result<&[Bcrt30Rsa3kSignature]> {
+ // The signatures data follows the descriptor.
+ let sigs_data_offset = self.falcon_ucode_offset + core::mem::size_of::<FalconUCodeDescV3>();
+ let sigs_size =
+ desc.signature_count as usize * core::mem::size_of::<Bcrt30Rsa3kSignature>();
+
+ // Make sure the data is within bounds.
+ if sigs_data_offset + sigs_size > self.base.data.len() {
+ dev_err!(
+ dev,
+ "fwsec signatures data not contained within BIOS bounds\n"
+ );
+ return Err(ERANGE);
+ }
+
+ // SAFETY: we checked that `data + sigs_data_offset + (signature_count *
+ // sizeof::<Bcrt30Rsa3kSignature>()` is within the bounds of `data`.
+ Ok(unsafe {
+ core::slice::from_raw_parts(
+ self.base
+ .data
+ .as_ptr()
+ .add(sigs_data_offset)
+ .cast::<Bcrt30Rsa3kSignature>(),
+ desc.signature_count as usize,
+ )
+ })
+ }
+}