diff options
Diffstat (limited to 'lib/mpi/mpi-inv.c')
| -rw-r--r-- | lib/mpi/mpi-inv.c | 143 | 
1 files changed, 143 insertions, 0 deletions
| diff --git a/lib/mpi/mpi-inv.c b/lib/mpi/mpi-inv.c new file mode 100644 index 000000000000..61e37d18f793 --- /dev/null +++ b/lib/mpi/mpi-inv.c @@ -0,0 +1,143 @@ +/* mpi-inv.c  -  MPI functions + *	Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc. + * + * This file is part of Libgcrypt. + * + * Libgcrypt is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as + * published by the Free Software Foundation; either version 2.1 of + * the License, or (at your option) any later version. + * + * Libgcrypt is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this program; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "mpi-internal.h" + +/**************** + * Calculate the multiplicative inverse X of A mod N + * That is: Find the solution x for + *		1 = (a*x) mod n + */ +int mpi_invm(MPI x, MPI a, MPI n) +{ +	/* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X) +	 * modified according to Michael Penk's solution for Exercise 35 +	 * with further enhancement +	 */ +	MPI u, v, u1, u2 = NULL, u3, v1, v2 = NULL, v3, t1, t2 = NULL, t3; +	unsigned int k; +	int sign; +	int odd; + +	if (!mpi_cmp_ui(a, 0)) +		return 0; /* Inverse does not exists.  */ +	if (!mpi_cmp_ui(n, 1)) +		return 0; /* Inverse does not exists.  */ + +	u = mpi_copy(a); +	v = mpi_copy(n); + +	for (k = 0; !mpi_test_bit(u, 0) && !mpi_test_bit(v, 0); k++) { +		mpi_rshift(u, u, 1); +		mpi_rshift(v, v, 1); +	} +	odd = mpi_test_bit(v, 0); + +	u1 = mpi_alloc_set_ui(1); +	if (!odd) +		u2 = mpi_alloc_set_ui(0); +	u3 = mpi_copy(u); +	v1 = mpi_copy(v); +	if (!odd) { +		v2 = mpi_alloc(mpi_get_nlimbs(u)); +		mpi_sub(v2, u1, u); /* U is used as const 1 */ +	} +	v3 = mpi_copy(v); +	if (mpi_test_bit(u, 0)) { /* u is odd */ +		t1 = mpi_alloc_set_ui(0); +		if (!odd) { +			t2 = mpi_alloc_set_ui(1); +			t2->sign = 1; +		} +		t3 = mpi_copy(v); +		t3->sign = !t3->sign; +		goto Y4; +	} else { +		t1 = mpi_alloc_set_ui(1); +		if (!odd) +			t2 = mpi_alloc_set_ui(0); +		t3 = mpi_copy(u); +	} + +	do { +		do { +			if (!odd) { +				if (mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0)) { +					/* one is odd */ +					mpi_add(t1, t1, v); +					mpi_sub(t2, t2, u); +				} +				mpi_rshift(t1, t1, 1); +				mpi_rshift(t2, t2, 1); +				mpi_rshift(t3, t3, 1); +			} else { +				if (mpi_test_bit(t1, 0)) +					mpi_add(t1, t1, v); +				mpi_rshift(t1, t1, 1); +				mpi_rshift(t3, t3, 1); +			} +Y4: +			; +		} while (!mpi_test_bit(t3, 0)); /* while t3 is even */ + +		if (!t3->sign) { +			mpi_set(u1, t1); +			if (!odd) +				mpi_set(u2, t2); +			mpi_set(u3, t3); +		} else { +			mpi_sub(v1, v, t1); +			sign = u->sign; u->sign = !u->sign; +			if (!odd) +				mpi_sub(v2, u, t2); +			u->sign = sign; +			sign = t3->sign; t3->sign = !t3->sign; +			mpi_set(v3, t3); +			t3->sign = sign; +		} +		mpi_sub(t1, u1, v1); +		if (!odd) +			mpi_sub(t2, u2, v2); +		mpi_sub(t3, u3, v3); +		if (t1->sign) { +			mpi_add(t1, t1, v); +			if (!odd) +				mpi_sub(t2, t2, u); +		} +	} while (mpi_cmp_ui(t3, 0)); /* while t3 != 0 */ +	/* mpi_lshift( u3, k ); */ +	mpi_set(x, u1); + +	mpi_free(u1); +	mpi_free(v1); +	mpi_free(t1); +	if (!odd) { +		mpi_free(u2); +		mpi_free(v2); +		mpi_free(t2); +	} +	mpi_free(u3); +	mpi_free(v3); +	mpi_free(t3); + +	mpi_free(u); +	mpi_free(v); +	return 1; +} +EXPORT_SYMBOL_GPL(mpi_invm); | 
