summaryrefslogtreecommitdiff
path: root/arch/x86/mm/fault.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/mm/fault.c')
-rw-r--r--arch/x86/mm/fault.c1504
1 files changed, 904 insertions, 600 deletions
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c
index 654be4ae3047..998bd807fc7b 100644
--- a/arch/x86/mm/fault.c
+++ b/arch/x86/mm/fault.c
@@ -1,48 +1,49 @@
+// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
* Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
*/
-#include <linux/magic.h> /* STACK_END_MAGIC */
#include <linux/sched.h> /* test_thread_flag(), ... */
+#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
#include <linux/kdebug.h> /* oops_begin/end, ... */
-#include <linux/module.h> /* search_exception_table */
-#include <linux/bootmem.h> /* max_low_pfn */
-#include <linux/kprobes.h> /* __kprobes, ... */
+#include <linux/memblock.h> /* max_low_pfn */
+#include <linux/kfence.h> /* kfence_handle_page_fault */
+#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
#include <linux/mmiotrace.h> /* kmmio_handler, ... */
#include <linux/perf_event.h> /* perf_sw_event */
#include <linux/hugetlb.h> /* hstate_index_to_shift */
-#include <linux/prefetch.h> /* prefetchw */
#include <linux/context_tracking.h> /* exception_enter(), ... */
+#include <linux/uaccess.h> /* faulthandler_disabled() */
+#include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
+#include <linux/mm_types.h>
+#include <linux/mm.h> /* find_and_lock_vma() */
+#include <linux/vmalloc.h>
+#include <asm/cpufeature.h> /* boot_cpu_has, ... */
#include <asm/traps.h> /* dotraplinkage, ... */
-#include <asm/pgalloc.h> /* pgd_*(), ... */
-#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
-#include <asm/fixmap.h> /* VSYSCALL_START */
-
-/*
- * Page fault error code bits:
- *
- * bit 0 == 0: no page found 1: protection fault
- * bit 1 == 0: read access 1: write access
- * bit 2 == 0: kernel-mode access 1: user-mode access
- * bit 3 == 1: use of reserved bit detected
- * bit 4 == 1: fault was an instruction fetch
- */
-enum x86_pf_error_code {
-
- PF_PROT = 1 << 0,
- PF_WRITE = 1 << 1,
- PF_USER = 1 << 2,
- PF_RSVD = 1 << 3,
- PF_INSTR = 1 << 4,
-};
+#include <asm/fixmap.h> /* VSYSCALL_ADDR */
+#include <asm/vsyscall.h> /* emulate_vsyscall */
+#include <asm/vm86.h> /* struct vm86 */
+#include <asm/mmu_context.h> /* vma_pkey() */
+#include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/
+#include <asm/desc.h> /* store_idt(), ... */
+#include <asm/cpu_entry_area.h> /* exception stack */
+#include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
+#include <asm/kvm_para.h> /* kvm_handle_async_pf */
+#include <asm/vdso.h> /* fixup_vdso_exception() */
+#include <asm/irq_stack.h>
+#include <asm/fred.h>
+#include <asm/sev.h> /* snp_dump_hva_rmpentry() */
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/exceptions.h>
/*
* Returns 0 if mmiotrace is disabled, or if the fault is not
* handled by mmiotrace:
*/
-static inline int __kprobes
+static nokprobe_inline int
kmmio_fault(struct pt_regs *regs, unsigned long addr)
{
if (unlikely(is_kmmio_active()))
@@ -51,28 +52,13 @@ kmmio_fault(struct pt_regs *regs, unsigned long addr)
return 0;
}
-static inline int __kprobes notify_page_fault(struct pt_regs *regs)
-{
- int ret = 0;
-
- /* kprobe_running() needs smp_processor_id() */
- if (kprobes_built_in() && !user_mode_vm(regs)) {
- preempt_disable();
- if (kprobe_running() && kprobe_fault_handler(regs, 14))
- ret = 1;
- preempt_enable();
- }
-
- return ret;
-}
-
/*
* Prefetch quirks:
*
* 32-bit mode:
*
* Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
- * Check that here and ignore it.
+ * Check that here and ignore it. This is AMD erratum #91.
*
* 64-bit mode:
*
@@ -101,11 +87,7 @@ check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
#ifdef CONFIG_X86_64
case 0x40:
/*
- * In AMD64 long mode 0x40..0x4F are valid REX prefixes
- * Need to figure out under what instruction mode the
- * instruction was issued. Could check the LDT for lm,
- * but for now it's good enough to assume that long
- * mode only uses well known segments or kernel.
+ * In 64-bit mode 0x40..0x4F are valid REX prefixes
*/
return (!user_mode(regs) || user_64bit_mode(regs));
#endif
@@ -117,7 +99,7 @@ check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
return !instr_lo || (instr_lo>>1) == 1;
case 0x00:
/* Prefetch instruction is 0x0F0D or 0x0F18 */
- if (probe_kernel_address(instr, opcode))
+ if (get_kernel_nofault(opcode, instr))
return 0;
*prefetch = (instr_lo == 0xF) &&
@@ -128,6 +110,15 @@ check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
}
}
+static bool is_amd_k8_pre_npt(void)
+{
+ struct cpuinfo_x86 *c = &boot_cpu_data;
+
+ return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
+ c->x86_vendor == X86_VENDOR_AMD &&
+ c->x86 == 0xf && c->x86_model < 0x40);
+}
+
static int
is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
{
@@ -135,51 +126,46 @@ is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
unsigned char *instr;
int prefetch = 0;
+ /* Erratum #91 affects AMD K8, pre-NPT CPUs */
+ if (!is_amd_k8_pre_npt())
+ return 0;
+
/*
* If it was a exec (instruction fetch) fault on NX page, then
* do not ignore the fault:
*/
- if (error_code & PF_INSTR)
+ if (error_code & X86_PF_INSTR)
return 0;
instr = (void *)convert_ip_to_linear(current, regs);
max_instr = instr + 15;
- if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
- return 0;
+ /*
+ * This code has historically always bailed out if IP points to a
+ * not-present page (e.g. due to a race). No one has ever
+ * complained about this.
