diff options
Diffstat (limited to 'lib/mpi')
| -rw-r--r-- | lib/mpi/Makefile | 6 | ||||
| -rw-r--r-- | lib/mpi/ec.c | 1506 | ||||
| -rw-r--r-- | lib/mpi/mpi-add.c | 155 | ||||
| -rw-r--r-- | lib/mpi/mpi-bit.c | 253 | ||||
| -rw-r--r-- | lib/mpi/mpi-cmp.c | 46 | ||||
| -rw-r--r-- | lib/mpi/mpi-div.c | 234 | ||||
| -rw-r--r-- | lib/mpi/mpi-internal.h | 53 | ||||
| -rw-r--r-- | lib/mpi/mpi-inv.c | 143 | ||||
| -rw-r--r-- | lib/mpi/mpi-mod.c | 155 | ||||
| -rw-r--r-- | lib/mpi/mpi-mul.c | 91 | ||||
| -rw-r--r-- | lib/mpi/mpicoder.c | 336 | ||||
| -rw-r--r-- | lib/mpi/mpih-div.c | 294 | ||||
| -rw-r--r-- | lib/mpi/mpih-mul.c | 25 | ||||
| -rw-r--r-- | lib/mpi/mpiutil.c | 204 | 
14 files changed, 3490 insertions, 11 deletions
| diff --git a/lib/mpi/Makefile b/lib/mpi/Makefile index 43b8fce14079..6e6ef9a34fe1 100644 --- a/lib/mpi/Makefile +++ b/lib/mpi/Makefile @@ -13,10 +13,16 @@ mpi-y = \  	generic_mpih-rshift.o		\  	generic_mpih-sub1.o		\  	generic_mpih-add1.o		\ +	ec.o				\  	mpicoder.o			\ +	mpi-add.o			\  	mpi-bit.o			\  	mpi-cmp.o			\  	mpi-sub-ui.o			\ +	mpi-div.o			\ +	mpi-inv.o			\ +	mpi-mod.o			\ +	mpi-mul.o			\  	mpih-cmp.o			\  	mpih-div.o			\  	mpih-mul.o			\ diff --git a/lib/mpi/ec.c b/lib/mpi/ec.c new file mode 100644 index 000000000000..40f5908e57a4 --- /dev/null +++ b/lib/mpi/ec.c @@ -0,0 +1,1506 @@ +/* ec.c -  Elliptic Curve functions + * Copyright (C) 2007 Free Software Foundation, Inc. + * Copyright (C) 2013 g10 Code GmbH + * + * This file is part of Libgcrypt. + * + * Libgcrypt is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as + * published by the Free Software Foundation; either version 2.1 of + * the License, or (at your option) any later version. + * + * Libgcrypt is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this program; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "mpi-internal.h" +#include "longlong.h" + +#define point_init(a)  mpi_point_init((a)) +#define point_free(a)  mpi_point_free_parts((a)) + +#define log_error(fmt, ...) pr_err(fmt, ##__VA_ARGS__) +#define log_fatal(fmt, ...) pr_err(fmt, ##__VA_ARGS__) + +#define DIM(v) (sizeof(v)/sizeof((v)[0])) + + +/* Create a new point option.  NBITS gives the size in bits of one + * coordinate; it is only used to pre-allocate some resources and + * might also be passed as 0 to use a default value. + */ +MPI_POINT mpi_point_new(unsigned int nbits) +{ +	MPI_POINT p; + +	(void)nbits;  /* Currently not used.  */ + +	p = kmalloc(sizeof(*p), GFP_KERNEL); +	if (p) +		mpi_point_init(p); +	return p; +} +EXPORT_SYMBOL_GPL(mpi_point_new); + +/* Release the point object P.  P may be NULL. */ +void mpi_point_release(MPI_POINT p) +{ +	if (p) { +		mpi_point_free_parts(p); +		kfree(p); +	} +} +EXPORT_SYMBOL_GPL(mpi_point_release); + +/* Initialize the fields of a point object.  gcry_mpi_point_free_parts + * may be used to release the fields. + */ +void mpi_point_init(MPI_POINT p) +{ +	p->x = mpi_new(0); +	p->y = mpi_new(0); +	p->z = mpi_new(0); +} +EXPORT_SYMBOL_GPL(mpi_point_init); + +/* Release the parts of a point object. */ +void mpi_point_free_parts(MPI_POINT p) +{ +	mpi_free(p->x); p->x = NULL; +	mpi_free(p->y); p->y = NULL; +	mpi_free(p->z); p->z = NULL; +} +EXPORT_SYMBOL_GPL(mpi_point_free_parts); + +/* Set the value from S into D.  */ +static void point_set(MPI_POINT d, MPI_POINT s) +{ +	mpi_set(d->x, s->x); +	mpi_set(d->y, s->y); +	mpi_set(d->z, s->z); +} + +static void point_resize(MPI_POINT p, struct mpi_ec_ctx *ctx) +{ +	size_t nlimbs = ctx->p->nlimbs; + +	mpi_resize(p->x, nlimbs); +	p->x->nlimbs = nlimbs; +	mpi_resize(p->z, nlimbs); +	p->z->nlimbs = nlimbs; + +	if (ctx->model != MPI_EC_MONTGOMERY) { +		mpi_resize(p->y, nlimbs); +		p->y->nlimbs = nlimbs; +	} +} + +static void point_swap_cond(MPI_POINT d, MPI_POINT s, unsigned long swap, +		struct mpi_ec_ctx *ctx) +{ +	mpi_swap_cond(d->x, s->x, swap); +	if (ctx->model != MPI_EC_MONTGOMERY) +		mpi_swap_cond(d->y, s->y, swap); +	mpi_swap_cond(d->z, s->z, swap); +} + + +/* W = W mod P.  */ +static void ec_mod(MPI w, struct mpi_ec_ctx *ec) +{ +	if (ec->t.p_barrett) +		mpi_mod_barrett(w, w, ec->t.p_barrett); +	else +		mpi_mod(w, w, ec->p); +} + +static void ec_addm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) +{ +	mpi_add(w, u, v); +	ec_mod(w, ctx); +} + +static void ec_subm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ec) +{ +	mpi_sub(w, u, v); +	while (w->sign) +		mpi_add(w, w, ec->p); +	/*ec_mod(w, ec);*/ +} + +static void ec_mulm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) +{ +	mpi_mul(w, u, v); +	ec_mod(w, ctx); +} + +/* W = 2 * U mod P.  */ +static void ec_mul2(MPI w, MPI u, struct mpi_ec_ctx *ctx) +{ +	mpi_lshift(w, u, 1); +	ec_mod(w, ctx); +} + +static void ec_powm(MPI w, const MPI b, const MPI e, +		struct mpi_ec_ctx *ctx) +{ +	mpi_powm(w, b, e, ctx->p); +	/* mpi_abs(w); */ +} + +/* Shortcut for + * ec_powm(B, B, mpi_const(MPI_C_TWO), ctx); + * for easier optimization. + */ +static void ec_pow2(MPI w, const MPI b, struct mpi_ec_ctx *ctx) +{ +	/* Using mpi_mul is slightly faster (at least on amd64).  */ +	/* mpi_powm(w, b, mpi_const(MPI_C_TWO), ctx->p); */ +	ec_mulm(w, b, b, ctx); +} + +/* Shortcut for + * ec_powm(B, B, mpi_const(MPI_C_THREE), ctx); + * for easier optimization. + */ +static void ec_pow3(MPI w, const MPI b, struct mpi_ec_ctx *ctx) +{ +	mpi_powm(w, b, mpi_const(MPI_C_THREE), ctx->p); +} + +static void ec_invm(MPI x, MPI a, struct mpi_ec_ctx *ctx) +{ +	if (!mpi_invm(x, a, ctx->p)) +		log_error("ec_invm: inverse does not exist:\n"); +} + +static void mpih_set_cond(mpi_ptr_t wp, mpi_ptr_t up, +		mpi_size_t usize, unsigned long set) +{ +	mpi_size_t i; +	mpi_limb_t mask = ((mpi_limb_t)0) - set; +	mpi_limb_t x; + +	for (i = 0; i < usize; i++) { +		x = mask & (wp[i] ^ up[i]); +		wp[i] = wp[i] ^ x; +	} +} + +/* Routines for 2^255 - 19.  */ + +#define LIMB_SIZE_25519 ((256+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB) + +static void ec_addm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) +{ +	mpi_ptr_t wp, up, vp; +	mpi_size_t wsize = LIMB_SIZE_25519; +	mpi_limb_t n[LIMB_SIZE_25519]; +	mpi_limb_t borrow; + +	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) +		log_bug("addm_25519: different sizes\n"); + +	memset(n, 0, sizeof(n)); +	up = u->d; +	vp = v->d; +	wp = w->d; + +	mpihelp_add_n(wp, up, vp, wsize); +	borrow = mpihelp_sub_n(wp, wp, ctx->p->d, wsize); +	mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL)); +	mpihelp_add_n(wp, wp, n, wsize); +	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB)); +} + +static void ec_subm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) +{ +	mpi_ptr_t wp, up, vp; +	mpi_size_t wsize = LIMB_SIZE_25519; +	mpi_limb_t n[LIMB_SIZE_25519]; +	mpi_limb_t borrow; + +	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) +		log_bug("subm_25519: different sizes\n"); + +	memset(n, 0, sizeof(n)); +	up = u->d; +	vp = v->d; +	wp = w->d; + +	borrow = mpihelp_sub_n(wp, up, vp, wsize); +	mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL)); +	mpihelp_add_n(wp, wp, n, wsize); +	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB)); +} + +static void ec_mulm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) +{ +	mpi_ptr_t wp, up, vp; +	mpi_size_t wsize = LIMB_SIZE_25519; +	mpi_limb_t n[LIMB_SIZE_25519*2]; +	mpi_limb_t m[LIMB_SIZE_25519+1]; +	mpi_limb_t cy; +	int msb; + +	(void)ctx; +	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) +		log_bug("mulm_25519: different sizes\n"); + +	up = u->d; +	vp = v->d; +	wp = w->d; + +	mpihelp_mul_n(n, up, vp, wsize); +	memcpy(wp, n, wsize * BYTES_PER_MPI_LIMB); +	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB)); + +	memcpy(m, n+LIMB_SIZE_25519-1, (wsize+1) * BYTES_PER_MPI_LIMB); +	mpihelp_rshift(m, m, LIMB_SIZE_25519+1, (255 % BITS_PER_MPI_LIMB)); + +	memcpy(n, m, wsize * BYTES_PER_MPI_LIMB); +	cy = mpihelp_lshift(m, m, LIMB_SIZE_25519, 4); +	m[LIMB_SIZE_25519] = cy; +	cy = mpihelp_add_n(m, m, n, wsize); +	m[LIMB_SIZE_25519] += cy; +	cy = mpihelp_add_n(m, m, n, wsize); +	m[LIMB_SIZE_25519] += cy; +	cy = mpihelp_add_n(m, m, n, wsize); +	m[LIMB_SIZE_25519] += cy; + +	cy = mpihelp_add_n(wp, wp, m, wsize); +	m[LIMB_SIZE_25519] += cy; + +	memset(m, 0, wsize * BYTES_PER_MPI_LIMB); +	msb = (wp[LIMB_SIZE_25519-1] >> (255 % BITS_PER_MPI_LIMB)); +	m[0] = (m[LIMB_SIZE_25519] * 2 + msb) * 19; +	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB)); +	mpihelp_add_n(wp, wp, m, wsize); + +	m[0] = 0; +	cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize); +	mpih_set_cond(m, ctx->p->d, wsize, (cy != 0UL)); +	mpihelp_add_n(wp, wp, m, wsize); +} + +static void ec_mul2_25519(MPI w, MPI u, struct mpi_ec_ctx *ctx) +{ +	ec_addm_25519(w, u, u, ctx); +} + +static void ec_pow2_25519(MPI w, const MPI b, struct mpi_ec_ctx *ctx) +{ +	ec_mulm_25519(w, b, b, ctx); +} + +/* Routines for 2^448 - 2^224 - 1.  */ + +#define LIMB_SIZE_448 ((448+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB) +#define LIMB_SIZE_HALF_448 ((LIMB_SIZE_448+1)/2) + +static void ec_addm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) +{ +	mpi_ptr_t wp, up, vp; +	mpi_size_t wsize = LIMB_SIZE_448; +	mpi_limb_t n[LIMB_SIZE_448]; +	mpi_limb_t cy; + +	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) +		log_bug("addm_448: different sizes\n"); + +	memset(n, 0, sizeof(n)); +	up = u->d; +	vp = v->d; +	wp = w->d; + +	cy = mpihelp_add_n(wp, up, vp, wsize); +	mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL)); +	mpihelp_sub_n(wp, wp, n, wsize); +} + +static void ec_subm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) +{ +	mpi_ptr_t wp, up, vp; +	mpi_size_t wsize = LIMB_SIZE_448; +	mpi_limb_t n[LIMB_SIZE_448]; +	mpi_limb_t borrow; + +	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) +		log_bug("subm_448: different sizes\n"); + +	memset(n, 0, sizeof(n)); +	up = u->d; +	vp = v->d; +	wp = w->d; + +	borrow = mpihelp_sub_n(wp, up, vp, wsize); +	mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL)); +	mpihelp_add_n(wp, wp, n, wsize); +} + +static void ec_mulm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) +{ +	mpi_ptr_t wp, up, vp; +	mpi_size_t wsize = LIMB_SIZE_448; +	mpi_limb_t n[LIMB_SIZE_448*2]; +	mpi_limb_t a2[LIMB_SIZE_HALF_448]; +	mpi_limb_t a3[LIMB_SIZE_HALF_448]; +	mpi_limb_t b0[LIMB_SIZE_HALF_448]; +	mpi_limb_t b1[LIMB_SIZE_HALF_448]; +	mpi_limb_t cy; +	int i; +#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) +	mpi_limb_t b1_rest, a3_rest; +#endif + +	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) +		log_bug("mulm_448: different sizes\n"); + +	up = u->d; +	vp = v->d; +	wp = w->d; + +	mpihelp_mul_n(n, up, vp, wsize); + +	for (i = 0; i < (wsize + 1) / 2; i++) { +		b0[i] = n[i]; +		b1[i] = n[i+wsize/2]; +		a2[i] = n[i+wsize]; +		a3[i] = n[i+wsize+wsize/2]; +	} + +#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) +	b0[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1; +	a2[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1; + +	b1_rest = 0; +	a3_rest = 0; + +	for (i = (wsize + 1) / 2 - 1; i >= 0; i--) { +		mpi_limb_t b1v, a3v; +		b1v = b1[i]; +		a3v = a3[i]; +		b1[i] = (b1_rest << 32) | (b1v >> 32); +		a3[i] = (a3_rest << 32) | (a3v >> 32); +		b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1); +		a3_rest = a3v & (((mpi_limb_t)1UL << 32)-1); +	} +#endif + +	cy = mpihelp_add_n(b0, b0, a2, LIMB_SIZE_HALF_448); +	cy += mpihelp_add_n(b0, b0, a3, LIMB_SIZE_HALF_448); +	for (i = 0; i < (wsize + 1) / 2; i++) +		wp[i] = b0[i]; +#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) +	wp[LIMB_SIZE_HALF_448-1] &= (((mpi_limb_t)1UL << 32)-1); +#endif + +#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) +	cy = b0[LIMB_SIZE_HALF_448-1] >> 32; +#endif + +	cy = mpihelp_add_1(b1, b1, LIMB_SIZE_HALF_448, cy); +	cy += mpihelp_add_n(b1, b1, a2, LIMB_SIZE_HALF_448); +	cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448); +	cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448); +#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) +	b1_rest = 0; +	for (i = (wsize + 1) / 2 - 1; i >= 0; i--) { +		mpi_limb_t b1v = b1[i]; +		b1[i] = (b1_rest << 32) | (b1v >> 32); +		b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1); +	} +	wp[LIMB_SIZE_HALF_448-1] |= (b1_rest << 32); +#endif +	for (i = 0; i < wsize / 2; i++) +		wp[i+(wsize + 1) / 2] = b1[i]; + +#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) +	cy = b1[LIMB_SIZE_HALF_448-1]; +#endif + +	memset(n, 0, wsize * BYTES_PER_MPI_LIMB); + +#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) +	n[LIMB_SIZE_HALF_448-1] = cy << 32; +#else +	n[LIMB_SIZE_HALF_448] = cy; +#endif +	n[0] = cy; +	mpihelp_add_n(wp, wp, n, wsize); + +	memset(n, 0, wsize * BYTES_PER_MPI_LIMB); +	cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize); +	mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL)); +	mpihelp_add_n(wp, wp, n, wsize); +} + +static void ec_mul2_448(MPI w, MPI u, struct mpi_ec_ctx *ctx) +{ +	ec_addm_448(w, u, u, ctx); +} + +static void ec_pow2_448(MPI w, const MPI b, struct mpi_ec_ctx *ctx) +{ +	ec_mulm_448(w, b, b, ctx); +} + +struct field_table { +	const char *p; + +	/* computation routines for the field.  */ +	void (*addm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx); +	void (*subm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx); +	void (*mulm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx); +	void (*mul2)(MPI w, MPI u, struct mpi_ec_ctx *ctx); +	void (*pow2)(MPI w, const MPI b, struct mpi_ec_ctx *ctx); +}; + +static const struct field_table field_table[] = { +	{ +		"0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED", +		ec_addm_25519, +		ec_subm_25519, +		ec_mulm_25519, +		ec_mul2_25519, +		ec_pow2_25519 +	}, +	{ +		"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE" +		"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", +		ec_addm_448, +		ec_subm_448, +		ec_mulm_448, +		ec_mul2_448, +		ec_pow2_448 +	}, +	{ NULL, NULL, NULL, NULL, NULL, NULL }, +}; + +/* Force recomputation of all helper variables.  */ +static void mpi_ec_get_reset(struct mpi_ec_ctx *ec) +{ +	ec->t.valid.a_is_pminus3 = 0; +	ec->t.valid.two_inv_p = 0; +} + +/* Accessor for helper variable.  */ +static int ec_get_a_is_pminus3(struct mpi_ec_ctx *ec) +{ +	MPI tmp; + +	if (!ec->t.valid.a_is_pminus3) { +		ec->t.valid.a_is_pminus3 = 1; +		tmp = mpi_alloc_like(ec->p); +		mpi_sub_ui(tmp, ec->p, 3); +		ec->t.a_is_pminus3 = !mpi_cmp(ec->a, tmp); +		mpi_free(tmp); +	} + +	return ec->t.a_is_pminus3; +} + +/* Accessor for helper variable.  */ +static MPI ec_get_two_inv_p(struct mpi_ec_ctx *ec) +{ +	if (!ec->t.valid.two_inv_p) { +		ec->t.valid.two_inv_p = 1; +		if (!ec->t.two_inv_p) +			ec->t.two_inv_p = mpi_alloc(0); +		ec_invm(ec->t.two_inv_p, mpi_const(MPI_C_TWO), ec); +	} +	return ec->t.two_inv_p; +} + +static const char *const curve25519_bad_points[] = { +	"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed", +	"0x0000000000000000000000000000000000000000000000000000000000000000", +	"0x0000000000000000000000000000000000000000000000000000000000000001", +	"0x00b8495f16056286fdb1329ceb8d09da6ac49ff1fae35616aeb8413b7c7aebe0", +	"0x57119fd0dd4e22d8868e1c58c45c44045bef839c55b1d0b1248c50a3bc959c5f", +	"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec", +	"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee", +	NULL +}; + +static const char *const curve448_bad_points[] = { +	"0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe" +	"ffffffffffffffffffffffffffffffffffffffffffffffffffffffff", +	"0x00000000000000000000000000000000000000000000000000000000" +	"00000000000000000000000000000000000000000000000000000000", +	"0x00000000000000000000000000000000000000000000000000000000" +	"00000000000000000000000000000000000000000000000000000001", +	"0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe" +	"fffffffffffffffffffffffffffffffffffffffffffffffffffffffe", +	"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff" +	"00000000000000000000000000000000000000000000000000000000", +	NULL +}; + +static const char *const *bad_points_table[] = { +	curve25519_bad_points, +	curve448_bad_points, +}; + +static void mpi_ec_coefficient_normalize(MPI a, MPI p) +{ +	if (a->sign) { +		mpi_resize(a, p->nlimbs); +		mpihelp_sub_n(a->d, p->d, a->d, p->nlimbs); +		a->nlimbs = p->nlimbs; +		a->sign = 0; +	} +} + +/* This function initialized a context for elliptic curve based on the + * field GF(p).  P is the prime specifying this field, A is the first + * coefficient.  CTX is expected to be zeroized. + */ +void mpi_ec_init(struct mpi_ec_ctx *ctx, enum gcry_mpi_ec_models model, +			enum ecc_dialects dialect, +			int flags, MPI p, MPI a, MPI b) +{ +	int i; +	static int use_barrett = -1 /* TODO: 1 or -1 */; + +	mpi_ec_coefficient_normalize(a, p); +	mpi_ec_coefficient_normalize(b, p); + +	/* Fixme: Do we want to check some constraints? e.g.  a < p  */ + +	ctx->model = model; +	ctx->dialect = dialect; +	ctx->flags = flags; +	if (dialect == ECC_DIALECT_ED25519) +		ctx->nbits = 256; +	else +		ctx->nbits = mpi_get_nbits(p); +	ctx->p = mpi_copy(p); +	ctx->a = mpi_copy(a); +	ctx->b = mpi_copy(b); + +	ctx->t.p_barrett = use_barrett > 0 ? mpi_barrett_init(ctx->p, 0) : NULL; + +	mpi_ec_get_reset(ctx); + +	if (model == MPI_EC_MONTGOMERY) { +		for (i = 0; i < DIM(bad_points_table); i++) { +			MPI p_candidate = mpi_scanval(bad_points_table[i][0]); +			int match_p = !mpi_cmp(ctx->p, p_candidate); +			int j; + +			mpi_free(p_candidate); +			if (!match_p) +				continue; + +			for (j = 0; i < DIM(ctx->t.scratch) && bad_points_table[i][j]; j++) +				ctx->t.scratch[j] = mpi_scanval(bad_points_table[i][j]); +		} +	} else { +		/* Allocate scratch variables.  */ +		for (i = 0; i < DIM(ctx->t.scratch); i++) +			ctx->t.scratch[i] = mpi_alloc_like(ctx->p); +	} + +	ctx->addm = ec_addm; +	ctx->subm = ec_subm; +	ctx->mulm = ec_mulm; +	ctx->mul2 = ec_mul2; +	ctx->pow2 = ec_pow2; + +	for (i = 0; field_table[i].p; i++) { +		MPI f_p; + +		f_p = mpi_scanval(field_table[i].p); +		if (!f_p) +			break; + +		if (!mpi_cmp(p, f_p)) { +			ctx->addm = field_table[i].addm; +			ctx->subm = field_table[i].subm; +			ctx->mulm = field_table[i].mulm; +			ctx->mul2 = field_table[i].mul2; +			ctx->pow2 = field_table[i].pow2; +			mpi_free(f_p); + +			mpi_resize(ctx->a, ctx->p->nlimbs); +			ctx->a->nlimbs = ctx->p->nlimbs; + +			mpi_resize(ctx->b, ctx->p->nlimbs); +			ctx->b->nlimbs = ctx->p->nlimbs; + +			for (i = 0; i < DIM(ctx->t.scratch) && ctx->t.scratch[i]; i++) +				ctx->t.scratch[i]->nlimbs = ctx->p->nlimbs; + +			break; +		} + +		mpi_free(f_p); +	} +} +EXPORT_SYMBOL_GPL(mpi_ec_init); + +void mpi_ec_deinit(struct mpi_ec_ctx *ctx) +{ +	int i; + +	mpi_barrett_free(ctx->t.p_barrett); + +	/* Domain parameter.  */ +	mpi_free(ctx->p); +	mpi_free(ctx->a); +	mpi_free(ctx->b); +	mpi_point_release(ctx->G); +	mpi_free(ctx->n); + +	/* The key.  */ +	mpi_point_release(ctx->Q); +	mpi_free(ctx->d); + +	/* Private data of ec.c.  */ +	mpi_free(ctx->t.two_inv_p); + +	for (i = 0; i < DIM(ctx->t.scratch); i++) +		mpi_free(ctx->t.scratch[i]); +} +EXPORT_SYMBOL_GPL(mpi_ec_deinit); + +/* Compute the affine coordinates from the projective coordinates in + * POINT.  Set them into X and Y.  If one coordinate is not required, + * X or Y may be passed as NULL.  CTX is the usual context. Returns: 0 + * on success or !0 if POINT is at infinity. + */ +int mpi_ec_get_affine(MPI x, MPI y, MPI_POINT point, struct mpi_ec_ctx *ctx) +{ +	if (!mpi_cmp_ui(point->z, 0)) +		return -1; + +	switch (ctx->model) { +	case MPI_EC_WEIERSTRASS: /* Using Jacobian coordinates.  */ +		{ +			MPI z1, z2, z3; + +			z1 = mpi_new(0); +			z2 = mpi_new(0); +			ec_invm(z1, point->z, ctx);  /* z1 = z^(-1) mod p  */ +			ec_mulm(z2, z1, z1, ctx);    /* z2 = z^(-2) mod p  */ + +			if (x) +				ec_mulm(x, point->x, z2, ctx); + +			if (y) { +				z3 = mpi_new(0); +				ec_mulm(z3, z2, z1, ctx);      /* z3 = z^(-3) mod p */ +				ec_mulm(y, point->y, z3, ctx); +				mpi_free(z3); +			} + +			mpi_free(z2); +			mpi_free(z1); +		} +		return 0; + +	case MPI_EC_MONTGOMERY: +		{ +			if (x) +				mpi_set(x, point->x); + +			if (y) { +				log_fatal("%s: Getting Y-coordinate on %s is not supported\n", +						"mpi_ec_get_affine", "Montgomery"); +				return -1; +			} +		} +		return 0; + +	case MPI_EC_EDWARDS: +		{ +			MPI z; + +			z = mpi_new(0); +			ec_invm(z, point->z, ctx); + +			mpi_resize(z, ctx->p->nlimbs); +			z->nlimbs = ctx->p->nlimbs; + +			if (x) { +				mpi_resize(x, ctx->p->nlimbs); +				x->nlimbs = ctx->p->nlimbs; +				ctx->mulm(x, point->x, z, ctx); +			} +			if (y) { +				mpi_resize(y, ctx->p->nlimbs); +				y->nlimbs = ctx->p->nlimbs; +				ctx->mulm(y, point->y, z, ctx); +			} + +			mpi_free(z); +		} +		return 0; + +	default: +		return -1; +	} +} +EXPORT_SYMBOL_GPL(mpi_ec_get_affine); + +/*  RESULT = 2 * POINT  (Weierstrass version). */ +static void dup_point_weierstrass(MPI_POINT result, +		MPI_POINT point, struct mpi_ec_ctx *ctx) +{ +#define x3 (result->x) +#define y3 (result->y) +#define z3 (result->z) +#define t1 (ctx->t.scratch[0]) +#define t2 (ctx->t.scratch[1]) +#define t3 (ctx->t.scratch[2]) +#define l1 (ctx->t.scratch[3]) +#define l2 (ctx->t.scratch[4]) +#define l3 (ctx->t.scratch[5]) + +	if (!mpi_cmp_ui(point->y, 0) || !mpi_cmp_ui(point->z, 0)) { +		/* P_y == 0 || P_z == 0 => [1:1:0] */ +		mpi_set_ui(x3, 1); +		mpi_set_ui(y3, 1); +		mpi_set_ui(z3, 0); +	} else { +		if (ec_get_a_is_pminus3(ctx)) { +			/* Use the faster case.  */ +			/* L1 = 3(X - Z^2)(X + Z^2) */ +			/*                          T1: used for Z^2. */ +			/*                          T2: used for the right term. */ +			ec_pow2(t1, point->z, ctx); +			ec_subm(l1, point->x, t1, ctx); +			ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx); +			ec_addm(t2, point->x, t1, ctx); +			ec_mulm(l1, l1, t2, ctx); +		} else { +			/* Standard case. */ +			/* L1 = 3X^2 + aZ^4 */ +			/*                          T1: used for aZ^4. */ +			ec_pow2(l1, point->x, ctx); +			ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx); +			ec_powm(t1, point->z, mpi_const(MPI_C_FOUR), ctx); +			ec_mulm(t1, t1, ctx->a, ctx); +			ec_addm(l1, l1, t1, ctx); +		} +		/* Z3 = 2YZ */ +		ec_mulm(z3, point->y, point->z, ctx); +		ec_mul2(z3, z3, ctx); + +		/* L2 = 4XY^2 */ +		/*                              T2: used for Y2; required later. */ +		ec_pow2(t2, point->y, ctx); +		ec_mulm(l2, t2, point->x, ctx); +		ec_mulm(l2, l2, mpi_const(MPI_C_FOUR), ctx); + +		/* X3 = L1^2 - 2L2 */ +		/*                              T1: used for L2^2. */ +		ec_pow2(x3, l1, ctx); +		ec_mul2(t1, l2, ctx); +		ec_subm(x3, x3, t1, ctx); + +		/* L3 = 8Y^4 */ +		/*                              T2: taken from above. */ +		ec_pow2(t2, t2, ctx); +		ec_mulm(l3, t2, mpi_const(MPI_C_EIGHT), ctx); + +		/* Y3 = L1(L2 - X3) - L3 */ +		ec_subm(y3, l2, x3, ctx); +		ec_mulm(y3, y3, l1, ctx); +		ec_subm(y3, y3, l3, ctx); +	} + +#undef x3 +#undef y3 +#undef z3 +#undef t1 +#undef t2 +#undef t3 +#undef l1 +#undef l2 +#undef l3 +} + +/*  RESULT = 2 * POINT  (Montgomery version). */ +static void dup_point_montgomery(MPI_POINT result, +				MPI_POINT point, struct mpi_ec_ctx *ctx) +{ +	(void)result; +	(void)point; +	(void)ctx; +	log_fatal("%s: %s not yet supported\n", +			"mpi_ec_dup_point", "Montgomery"); +} + +/*  RESULT = 2 * POINT  (Twisted Edwards version). */ +static void dup_point_edwards(MPI_POINT result, +		MPI_POINT point, struct mpi_ec_ctx *ctx) +{ +#define X1 (point->x) +#define Y1 (point->y) +#define Z1 (point->z) +#define X3 (result->x) +#define Y3 (result->y) +#define Z3 (result->z) +#define B (ctx->t.scratch[0]) +#define C (ctx->t.scratch[1]) +#define D (ctx->t.scratch[2]) +#define E (ctx->t.scratch[3]) +#define F (ctx->t.scratch[4]) +#define H (ctx->t.scratch[5]) +#define J (ctx->t.scratch[6]) + +	/* Compute: (X_3 : Y_3 : Z_3) = 2( X_1 : Y_1 : Z_1 ) */ + +	/* B = (X_1 + Y_1)^2  */ +	ctx->addm(B, X1, Y1, ctx); +	ctx->pow2(B, B, ctx); + +	/* C = X_1^2 */ +	/* D = Y_1^2 */ +	ctx->pow2(C, X1, ctx); +	ctx->pow2(D, Y1, ctx); + +	/* E = aC */ +	if (ctx->dialect == ECC_DIALECT_ED25519) +		ctx->subm(E, ctx->p, C, ctx); +	else +		ctx->mulm(E, ctx->a, C, ctx); + +	/* F = E + D */ +	ctx->addm(F, E, D, ctx); + +	/* H = Z_1^2 */ +	ctx->pow2(H, Z1, ctx); + +	/* J = F - 2H */ +	ctx->mul2(J, H, ctx); +	ctx->subm(J, F, J, ctx); + +	/* X_3 = (B - C - D) · J */ +	ctx->subm(X3, B, C, ctx); +	ctx->subm(X3, X3, D, ctx); +	ctx->mulm(X3, X3, J, ctx); + +	/* Y_3 = F · (E - D) */ +	ctx->subm(Y3, E, D, ctx); +	ctx->mulm(Y3, Y3, F, ctx); + +	/* Z_3 = F · J */ +	ctx->mulm(Z3, F, J, ctx); + +#undef X1 +#undef Y1 +#undef Z1 +#undef X3 +#undef Y3 +#undef Z3 +#undef B +#undef C +#undef D +#undef E +#undef F +#undef H +#undef J +} + +/*  RESULT = 2 * POINT  */ +static void +mpi_ec_dup_point(MPI_POINT result, MPI_POINT point, struct mpi_ec_ctx *ctx) +{ +	switch (ctx->model) { +	case MPI_EC_WEIERSTRASS: +		dup_point_weierstrass(result, point, ctx); +		break; +	case MPI_EC_MONTGOMERY: +		dup_point_montgomery(result, point, ctx); +		break; +	case MPI_EC_EDWARDS: +		dup_point_edwards(result, point, ctx); +		break; +	} +} + +/* RESULT = P1 + P2  (Weierstrass version).*/ +static void add_points_weierstrass(MPI_POINT result, +		MPI_POINT p1, MPI_POINT p2, +		struct mpi_ec_ctx *ctx) +{ +#define x1 (p1->x) +#define y1 (p1->y) +#define z1 (p1->z) +#define x2 (p2->x) +#define y2 (p2->y) +#define z2 (p2->z) +#define x3 (result->x) +#define y3 (result->y) +#define z3 (result->z) +#define l1 (ctx->t.scratch[0]) +#define l2 (ctx->t.scratch[1]) +#define l3 (ctx->t.scratch[2]) +#define l4 (ctx->t.scratch[3]) +#define l5 (ctx->t.scratch[4]) +#define l6 (ctx->t.scratch[5]) +#define l7 (ctx->t.scratch[6]) +#define l8 (ctx->t.scratch[7]) +#define l9 (ctx->t.scratch[8]) +#define t1 (ctx->t.scratch[9]) +#define t2 (ctx->t.scratch[10]) + +	if ((!mpi_cmp(x1, x2)) && (!mpi_cmp(y1, y2)) && (!mpi_cmp(z1, z2))) { +		/* Same point; need to call the duplicate function.  */ +		mpi_ec_dup_point(result, p1, ctx); +	} else if (!mpi_cmp_ui(z1, 0)) { +		/* P1 is at infinity.  */ +		mpi_set(x3, p2->x); +		mpi_set(y3, p2->y); +		mpi_set(z3, p2->z); +	} else if (!mpi_cmp_ui(z2, 0)) { +		/* P2 is at infinity.  */ +		mpi_set(x3, p1->x); +		mpi_set(y3, p1->y); +		mpi_set(z3, p1->z); +	} else { +		int z1_is_one = !mpi_cmp_ui(z1, 1); +		int z2_is_one = !mpi_cmp_ui(z2, 1); + +		/* l1 = x1 z2^2  */ +		/* l2 = x2 z1^2  */ +		if (z2_is_one) +			mpi_set(l1, x1); +		else { +			ec_pow2(l1, z2, ctx); +			ec_mulm(l1, l1, x1, ctx); +		} +		if (z1_is_one) +			mpi_set(l2, x2); +		else { +			ec_pow2(l2, z1, ctx); +			ec_mulm(l2, l2, x2, ctx); +		} +		/* l3 = l1 - l2 */ +		ec_subm(l3, l1, l2, ctx); +		/* l4 = y1 z2^3  */ +		ec_powm(l4, z2, mpi_const(MPI_C_THREE), ctx); +		ec_mulm(l4, l4, y1, ctx); +		/* l5 = y2 z1^3  */ +		ec_powm(l5, z1, mpi_const(MPI_C_THREE), ctx); +		ec_mulm(l5, l5, y2, ctx); +		/* l6 = l4 - l5  */ +		ec_subm(l6, l4, l5, ctx); + +		if (!mpi_cmp_ui(l3, 0)) { +			if (!mpi_cmp_ui(l6, 0)) { +				/* P1 and P2 are the same - use duplicate function. */ +				mpi_ec_dup_point(result, p1, ctx); +			} else { +				/* P1 is the inverse of P2.  */ +				mpi_set_ui(x3, 1); +				mpi_set_ui(y3, 1); +				mpi_set_ui(z3, 0); +			} +		} else { +			/* l7 = l1 + l2  */ +			ec_addm(l7, l1, l2, ctx); +			/* l8 = l4 + l5  */ +			ec_addm(l8, l4, l5, ctx); +			/* z3 = z1 z2 l3  */ +			ec_mulm(z3, z1, z2, ctx); +			ec_mulm(z3, z3, l3, ctx); +			/* x3 = l6^2 - l7 l3^2  */ +			ec_pow2(t1, l6, ctx); +			ec_pow2(t2, l3, ctx); +			ec_mulm(t2, t2, l7, ctx); +			ec_subm(x3, t1, t2, ctx); +			/* l9 = l7 l3^2 - 2 x3  */ +			ec_mul2(t1, x3, ctx); +			ec_subm(l9, t2, t1, ctx); +			/* y3 = (l9 l6 - l8 l3^3)/2  */ +			ec_mulm(l9, l9, l6, ctx); +			ec_powm(t1, l3, mpi_const(MPI_C_THREE), ctx); /* fixme: Use saved value*/ +			ec_mulm(t1, t1, l8, ctx); +			ec_subm(y3, l9, t1, ctx); +			ec_mulm(y3, y3, ec_get_two_inv_p(ctx), ctx); +		} +	} + +#undef x1 +#undef y1 +#undef z1 +#undef x2 +#undef y2 +#undef z2 +#undef x3 +#undef y3 +#undef z3 +#undef l1 +#undef l2 +#undef l3 +#undef l4 +#undef l5 +#undef l6 +#undef l7 +#undef l8 +#undef l9 +#undef t1 +#undef t2 +} + +/* RESULT = P1 + P2  (Montgomery version).*/ +static void add_points_montgomery(MPI_POINT result, +		MPI_POINT p1, MPI_POINT p2, +		struct mpi_ec_ctx *ctx) +{ +	(void)result; +	(void)p1; +	(void)p2; +	(void)ctx; +	log_fatal("%s: %s not yet supported\n", +			"mpi_ec_add_points", "Montgomery"); +} + +/* RESULT = P1 + P2  (Twisted Edwards version).*/ +static void add_points_edwards(MPI_POINT result, +		MPI_POINT p1, MPI_POINT p2, +		struct mpi_ec_ctx *ctx) +{ +#define X1 (p1->x) +#define Y1 (p1->y) +#define Z1 (p1->z) +#define X2 (p2->x) +#define Y2 (p2->y) +#define Z2 (p2->z) +#define X3 (result->x) +#define Y3 (result->y) +#define Z3 (result->z) +#define A (ctx->t.scratch[0]) +#define B (ctx->t.scratch[1]) +#define C (ctx->t.scratch[2]) +#define D (ctx->t.scratch[3]) +#define E (ctx->t.scratch[4]) +#define F (ctx->t.scratch[5]) +#define G (ctx->t.scratch[6]) +#define tmp (ctx->t.scratch[7]) + +	point_resize(result, ctx); + +	/* Compute: (X_3 : Y_3 : Z_3) = (X_1 : Y_1 : Z_1) + (X_2 : Y_2 : Z_3) */ + +	/* A = Z1 · Z2 */ +	ctx->mulm(A, Z1, Z2, ctx); + +	/* B = A^2 */ +	ctx->pow2(B, A, ctx); + +	/* C = X1 · X2 */ +	ctx->mulm(C, X1, X2, ctx); + +	/* D = Y1 · Y2 */ +	ctx->mulm(D, Y1, Y2, ctx); + +	/* E = d · C · D */ +	ctx->mulm(E, ctx->b, C, ctx); +	ctx->mulm(E, E, D, ctx); + +	/* F = B - E */ +	ctx->subm(F, B, E, ctx); + +	/* G = B + E */ +	ctx->addm(G, B, E, ctx); + +	/* X_3 = A · F · ((X_1 + Y_1) · (X_2 + Y_2) - C - D) */ +	ctx->addm(tmp, X1, Y1, ctx); +	ctx->addm(X3, X2, Y2, ctx); +	ctx->mulm(X3, X3, tmp, ctx); +	ctx->subm(X3, X3, C, ctx); +	ctx->subm(X3, X3, D, ctx); +	ctx->mulm(X3, X3, F, ctx); +	ctx->mulm(X3, X3, A, ctx); + +	/* Y_3 = A · G · (D - aC) */ +	if (ctx->dialect == ECC_DIALECT_ED25519) { +		ctx->addm(Y3, D, C, ctx); +	} else { +		ctx->mulm(Y3, ctx->a, C, ctx); +		ctx->subm(Y3, D, Y3, ctx); +	} +	ctx->mulm(Y3, Y3, G, ctx); +	ctx->mulm(Y3, Y3, A, ctx); + +	/* Z_3 = F · G */ +	ctx->mulm(Z3, F, G, ctx); + + +#undef X1 +#undef Y1 +#undef Z1 +#undef X2 +#undef Y2 +#undef Z2 +#undef X3 +#undef Y3 +#undef Z3 +#undef A +#undef B +#undef C +#undef D +#undef E +#undef F +#undef G +#undef tmp +} + +/* Compute a step of Montgomery Ladder (only use X and Z in the point). + * Inputs:  P1, P2, and x-coordinate of DIF = P1 - P1. + * Outputs: PRD = 2 * P1 and  SUM = P1 + P2. + */ +static void montgomery_ladder(MPI_POINT prd, MPI_POINT sum, +		MPI_POINT p1, MPI_POINT p2, MPI dif_x, +		struct mpi_ec_ctx *ctx) +{ +	ctx->addm(sum->x, p2->x, p2->z, ctx); +	ctx->subm(p2->z, p2->x, p2->z, ctx); +	ctx->addm(prd->x, p1->x, p1->z, ctx); +	ctx->subm(p1->z, p1->x, p1->z, ctx); +	ctx->mulm(p2->x, p1->z, sum->x, ctx); +	ctx->mulm(p2->z, prd->x, p2->z, ctx); +	ctx->pow2(p1->x, prd->x, ctx); +	ctx->pow2(p1->z, p1->z, ctx); +	ctx->addm(sum->x, p2->x, p2->z, ctx); +	ctx->subm(p2->z, p2->x, p2->z, ctx); +	ctx->mulm(prd->x, p1->x, p1->z, ctx); +	ctx->subm(p1->z, p1->x, p1->z, ctx); +	ctx->pow2(sum->x, sum->x, ctx); +	ctx->pow2(sum->z, p2->z, ctx); +	ctx->mulm(prd->z, p1->z, ctx->a, ctx); /* CTX->A: (a-2)/4 */ +	ctx->mulm(sum->z, sum->z, dif_x, ctx); +	ctx->addm(prd->z, p1->x, prd->z, ctx); +	ctx->mulm(prd->z, prd->z, p1->z, ctx); +} + +/* RESULT = P1 + P2 */ +void mpi_ec_add_points(MPI_POINT result, +		MPI_POINT p1, MPI_POINT p2, +		struct mpi_ec_ctx *ctx) +{ +	switch (ctx->model) { +	case MPI_EC_WEIERSTRASS: +		add_points_weierstrass(result, p1, p2, ctx); +		break; +	case MPI_EC_MONTGOMERY: +		add_points_montgomery(result, p1, p2, ctx); +		break; +	case MPI_EC_EDWARDS: +		add_points_edwards(result, p1, p2, ctx); +		break; +	} +} +EXPORT_SYMBOL_GPL(mpi_ec_add_points); + +/* Scalar point multiplication - the main function for ECC.  If takes + * an integer SCALAR and a POINT as well as the usual context CTX. + * RESULT will be set to the resulting point. + */ +void mpi_ec_mul_point(MPI_POINT result, +			MPI scalar, MPI_POINT point, +			struct mpi_ec_ctx *ctx) +{ +	MPI x1, y1, z1, k, h, yy; +	unsigned int i, loops; +	struct gcry_mpi_point p1, p2, p1inv; + +	if (ctx->model == MPI_EC_EDWARDS) { +		/* Simple left to right binary method.  Algorithm 3.27 from +		 * {author={Hankerson, Darrel and Menezes, Alfred J. and Vanstone, Scott}, +		 *  title = {Guide to Elliptic Curve Cryptography}, +		 *  year = {2003}, isbn = {038795273X}, +		 *  url = {http://www.cacr.math.uwaterloo.ca/ecc/}, +		 *  publisher = {Springer-Verlag New York, Inc.}} +		 */ +		unsigned int nbits; +		int j; + +		if (mpi_cmp(scalar, ctx->p) >= 0) +			nbits = mpi_get_nbits(scalar); +		else +			nbits = mpi_get_nbits(ctx->p); + +		mpi_set_ui(result->x, 0); +		mpi_set_ui(result->y, 1); +		mpi_set_ui(result->z, 1); +		point_resize(point, ctx); + +		point_resize(result, ctx); +		point_resize(point, ctx); + +		for (j = nbits-1; j >= 0; j--) { +			mpi_ec_dup_point(result, result, ctx); +			if (mpi_test_bit(scalar, j)) +				mpi_ec_add_points(result, result, point, ctx); +		} +		return; +	} else if (ctx->model == MPI_EC_MONTGOMERY) { +		unsigned int nbits; +		int j; +		struct gcry_mpi_point p1_, p2_; +		MPI_POINT q1, q2, prd, sum; +		unsigned long sw; +		mpi_size_t rsize; + +		/* Compute scalar point multiplication with Montgomery Ladder. +		 * Note that we don't use Y-coordinate in the points at all. +		 * RESULT->Y will be filled by zero. +		 */ + +		nbits = mpi_get_nbits(scalar); +		point_init(&p1); +		point_init(&p2); +		point_init(&p1_); +		point_init(&p2_); +		mpi_set_ui(p1.x, 1); +		mpi_free(p2.x); +		p2.x = mpi_copy(point->x); +		mpi_set_ui(p2.z, 1); + +		point_resize(&p1, ctx); +		point_resize(&p2, ctx); +		point_resize(&p1_, ctx); +		point_resize(&p2_, ctx); + +		mpi_resize(point->x, ctx->p->nlimbs); +		point->x->nlimbs = ctx->p->nlimbs; + +		q1 = &p1; +		q2 = &p2; +		prd = &p1_; +		sum = &p2_; + +		for (j = nbits-1; j >= 0; j--) { +			MPI_POINT t; + +			sw = mpi_test_bit(scalar, j); +			point_swap_cond(q1, q2, sw, ctx); +			montgomery_ladder(prd, sum, q1, q2, point->x, ctx); +			point_swap_cond(prd, sum, sw, ctx); +			t = q1;  q1 = prd;  prd = t; +			t = q2;  q2 = sum;  sum = t; +		} + +		mpi_clear(result->y); +		sw = (nbits & 1); +		point_swap_cond(&p1, &p1_, sw, ctx); + +		rsize = p1.z->nlimbs; +		MPN_NORMALIZE(p1.z->d, rsize); +		if (rsize == 0) { +			mpi_set_ui(result->x, 1); +			mpi_set_ui(result->z, 0); +		} else { +			z1 = mpi_new(0); +			ec_invm(z1, p1.z, ctx); +			ec_mulm(result->x, p1.x, z1, ctx); +			mpi_set_ui(result->z, 1); +			mpi_free(z1); +		} + +		point_free(&p1); +		point_free(&p2); +		point_free(&p1_); +		point_free(&p2_); +		return; +	} + +	x1 = mpi_alloc_like(ctx->p); +	y1 = mpi_alloc_like(ctx->p); +	h  = mpi_alloc_like(ctx->p); +	k  = mpi_copy(scalar); +	yy = mpi_copy(point->y); + +	if (mpi_has_sign(k)) { +		k->sign = 0; +		ec_invm(yy, yy, ctx); +	} + +	if (!mpi_cmp_ui(point->z, 1)) { +		mpi_set(x1, point->x); +		mpi_set(y1, yy); +	} else { +		MPI z2, z3; + +		z2 = mpi_alloc_like(ctx->p); +		z3 = mpi_alloc_like(ctx->p); +		ec_mulm(z2, point->z, point->z, ctx); +		ec_mulm(z3, point->z, z2, ctx); +		ec_invm(z2, z2, ctx); +		ec_mulm(x1, point->x, z2, ctx); +		ec_invm(z3, z3, ctx); +		ec_mulm(y1, yy, z3, ctx); +		mpi_free(z2); +		mpi_free(z3); +	} +	z1 = mpi_copy(mpi_const(MPI_C_ONE)); + +	mpi_mul(h, k, mpi_const(MPI_C_THREE)); /* h = 3k */ +	loops = mpi_get_nbits(h); +	if (loops < 2) { +		/* If SCALAR is zero, the above mpi_mul sets H to zero and thus +		 * LOOPs will be zero.  