1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
|
// SPDX-License-Identifier: GPL-2.0
/*
* m24lr.c - Sysfs control interface for ST M24LR series RFID/NFC chips
*
* Copyright (c) 2025 Abd-Alrhman Masalkhi <abd.masalkhi@gmail.com>
*
* This driver implements both the sysfs-based control interface and EEPROM
* access for STMicroelectronics M24LR series chips (e.g., M24LR04E-R).
* It provides access to control registers for features such as password
* authentication, memory protection, and device configuration. In addition,
* it manages read and write operations to the EEPROM region of the chip.
*/
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/nvmem-provider.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/regmap.h>
#define M24LR_WRITE_TIMEOUT 25u
#define M24LR_READ_TIMEOUT (M24LR_WRITE_TIMEOUT)
/**
* struct m24lr_chip - describes chip-specific sysfs layout
* @sss_len: the length of the sss region
* @page_size: chip-specific limit on the maximum number of bytes allowed
* in a single write operation.
* @eeprom_size: size of the EEPROM in byte
*
* Supports multiple M24LR chip variants (e.g., M24LRxx) by allowing each
* to define its own set of sysfs attributes, depending on its available
* registers and features.
*/
struct m24lr_chip {
unsigned int sss_len;
unsigned int page_size;
unsigned int eeprom_size;
};
/**
* struct m24lr - core driver data for M24LR chip control
* @uid: 64 bits unique identifier stored in the device
* @sss_len: the length of the sss region
* @page_size: chip-specific limit on the maximum number of bytes allowed
* in a single write operation.
* @eeprom_size: size of the EEPROM in byte
* @ctl_regmap: regmap interface for accessing the system parameter sector
* @eeprom_regmap: regmap interface for accessing the EEPROM
* @lock: mutex to synchronize operations to the device
*
* Central data structure holding the state and resources used by the
* M24LR device driver.
*/
struct m24lr {
u64 uid;
unsigned int sss_len;
unsigned int page_size;
unsigned int eeprom_size;
struct regmap *ctl_regmap;
struct regmap *eeprom_regmap;
struct mutex lock; /* synchronize operations to the device */
};
static const struct regmap_range m24lr_ctl_vo_ranges[] = {
regmap_reg_range(0, 63),
};
static const struct regmap_access_table m24lr_ctl_vo_table = {
.yes_ranges = m24lr_ctl_vo_ranges,
.n_yes_ranges = ARRAY_SIZE(m24lr_ctl_vo_ranges),
};
static const struct regmap_config m24lr_ctl_regmap_conf = {
.name = "m24lr_ctl",
.reg_stride = 1,
.reg_bits = 16,
.val_bits = 8,
.disable_locking = false,
.cache_type = REGCACHE_RBTREE,/* Flat can't be used, there's huge gap */
.volatile_table = &m24lr_ctl_vo_table,
};
/* Chip descriptor for M24LR04E-R variant */
static const struct m24lr_chip m24lr04e_r_chip = {
.page_size = 4,
.eeprom_size = 512,
.sss_len = 4,
};
/* Chip descriptor for M24LR16E-R variant */
static const struct m24lr_chip m24lr16e_r_chip = {
.page_size = 4,
.eeprom_size = 2048,
.sss_len = 16,
};
/* Chip descriptor for M24LR64E-R variant */
static const struct m24lr_chip m24lr64e_r_chip = {
.page_size = 4,
.eeprom_size = 8192,
.sss_len = 64,
};
static const struct i2c_device_id m24lr_ids[] = {
{ "m24lr04e-r", (kernel_ulong_t)&m24lr04e_r_chip},
{ "m24lr16e-r", (kernel_ulong_t)&m24lr16e_r_chip},
{ "m24lr64e-r", (kernel_ulong_t)&m24lr64e_r_chip},
{ }
};
MODULE_DEVICE_TABLE(i2c, m24lr_ids);
static const struct of_device_id m24lr_of_match[] = {
{ .compatible = "st,m24lr04e-r", .data = &m24lr04e_r_chip},
{ .compatible = "st,m24lr16e-r", .data = &m24lr16e_r_chip},
{ .compatible = "st,m24lr64e-r", .data = &m24lr64e_r_chip},
{ }
};
MODULE_DEVICE_TABLE(of, m24lr_of_match);
/**
* m24lr_regmap_read - read data using regmap with retry on failure
* @regmap: regmap instance for the device
* @buf: buffer to store the read data
* @size: number of bytes to read
* @offset: starting register address
*
* Attempts to read a block of data from the device with retries and timeout.
* Some M24LR chips may transiently NACK reads (e.g., during internal write
* cycles), so this function retries with a short sleep until the timeout
* expires.