+ */
+ pagefault_disable();
while (instr < max_instr) {
unsigned char opcode;
- if (probe_kernel_address(instr, opcode))
- break;
+ if (user_mode(regs)) {
+ if (get_user(opcode, (unsigned char __user *) instr))
+ break;
+ } else {
+ if (get_kernel_nofault(opcode, instr))
+ break;
+ }
instr++;
if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
break;
}
- return prefetch;
-}
-static void
-force_sig_info_fault(int si_signo, int si_code, unsigned long address,
- struct task_struct *tsk, int fault)
-{
- unsigned lsb = 0;
- siginfo_t info;
-
- info.si_signo = si_signo;
- info.si_errno = 0;
- info.si_code = si_code;
- info.si_addr = (void __user *)address;
- if (fault & VM_FAULT_HWPOISON_LARGE)
- lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
- if (fault & VM_FAULT_HWPOISON)
- lsb = PAGE_SHIFT;
- info.si_addr_lsb = lsb;
-
- force_sig_info(si_signo, &info, tsk);
+ pagefault_enable();
+ return prefetch;
}
DEFINE_SPINLOCK(pgd_lock);
@@ -190,6 +176,7 @@ static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
{
unsigned index = pgd_index(address);
pgd_t *pgd_k;
+ p4d_t *p4d, *p4d_k;
pud_t *pud, *pud_k;
pmd_t *pmd, *pmd_k;
@@ -202,63 +189,47 @@ static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
/*
* set_pgd(pgd, *pgd_k); here would be useless on PAE
* and redundant with the set_pmd() on non-PAE. As would
- * set_pud.
+ * set_p4d/set_pud.
*/
- pud = pud_offset(pgd, address);
- pud_k = pud_offset(pgd_k, address);
+ p4d = p4d_offset(pgd, address);
+ p4d_k = p4d_offset(pgd_k, address);
+ if (!p4d_present(*p4d_k))
+ return NULL;
+
+ pud = pud_offset(p4d, address);
+ pud_k = pud_offset(p4d_k, address);
if (!pud_present(*pud_k))
return NULL;
pmd = pmd_offset(pud, address);
pmd_k = pmd_offset(pud_k, address);
- if (!pmd_present(*pmd_k))
- return NULL;
- if (!pmd_present(*pmd))
+ if (pmd_present(*pmd) != pmd_present(*pmd_k))
set_pmd(pmd, *pmd_k);
+
+ if (!pmd_present(*pmd_k))
+ return NULL;
else
- BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
+ BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
return pmd_k;
}
-void vmalloc_sync_all(void)
-{
- unsigned long address;
-
- if (SHARED_KERNEL_PMD)
- return;
-
- for (address = VMALLOC_START & PMD_MASK;
- address >= TASK_SIZE && address < FIXADDR_TOP;
- address += PMD_SIZE) {
- struct page *page;
-
- spin_lock(&pgd_lock);
- list_for_each_entry(page, &pgd_list, lru) {
- spinlock_t *pgt_lock;
- pmd_t *ret;
-
- /* the pgt_lock only for Xen */
- pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
-
- spin_lock(pgt_lock);
- ret = vmalloc_sync_one(page_address(page), address);
- spin_unlock(pgt_lock);
-
- if (!ret)
- break;
- }
- spin_unlock(&pgd_lock);
- }
-}
-
/*
- * 32-bit:
- *
* Handle a fault on the vmalloc or module mapping area
+ *
+ * This is needed because there is a race condition between the time
+ * when the vmalloc mapping code updates the PMD to the point in time
+ * where it synchronizes this update with the other page-tables in the
+ * system.
+ *
+ * In this race window another thread/CPU can map an area on the same
+ * PMD, finds it already present and does not synchronize it with the
+ * rest of the system yet. As a result v[mz]alloc might return areas
+ * which are not mapped in every page-table in the system, causing an
+ * unhandled page-fault when they are accessed.
*/
-static noinline __kprobes int vmalloc_fault(unsigned long address)
+static noinline int vmalloc_fault(unsigned long address)
{
unsigned long pgd_paddr;
pmd_t *pmd_k;
@@ -268,8 +239,6 @@ static noinline __kprobes int vmalloc_fault(unsigned long address)
if (!(address >= VMALLOC_START && address < VMALLOC_END))
return -1;
- WARN_ON_ONCE(in_nmi());
-
/*
* Synchronize this task's top level page-table
* with the 'reference' page table.
@@ -277,33 +246,44 @@ static noinline __kprobes int vmalloc_fault(unsigned long address)
* Do _not_ use "current" here. We might be inside
* an interrupt in the middle of a task switch..
*/
- pgd_paddr = read_cr3();
+ pgd_paddr = read_cr3_pa();
pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
if (!pmd_k)
return -1;
+ if (pmd_leaf(*pmd_k))
+ return 0;
+
pte_k = pte_offset_kernel(pmd_k, address);
if (!pte_present(*pte_k))
return -1;
return 0;
}
+NOKPROBE_SYMBOL(vmalloc_fault);
-/*
- * Did it hit the DOS screen memory VA from vm86 mode?
