Age | Commit message (Collapse) | Author |
|
Instead of falling back to the generic ChaCha skcipher driver for
non-SIMD cases, use a fast scalar implementation for ARM authored
by Eric Biggers. This removes the module dependency on chacha-generic
altogether, which also simplifies things when we expose the ChaCha
library interface from this module.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently, our generic ChaCha implementation consists of a permute
function in lib/chacha.c that operates on the 64-byte ChaCha state
directly [and which is always included into the core kernel since it
is used by the /dev/random driver], and the crypto API plumbing to
expose it as a skcipher.
In order to support in-kernel users that need the ChaCha streamcipher
but have no need [or tolerance] for going through the abstractions of
the crypto API, let's expose the streamcipher bits via a library API
as well, in a way that permits the implementation to be superseded by
an architecture specific one if provided.
So move the streamcipher code into a separate module in lib/crypto,
and expose the init() and crypt() routines to users of the library.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Constify the ctx and iv arguments to crypto_chacha_init() and the
various chacha*_stream_xor() functions. This makes it clear that they
are not modified.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Replace all calls to may_use_simd() in the arm crypto code with
crypto_simd_usable(), in order to allow testing the no-SIMD code paths.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Now that the 32-bit ARM NEON implementation of ChaCha20 and XChaCha20
has been refactored to support varying the number of rounds, add support
for XChaCha12. This is identical to XChaCha20 except for the number of
rounds, which is 12 instead of 20.
XChaCha12 is faster than XChaCha20 but has a lower security margin,
though still greater than AES-256's since the best known attacks make it
through only 7 rounds. See the patch "crypto: chacha - add XChaCha12
support" for more details about why we need XChaCha12 support.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
In preparation for adding XChaCha12 support, rename/refactor the NEON
implementation of ChaCha20 to support different numbers of rounds.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|