*
* Returns:
* Number of bytes read on success,
* -ETIMEDOUT if the read fails within the timeout window.
*/
static ssize_t m24lr_regmap_read(struct regmap *regmap, u8 *buf,
size_t size, unsigned int offset)
{
int err;
unsigned long timeout, read_time;
ssize_t ret = -ETIMEDOUT;
timeout = jiffies + msecs_to_jiffies(M24LR_READ_TIMEOUT);
do {
read_time = jiffies;
err = regmap_bulk_read(regmap, offset, buf, size);
if (!err) {
ret = size;
break;
}
usleep_range(1000, 2000);
} while (time_before(read_time, timeout));
return ret;
}
/**
* m24lr_regmap_write - write data using regmap with retry on failure
* @regmap: regmap instance for the device
* @buf: buffer containing the data to write
* @size: number of bytes to write
* @offset: starting register address
*
* Attempts to write a block of data to the device with retries and a timeout.
* Some M24LR devices may NACK I2C writes while an internal write operation
* is in progress. This function retries the write operation with a short delay
* until it succeeds or the timeout is reached.
*
* Returns:
* Number of bytes written on success,
* -ETIMEDOUT if the write fails within the timeout window.
*/
static ssize_t m24lr_regmap_write(struct regmap *regmap, const u8 *buf,
size_t size, unsigned int offset)
{
int err;
unsigned long timeout, write_time;
ssize_t ret = -ETIMEDOUT;
timeout = jiffies + msecs_to_jiffies(M24LR_WRITE_TIMEOUT);
do {
write_time = jiffies;
err = regmap_bulk_write(regmap, offset, buf, size);
if (!err) {
ret = size;
break;
}
usleep_range(1000, 2000);
} while (time_before(write_time, timeout));
return ret;
}
static ssize_t m24lr_read(struct m24lr *m24lr, u8 *buf, size_t size,
unsigned int offset, bool is_eeprom)
{
struct regmap *regmap;
ssize_t ret;
if (is_eeprom)
regmap = m24lr->eeprom_regmap;
else
regmap = m24lr->ctl_regmap;
mutex_lock(&m24lr->lock);
ret = m24lr_regmap_read(regmap, buf, size, offset);
mutex_unlock(&m24lr->lock);
return ret;
}
/**
* m24lr_write - write buffer to M24LR device with page alignment handling
* @m24lr: pointer to driver context
* @buf: data buffer to write
* @size: number of bytes to write
* @offset: target register address in the device
* @is_eeprom: true if the write should target the EEPROM,
* false if it should target the system parameters sector.
*
* Writes data to the M24LR device using regmap, split into chunks no larger
* than page_size to respect device-specific write limitations (e.g., page
* size or I2C hold-time concerns). Each chunk is aligned to the page boundary
* defined by page_size.
*
* Returns:
* Total number of bytes written on success,
* A negative error code if any write fails.
*/
static ssize_t m24lr_write(struct m24lr *m24lr, const u8 *buf, size_t size,
unsigned int offset, bool is_eeprom)
{
unsigned int n, next_sector;
struct regmap *regmap;
ssize_t ret = 0;
ssize_t err;
if (is_eeprom)
regmap = m24lr->eeprom_regmap;
else
regmap = m24lr->ctl_regmap;
n = min_t(unsigned int, size, m24lr->page_size);
next_sector = roundup(offset + 1, m24lr->page_size);
if (offset + n > next_sector)
n = next_sector - offset;
mutex_lock(&m24lr->lock);
while (n) {
err = m24lr_regmap_write(regmap, buf + offset, n, offset);
if (IS_ERR_VALUE(err)) {
if (!ret)
ret = err;
break;
}
offset += n;
size -= n;
ret += n;
n = min_t(unsigned int, size, m24lr->page_size);
}
mutex_unlock(&m24lr->lock);
return ret;
}
/**
* m24lr_write_pass - Write password to M24LR043-R using secure format
* @m24lr: Pointer to device control structure
* @buf: Input buffer containing hex-encoded password
* @count: Number of bytes in @buf
* @code: Operation code to embed between password copies
*
* This function parses a 4-byte password, encodes it in big-endian format,
* and constructs a 9-byte sequence of the form:
*
* [BE(password), code, BE(password)]
*
* The result is written to register 0x0900 (2304), which is the password
* register in M24LR04E-R chip.