- */
-static inline void
-check_v8086_mode(struct pt_regs *regs, unsigned long address,
- struct task_struct *tsk)
+void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
{
- unsigned long bit;
+ unsigned long addr;
- if (!v8086_mode(regs))
- return;
+ for (addr = start & PMD_MASK;
+ addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
+ addr += PMD_SIZE) {
+ struct page *page;
+
+ spin_lock(&pgd_lock);
+ list_for_each_entry(page, &pgd_list, lru) {
+ spinlock_t *pgt_lock;
+
+ /* the pgt_lock only for Xen */
+ pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
- bit = (address - 0xA0000) >> PAGE_SHIFT;
- if (bit < 32)
- tsk->thread.screen_bitmap |= 1 << bit;
+ spin_lock(pgt_lock);
+ vmalloc_sync_one(page_address(page), addr);
+ spin_unlock(pgt_lock);
+ }
+ spin_unlock(&pgd_lock);
+ }
}
static bool low_pfn(unsigned long pfn)
@@ -313,18 +293,26 @@ static bool low_pfn(unsigned long pfn)
static void dump_pagetable(unsigned long address)
{
- pgd_t *base = __va(read_cr3());
+ pgd_t *base = __va(read_cr3_pa());
pgd_t *pgd = &base[pgd_index(address)];
+ p4d_t *p4d;
+ pud_t *pud;
pmd_t *pmd;
pte_t *pte;
#ifdef CONFIG_X86_PAE
- printk("*pdpt = %016Lx ", pgd_val(*pgd));
+ pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
goto out;
+#define pr_pde pr_cont
+#else
+#define pr_pde pr_info
#endif
- pmd = pmd_offset(pud_offset(pgd, address), address);
- printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
+ p4d = p4d_offset(pgd, address);
+ pud = pud_offset(p4d, address);
+ pmd = pmd_offset(pud, address);
+ pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
+#undef pr_pde
/*
* We must not directly access the pte in the highpte
@@ -332,97 +320,17 @@ static void dump_pagetable(unsigned long address)
* And let's rather not kmap-atomic the pte, just in case
* it's allocated already:
*/
- if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
+ if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd))
goto out;
pte = pte_offset_kernel(pmd, address);
- printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
+ pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
out:
- printk("\n");
+ pr_cont("\n");
}
#else /* CONFIG_X86_64: */
-void vmalloc_sync_all(void)
-{
- sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
-}
-
-/*
- * 64-bit:
- *
- * Handle a fault on the vmalloc area
- *
- * This assumes no large pages in there.
- */
-static noinline __kprobes int vmalloc_fault(unsigned long address)
-{
- pgd_t *pgd, *pgd_ref;
- pud_t *pud, *pud_ref;
- pmd_t *pmd, *pmd_ref;
- pte_t *pte, *pte_ref;
-
- /* Make sure we are in vmalloc area: */
- if (!(address >= VMALLOC_START && address < VMALLOC_END))
- return -1;
-
- WARN_ON_ONCE(in_nmi());
-
- /*
- * Copy kernel mappings over when needed. This can also
- * happen within a race in page table update. In the later
- * case just flush:
- */
- pgd = pgd_offset(current->active_mm, address);
- pgd_ref = pgd_offset_k(address);
- if (pgd_none(*pgd_ref))
- return -1;
-
- if (pgd_none(*pgd)) {
- set_pgd(pgd, *pgd_ref);
- arch_flush_lazy_mmu_mode();
- } else {
- BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
- }
-
- /*
- * Below here mismatches are bugs because these lower tables
- * are shared:
- */
-
- pud = pud_offset(pgd, address);
- pud_ref = pud_offset(pgd_ref, address);
- if (pud_none(*pud_ref))
- return -1;
-
- if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
- BUG();
-
- pmd = pmd_offset(pud, address);
- pmd_ref = pmd_offset(pud_ref, address);
- if (pmd_none(*pmd_ref))
- return -1;
-
- if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
- BUG();
-
- pte_ref = pte_offset_kernel(pmd_ref, address);
- if (!pte_present(*pte_ref))
- return -1;
-
- pte = pte_offset_kernel(pmd, address);
-
- /*
- * Don't use pte_page here, because the mappings can point
- * outside mem_map, and the NUMA hash lookup cannot handle
- * that:
- */
- if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
- BUG();
-
- return 0;
-}
-
#ifdef CONFIG_CPU_SUP_AMD
static const char errata93_warning[] =
KERN_ERR
@@ -432,26 +340,18 @@ KERN_ERR
"******* Disabling USB legacy in the BIOS may also help.\n";
#endif
-/*
- * No vm86 mode in 64-bit mode:
- */
-static inline void
-check_v8086_mode(struct pt_regs *regs, unsigned long address,
- struct task_struct *tsk)
-{
-}
-
static int bad_address(void *p)
{
unsigned long dummy;
- return probe_kernel_address((unsigned long *)p, dummy);
+ return get_kernel_nofault(dummy, (unsigned long *)p);
}
static void dump_pagetable(unsigned long address)
{
- pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
+ pgd_t *base = __va(read_cr3_pa());
pgd_t *pgd = base + pgd_index(address);
+ p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
@@ -459,37 +359,45 @@ static void dump_pagetable(unsigned long address)
if (bad_address(pgd))
goto bad;
- printk("PGD %lx ", pgd_val(*pgd));
+ pr_info("PGD %lx ", pgd_val(*pgd));
if (!pgd_present(*pgd))
goto out;
- pud = pud_offset(pgd, address);
+ p4d = p4d_offset(pgd, address);
+ if (bad_address(p4d))
+ goto bad;
+
+ pr_cont("P4D %lx ", p4d_val(*p4d));
+ if (!p4d_present(*p4d) || p4d_leaf(*p4d))
+ goto out;
+