To avoid an underflow of I in the main +		 * loop we set LOOP to 2 and the result to (0,0,0). +		 */ +		loops = 2; +		mpi_clear(result->x); +		mpi_clear(result->y); +		mpi_clear(result->z); +	} else { +		mpi_set(result->x, point->x); +		mpi_set(result->y, yy); +		mpi_set(result->z, point->z); +	} +	mpi_free(yy); yy = NULL; + +	p1.x = x1; x1 = NULL; +	p1.y = y1; y1 = NULL; +	p1.z = z1; z1 = NULL; +	point_init(&p2); +	point_init(&p1inv); + +	/* Invert point: y = p - y mod p  */ +	point_set(&p1inv, &p1); +	ec_subm(p1inv.y, ctx->p, p1inv.y, ctx); + +	for (i = loops-2; i > 0; i--) { +		mpi_ec_dup_point(result, result, ctx); +		if (mpi_test_bit(h, i) == 1 && mpi_test_bit(k, i) == 0) { +			point_set(&p2, result); +			mpi_ec_add_points(result, &p2, &p1, ctx); +		} +		if (mpi_test_bit(h, i) == 0 && mpi_test_bit(k, i) == 1) { +			point_set(&p2, result); +			mpi_ec_add_points(result, &p2, &p1inv, ctx); +		} +	} + +	point_free(&p1); +	point_free(&p2); +	point_free(&p1inv); +	mpi_free(h); +	mpi_free(k); +} +EXPORT_SYMBOL_GPL(mpi_ec_mul_point); + +/* Return true if POINT is on the curve described by CTX.  */ +int mpi_ec_curve_point(MPI_POINT point, struct mpi_ec_ctx *ctx) +{ +	int res = 0; +	MPI x, y, w; + +	x = mpi_new(0); +	y = mpi_new(0); +	w = mpi_new(0); + +	/* Check that the point is in range.  This needs to be done here and +	 * not after conversion to affine coordinates. +	 */ +	if (mpi_cmpabs(point->x, ctx->p) >= 0) +		goto leave; +	if (mpi_cmpabs(point->y, ctx->p) >= 0) +		goto leave; +	if (mpi_cmpabs(point->z, ctx->p) >= 0) +		goto leave; + +	switch (ctx->model) { +	case MPI_EC_WEIERSTRASS: +		{ +			MPI xxx; + +			if (mpi_ec_get_affine(x, y, point, ctx)) +				goto leave; + +			xxx = mpi_new(0); + +			/* y^2 == x^3 + a·x + b */ +			ec_pow2(y, y, ctx); + +			ec_pow3(xxx, x, ctx); +			ec_mulm(w, ctx->a, x, ctx); +			ec_addm(w, w, ctx->b, ctx); +			ec_addm(w, w, xxx, ctx); + +			if (!mpi_cmp(y, w)) +				res = 1; + +			mpi_free(xxx); +		} +		break; + +	case MPI_EC_MONTGOMERY: +		{ +#define xx y +			/* With Montgomery curve, only X-coordinate is valid. */ +			if (mpi_ec_get_affine(x, NULL, point, ctx)) +				goto leave; + +			/* The equation is: b * y^2 == x^3 + a · x^2 + x */ +			/* We check if right hand is quadratic residue or not by +			 * Euler's criterion. +			 */ +			/* CTX->A has (a-2)/4 and CTX->B has b^-1 */ +			ec_mulm(w, ctx->a, mpi_const(MPI_C_FOUR), ctx); +			ec_addm(w, w, mpi_const(MPI_C_TWO), ctx); +			ec_mulm(w, w, x, ctx); +			ec_pow2(xx, x, ctx); +			ec_addm(w, w, xx, ctx); +			ec_addm(w, w, mpi_const(MPI_C_ONE), ctx); +			ec_mulm(w, w, x, ctx); +			ec_mulm(w, w, ctx->b, ctx); +#undef xx +			/* Compute Euler's criterion: w^(p-1)/2 */ +#define p_minus1 y +			ec_subm(p_minus1, ctx->p, mpi_const(MPI_C_ONE), ctx); +			mpi_rshift(p_minus1, p_minus1, 1); +			ec_powm(w, w, p_minus1, ctx); + +			res = !mpi_cmp_ui(w, 1); +#undef p_minus1 +		} +		break; + +	case MPI_EC_EDWARDS: +		{ +			if (mpi_ec_get_affine(x, y, point, ctx)) +				goto leave; + +			mpi_resize(w, ctx->p->nlimbs); +			w->nlimbs = ctx->p->nlimbs; + +			/* a · x^2 + y^2 - 1 - b · x^2 · y^2 == 0 */ +			ctx->pow2(x, x, ctx); +			ctx->pow2(y, y, ctx); +			if (ctx->dialect == ECC_DIALECT_ED25519) +				ctx->subm(w, ctx->p, x, ctx); +			else +				ctx->mulm(w, ctx->a, x, ctx); +			ctx->addm(w, w, y, ctx); +			ctx->mulm(x, x, y, ctx); +			ctx->mulm(x, x, ctx->b, ctx); +			ctx->subm(w, w, x, ctx); +			if (!mpi_cmp_ui(w, 1)) +				res = 1; +		} +		break; +	} + +leave: +	mpi_free(w); +	mpi_free(x); +	mpi_free(y); + +	return res; +} +EXPORT_SYMBOL_GPL(mpi_ec_curve_point); diff --git a/lib/mpi/mpi-add.c b/lib/mpi/mpi-add.c new file mode 100644 index 000000000000..2cdae54c1bd0 --- /dev/null +++ b/lib/mpi/mpi-add.c @@ -0,0 +1,155 @@ +/* mpi-add.c  -  MPI functions + * Copyright (C) 1994, 1996, 1998, 2001, 2002, + *               2003 Free Software Foundation, Inc. + * + * This file is part of Libgcrypt. + * + * Note: This code is heavily based on the GNU MP Library. + *	 Actually it's the same code with only minor changes in the + *	 way the data is stored; this is to support the abstraction + *	 of an optional secure memory allocation which may be used + *	 to avoid revealing of sensitive data due to paging etc. + */ + +#include "mpi-internal.h" + +/**************** + * Add the unsigned integer V to the mpi-integer U and store the + * result in W. U and V may be the same. + */ +void mpi_add_ui(MPI w, MPI u, unsigned long v) +{ +	mpi_ptr_t wp, up; +	mpi_size_t usize, wsize; +	int usign, wsign; + +	usize = u->nlimbs; +	usign = u->sign; +	wsign = 0; + +	/* If not space for W (and possible carry), increase space.  */ +	wsize = usize + 1; +	if (w->alloced < wsize) +		mpi_resize(w, wsize); + +	/* These must be after realloc (U may be the same as W).  */ +	up = u->d; +	wp = w->d; + +	if (!usize) {  /* simple */ +		wp[0] = v; +		wsize = v ? 1:0; +	} else if (!usign) {  /* mpi is not negative */ +		mpi_limb_t cy; +		cy = mpihelp_add_1(wp, up, usize, v); +		wp[usize] = cy; +		wsize = usize + cy; +	} else { +		/* The signs are different.  Need exact comparison to determine +		 * which operand to subtract from which. +		 */ +		if (usize == 1 && up[0] < v) { +			wp[0] = v - up[0]; +			wsize = 1; +		} else { +			mpihelp_sub_1(wp, up, usize, v); +			/* Size can decrease with at most one limb. */ +			wsize = usize - (wp[usize-1] == 0); +			wsign = 1; +		} +	} + +	w->nlimbs = wsize; +	w->sign   = wsign; +} + + +void mpi_add(MPI w, MPI u, MPI v) +{ +	mpi_ptr_t wp, up, vp; +	mpi_size_t usize, vsize, wsize; +	int usign, vsign, wsign; + +	if (u->nlimbs < v->nlimbs) { /* Swap U and V. */ +		usize = v->nlimbs; +		usign = v->sign; +		vsize = u->nlimbs; +		vsign = u->sign; +		wsize = usize + 1; +		RESIZE_IF_NEEDED(w, wsize); +		/* These must be after realloc (u or v may be the same as w).  */ +		up = v->d; +		vp = u->d; +	} else { +		usize = u->nlimbs; +		usign = u->sign; +		vsize = v->nlimbs; +		vsign = v->sign; +		wsize = usize + 1; +		RESIZE_IF_NEEDED(w, wsize); +		/* These must be after realloc (u or v may be the same as w).  */ +		up = u->d; +		vp = v->d; +	} +	wp = w->d; +	wsign = 0; + +	if (!vsize) {  /* simple */ +		MPN_COPY(wp, up, usize); +		wsize = usize; +		wsign = usign; +	} else if (usign != vsign) { /* different sign */ +		/* This test is right since USIZE >= VSIZE */ +		if (usize != vsize) { +			mpihelp_sub(wp, up, usize, vp, vsize); +			wsize = usize; +			MPN_NORMALIZE(wp, wsize); +			wsign = usign; +		} else if (mpihelp_cmp(up, vp, usize) < 0) { +			mpihelp_sub_n(wp, vp, up, usize); +			wsize = usize; +			MPN_NORMALIZE(wp, wsize); +			if (!usign) +				wsign = 1; +		} else { +			mpihelp_sub_n(wp, up, vp, usize); +			wsize = usize; +			MPN_NORMALIZE(wp, wsize); +			if (usign) +				wsign = 1; +		} +	} else { /* U and V have same sign. Add them. */ +		mpi_limb_t cy = mpihelp_add(wp, up, usize, vp, vsize); +		wp[usize] = cy; +		wsize = usize + cy; +		if (usign) +			wsign = 1; +	} + +	w->nlimbs = wsize; +	w->sign = wsign; +} +EXPORT_SYMBOL_GPL(mpi_add); + +void mpi_sub(MPI w, MPI u, MPI v) +{ +	MPI vv = mpi_copy(v); +	vv->sign = !vv->sign; +	mpi_add(w, u, vv); +	mpi_free(vv); +} + + +void mpi_addm(MPI w, MPI u, MPI v, MPI m) +{ +	mpi_add(w, u, v); +	mpi_mod(w, w, m); +} +EXPORT_SYMBOL_GPL(mpi_addm); + +void mpi_subm(MPI w, MPI u, MPI v, MPI m) +{ +	mpi_sub(w, u, v); +	mpi_mod(w, w, m); +} +EXPORT_SYMBOL_GPL(mpi_subm); diff --git a/lib/mpi/mpi-bit.c b/lib/mpi/mpi-bit.c index 503537e08436..142b680835df 100644 --- a/lib/mpi/mpi-bit.c +++ b/lib/mpi/mpi-bit.c @@ -1,4 +1,4 @@ -/* mpi-bit.c  -  MPI bit level fucntions +/* mpi-bit.c  -  MPI bit level functions   * Copyright (C) 1998, 1999 Free Software Foundation, Inc.   *   * This file is part of GnuPG. @@ -32,6 +32,7 @@ void mpi_normalize(MPI a)  	for (; a->nlimbs && !a->d[a->nlimbs - 1]; a->nlimbs--)  		;  } +EXPORT_SYMBOL_GPL(mpi_normalize);  /****************   * Return the number of bits in A. @@ -54,3 +55,253 @@ unsigned mpi_get_nbits(MPI a)  	return n;  }  EXPORT_SYMBOL_GPL(mpi_get_nbits); + +/**************** + * Test whether bit N is set. + */ +int mpi_test_bit(MPI a, unsigned int n) +{ +	unsigned int limbno, bitno; +	mpi_limb_t limb; + +	limbno = n / BITS_PER_MPI_LIMB; +	bitno  = n % BITS_PER_MPI_LIMB; + +	if (limbno >= a->nlimbs) +		return 0; /* too far left: this is a 0 */ +	limb = a->d[limbno]; +	return (limb & (A_LIMB_1 << bitno)) ? 1 : 0; +} +EXPORT_SYMBOL_GPL(mpi_test_bit); + +/**************** + * Set bit N of A. + */ +void mpi_set_bit(MPI a, unsigned int n) +{ +	unsigned int i, limbno, bitno; + +	limbno = n / BITS_PER_MPI_LIMB; +	bitno  = n % BITS_PER_MPI_LIMB; + +	if (limbno >= a->nlimbs) { +		for (i = a->nlimbs; i < a->alloced; i++) +			a->d[i] = 0; +		mpi_resize(a, limbno+1); +		a->nlimbs = limbno+1; +	} +	a->d[limbno] |= (A_LIMB_1<<bitno); +} + +/**************** + * Set bit N of A. and clear all bits above + */ +void mpi_set_highbit(MPI a, unsigned int n) +{ +	unsigned int i, limbno, bitno; + +	limbno = n / BITS_PER_MPI_LIMB; +	bitno  = n % BITS_PER_MPI_LIMB; + +	if (limbno >= a->nlimbs) { +		for (i = a->nlimbs; i < a->alloced; i++) +			a->d[i] = 0; +		mpi_resize(a, limbno+1); +		a->nlimbs = limbno+1; +	} +	a->d[limbno] |= (A_LIMB_1<<bitno); +	for (bitno++; bitno < BITS_PER_MPI_LIMB; bitno++) +		a->d[limbno] &= ~(A_LIMB_1 << bitno); +	a->nlimbs = limbno+1; +} +EXPORT_SYMBOL_GPL(mpi_set_highbit); + +/**************** + * clear bit N of A and all bits above + */ +void mpi_clear_highbit(MPI a, unsigned int n) +{ +	unsigned int limbno, bitno; + +	limbno = n / BITS_PER_MPI_LIMB; +	bitno  = n % BITS_PER_MPI_LIMB; + +	if (limbno >= a->nlimbs) +		return; /* not allocated, therefore no need to clear bits :-) */ + +	for ( ; bitno < BITS_PER_MPI_LIMB; bitno++) +		a->d[limbno] &= ~(A_LIMB_1 << bitno); +	a->nlimbs = limbno+1; +} + +/**************** + * Clear bit N of A. + */ +void mpi_clear_bit(MPI a, unsigned int n) +{ +	unsigned int limbno, bitno; + +	limbno = n / BITS_PER_MPI_LIMB; +	bitno  = n % BITS_PER_MPI_LIMB; + +	if (limbno >= a->nlimbs) +		return; /* Don't need to clear this bit, it's far too left.  */ +	a->d[limbno] &= ~(A_LIMB_1 << bitno); +} +EXPORT_SYMBOL_GPL(mpi_clear_bit); + + +/**************** + * Shift A by COUNT limbs to the right + * This is used only within the MPI library + */ +void mpi_rshift_limbs(MPI a, unsigned int count) +{ +	mpi_ptr_t ap = a->d; +	mpi_size_t n = a->nlimbs; +	unsigned int i; + +	if (count >= n) { +		a->nlimbs = 0; +		return; +	} + +	for (i = 0; i < n - count; i++) +		ap[i] = ap[i+count]; +	ap[i] = 0; +	a->nlimbs -= count; +} + +/* + * Shift A by N bits to the right. + */ +void mpi_rshift(MPI x, MPI a, unsigned int n) +{ +	mpi_size_t xsize; +	unsigned int i; +	unsigned int nlimbs = (n/BITS_PER_MPI_LIMB); +	unsigned int nbits = (n%BITS_PER_MPI_LIMB); + +	if (x == a) { +		/* In-place operation.  */ +		if (nlimbs >= x->nlimbs) { +			x->nlimbs = 0; +			return; +		} + +		if (nlimbs) { +			for (i = 0; i < x->nlimbs - nlimbs; i++) +				x->d[i] = x->d[i+nlimbs]; +			x->d[i] = 0; +			x->nlimbs -= nlimbs; +		} +		if (x->nlimbs && nbits) +			mpihelp_rshift(x->d, x->d, x->nlimbs, nbits); +	} else if (nlimbs) { +		/* Copy and shift by more or equal bits than in a limb. */ +		xsize = a->nlimbs; +		x->sign = a->sign; +		RESIZE_IF_NEEDED(x, xsize); +		x->nlimbs = xsize; +		for (i = 0; i < a->nlimbs; i++) +			x->d[i] = a->d[i]; +		x->nlimbs = i; + +		if (nlimbs >= x->nlimbs) { +			x->nlimbs = 0; +			return; +		} + +		if (nlimbs) { +			for (i = 0; i < x->nlimbs - nlimbs; i++) +				x->d[i] = x->d[i+nlimbs]; +			x->d[i] = 0; +			x->nlimbs -= nlimbs; +		} + +		if (x->nlimbs && nbits) +			mpihelp_rshift(x->d, x->d, x->nlimbs, nbits); +	} else { +		/* Copy and shift by less than bits in a limb.  */ +		xsize = a->nlimbs; +		x->sign = a->sign; +		RESIZE_IF_NEEDED(x, xsize); +		x->nlimbs = xsize; + +		if (xsize) { +			if (nbits) +				mpihelp_rshift(x->d, a->d, x->nlimbs, nbits); +			else { +				/* The rshift helper function is not specified for +				 * NBITS==0, thus we do a plain copy here. +				 */ +				for (i = 0; i < x->nlimbs; i++) +					x->d[i] = a->d[i]; +			} +		} +	} +	MPN_NORMALIZE(x->d, x->nlimbs); +} + +/**************** + * Shift A by COUNT limbs to the left + * This is used only within the MPI library + */ +void mpi_lshift_limbs(MPI a, unsigned int count) +{ +	mpi_ptr_t ap; +	int n = a->nlimbs; +	int i; + +	if (!count || !n) +		return; + +	RESIZE_IF_NEEDED(a, n+count); + +	ap = a->d; +	for (i = n-1; i >= 0; i--) +		ap[i+count] = ap[i]; +	for (i = 0; i < count; i++) +		ap[i] = 0; +	a->nlimbs += count; +} + +/* + * Shift A by N bits to the left. + */ +void mpi_lshift(MPI x, MPI a, unsigned int n) +{ +	unsigned int nlimbs = (n/BITS_PER_MPI_LIMB); +	unsigned int nbits = (n%BITS_PER_MPI_LIMB); + +	if (x == a && !n) +		return;  /* In-place shift with an amount of zero.  */ + +	if (x != a) { +		/* Copy A to X.  */ +		unsigned int alimbs = a->nlimbs; +		int asign = a->sign; +		mpi_ptr_t xp, ap; + +		RESIZE_IF_NEEDED(x, alimbs+nlimbs+1); +		xp = x->d; +		ap = a->d; +		MPN_COPY(xp, ap, alimbs); +		x->nlimbs = alimbs; +		x->flags = a->flags; +		x->sign = asign; +	} + +	if (nlimbs && !nbits) { +		/* Shift a full number of limbs.  */ +		mpi_lshift_limbs(x, nlimbs); +	} else if (n) { +		/* We use a very dump approach: Shift left by the number of +		 * limbs plus one and than fix it up by an rshift. +		 */ +		mpi_lshift_limbs(x, nlimbs+1); +		mpi_rshift(x, x, BITS_PER_MPI_LIMB - nbits); +	} + +	MPN_NORMALIZE(x->d, x->nlimbs); +} diff --git a/lib/mpi/mpi-cmp.c b/lib/mpi/mpi-cmp.c index d25e9e96c310..c4cfa3ff0581 100644 --- a/lib/mpi/mpi-cmp.c +++ b/lib/mpi/mpi-cmp.c @@ -41,28 +41,54 @@ int mpi_cmp_ui(MPI u, unsigned long v)  }  EXPORT_SYMBOL_GPL(mpi_cmp_ui); -int mpi_cmp(MPI u, MPI v) +static int do_mpi_cmp(MPI u, MPI v, int absmode)  { -	mpi_size_t usize, vsize; +	mpi_size_t usize; +	mpi_size_t vsize; +	int usign; +	int vsign;  	int cmp;  	mpi_normalize(u);  	mpi_normalize(v); +  	usize = u->nlimbs;  	vsize = v->nlimbs; -	if (!u->sign && v->sign) +	usign = absmode ? 0 : u->sign; +	vsign = absmode ? 0 : v->sign; + +	/* Compare sign bits.  */ + +	if (!usign && vsign)  		return 1; -	if (u->sign && !v->sign) +	if (usign && !vsign)  		return -1; -	if (usize != vsize && !u->sign && !v->sign) + +	/* U and V are either both positive or both negative.  */ + +	if (usize != vsize && !usign && !vsign)  		return usize - vsize; -	if (usize != vsize && u->sign && v->sign) -		return vsize - usize; +	if (usize != vsize && usign && vsign) +		return vsize + usize;  	if (!usize)  		return 0;  	cmp = mpihelp_cmp(u->d, v->d, usize); -	if (u->sign) -		return -cmp; -	return cmp; +	if (!cmp) +		return 0; +	if ((cmp < 0?1:0) == (usign?1:0)) +		return 1; + +	return -1; +} + +int mpi_cmp(MPI u, MPI v) +{ +	return do_mpi_cmp(u, v, 0);  }  EXPORT_SYMBOL_GPL(mpi_cmp); + +int mpi_cmpabs(MPI u, MPI v) +{ +	return do_mpi_cmp(u, v, 1); +} +EXPORT_SYMBOL_GPL(mpi_cmpabs); diff --git a/lib/mpi/mpi-div.c b/lib/mpi/mpi-div.c new file mode 100644 index 000000000000..45beab8b9e9e --- /dev/null +++ b/lib/mpi/mpi-div.c @@ -0,0 +1,234 @@ +/* mpi-div.c  -  MPI functions + * Copyright (C) 1994, 1996, 1998, 2001, 2002, + *               2003 Free Software Foundation, Inc. + * + * This file is part of Libgcrypt. + * + * Note: This code is heavily based on the GNU MP Library. + *	 Actually it's the same code with only minor changes in the + *	 way the data is stored; this is to support the abstraction + *	 of an optional secure memory allocation which may be used + *	 to avoid revealing of sensitive data due to paging etc. + */ + +#include "mpi-internal.h" +#include "longlong.h" + +void mpi_tdiv_qr(MPI quot, MPI rem, MPI num, MPI den); +void mpi_fdiv_qr(MPI quot, MPI rem, MPI dividend, MPI divisor); + +void mpi_fdiv_r(MPI rem, MPI dividend, MPI divisor) +{ +	int divisor_sign = divisor->sign; +	MPI temp_divisor = NULL; + +	/* We need the original value of the divisor after the remainder has been +	 * preliminary calculated.	We have to copy it to temporary space if it's +	 * the same variable as REM. +	 */ +	if (rem == divisor) { +		temp_divisor = mpi_copy(divisor); +		divisor = temp_divisor; +	} + +	mpi_tdiv_r(rem, dividend, divisor); + +	if (((divisor_sign?1:0) ^ (dividend->sign?1:0)) && rem->nlimbs) +		mpi_add(rem, rem, divisor); + +	if (temp_divisor) +		mpi_free(temp_divisor); +} + +void mpi_fdiv_q(MPI quot, MPI dividend, MPI divisor) +{ +	MPI tmp = mpi_alloc(mpi_get_nlimbs(quot)); +	mpi_fdiv_qr(quot, tmp, dividend, divisor); +	mpi_free(tmp); +} + +void mpi_fdiv_qr(MPI quot, MPI rem, MPI dividend, MPI divisor) +{ +	int divisor_sign = divisor->sign; +	MPI temp_divisor = NULL; + +	if (quot == divisor || rem == divisor) { +		temp_divisor = mpi_copy(divisor); +		divisor = temp_divisor; +	} + +	mpi_tdiv_qr(quot, rem, dividend, divisor); + +	if ((divisor_sign ^ dividend->sign) && rem->nlimbs) { +		mpi_sub_ui(quot, quot, 1); +		mpi_add(rem, rem, divisor); +	} + +	if (temp_divisor) +		mpi_free(temp_divisor); +} + +/* If den == quot, den needs temporary storage. + * If den == rem, den needs temporary storage. + * If num == quot, num needs temporary storage. + * If den has temporary storage, it can be normalized while being copied, + *   i.e no extra storage should be allocated. + */ + +void mpi_tdiv_r(MPI rem, MPI num, MPI den) +{ +	mpi_tdiv_qr(NULL, rem, num, den); +} + +void mpi_tdiv_qr(MPI quot, MPI rem, MPI num, MPI den) +{ +	mpi_ptr_t np, dp; +	mpi_ptr_t qp, rp; +	mpi_size_t nsize = num->nlimbs; +	mpi_size_t dsize = den->nlimbs; +	mpi_size_t qsize, rsize; +	mpi_size_t sign_remainder = num->sign; +	mpi_size_t sign_quotient = num->sign ^ den->sign; +	unsigned int normalization_steps; +	mpi_limb_t q_limb; +	mpi_ptr_t marker[5]; +	int markidx = 0; + +	/* Ensure space is enough for quotient and remainder. +	 * We need space for an extra limb in the remainder, because it's +	 * up-shifted (normalized) below. +	 */ +	rsize = nsize + 1; +	mpi_resize(rem, rsize); + +	qsize = rsize - dsize;	  /* qsize cannot be bigger than this.	*/ +	if (qsize <= 0) { +		if (num != rem) { +			rem->nlimbs = num->nlimbs; +			rem->sign = num->sign; +			MPN_COPY(rem->d, num->d, nsize); +		} +		if (quot) { +			/* This needs to follow the assignment to rem, in case the +			 * numerator and quotient are the same. +			 */ +			quot->nlimbs = 0; +			quot->sign = 0; +		} +		return; +	} + +	if (quot) +		mpi_resize(quot, qsize); + +	/* Read pointers here, when reallocation is finished.  */ +	np = num->d; +	dp = den->d; +	rp = rem->d; + +	/* Optimize division by a single-limb divisor.  */ +	if (dsize == 1) { +		mpi_limb_t rlimb; +		if (quot) { +			qp = quot->d; +			rlimb = mpihelp_divmod_1(qp, np, nsize, dp[0]); +			qsize -= qp[qsize - 1] == 0; +			quot->nlimbs = qsize; +			quot->sign = sign_quotient; +		} else +			rlimb = mpihelp_mod_1(np, nsize, dp[0]); +		rp[0] = rlimb; +		rsize = rlimb != 0?1:0; +		rem->nlimbs = rsize; +		rem->sign = sign_remainder; +		return; +	} + + +	if (quot) { +		qp = quot->d; +		/* Make sure QP and NP point to different objects.  Otherwise the +		 * numerator would be gradually overwritten by the quotient limbs. +		 */ +		if (qp == np) { /* Copy NP object to temporary space.  */ +			np = marker[markidx++] = mpi_alloc_limb_space(nsize); +			MPN_COPY(np, qp, nsize); +		} +	} else /* Put quotient at top of remainder. */ +		qp = rp + dsize; + +	normalization_steps = count_leading_zeros(dp[dsize - 1]); + +	/* Normalize the denominator, i.e. make its most significant bit set by +	 * shifting it NORMALIZATION_STEPS bits to the left.  Also shift the +	 * numerator the same number of steps (to keep the quotient the same!). +	 */ +	if (normalization_steps) { +		mpi_ptr_t tp; +		mpi_limb_t nlimb; + +		/* Shift up the denominator setting the most significant bit of +		 * the most significant word.  Use temporary storage not to clobber +		 * the original contents of the denominator. +		 */ +		tp = marker[markidx++] = mpi_alloc_limb_space(dsize); +		mpihelp_lshift(tp, dp, dsize, normalization_steps); +		dp = tp; + +		/* Shift up the numerator, possibly introducing a new most +		 * significant word.  Move the shifted numerator in the remainder +		 * meanwhile. +		 */ +		nlimb = mpihelp_lshift(rp, np, nsize, normalization_steps); +		if (nlimb) { +			rp[nsize] = nlimb; +			rsize = nsize + 1; +		} else +			rsize = nsize; +	} else { +		/* The denominator is already normalized, as required.	Copy it to +		 * temporary space if it overlaps with the quotient or remainder. +		 */ +		if (dp == rp || (quot && (dp == qp))) { +			mpi_ptr_t tp; + +			tp = marker[markidx++] = mpi_alloc_limb_space(dsize); +			MPN_COPY(tp, dp, dsize); +			dp = tp; +		} + +		/* Move the numerator to the remainder.  */ +		if (rp != np) +			MPN_COPY(rp, np, nsize); + +		rsize = nsize; +	} + +	q_limb = mpihelp_divrem(qp, 0, rp, rsize, dp, dsize); + +	if (quot) { +		qsize = rsize - dsize; +		if (q_limb) { +			qp[qsize] = q_limb; +			qsize += 1; +		} + +		quot->nlimbs = qsize; +		quot->sign = sign_quotient; +	} + +	rsize = dsize; +	MPN_NORMALIZE(rp, rsize); + +	if (normalization_steps && rsize) { +		mpihelp_rshift(rp, rp, rsize, normalization_steps); +		rsize -= rp[rsize - 1] == 0?1:0; +	} + +	rem->nlimbs = rsize; +	rem->sign	= sign_remainder; +	while (markidx) { +		markidx--; +		mpi_free_limb_space(marker[markidx]); +	} +} diff --git a/lib/mpi/mpi-internal.h b/lib/mpi/mpi-internal.h index 91df5f0b70f2..554002182db1 100644 --- a/lib/mpi/mpi-internal.h +++ b/lib/mpi/mpi-internal.h @@ -52,6 +52,12 @@  typedef mpi_limb_t *mpi_ptr_t;	/* pointer to a limb */  typedef int mpi_size_t;		/* (must be a signed type) */ +#define RESIZE_IF_NEEDED(a, b)			\ +	do {					\ +		if ((a)->alloced < (b))		\ +			mpi_resize((a), (b));	\ +	} while (0) +  /* Copy N limbs from S to D.  */  #define MPN_COPY(d, s, n) \  	do {					\ @@ -60,6 +66,14 @@ typedef int mpi_size_t;		/* (must be a signed type) */  			(d)[_i] = (s)[_i];	\  	} while (0) +#define MPN_COPY_INCR(d, s, n)		\ +	do {					\ +		mpi_size_t _i;			\ +		for (_i = 0; _i < (n); _i++)	\ +			(d)[_i] = (s)[_i];	\ +	} while (0) + +  #define MPN_COPY_DECR(d, s, n) \  	do {					\  		mpi_size_t _i;			\ @@ -92,6 +106,38 @@ typedef int mpi_size_t;		/* (must be a signed type) */  			mul_n(prodp, up, vp, size, tspace);	\  	} while (0); +/* Divide the two-limb number in (NH,,NL) by D, with DI being the largest + * limb not larger than (2**(2*BITS_PER_MP_LIMB))/D - (2**BITS_PER_MP_LIMB). + * If this would yield overflow, DI should be the largest possible number + * (i.e., only ones).  For correct operation, the most significant bit of D + * has to be set.  Put the quotient in Q and the remainder in R. + */ +#define UDIV_QRNND_PREINV(q, r, nh, nl, d, di)				\ +	do {								\ +		mpi_limb_t _ql __maybe_unused;				\ +		mpi_limb_t _q, _r;					\ +		mpi_limb_t _xh, _xl;					\ +		umul_ppmm(_q, _ql, (nh), (di));				\ +		_q += (nh);	/* DI is 2**BITS_PER_MPI_LIMB too small */ \ +		umul_ppmm(_xh, _xl, _q, (d));				\ +		sub_ddmmss(_xh, _r, (nh), (nl), _xh, _xl);		\ +		if (_xh) {						\ +			sub_ddmmss(_xh, _r, _xh, _r, 0, (d));		\ +			_q++;						\ +			if (_xh) {					\ +				sub_ddmmss(_xh, _r, _xh, _r, 0, (d));	\ +				_q++;					\ +			}						\ +		}							\ +		if (_r >= (d)) {					\ +			_r -= (d);					\ +			_q++;						\ +		}							\ +		(r) = _r;						\ +		(q) = _q;						\ +	} while (0) + +  /*-- mpiutil.c --*/  mpi_ptr_t mpi_alloc_limb_space(unsigned nlimbs);  void mpi_free_limb_space(mpi_ptr_t a); @@ -135,6 +181,8 @@ int mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,  void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size);  void mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size,  		mpi_ptr_t tspace); +void mpihelp_mul_n(mpi_ptr_t prodp, +		mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size);  int mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,  			       mpi_ptr_t up, mpi_size_t usize, @@ -146,9 +194,14 @@ mpi_limb_t mpihelp_mul_1(mpi_ptr_t res_ptr, mpi_ptr_t s1_ptr,  			 mpi_size_t s1_size, mpi_limb_t s2_limb);  /*-- mpih-div.c --*/ +mpi_limb_t mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, +			 mpi_limb_t divisor_limb);  mpi_limb_t mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs,  			  mpi_ptr_t np, mpi_size_t nsize,  			  mpi_ptr_t dp, mpi_size_t dsize); +mpi_limb_t mpihelp_divmod_1(mpi_ptr_t quot_ptr, +			    mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, +			    mpi_limb_t divisor_limb);  /*-- generic_mpih-[lr]shift.c --*/  mpi_limb_t mpihelp_lshift(mpi_ptr_t wp, mpi_ptr_t up, mpi_size_t usize, diff --git a/lib/mpi/mpi-inv.c b/lib/mpi/mpi-inv.c new file mode 100644 index 000000000000..61e37d18f793 --- /dev/null +++ b/lib/mpi/mpi-inv.c @@ -0,0 +1,143 @@ +/* mpi-inv.c  -  MPI functions + *	Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc. + * + * This file is part of Libgcrypt. + * + * Libgcrypt is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as + * published by the Free Software Foundation; either version 2.1 of + * the License, or (at your option) any later version. + * + * Libgcrypt is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this program; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "mpi-internal.h" + +/**************** + * Calculate the multiplicative inverse X of A mod N + * That is: Find the solution x for + *		1 = (a*x) mod n + */ +int mpi_invm(MPI x, MPI a, MPI n) +{ +	/* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X) +	 * modified according to Michael Penk's solution for Exercise 35 +	 * with further enhancement +	 */ +	MPI u, v, u1, u2 = NULL, u3, v1, v2 = NULL, v3, t1, t2 = NULL, t3; +	unsigned int k; +	int sign; +	int odd; + +	if (!mpi_cmp_ui(a, 0)) +		return 0; /* Inverse does not exists.  */ +	if (!mpi_cmp_ui(n, 1)) +		return 0; /* Inverse does not exists.  */ + +	u = mpi_copy(a); +	v = mpi_copy(n); + +	for (k = 0; !mpi_test_bit(u, 0) && !mpi_test_bit(v, 0); k++) { +		mpi_rshift(u, u, 1); +		mpi_rshift(v, v, 1); +	} +	odd = mpi_test_bit(v, 0); + +	u1 = mpi_alloc_set_ui(1); +	if (!odd) +		u2 = mpi_alloc_set_ui(0); +	u3 = mpi_copy(u); +	v1 = mpi_copy(v); +	if (!odd) { +		v2 = mpi_alloc(mpi_get_nlimbs(u)); +		mpi_sub(v2, u1, u); /* U is used as const 1 */ +	} +	v3 = mpi_copy(v); +	if (mpi_test_bit(u, 0)) { /* u is odd */ +		t1 = mpi_alloc_set_ui(0); +		if (!odd) { +			t2 = mpi_alloc_set_ui(1); +			t2->sign = 1; +		} +		t3 = mpi_copy(v); +		t3->sign = !t3->sign; +		goto Y4; +	} else { +		t1 = mpi_alloc_set_ui(1); +		if (!odd) +			t2 = mpi_alloc_set_ui(0); +		t3 = mpi_copy(u); +	} + +	do { +		do { +			if (!odd) { +				if (mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0)) { +					/* one is odd */ +					mpi_add(t1, t1, v); +					mpi_sub(t2, t2, u); +				} +				mpi_rshift(t1, t1, 1); +				mpi_rshift(t2, t2, 1); +				mpi_rshift(t3, t3, 1); +			} else { +				if (mpi_test_bit(t1, 0)) +					mpi_add(t1, t1, v); +				mpi_rshift(t1, t1, 1); +				mpi_rshift(t3, t3, 1); +			} +Y4: +			; +		} while (!mpi_test_bit(t3, 0)); /* while t3 is even */ + +		if (!t3->sign) { +			mpi_set(u1, t1); +			if (!odd) +				mpi_set(u2, t2); +			mpi_set(u3, t3); +		} else { +			mpi_sub(v1, v, t1); +			sign = u->sign; u->sign = !u->sign; +			if (!odd) +				mpi_sub(v2, u, t2); +			u->sign = sign; +			sign = t3->sign; t3->sign = !t3->sign; +			mpi_set(v3, t3); +			t3->sign = sign; +		} +		mpi_sub(t1, u1, v1); +		if (!odd) +			mpi_sub(t2, u2, v2); +		mpi_sub(t3, u3, v3); +		if (t1->sign) { +			mpi_add(t1, t1, v); +			if (!odd) +				mpi_sub(t2, t2, u); +		} +	} while (mpi_cmp_ui(t3, 0)); /* while t3 != 0 */ +	/* mpi_lshift( u3, k ); */ +	mpi_set(x, u1); + +	mpi_free(u1); +	mpi_free(v1); +	mpi_free(t1); +	if (!odd) { +		mpi_free(u2); +		mpi_free(v2); +		mpi_free(t2); +	} +	mpi_free(u3); +	mpi_free(v3); +	mpi_free(t3); + +	mpi_free(u); +	mpi_free(v); +	return 1; +} +EXPORT_SYMBOL_GPL(mpi_invm); diff --git a/lib/mpi/mpi-mod.c b/lib/mpi/mpi-mod.c new file mode 100644 index 000000000000..47bc59edd4ff --- /dev/null +++ b/lib/mpi/mpi-mod.c @@ -0,0 +1,155 @@ +/* mpi-mod.c -  Modular reduction + * Copyright (C) 1998, 1999, 2001, 2002, 2003, + *               2007  Free Software Foundation, Inc. + * + * This file is part of Libgcrypt. + */ + + +#include "mpi-internal.h" +#include "longlong.h" + +/* Context used with Barrett reduction.  */ +struct barrett_ctx_s { +	MPI m;   /* The modulus - may not be modified. */ +	int m_copied;   /* If true, M needs to be released.  */ +	int k; +	MPI y; +	MPI r1;  /* Helper MPI. */ +	MPI r2;  /* Helper MPI. */ +	MPI r3;  /* Helper MPI allocated on demand. */ +}; + + + +void mpi_mod(MPI rem, MPI dividend, MPI divisor) +{ +	mpi_fdiv_r(rem, dividend, divisor); +} + +/* This function returns a new context for Barrett based operations on + * the modulus M.  This context needs to be released using + * _gcry_mpi_barrett_free.  If COPY is true M will be transferred to + * the context and the user may change M.  If COPY is false, M may not + * be changed until gcry_mpi_barrett_free has been called. + */ +mpi_barrett_t mpi_barrett_init(MPI m, int copy) +{ +	mpi_barrett_t ctx; +	MPI tmp; + +	mpi_normalize(m); +	ctx = kcalloc(1, sizeof(*ctx), GFP_KERNEL); + +	if (copy) { +		ctx->m = mpi_copy(m); +		ctx->m_copied = 1; +	} else +		ctx->m = m; + +	ctx->k = mpi_get_nlimbs(m); +	tmp = mpi_alloc(ctx->k + 1); + +	/* Barrett precalculation: y = floor(b^(2k) / m). */ +	mpi_set_ui(tmp, 1); +	mpi_lshift_limbs(tmp, 2 * ctx->k); +	mpi_fdiv_q(tmp, tmp, m); + +	ctx->y  = tmp; +	ctx->r1 = mpi_alloc(2 * ctx->k + 1); +	ctx->r2 = mpi_alloc(2 * ctx->k + 1); + +	return ctx; +} + +void mpi_barrett_free(mpi_barrett_t ctx) +{ +	if (ctx) { +		mpi_free(ctx->y); +		mpi_free(ctx->r1); +		mpi_free(ctx->r2); +		if (ctx->r3) +			mpi_free(ctx->r3); +		if (ctx->m_copied) +			mpi_free(ctx->m); +		kfree(ctx); +	} +} + + +/* R = X mod M + * + * Using Barrett reduction.  Before using this function + * _gcry_mpi_barrett_init must have been called to do the + * precalculations.  CTX is the context created by this precalculation + * and also conveys M.  If the Barret reduction could no be done a + * straightforward reduction method is used. + * + * We assume that these conditions are met: + * Input:  x =(x_2k-1 ...x_0)_b + *     m =(m_k-1 ....m_0)_b	  with m_k-1 != 0 + * Output: r = x mod m + */ +void mpi_mod_barrett(MPI r, MPI x, mpi_barrett_t ctx) +{ +	MPI m = ctx->m; +	int k = ctx->k; +	MPI y = ctx->y; +	MPI r1 = ctx->r1; +	MPI r2 = ctx->r2; +	int sign; + +	mpi_normalize(x); +	if (mpi_get_nlimbs(x) > 2*k) { +		mpi_mod(r, x, m); +		return; +	} + +	sign = x->sign; +	x->sign = 0; + +	/* 1. q1 = floor( x / b^k-1) +	 *    q2 = q1 * y +	 *    q3 = floor( q2 / b^k+1 ) +	 * Actually, we don't need qx, we can work direct on r2 +	 */ +	mpi_set(r2, x); +	mpi_rshift_limbs(r2, k-1); +	mpi_mul(r2, r2, y); +	mpi_rshift_limbs(r2, k+1); + +	/* 2. r1 = x mod b^k+1 +	 *	r2 = q3 * m mod b^k+1 +	 *	r  = r1 - r2 +	 * 3. if r < 0 then  r = r + b^k+1 +	 */ +	mpi_set(r1, x); +	if (r1->nlimbs > k+1) /* Quick modulo operation.  */ +		r1->nlimbs = k+1; +	mpi_mul(r2, r2, m); +	if (r2->nlimbs > k+1) /* Quick modulo operation. */ +		r2->nlimbs = k+1; +	mpi_sub(r, r1, r2); + +	if (mpi_has_sign(r)) { +		if (!ctx->r3) { +			ctx->r3 = mpi_alloc(k + 2); +			mpi_set_ui(ctx->r3, 1); +			mpi_lshift_limbs(ctx->r3, k + 1); +		} +		mpi_add(r, r, ctx->r3); +	} + +	/* 4. while r >= m do r = r - m */ +	while (mpi_cmp(r, m) >= 0) +		mpi_sub(r, r, m); + +	x->sign = sign; +} + + +void mpi_mul_barrett(MPI w, MPI u, MPI v, mpi_barrett_t ctx) +{ +	mpi_mul(w, u, v); +	mpi_mod_barrett(w, w, ctx); +} diff --git a/lib/mpi/mpi-mul.c b/lib/mpi/mpi-mul.c new file mode 100644 index 000000000000..8f5fa200f297 --- /dev/null +++ b/lib/mpi/mpi-mul.c @@ -0,0 +1,91 @@ +/* mpi-mul.c  -  MPI functions + * Copyright (C) 1994, 1996, 1998, 2001, 2002, + *               2003 Free Software Foundation, Inc. + * + * This file is part of Libgcrypt. + * + * Note: This code is heavily based on the GNU MP Library. + *	 Actually it's the same code with only minor changes in the + *	 way the data is stored; this is to support the abstraction + *	 of an optional secure memory allocation which may be used + *	 to avoid revealing of sensitive data due to paging etc. + */ + +#include "mpi-internal.h" + +void mpi_mul(MPI w, MPI u, MPI v) +{ +	mpi_size_t usize, vsize, wsize; +	mpi_ptr_t up, vp, wp; +	mpi_limb_t cy; +	int usign, vsign, sign_product; +	int assign_wp = 0; +	mpi_ptr_t tmp_limb = NULL; + +	if (u->nlimbs < v->nlimbs) { +		/* Swap U and V. */ +		usize = v->nlimbs; +		usign = v->sign; +		up    = v->d; +		vsize = u->nlimbs; +		vsign = u->sign; +		vp    = u->d; +	} else { +		usize = u->nlimbs; +		usign = u->sign; +		up    = u->d; +		vsize = v->nlimbs; +		vsign = v->sign; +		vp    = v->d; +	} +	sign_product = usign ^ vsign; +	wp = w->d; + +	/* Ensure W has space enough to store the result.  */ +	wsize = usize + vsize; +	if (w->alloced < wsize) { +		if (wp == up || wp == vp) { +			wp = mpi_alloc_limb_space(wsize); +			assign_wp = 1; +		} else { +			mpi_resize(w, wsize); +			wp = w->d; +		} +	} else { /* Make U and V not overlap with W.	*/ +		if (wp == up) { +			/* W and U are identical.  Allocate temporary space for U. */ +			up = tmp_limb = mpi_alloc_limb_space(usize); +			/* Is V identical too?  Keep it identical with U.  */ +			if (wp == vp) +				vp = up; +			/* Copy to the temporary space.  */ +			MPN_COPY(up, wp, usize); +		} else if (wp == vp) { +			/* W and V are identical.  Allocate temporary space for V. */ +			vp = tmp_limb = mpi_alloc_limb_space(vsize); +			/* Copy to the temporary space.  */ +			MPN_COPY(vp, wp, vsize); +		} +	} + +	if (!vsize) +		wsize = 0; +	else { +		mpihelp_mul(wp, up, usize, vp, vsize, &cy); +		wsize -= cy ? 0:1; +	} + +	if (assign_wp) +		mpi_assign_limb_space(w, wp, wsize); +	w->nlimbs = wsize; +	w->sign = sign_product; +	if (tmp_limb) +		mpi_free_limb_space(tmp_limb); +} + +void mpi_mulm(MPI w, MPI u, MPI v, MPI m) +{ +	mpi_mul(w, u, v); +	mpi_tdiv_r(w, w, m); +} +EXPORT_SYMBOL_GPL(mpi_mulm); diff --git a/lib/mpi/mpicoder.c b/lib/mpi/mpicoder.c index eead4b339466..7ea225b2204f 100644 --- a/lib/mpi/mpicoder.c +++ b/lib/mpi/mpicoder.c @@ -25,6 +25,7 @@  #include <linux/string.h>  #include "mpi-internal.h" +#define MAX_EXTERN_SCAN_BYTES (16*1024*1024)  #define MAX_EXTERN_MPI_BITS 16384  /** @@ -109,6 +110,112 @@ MPI mpi_read_from_buffer(const void *xbuffer, unsigned *ret_nread)  }  EXPORT_SYMBOL_GPL(mpi_read_from_buffer); +/**************** + * Fill the mpi VAL from the hex string in STR. + */ +int mpi_fromstr(MPI val, const char *str) +{ +	int sign = 0; +	int prepend_zero = 0; +	int i, j, c, c1, c2; +	unsigned int nbits, nbytes, nlimbs; +	mpi_limb_t a; + +	if (*str == '-') { +		sign = 1; +		str++; +	} + +	/* Skip optional hex prefix.  */ +	if (*str == '0' && str[1] == 'x') +		str += 2; + +	nbits = strlen(str); +	if (nbits > MAX_EXTERN_SCAN_BYTES) { +		mpi_clear(val); +		return -EINVAL; +	} +	nbits *= 4; +	if ((nbits % 8)) +		prepend_zero = 1; + +	nbytes = (nbits+7) / 8; +	nlimbs = (nbytes+BYTES_PER_MPI_LIMB-1) / BYTES_PER_MPI_LIMB; + +	if (val->alloced < nlimbs) +		mpi_resize(val, nlimbs); + +	i = BYTES_PER_MPI_LIMB - (nbytes % BYTES_PER_MPI_LIMB); +	i %= BYTES_PER_MPI_LIMB; +	j = val->nlimbs = nlimbs; +	val->sign = sign; +	for (; j > 0; j--) { +		a = 0; +		for (; i < BYTES_PER_MPI_LIMB; i++) { +			if (prepend_zero) { +				c1 = '0'; +				prepend_zero = 0; +			} else +				c1 = *str++; + +			if (!c1) { +				mpi_clear(val); +				return -EINVAL; +			} +			c2 = *str++; +			if (!c2) { +				mpi_clear(val); +				return -EINVAL; +			} +			if (c1 >= '0' && c1 <= '9') +				c = c1 - '0'; +			else if (c1 >= 'a' && c1 <= 'f') +				c = c1 - 'a' + 10; +			else if (c1 >= 'A' && c1 <= 'F') +				c = c1 - 'A' + 10; +			else { +				mpi_clear(val); +				return -EINVAL; +			} +			c <<= 4; +			if (c2 >= '0' && c2 <= '9') +				c |= c2 - '0'; +			else if (c2 >= 'a' && c2 <= 'f') +				c |= c2 - 'a' + 10; +			else if (c2 >= 'A' && c2 <= 'F') +				c |= c2 - 'A' + 10; +			else { +				mpi_clear(val); +				return -EINVAL; +			} +			a <<= 8; +			a |= c; +		} +		i = 0; +		val->d[j-1] = a; +	} + +	return 0; +} +EXPORT_SYMBOL_GPL(mpi_fromstr); + +MPI mpi_scanval(const char *string) +{ +	MPI a; + +	a = mpi_alloc(0); +	if (!a) +		return NULL; + +	if (mpi_fromstr(a, string)) { +		mpi_free(a); +		return NULL; +	} +	mpi_normalize(a); +	return a; +} +EXPORT_SYMBOL_GPL(mpi_scanval); +  static int count_lzeros(MPI a)  {  	mpi_limb_t alimb; @@ -413,3 +520,232 @@ MPI mpi_read_raw_from_sgl(struct scatterlist *sgl, unsigned int nbytes)  	return val;  }  EXPORT_SYMBOL_GPL(mpi_read_raw_from_sgl); + +/* Perform a two's complement operation on buffer P of size N bytes.  */ +static void twocompl(unsigned char *p, unsigned int n) +{ +	int i; + +	for (i = n-1; i >= 0 && !p[i]; i--) +		; +	if (i >= 0) { +		if ((p[i] & 0x01)) +			p[i] = (((p[i] ^ 0xfe) | 0x01) & 0xff); +		else if ((p[i] & 0x02)) +			p[i] = (((p[i] ^ 0xfc) | 0x02) & 0xfe); +		else if ((p[i] & 0x04)) +			p[i] = (((p[i] ^ 0xf8) | 0x04) & 0xfc); +		else if ((p[i] & 0x08)) +			p[i] = (((p[i] ^ 0xf0) | 0x08) & 0xf8); +		else if ((p[i] & 0x10)) +			p[i] = (((p[i] ^ 0xe0) | 0x10) & 0xf0); +		else if ((p[i] & 0x20)) +			p[i] = (((p[i] ^ 0xc0) | 0x20) & 0xe0); +		else if ((p[i] & 0x40)) +			p[i] = (((p[i] ^ 0x80) | 0x40) & 0xc0); +		else +			p[i] = 0x80; + +		for (i--; i >= 0; i--) +			p[i] ^= 0xff; +	} +} + +int mpi_print(enum gcry_mpi_format format, unsigned char *buffer, +			size_t buflen, size_t *nwritten, MPI a) +{ +	unsigned int nbits = mpi_get_nbits(a); +	size_t len; +	size_t dummy_nwritten; +	int negative; + +	if (!nwritten) +		nwritten = &dummy_nwritten; + +	/* Libgcrypt does no always care to set clear the sign if the value +	 * is 0.  For printing this is a bit of a surprise, in particular +	 * because if some of the formats don't support negative numbers but +	 * should be able to print a zero.  Thus we need this extra test +	 * for a negative number. +	 */ +	if (a->sign && mpi_cmp_ui(a, 0)) +		negative = 1; +	else +		negative = 0; + +	len = buflen; +	*nwritten = 0; +	if (format == GCRYMPI_FMT_STD) { +		unsigned char *tmp; +		int extra = 0; +		unsigned int n; + +		tmp = mpi_get_buffer(a, &n, NULL); +		if (!tmp) +			return -EINVAL; + +		if (negative) { +			twocompl(tmp, n); +			if (!(*tmp & 0x80)) { +				/* Need to extend the sign.  */ +				n++; +				extra = 2; +			} +		} else if (n && (*tmp & 0x80)) { +			/* Positive but the high bit of the returned buffer is set. +			 * Thus we need to print an extra leading 0x00 so that the +			 * output is interpreted as a positive number. +			 */ +			n++; +			extra = 1; +		} + +		if (buffer && n > len) { +			/* The provided buffer is too short. */ +			kfree(tmp); +			return -E2BIG; +		} +		if (buffer) { +			unsigned char *s = buffer; + +			if (extra == 1) +				*s++ = 0; +			else if (extra) +				*s++ = 0xff; +			memcpy(s, tmp, n-!!extra); +		} +		kfree(tmp); +		*nwritten = n; +		return 0; +	} else if (format == GCRYMPI_FMT_USG) { +		unsigned int n = (nbits + 7)/8; + +		/* Note:  We ignore the sign for this format.  */ +		/* FIXME: for performance reasons we should put this into +		 * mpi_aprint because we can then use the buffer directly. +		 */ + +		if (buffer && n > len) +			return -E2BIG; +		if (buffer) { +			unsigned char *tmp; + +			tmp = mpi_get_buffer(a, &n, NULL); +			if (!tmp) +				return -EINVAL; +			memcpy(buffer, tmp, n); +			kfree(tmp); +		} +		*nwritten = n; +		return 0; +	} else if (format == GCRYMPI_FMT_PGP) { +		unsigned int n = (nbits + 7)/8; + +		/* The PGP format can only handle unsigned integers.  */ +		if (negative) +			return -EINVAL; + +		if (buffer && n+2 > len) +			return -E2BIG; + +		if (buffer) { +			unsigned char *tmp; +			unsigned char *s = buffer; + +			s[0] = nbits >> 8; +			s[1] = nbits; + +			tmp = mpi_get_buffer(a, &n, NULL); +			if (!tmp) +				return -EINVAL; +			memcpy(s+2, tmp, n); +			kfree(tmp); +		} +		*nwritten = n+2; +		return 0; +	} else if (format == GCRYMPI_FMT_SSH) { +		unsigned char *tmp; +		int extra = 0; +		unsigned int n; + +		tmp = mpi_get_buffer(a, &n, NULL); +		if (!tmp) +			return -EINVAL; + +		if (negative) { +			twocompl(tmp, n); +			if (!(*tmp & 0x80)) { +				/* Need to extend the sign.  */ +				n++; +				extra = 2; +			} +		} else if (n && (*tmp & 0x80)) { +			n++; +			extra = 1; +		} + +		if (buffer && n+4 > len) { +			kfree(tmp); +			return -E2BIG; +		} + +		if (buffer) { +			unsigned char *s = buffer; + +			*s++ = n >> 24; +			*s++ = n >> 16; +			*s++ = n >> 8; +			*s++ = n; +			if (extra == 1) +				*s++ = 0; +			else if (extra) +				*s++ = 0xff; +			memcpy(s, tmp, n-!!extra); +		} +		kfree(tmp); +		*nwritten = 4+n; +		return 0; +	} else if (format == GCRYMPI_FMT_HEX) { +		unsigned char *tmp; +		int i; +		int extra = 0; +		unsigned int n = 0; + +		tmp = mpi_get_buffer(a, &n, NULL); +		if (!tmp) +			return -EINVAL; +		if (!n || (*tmp & 0x80)) +			extra = 2; + +		if (buffer && 2*n + extra + negative + 1 > len) { +			kfree(tmp); +			return -E2BIG; +		} +		if (buffer) { +			unsigned char *s = buffer; + +			if (negative) +				*s++ = '-'; +			if (extra) { +				*s++ = '0'; +				*s++ = '0'; +			} + +			for (i = 0; i < n; i++) { +				unsigned int c = tmp[i]; + +				*s++ = (c >> 4) < 10 ? '0'+(c>>4) : 'A'+(c>>4)-10; +				c &= 15; +				*s++ = c < 10 ? '0'+c : 'A'+c-10; +			} +			*s++ = 0; +			*nwritten = s - buffer; +		} else { +			*nwritten = 2*n + extra + negative + 1; +		} +		kfree(tmp); +		return 0; +	} else +		return -EINVAL; +} +EXPORT_SYMBOL_GPL(mpi_print); diff --git a/lib/mpi/mpih-div.c b/lib/mpi/mpih-div.c index 913a519eb005..be70ee2e42d3 100644 --- a/lib/mpi/mpih-div.c +++ b/lib/mpi/mpih-div.c @@ -24,6 +24,150 @@  #define UDIV_TIME UMUL_TIME  #endif + +mpi_limb_t +mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, +			mpi_limb_t divisor_limb) +{ +	mpi_size_t i; +	mpi_limb_t n1, n0, r; +	mpi_limb_t dummy __maybe_unused; + +	/* Botch: Should this be handled at all?  Rely on callers?	*/ +	if (!dividend_size) +		return 0; + +	/* If multiplication is much faster than division, and the +	 * dividend is large, pre-invert the divisor, and use +	 * only multiplications in the inner loop. +	 * +	 * This test should be read: +	 *	 Does it ever help to use udiv_qrnnd_preinv? +	 *	   && Does what we save compensate for the inversion overhead? +	 */ +	if (UDIV_TIME > (2 * UMUL_TIME + 6) +			&& (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { +		int normalization_steps; + +		normalization_steps = count_leading_zeros(divisor_limb); +		if (normalization_steps) { +			mpi_limb_t divisor_limb_inverted; + +			divisor_limb <<= normalization_steps; + +			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The +			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the +			 * most significant bit (with weight 2**N) implicit. +			 * +			 * Special case for DIVISOR_LIMB == 100...000. +			 */ +			if (!(divisor_limb << 1)) +				divisor_limb_inverted = ~(mpi_limb_t)0; +			else +				udiv_qrnnd(divisor_limb_inverted, dummy, +						-divisor_limb, 0, divisor_limb); + +			n1 = dividend_ptr[dividend_size - 1]; +			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); + +			/* Possible optimization: +			 * if (r == 0 +			 * && divisor_limb > ((n1 << normalization_steps) +			 *		       | (dividend_ptr[dividend_size - 2] >> ...))) +			 * ...one division less... +			 */ +			for (i = dividend_size - 2; i >= 0; i--) { +				n0 = dividend_ptr[i]; +				UDIV_QRNND_PREINV(dummy, r, r, +						((n1 << normalization_steps) +						 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), +						divisor_limb, divisor_limb_inverted); +				n1 = n0; +			} +			UDIV_QRNND_PREINV(dummy, r, r, +					n1 << normalization_steps, +					divisor_limb, divisor_limb_inverted); +			return r >> normalization_steps; +		} else { +			mpi_limb_t divisor_limb_inverted; + +			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The +			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the +			 * most significant bit (with weight 2**N) implicit. +			 * +			 * Special case for DIVISOR_LIMB == 100...000. +			 */ +			if (!