*
* Return: Number of bytes written on success, or negative error code on failure
*/
static ssize_t m24lr_write_pass(struct m24lr *m24lr, const char *buf,
size_t count, u8 code)
{
__be32 be_pass;
u8 output[9];
ssize_t ret;
u32 pass;
int err;
if (!count)
return -EINVAL;
if (count > 8)
return -EINVAL;
err = kstrtou32(buf, 16, &pass);
if (err)
return err;
be_pass = cpu_to_be32(pass);
memcpy(output, &be_pass, sizeof(be_pass));
output[4] = code;
memcpy(output + 5, &be_pass, sizeof(be_pass));
mutex_lock(&m24lr->lock);
ret = m24lr_regmap_write(m24lr->ctl_regmap, output, 9, 2304);
mutex_unlock(&m24lr->lock);
return ret;
}
static ssize_t m24lr_read_reg_le(struct m24lr *m24lr, u64 *val,
unsigned int reg_addr,
unsigned int reg_size)
{
ssize_t ret;
__le64 input = 0;
ret = m24lr_read(m24lr, (u8 *)&input, reg_size, reg_addr, false);
if (IS_ERR_VALUE(ret))
return ret;
if (ret != reg_size)
return -EINVAL;
switch (reg_size) {
case 1:
*val = *(u8 *)&input;
break;
case 2:
*val = le16_to_cpu((__le16)input);
break;
case 4:
*val = le32_to_cpu((__le32)input);
break;
case 8:
*val = le64_to_cpu((__le64)input);
break;
default:
return -EINVAL;
}
return 0;
}
static int m24lr_nvmem_read(void *priv, unsigned int offset, void *val,
size_t bytes)
{
ssize_t err;
struct m24lr *m24lr = priv;
if (!bytes)
return bytes;
if (offset + bytes > m24lr->eeprom_size)
return -EINVAL;
err = m24lr_read(m24lr, val, bytes, offset, true);
if (IS_ERR_VALUE(err))
return err;
return 0;
}
static int m24lr_nvmem_write(void *priv, unsigned int offset, void *val,
size_t bytes)
{
ssize_t err;
struct m24lr *m24lr = priv;
if (!bytes)
return -EINVAL;
if (offset + bytes > m24lr->eeprom_size)
return -EINVAL;
err = m24lr_write(m24lr, val, bytes, offset, true);
if (IS_ERR_VALUE(err))
return err;
return 0;
}
static ssize_t m24lr_ctl_sss_read(struct file *filep, struct kobject *kobj,
const struct bin_attribute *attr, char *buf,
loff_t offset, size_t count)
{
struct m24lr *m24lr = attr->private;
if (!count)
return count;
if (size_add(offset, count) > m24lr->sss_len)
return -EINVAL;
return m24lr_read(m24lr, buf, count, offset, false);
}
static ssize_t m24lr_ctl_sss_write(struct file *filep, struct kobject *kobj,
const struct bin_attribute *attr, char *buf,
loff_t offset, size_t count)
{
struct m24lr *m24lr = attr->private;
if (!count)
return -EINVAL;
if (size_add(offset, count) > m24lr->sss_len)
return -EINVAL;
return m24lr_write(m24lr, buf, count, offset, false);
}
static BIN_ATTR(sss, 0600, m24lr_ctl_sss_read, m24lr_ctl_sss_write, 0);
static ssize_t new_pass_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct m24lr *m24lr = i2c_get_clientdata(to_i2c_client(dev));
return m24lr_write_pass(m24lr, buf, count, 7);
}
static DEVICE_ATTR_WO(new_pass);
static ssize_t unlock_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct m24lr *m24lr = i2c_get_clientdata(to_i2c_client(dev));
return m24lr_write_pass(m24lr, buf, count, 9);
}
static DEVICE_ATTR_WO(unlock);
static ssize_t uid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct m24lr *m24lr = i2c_get_clientdata(to_i2c_client(dev));
return sysfs_emit(buf, "%llx\n", m24lr->uid);
}
static DEVICE_ATTR_RO(uid);
static ssize_t total_sectors_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct m24lr *m24lr = i2c_get_clientdata(to_i2c_client(dev));
return sysfs_emit(buf, "%x\n", m24lr->sss_len);
}
static DEVICE_ATTR_RO(total_sectors);
static struct attribute *m24lr_ctl_dev_attrs[] = {
&dev_attr_unlock.attr,
&dev_attr_new_pass.attr,
&dev_attr_uid.attr,
&dev_attr_total_sectors.attr,
NULL,
};
static const struct m24lr_chip *m24lr_get_chip(struct device *dev)