+ pud = pud_offset(p4d, address);
if (bad_address(pud))
goto bad;
- printk("PUD %lx ", pud_val(*pud));
- if (!pud_present(*pud) || pud_large(*pud))
+ pr_cont("PUD %lx ", pud_val(*pud));
+ if (!pud_present(*pud) || pud_leaf(*pud))
goto out;
pmd = pmd_offset(pud, address);
if (bad_address(pmd))
goto bad;
- printk("PMD %lx ", pmd_val(*pmd));
- if (!pmd_present(*pmd) || pmd_large(*pmd))
+ pr_cont("PMD %lx ", pmd_val(*pmd));
+ if (!pmd_present(*pmd) || pmd_leaf(*pmd))
goto out;
pte = pte_offset_kernel(pmd, address);
if (bad_address(pte))
goto bad;
- printk("PTE %lx", pte_val(*pte));
+ pr_cont("PTE %lx", pte_val(*pte));
out:
- printk("\n");
+ pr_cont("\n");
return;
bad:
- printk("BAD\n");
+ pr_info("BAD\n");
}
#endif /* CONFIG_X86_64 */
@@ -515,6 +423,9 @@ static int is_errata93(struct pt_regs *regs, unsigned long address)
|| boot_cpu_data.x86 != 0xf)
return 0;
+ if (user_mode(regs))
+ return 0;
+
if (address != regs->ip)
return 0;
@@ -549,56 +460,131 @@ static int is_errata100(struct pt_regs *regs, unsigned long address)
return 0;
}
-static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
+/* Pentium F0 0F C7 C8 bug workaround: */
+static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address)
{
#ifdef CONFIG_X86_F00F_BUG
- unsigned long nr;
-
- /*
- * Pentium F0 0F C7 C8 bug workaround:
- */
- if (boot_cpu_has_bug(X86_BUG_F00F)) {
- nr = (address - idt_descr.address) >> 3;
-
- if (nr == 6) {
- do_invalid_op(regs, 0);
- return 1;
- }
+ if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
+ idt_is_f00f_address(address)) {
+ handle_invalid_op(regs);
+ return 1;
}
#endif
return 0;
}
-static const char nx_warning[] = KERN_CRIT
-"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
+static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
+{
+ u32 offset = (index >> 3) * sizeof(struct desc_struct);
+ unsigned long addr;
+ struct ldttss_desc desc;
+
+ if (index == 0) {
+ pr_alert("%s: NULL\n", name);
+ return;
+ }
+
+ if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
+ pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
+ return;
+ }
+
+ if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
+ sizeof(struct ldttss_desc))) {
+ pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
+ name, index);
+ return;
+ }
+
+ addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
+#ifdef CONFIG_X86_64
+ addr |= ((u64)desc.base3 << 32);
+#endif
+ pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
+ name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
+}
static void
-show_fault_oops(struct pt_regs *regs, unsigned long error_code,
- unsigned long address)
+show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
{
if (!oops_may_print())
return;
- if (error_code & PF_INSTR) {
+ if (error_code & X86_PF_INSTR) {
unsigned int level;
-
- pte_t *pte = lookup_address(address, &level);
-
- if (pte && pte_present(*pte) && !pte_exec(*pte))
- printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
+ bool nx, rw;
+ pgd_t *pgd;
+ pte_t *pte;
+
+ pgd = __va(read_cr3_pa());
+ pgd += pgd_index(address);
+
+ pte = lookup_address_in_pgd_attr(pgd, address, &level, &nx, &rw);
+
+ if (pte && pte_present(*pte) && (!pte_exec(*pte) || nx))
+ pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
+ from_kuid(&init_user_ns, current_uid()));
+ if (pte && pte_present(*pte) && pte_exec(*pte) && !nx &&
+ (pgd_flags(*pgd) & _PAGE_USER) &&
+ (__read_cr4() & X86_CR4_SMEP))
+ pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
+ from_kuid(&init_user_ns, current_uid()));
}
- printk(KERN_ALERT "BUG: unable to handle kernel ");
- if (address < PAGE_SIZE)
- printk(KERN_CONT "NULL pointer dereference");
+ if (address < PAGE_SIZE && !user_mode(regs))
+ pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
+ (void *)address);
else
- printk(KERN_CONT "paging request");
+ pr_alert("BUG: unable to handle page fault for address: %px\n",
+ (void *)address);
+
+ pr_alert("#PF: %s %s in %s mode\n",
+ (error_code & X86_PF_USER) ? "user" : "supervisor",
+ (error_code & X86_PF_INSTR) ? "instruction fetch" :
+ (error_code & X86_PF_WRITE) ? "write access" :
+ "read access",
+ user_mode(regs) ? "user" : "kernel");
+ pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
+ !(error_code & X86_PF_PROT) ? "not-present page" :
+ (error_code & X86_PF_RSVD) ? "reserved bit violation" :
+ (error_code & X86_PF_PK) ? "protection keys violation" :
+ (error_code & X86_PF_RMP) ? "RMP violation" :
+ "permissions violation");
+
+ if (!(error_code & X86_PF_USER) && user_mode(regs)) {
+ struct desc_ptr idt, gdt;
+ u16 ldtr, tr;
- printk(KERN_CONT " at %p\n", (void *) address);
- printk(KERN_ALERT "IP:");
- printk_address(regs->ip, 1);
+ /*
+ * This can happen for quite a few reasons. The more obvious
+ * ones are faults accessing the GDT, or LDT. Perhaps
+ * surprisingly, if the CPU tries to deliver a benign or
+ * contributory exception from user code and gets a page fault
+ * during delivery, the page fault can be delivered as though
+ * it originated directly from user code. This could happen
+ * due to wrong permissions on the IDT, GDT, LDT, TSS, or
+ * kernel or IST stack.