(divisor_limb << 1)) +				divisor_limb_inverted = ~(mpi_limb_t)0; +			else +				udiv_qrnnd(divisor_limb_inverted, dummy, +						-divisor_limb, 0, divisor_limb); + +			i = dividend_size - 1; +			r = dividend_ptr[i]; + +			if (r >= divisor_limb) +				r = 0; +			else +				i--; + +			for ( ; i >= 0; i--) { +				n0 = dividend_ptr[i]; +				UDIV_QRNND_PREINV(dummy, r, r, +						n0, divisor_limb, divisor_limb_inverted); +			} +			return r; +		} +	} else { +		if (UDIV_NEEDS_NORMALIZATION) { +			int normalization_steps; + +			normalization_steps = count_leading_zeros(divisor_limb); +			if (normalization_steps) { +				divisor_limb <<= normalization_steps; + +				n1 = dividend_ptr[dividend_size - 1]; +				r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); + +				/* Possible optimization: +				 * if (r == 0 +				 * && divisor_limb > ((n1 << normalization_steps) +				 *		   | (dividend_ptr[dividend_size - 2] >> ...))) +				 * ...one division less... +				 */ +				for (i = dividend_size - 2; i >= 0; i--) { +					n0 = dividend_ptr[i]; +					udiv_qrnnd(dummy, r, r, +						((n1 << normalization_steps) +						 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), +						divisor_limb); +					n1 = n0; +				} +				udiv_qrnnd(dummy, r, r, +						n1 << normalization_steps, +						divisor_limb); +				return r >> normalization_steps; +			} +		} +		/* No normalization needed, either because udiv_qrnnd doesn't require +		 * it, or because DIVISOR_LIMB is already normalized. +		 */ +		i = dividend_size - 1; +		r = dividend_ptr[i]; + +		if (r >= divisor_limb) +			r = 0; +		else +			i--; + +		for (; i >= 0; i--) { +			n0 = dividend_ptr[i]; +			udiv_qrnnd(dummy, r, r, n0, divisor_limb); +		} +		return r; +	} +} +  /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write   * the NSIZE-DSIZE least significant quotient limbs at QP   * and the DSIZE long remainder at NP.	If QEXTRA_LIMBS is @@ -221,3 +365,153 @@ q_test:  	return most_significant_q_limb;  } + +/**************** + * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB. + * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR. + * Return the single-limb remainder. + * There are no constraints on the value of the divisor. + * + * QUOT_PTR and DIVIDEND_PTR might point to the same limb. + */ + +mpi_limb_t +mpihelp_divmod_1(mpi_ptr_t quot_ptr, +		mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, +		mpi_limb_t divisor_limb) +{ +	mpi_size_t i; +	mpi_limb_t n1, n0, r; +	mpi_limb_t dummy __maybe_unused; + +	if (!dividend_size) +		return 0; + +	/* If multiplication is much faster than division, and the +	 * dividend is large, pre-invert the divisor, and use +	 * only multiplications in the inner loop. +	 * +	 * This test should be read: +	 * Does it ever help to use udiv_qrnnd_preinv? +	 * && Does what we save compensate for the inversion overhead? +	 */ +	if (UDIV_TIME > (2 * UMUL_TIME + 6) +			&& (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { +		int normalization_steps; + +		normalization_steps = count_leading_zeros(divisor_limb); +		if (normalization_steps) { +			mpi_limb_t divisor_limb_inverted; + +			divisor_limb <<= normalization_steps; + +			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The +			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the +			 * most significant bit (with weight 2**N) implicit. +			 */ +			/* Special case for DIVISOR_LIMB == 100...000.  */ +			if (!(divisor_limb << 1)) +				divisor_limb_inverted = ~(mpi_limb_t)0; +			else +				udiv_qrnnd(divisor_limb_inverted, dummy, +						-divisor_limb, 0, divisor_limb); + +			n1 = dividend_ptr[dividend_size - 1]; +			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); + +			/* Possible optimization: +			 * if (r == 0 +			 * && divisor_limb > ((n1 << normalization_steps) +			 *		       | (dividend_ptr[dividend_size - 2] >> ...))) +			 * ...one division less... +			 */ +			for (i = dividend_size - 2; i >= 0; i--) { +				n0 = dividend_ptr[i]; +				UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r, +						((n1 << normalization_steps) +						 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), +						divisor_limb, divisor_limb_inverted); +				n1 = n0; +			} +			UDIV_QRNND_PREINV(quot_ptr[0], r, r, +					n1 << normalization_steps, +					divisor_limb, divisor_limb_inverted); +			return r >> normalization_steps; +		} else { +			mpi_limb_t divisor_limb_inverted; + +			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The +			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the +			 * most significant bit (with weight 2**N) implicit. +			 */ +			/* Special case for DIVISOR_LIMB == 100...000.  */ +			if (!(divisor_limb << 1)) +				divisor_limb_inverted = ~(mpi_limb_t) 0; +			else +				udiv_qrnnd(divisor_limb_inverted, dummy, +						-divisor_limb, 0, divisor_limb); + +			i = dividend_size - 1; +			r = dividend_ptr[i]; + +			if (r >= divisor_limb) +				r = 0; +			else +				quot_ptr[i--] = 0; + +			for ( ; i >= 0; i--) { +				n0 = dividend_ptr[i]; +				UDIV_QRNND_PREINV(quot_ptr[i], r, r, +						n0, divisor_limb, divisor_limb_inverted); +			} +			return r; +		} +	} else { +		if (UDIV_NEEDS_NORMALIZATION) { +			int normalization_steps; + +			normalization_steps = count_leading_zeros(divisor_limb); +			if (normalization_steps) { +				divisor_limb <<= normalization_steps; + +				n1 = dividend_ptr[dividend_size - 1]; +				r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); + +				/* Possible optimization: +				 * if (r == 0 +				 * && divisor_limb > ((n1 << normalization_steps) +				 *		   | (dividend_ptr[dividend_size - 2] >> ...))) +				 * ...one division less... +				 */ +				for (i = dividend_size - 2; i >= 0; i--) { +					n0 = dividend_ptr[i]; +					udiv_qrnnd(quot_ptr[i + 1], r, r, +						((n1 << normalization_steps) +						 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), +						divisor_limb); +					n1 = n0; +				} +				udiv_qrnnd(quot_ptr[0], r, r, +						n1 << normalization_steps, +						divisor_limb); +				return r >> normalization_steps; +			} +		} +		/* No normalization needed, either because udiv_qrnnd doesn't require +		 * it, or because DIVISOR_LIMB is already normalized. +		 */ +		i = dividend_size - 1; +		r = dividend_ptr[i]; + +		if (r >= divisor_limb) +			r = 0; +		else +			quot_ptr[i--] = 0; + +		for (; i >= 0; i--) { +			n0 = dividend_ptr[i]; +			udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb); +		} +		return r; +	} +} diff --git a/lib/mpi/mpih-mul.c b/lib/mpi/mpih-mul.c index a93647564054..e5f1c84e3c48 100644 --- a/lib/mpi/mpih-mul.c +++ b/lib/mpi/mpih-mul.c @@ -317,6 +317,31 @@ mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)  	}  } + +void mpihelp_mul_n(mpi_ptr_t prodp, +		mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size) +{ +	if (up == vp) { +		if (size < KARATSUBA_THRESHOLD) +			mpih_sqr_n_basecase(prodp, up, size); +		else { +			mpi_ptr_t tspace; +			tspace = mpi_alloc_limb_space(2 * size); +			mpih_sqr_n(prodp, up, size, tspace); +			mpi_free_limb_space(tspace); +		} +	} else { +		if (size < KARATSUBA_THRESHOLD) +			mul_n_basecase(prodp, up, vp, size); +		else { +			mpi_ptr_t tspace; +			tspace = mpi_alloc_limb_space(2 * size); +			mul_n(prodp, up, vp, size, tspace); +			mpi_free_limb_space(tspace); +		} +	} +} +  int  mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,  			   mpi_ptr_t up, mpi_size_t usize, diff --git a/lib/mpi/mpiutil.c b/lib/mpi/mpiutil.c index 4cd2b335cb7f..3c63710c20c6 100644 --- a/lib/mpi/mpiutil.c +++ b/lib/mpi/mpiutil.c @@ -20,6 +20,63 @@  #include "mpi-internal.h" +/* Constants allocated right away at startup.  */ +static MPI constants[MPI_NUMBER_OF_CONSTANTS]; + +/* Initialize the MPI subsystem.  This is called early and allows to + * do some initialization without taking care of threading issues. + */ +static int __init mpi_init(void) +{ +	int idx; +	unsigned long value; + +	for (idx = 0; idx < MPI_NUMBER_OF_CONSTANTS; idx++) { +		switch (idx) { +		case MPI_C_ZERO: +			value = 0; +			break; +		case MPI_C_ONE: +			value = 1; +			break; +		case MPI_C_TWO: +			value = 2; +			break; +		case MPI_C_THREE: +			value = 3; +			break; +		case MPI_C_FOUR: +			value = 4; +			break; +		case MPI_C_EIGHT: +			value = 8; +			break; +		default: +			pr_err("MPI: invalid mpi_const selector %d\n", idx); +			return -EFAULT; +		} +		constants[idx] = mpi_alloc_set_ui(value); +		constants[idx]->flags = (16|32); +	} + +	return 0; +} +postcore_initcall(mpi_init); + +/* Return a constant MPI descripbed by NO which is one of the + * MPI_C_xxx macros.  There is no need to copy this returned value; it + * may be used directly. + */ +MPI mpi_const(enum gcry_mpi_constants no) +{ +	if ((int)no < 0 || no > MPI_NUMBER_OF_CONSTANTS) +		pr_err("MPI: invalid mpi_const selector %d\n", no); +	if (!constants[no]) +		pr_err("MPI: MPI subsystem not initialized\n"); +	return constants[no]; +} +EXPORT_SYMBOL_GPL(mpi_const); +  /****************   * Note:  It was a bad idea to use the number of limbs to allocate   *	  because on a alpha the limbs are large but we normally need @@ -106,6 +163,15 @@ int mpi_resize(MPI a, unsigned nlimbs)  	return 0;  } +void mpi_clear(MPI a) +{ +	if (!a) +		return; +	a->nlimbs = 0; +	a->flags = 0; +} +EXPORT_SYMBOL_GPL(mpi_clear); +  void mpi_free(MPI a)  {  	if (!a) @@ -122,5 +188,143 @@ void mpi_free(MPI a)  }  EXPORT_SYMBOL_GPL(mpi_free); +/**************** + * Note: This copy function should not interpret the MPI + *	 but copy it transparently. + */ +MPI mpi_copy(MPI a) +{ +	int i; +	MPI b; + +	if (a) { +		b = mpi_alloc(a->nlimbs); +		b->nlimbs = a->nlimbs; +		b->sign = a->sign; +		b->flags = a->flags; +		b->flags &= ~(16|32); /* Reset the immutable and constant flags. */ +		for (i = 0; i < b->nlimbs; i++) +			b->d[i] = a->d[i]; +	} else +		b = NULL; +	return b; +} + +/**************** + * This function allocates an MPI which is optimized to hold + * a value as large as the one given in the argument and allocates it + * with the same flags as A. + */ +MPI mpi_alloc_like(MPI a) +{ +	MPI b; + +	if (a) { +		b = mpi_alloc(a->nlimbs); +		b->nlimbs = 0; +		b->sign = 0; +		b->flags = a->flags; +	} else +		b = NULL; + +	return b; +} + + +/* Set U into W and release U.  If W is NULL only U will be released. */ +void mpi_snatch(MPI w, MPI u) +{ +	if (w) { +		mpi_assign_limb_space(w, u->d, u->alloced); +		w->nlimbs = u->nlimbs; +		w->sign   = u->sign; +		w->flags  = u->flags; +		u->alloced = 0; +		u->nlimbs = 0; +		u->d = NULL; +	} +	mpi_free(u); +} + + +MPI mpi_set(MPI w, MPI u) +{ +	mpi_ptr_t wp, up; +	mpi_size_t usize = u->nlimbs; +	int usign = u->sign; + +	if (!w) +		w = mpi_alloc(mpi_get_nlimbs(u)); +	RESIZE_IF_NEEDED(w, usize); +	wp = w->d; +	up = u->d; +	MPN_COPY(wp, up, usize); +	w->nlimbs = usize; +	w->flags = u->flags; +	w->flags &= ~(16|32); /* Reset the immutable and constant flags.  */ +	w->sign = usign; +	return w; +} +EXPORT_SYMBOL_GPL(mpi_set); + +MPI mpi_set_ui(MPI w, unsigned long u) +{ +	if (!w) +		w = mpi_alloc(1); +	/* FIXME: If U is 0 we have no need to resize and thus possible +	 * allocating the the limbs. +	 */ +	RESIZE_IF_NEEDED(w, 1); +	w->d[0] = u; +	w->nlimbs = u ? 1 : 0; +	w->sign = 0; +	w->flags = 0; +	return w; +} +EXPORT_SYMBOL_GPL(mpi_set_ui); + +MPI mpi_alloc_set_ui(unsigned long u) +{ +	MPI w = mpi_alloc(1); +	w->d[0] = u; +	w->nlimbs = u ? 1 : 0; +	w->sign = 0; +	return w; +} + +/**************** + * Swap the value of A and B, when SWAP is 1. + * Leave the value when SWAP is 0. + * This implementation should be constant-time regardless of SWAP. + */ +void mpi_swap_cond(MPI a, MPI b, unsigned long swap) +{ +	mpi_size_t i; +	mpi_size_t nlimbs; +	mpi_limb_t mask = ((mpi_limb_t)0) - swap; +	mpi_limb_t x; + +	if (a->alloced > b->alloced) +		nlimbs = b->alloced; +	else +		nlimbs = a->alloced; +	if (a->nlimbs > nlimbs || b->nlimbs > nlimbs) +		return; + +	for (i = 0; i < nlimbs; i++) { +		x = mask & (a->d[i] ^ b->d[i]); +		a->d[i] = a->d[i] ^ x; +		b->d[i] = b->d[i] ^ x; +	} + +	x = mask & (a->nlimbs ^ b->nlimbs); +	a->nlimbs = a->nlimbs ^ x; +	b->nlimbs = b->nlimbs ^ x; + +	x = mask & (a->sign ^ b->sign); +	a->sign = a->sign ^ x; +	b->sign = b->sign ^ x; +} +  MODULE_DESCRIPTION("Multiprecision maths library");  MODULE_LICENSE("GPL"); | 