{
const struct m24lr_chip *ret;
const struct i2c_device_id *id;
id = i2c_match_id(m24lr_ids, to_i2c_client(dev));
if (dev->of_node && of_match_device(m24lr_of_match, dev))
ret = of_device_get_match_data(dev);
else if (id)
ret = (void *)id->driver_data;
else
ret = acpi_device_get_match_data(dev);
return ret;
}
static int m24lr_probe(struct i2c_client *client)
{
struct regmap_config eeprom_regmap_conf = {0};
struct nvmem_config nvmem_conf = {0};
struct device *dev = &client->dev;
struct i2c_client *eeprom_client;
const struct m24lr_chip *chip;
struct regmap *eeprom_regmap;
struct nvmem_device *nvmem;
struct regmap *ctl_regmap;
struct m24lr *m24lr;
u32 regs[2];
long err;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
return -EOPNOTSUPP;
chip = m24lr_get_chip(dev);
if (!chip)
return -ENODEV;
m24lr = devm_kzalloc(dev, sizeof(struct m24lr), GFP_KERNEL);
if (!m24lr)
return -ENOMEM;
err = device_property_read_u32_array(dev, "reg", regs, ARRAY_SIZE(regs));
if (err)
return dev_err_probe(dev, err, "Failed to read 'reg' property\n");
/* Create a second I2C client for the eeprom interface */
eeprom_client = devm_i2c_new_dummy_device(dev, client->adapter, regs[1]);
if (IS_ERR(eeprom_client))
return dev_err_probe(dev, PTR_ERR(eeprom_client),
"Failed to create dummy I2C client for the EEPROM\n");
ctl_regmap = devm_regmap_init_i2c(client, &m24lr_ctl_regmap_conf);
if (IS_ERR(ctl_regmap))
return dev_err_probe(dev, PTR_ERR(ctl_regmap),
"Failed to init regmap\n");
eeprom_regmap_conf.name = "m24lr_eeprom";
eeprom_regmap_conf.reg_bits = 16;
eeprom_regmap_conf.val_bits = 8;
eeprom_regmap_conf.disable_locking = true;
eeprom_regmap_conf.max_register = chip->eeprom_size - 1;
eeprom_regmap = devm_regmap_init_i2c(eeprom_client,
&eeprom_regmap_conf);
if (IS_ERR(eeprom_regmap))
return dev_err_probe(dev, PTR_ERR(eeprom_regmap),
"Failed to init regmap\n");
mutex_init(&m24lr->lock);
m24lr->sss_len = chip->sss_len;
m24lr->page_size = chip->page_size;
m24lr->eeprom_size = chip->eeprom_size;
m24lr->eeprom_regmap = eeprom_regmap;
m24lr->ctl_regmap = ctl_regmap;
nvmem_conf.dev = &eeprom_client->dev;
nvmem_conf.owner = THIS_MODULE;
nvmem_conf.type = NVMEM_TYPE_EEPROM;
nvmem_conf.reg_read = m24lr_nvmem_read;
nvmem_conf.reg_write = m24lr_nvmem_write;
nvmem_conf.size = chip->eeprom_size;
nvmem_conf.word_size = 1;
nvmem_conf.stride = 1;
nvmem_conf.priv = m24lr;
nvmem = devm_nvmem_register(dev, &nvmem_conf);
if (IS_ERR(nvmem))
return dev_err_probe(dev, PTR_ERR(nvmem),
"Failed to register nvmem\n");
i2c_set_clientdata(client, m24lr);
i2c_set_clientdata(eeprom_client, m24lr);
bin_attr_sss.size = chip->sss_len;
bin_attr_sss.private = m24lr;
err = sysfs_create_bin_file(&dev->kobj, &bin_attr_sss);
if (err)
return dev_err_probe(dev, err,
"Failed to create sss bin file\n");
/* test by reading the uid, if success store it */
err = m24lr_read_reg_le(m24lr, &m24lr->uid, 2324, sizeof(m24lr->uid));
if (IS_ERR_VALUE(err))
goto remove_bin_file;
return 0;
remove_bin_file:
sysfs_remove_bin_file(&dev->kobj, &bin_attr_sss);
return err;
}
static void m24lr_remove(struct i2c_client *client)
{
sysfs_remove_bin_file(&client->dev.kobj, &bin_attr_sss);
}
ATTRIBUTE_GROUPS(m24lr_ctl_dev);
static struct i2c_driver m24lr_driver = {
.driver = {
.name = "m24lr",
.of_match_table = m24lr_of_match,
.dev_groups = m24lr_ctl_dev_groups,
},
.probe = m24lr_probe,
.remove = m24lr_remove,
.id_table = m24lr_ids,
};
module_i2c_driver(m24lr_driver);
MODULE_AUTHOR("Abd-Alrhman Masalkhi");
MODULE_DESCRIPTION("st m24lr control driver");
MODULE_LICENSE("GPL");
|