+ */
+ store_idt(&idt);
+
+ /* Usable even on Xen PV -- it's just slow. */
+ native_store_gdt(&gdt);
+
+ pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
+ idt.address, idt.size, gdt.address, gdt.size);
+
+ store_ldt(ldtr);
+ show_ldttss(&gdt, "LDTR", ldtr);
+
+ store_tr(tr);
+ show_ldttss(&gdt, "TR", tr);
+ }
dump_pagetable(address);
+
+ if (error_code & X86_PF_RMP)
+ snp_dump_hva_rmpentry(address);
}
static noinline void
@@ -617,55 +603,97 @@ pgtable_bad(struct pt_regs *regs, unsigned long error_code,
tsk->comm, address);
dump_pagetable(address);
- tsk->thread.cr2 = address;
- tsk->thread.trap_nr = X86_TRAP_PF;
- tsk->thread.error_code = error_code;
-
if (__die("Bad pagetable", regs, error_code))
sig = 0;
oops_end(flags, regs, sig);
}
-static noinline void
-no_context(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, int signal, int si_code)
+static void sanitize_error_code(unsigned long address,
+ unsigned long *error_code)
+{
+ /*
+ * To avoid leaking information about the kernel page
+ * table layout, pretend that user-mode accesses to
+ * kernel addresses are always protection faults.
+ *
+ * NB: This means that failed vsyscalls with vsyscall=none
+ * will have the PROT bit. This doesn't leak any
+ * information and does not appear to cause any problems.
+ */
+ if (address >= TASK_SIZE_MAX)
+ *error_code |= X86_PF_PROT;
+}
+
+static void set_signal_archinfo(unsigned long address,
+ unsigned long error_code)
{
struct task_struct *tsk = current;
- unsigned long *stackend;
+
+ tsk->thread.trap_nr = X86_TRAP_PF;
+ tsk->thread.error_code = error_code | X86_PF_USER;
+ tsk->thread.cr2 = address;
+}
+
+static noinline void
+page_fault_oops(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address)
+{
+#ifdef CONFIG_VMAP_STACK
+ struct stack_info info;
+#endif
unsigned long flags;
int sig;
- /* Are we prepared to handle this kernel fault? */
- if (fixup_exception(regs)) {
- if (current_thread_info()->sig_on_uaccess_error && signal) {
- tsk->thread.trap_nr = X86_TRAP_PF;
- tsk->thread.error_code = error_code | PF_USER;
- tsk->thread.cr2 = address;
-
- /* XXX: hwpoison faults will set the wrong code. */
- force_sig_info_fault(signal, si_code, address, tsk, 0);
- }
- return;
+ if (user_mode(regs)) {
+ /*
+ * Implicit kernel access from user mode? Skip the stack
+ * overflow and EFI special cases.
+ */
+ goto oops;
}
+#ifdef CONFIG_VMAP_STACK
/*
- * 32-bit:
- *
- * Valid to do another page fault here, because if this fault
- * had been triggered by is_prefetch fixup_exception would have
- * handled it.
- *
- * 64-bit:
- *
- * Hall of shame of CPU/BIOS bugs.
+ * Stack overflow? During boot, we can fault near the initial
+ * stack in the direct map, but that's not an overflow -- check
+ * that we're in vmalloc space to avoid this.
*/
- if (is_prefetch(regs, error_code, address))
- return;
+ if (is_vmalloc_addr((void *)address) &&
+ get_stack_guard_info((void *)address, &info)) {
+ /*
+ * We're likely to be running with very little stack space
+ * left. It's plausible that we'd hit this condition but
+ * double-fault even before we get this far, in which case
+ * we're fine: the double-fault handler will deal with it.
+ *
+ * We don't want to make it all the way into the oops code
+ * and then double-fault, though, because we're likely to
+ * break the console driver and lose most of the stack dump.
+ */
+ call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
+ handle_stack_overflow,
+ ASM_CALL_ARG3,
+ , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
+
+ BUG();
+ }
+#endif
- if (is_errata93(regs, address))
+ /*
+ * Buggy firmware could access regions which might page fault. If
+ * this happens, EFI has a special OOPS path that will try to
+ * avoid hanging the system.
+ */
+ if (IS_ENABLED(CONFIG_EFI))
+ efi_crash_gracefully_on_page_fault(address);
+
+ /* Only not-present faults should be handled by KFENCE. */
+ if (!(error_code & X86_PF_PROT) &&
+ kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
return;
+oops:
/*
* Oops. The kernel tried to access some bad page. We'll have to
* terminate things with extreme prejudice:
@@ -674,14 +702,9 @@ no_context(struct pt_regs *regs, unsigned long error_code,
show_fault_oops(regs, error_code, address);
- stackend = end_of_stack(tsk);
- if (tsk != &init_task && *stackend != STACK_END_MAGIC)
+ if (task_stack_end_corrupted(current))
printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
- tsk->thread.cr2 = address;
- tsk->thread.trap_nr = X86_TRAP_PF;
- tsk->thread.error_code = error_code;
-
sig = SIGKILL;
if (__die("Oops", regs, error_code))
sig = 0;
@@ -692,6 +715,27 @@ no_context(struct pt_regs *regs, unsigned long error_code,
oops_end(flags, regs, sig);
}
+static noinline void
+kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address, int signal, int si_code,
+ u32 pkey)
+{
+ WARN_ON_ONCE(user_mode(regs));
+
+ /* Are we prepared to handle this kernel fault? */
+ if (fixup_exception(regs, X86_TRAP_PF, error_code, address))
+ return;
+
+ /*
+ * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
+ * instruction.
+ */
+ if (is_prefetch(regs, error_code, address))
+ return;
+
+ page_fault_oops(regs, error_code, address);
+}
+
/*
* Print out info about fatal segfaults, if the show_unhandled_signals
* sysctl is set:
@@ -700,126 +744,175 @@ static inline void
show_signal_msg(struct pt_regs *regs, unsigned long error_code,
unsigned long address, struct task_struct *tsk)
{
+ const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
+ /* This is a racy snapshot, but it's better than nothing. */
+ int cpu = raw_smp_processor_id();
+
if (!unhandled_signal(tsk, SIGSEGV))
return;
if (!printk_ratelimit())
return;
- printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
- task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
- tsk->comm, task_pid_nr(tsk), address,
+ printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
+ loglvl, tsk->comm, task_pid_nr(tsk), address,
(void *)regs->ip, (void *)regs->sp, error_code);
print_vma_addr(KERN_CONT " in ", regs->ip);
+ /*
+ * Dump the likely CPU where the fatal segfault happened.
+ * This can help identify faulty hardware.
+ */
+ printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
+ topology_core_id(cpu), topology_physical_package_id(cpu));
+
+
printk(KERN_CONT "\n");
+
+ show_opcodes(regs, loglvl);
}
static void
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, int si_code)
+ unsigned long address, u32 pkey, int si_code)
{
struct task_struct *tsk = current;
- /* User mode accesses just cause a SIGSEGV */
- if (error_code & PF_USER) {
- /*
- * It's possible to have interrupts off here:
- */
- local_irq_enable();
-
- /*
- * Valid to do another page fault here because this one came
- * from user space:
- */
- if (is_prefetch(regs, error_code, address))
- return;
+ if (!user_mode(regs)) {
+ kernelmode_fixup_or_oops(regs, error_code, address,
+ SIGSEGV, si_code, pkey);
+ return;
+ }
- if (is_errata100(regs, address))
- return;
+ if (!(error_code & X86_PF_USER)) {
+ /* Implicit user access to kernel memory -- just oops */
+ page_fault_oops(regs, error_code, address);
+ return;
+ }
-#ifdef CONFIG_X86_64
- /*
- * Instruction fetch faults in the vsyscall page might need
- * emulation.
- */
- if (unlikely((error_code & PF_INSTR) &&
- ((address & ~0xfff) == VSYSCALL_START))) {
- if (emulate_vsyscall(regs, address))
- return;
- }
-#endif
- /* Kernel addresses are always protection faults: */
- if (address >= TASK_SIZE)
- error_code |= PF_PROT;
+ /*
+ * User mode accesses just cause a SIGSEGV.
+ * It's possible to have interrupts off here:
+ */
+ local_irq_enable();
- if (likely(show_unhandled_signals))
- show_signal_msg(regs, error_code, address, tsk);
+ /*
+ * Valid to do another page fault here because this one came
+ * from user space:
+ */
+ if (is_prefetch(regs, error_code, address))
+ return;
- tsk->thread.cr2 = address;
- tsk->thread.error_code = error_code;
- tsk->thread.trap_nr = X86_TRAP_PF;
+ if (is_errata100(regs, address))
+ return;
- force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
+ sanitize_error_code(address, &error_code);
+ if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
return;
- }
- if (is_f00f_bug(regs, address))
- return;
+ if (likely(show_unhandled_signals))
+ show_signal_msg(regs, error_code, address, tsk);
+
+ set_signal_archinfo(address, error_code);
+
+ if (si_code == SEGV_PKUERR)
+ force_sig_pkuerr((void __user *)address, pkey);
+ else
+ force_sig_fault(SIGSEGV, si_code, (void __user *)address);
- no_context(regs, error_code, address, SIGSEGV, si_code);
+ local_irq_disable();
}
static noinline void
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
unsigned long address)
{
- __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
+ __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
}
static void
__bad_area(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, int si_code)
+ unsigned long address, struct mm_struct *mm,
+ struct vm_area_struct *vma, u32 pkey, int si_code)
{
- struct mm_struct *mm = current->mm;
-
/*
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
- up_read(&mm->mmap_sem);
+ if (mm)
+ mmap_read_unlock(mm);
+ else
+ vma_end_read(vma);
- __bad_area_nosemaphore(regs, error_code, address, si_code);
+ __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
}
-static noinline void
-bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
+static inline bool bad_area_access_from_pkeys(unsigned long error_code,
+ struct vm_area_struct *vma)
{
- __bad_area(regs, error_code, address, SEGV_MAPERR);
+ /* This code is always called on the current mm */
+ bool foreign = false;
+
+ if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
+ return false;
+ if (error_code & X86_PF_PK)
+ return true;
+ /* this checks permission keys on the VMA: */
+ if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
+ (error_code & X86_PF_INSTR), foreign))
+ return true;
+ return false;
}
static noinline void
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
- unsigned long address)
+ unsigned long address, struct mm_struct *mm,
+ struct vm_area_struct *vma)
{
- __bad_area(regs, error_code, address, SEGV_ACCERR);
+ /*
+ * This OSPKE check is not strictly necessary at runtime.
+ * But, doing it this way allows compiler optimizations
+ * if pkeys are compiled out.
+ */
+ if (bad_area_access_from_pkeys(error_code, vma)) {
+ /*
+ * A protection key fault means that the PKRU value did not allow
+ * access to some PTE. Userspace can figure out what PKRU was
+ * from the XSAVE state. This function captures the pkey from
+ * the vma and passes it to userspace so userspace can discover
+ * which protection key was set on the PTE.
+ *
+ * If we get here, we know that the hardware signaled a X86_PF_PK
+ * fault and that there was a VMA once we got in the fault
+ * handler. It does *not* guarantee that the VMA we find here
+ * was the one that we faulted on.
+ *
+ * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
+ * 2. T1 : set PKRU to deny access to pkey=4, touches page
+ * 3. T1 : faults...
+ * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
+ * 5. T1 : enters fault handler, takes mmap_lock, etc...
+ * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
+ * faulted on a pte with its pkey=4.
+ */
+ u32 pkey = vma_pkey(vma);
+
+ __bad_area(regs, error_code, address, mm, vma, pkey, SEGV_PKUERR);
+ } else {
+ __bad_area(regs, error_code, address, mm, vma, 0, SEGV_ACCERR);
+ }
}
static void
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
- unsigned int fault)
+ vm_fault_t fault)
{
- struct task_struct *tsk = current;
- struct mm_struct *mm = tsk->mm;
- int code = BUS_ADRERR;
-
- up_read(&mm->mmap_sem);
-
/* Kernel mode? Handle exceptions or die: */
- if (!(error_code & PF_USER)) {
- no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
+ if (!user_mode(regs)) {
+ kernelmode_fixup_or_oops(regs, error_code, address,
+ SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
return;
}
@@ -827,72 +920,38 @@ do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
if (is_prefetch(regs, error_code, address))
return;
- tsk->thread.cr2 = address;
- tsk->thread.error_code = error_code;
- tsk->thread.trap_nr = X86_TRAP_PF;
+ sanitize_error_code(address, &error_code);
+
+ if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
+ return;
+
+ set_signal_archinfo(address, error_code);
#ifdef CONFIG_MEMORY_FAILURE
if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
- printk(KERN_ERR
+ struct task_struct *tsk = current;
+ unsigned lsb = 0;
+
+ pr_err(
"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
tsk->comm, tsk->pid, address);
- code = BUS_MCEERR_AR;
+ if (fault & VM_FAULT_HWPOISON_LARGE)
+ lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
+ if (fault & VM_FAULT_HWPOISON)
+ lsb = PAGE_SHIFT;
+ force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
+ return;
}
#endif
- force_sig_info_fault(SIGBUS, code, address, tsk, fault);
+ force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
}
-static noinline int
-mm_fault_error(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, unsigned int fault)
+static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
{
- /*
- * Pagefault was interrupted by SIGKILL. We have no reason to
- * continue pagefault.
- */
- if (fatal_signal_pending(current)) {
- if (!(fault & VM_FAULT_RETRY))
- up_read(&current->mm->mmap_sem);
- if (!(error_code & PF_USER))
- no_context(regs, error_code, address, 0, 0);
- return 1;
- }
- if (!(fault & VM_FAULT_ERROR))
+ if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
return 0;
- if (fault & VM_FAULT_OOM) {
- /* Kernel mode? Handle exceptions or die: */
- if (!(error_code & PF_USER)) {
- up_read(&current->mm->mmap_sem);
- no_context(regs, error_code, address,
- SIGSEGV, SEGV_MAPERR);
- return 1;
- }
-
- up_read(&current->mm->mmap_sem);
-
- /*
- * We ran out of memory, call the OOM killer, and return the
- * userspace (which will retry the fault, or kill us if we got
- * oom-killed):
- */
- pagefault_out_of_memory();
- } else {
- if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
- VM_FAULT_HWPOISON_LARGE))
- do_sigbus(regs, error_code, address, fault);
- else
- BUG();
- }
- return 1;
-}
-
-static int spurious_fault_check(unsigned long error_code, pte_t *pte)
-{
- if ((error_code & PF_WRITE) && !pte_write(*pte))
- return 0;
-
- if ((error_code & PF_INSTR) && !pte_exec(*pte))
+ if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
return 0;
return 1;
@@ -907,45 +966,71 @@ static int spurious_fault_check(unsigned long error_code, pte_t *pte)
* cross-processor TLB flush, even if no stale TLB entries exist
* on other processors.
*
+ * Spurious faults may only occur if the TLB contains an entry with
+ * fewer permission than the page table entry. Non-present (P = 0)
+ * and reserved bit (R = 1) faults are never spurious.
+ *
* There are no security implications to leaving a stale TLB when
* increasing the permissions on a page.
+ *
+ * Returns non-zero if a spurious fault was handled, zero otherwise.
+ *
+ * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
+ * (Optional Invalidation).
*/
-static noinline __kprobes int
-spurious_fault(unsigned long error_code, unsigned long address)
+static noinline int
+spurious_kernel_fault(unsigned long error_code, unsigned long address)
{
pgd_t *pgd;
+ p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
int ret;
- /* Reserved-bit violation or user access to kernel space? */
- if (error_code & (PF_USER | PF_RSVD))
+ /*
+ * Only writes to RO or instruction fetches from NX may cause
+ * spurious faults.
+ *
+ * These could be from user or supervisor accesses but the TLB
+ * is only lazily flushed after a kernel mapping protection
+ * change, so user accesses are not expected to cause spurious
+ * faults.
+ */
+ if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
+ error_code != (X86_PF_INSTR | X86_PF_PROT))
return 0;
pgd = init_mm.pgd + pgd_index(address);
if (!pgd_present(*pgd))
return 0;
- pud = pud_offset(pgd, address);
+ p4d = p4d_offset(pgd, address);
+ if (!p4d_present(*p4d))
+ return 0;
+
+ if (p4d_leaf(*p4d))
+ return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
+
+ pud = pud_offset(p4d, address);
if (!pud_present(*pud))
return 0;
- if (pud_large(*pud))
- return spurious_fault_check(error_code, (pte_t *) pud);
+ if (pud_leaf(*pud))
+ return spurious_kernel_fault_check(error_code, (pte_t *) pud);
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return 0;
- if (pmd_large(*pmd))
- return spurious_fault_check(error_code, (pte_t *) pmd);
+ if (pmd_leaf(*pmd))
+ return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
pte = pte_offset_kernel(pmd, address);
if (!pte_present(*pte))
return 0;
- ret = spurious_fault_check(error_code, pte);
+ ret = spurious_kernel_fault_check(error_code, pte);
if (!ret)
return 0;
@@ -953,87 +1038,114 @@ spurious_fault(unsigned long error_code, unsigned long address)
* Make sure we have permissions in PMD.
* If not, then there's a bug in the page tables:
*/
- ret = spurious_fault_check(error_code, (pte_t *) pmd);
+ ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
return ret;
}
+NOKPROBE_SYMBOL(spurious_kernel_fault);
int show_unhandled_signals = 1;
static inline int
access_error(unsigned long error_code, struct vm_area_struct *vma)
{
- if (error_code & PF_WRITE) {
+ /* This is only called for the current mm, so: */
+ bool foreign = false;
+
+ /*
+ * Read or write was blocked by protection keys. This is
+ * always an unconditional error and can never result in
+ * a follow-up action to resolve the fault, like a COW.
+ */
+ if (error_code & X86_PF_PK)
+ return 1;
+
+ /*
+ * SGX hardware blocked the access. This usually happens
+ * when the enclave memory contents have been destroyed, like
+ * after a suspend/resume cycle. In any case, the kernel can't
+ * fix the cause of the fault. Handle the fault as an access
+ * error even in cases where no actual access violation
+ * occurred. This allows userspace to rebuild the enclave in
+ * response to the signal.
+ */
+ if (unlikely(error_code & X86_PF_SGX))
+ return 1;
+
+ /*
+ * Make sure to check the VMA so that we do not perform
+ * faults just to hit a X86_PF_PK as soon as we fill in a
+ * page.
+ */
+ if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
+ (error_code & X86_PF_INSTR), foreign))
+ return 1;
+
+ /*
+ * Shadow stack accesses (PF_SHSTK=1) are only permitted to
+ * shadow stack VMAs. All other accesses result in an error.
+ */
+ if (error_code & X86_PF_SHSTK) {
+ if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
+ return 1;
+ if (unlikely(!(vma->vm_flags & VM_WRITE)))
+ return 1;
+ return 0;
+ }
+
+ if (error_code & X86_PF_WRITE) {
/* write, present and write, not present: */
+ if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
+ return 1;
if (unlikely(!(vma->vm_flags & VM_WRITE)))
return 1;
return 0;
}
/* read, present: */
- if (unlikely(error_code & PF_PROT))
+ if (unlikely(error_code & X86_PF_PROT))
return 1;
/* read, not present: */
- if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
+ if (unlikely(!vma_is_accessible(vma)))
return 1;
return 0;
}
-static int fault_in_kernel_space(unsigned long address)
-{
- return address >= TASK_SIZE_MAX;
-}
-
-static inline bool smap_violation(int error_code, struct pt_regs *regs)
+bool fault_in_kernel_space(unsigned long address)
{
- if (error_code & PF_USER)
- return false;
-
- if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
+ /*
+ * On 64-bit systems, the vsyscall page is at an address above
+ * TASK_SIZE_MAX, but is not considered part of the kernel
+ * address space.
+ */
+ if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
return false;
- return true;
+ return address >= TASK_SIZE_MAX;
}
/*
- * This routine handles page faults. It determines the address,
- * and the problem, and then passes it off to one of the appropriate
- * routines.
+ * Called for all faults where 'address' is part of the kernel address
+ * space. Might get called for faults that originate from *code* that
+ * ran in userspace or the kernel.
*/
-static void __kprobes
-__do_page_fault(struct pt_regs *regs, unsigned long error_code)
+static void
+do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
+ unsigned long address)
{
- struct vm_area_struct *vma;
- struct task_struct *tsk;
- unsigned long address;
- struct mm_struct *mm;
- int fault;
- int write = error_code & PF_WRITE;
- unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
- (write ? FAULT_FLAG_WRITE : 0);
-
- tsk = current;
- mm = tsk->mm;
-
- /* Get the faulting address: */
- address = read_cr2();
-
/*
- * Detect and handle instructions that would cause a page fault for
- * both a tracked kernel page and a userspace page.
+ * Protection keys exceptions only happen on user pages. We
+ * have no user pages in the kernel portion of the address
+ * space, so do not expect them here.
*/
- if (kmemcheck_active(regs))
- kmemcheck_hide(regs);
- prefetchw(&mm->mmap_sem);
-
- if (unlikely(kmmio_fault(regs, address)))
- return;
+ WARN_ON_ONCE(hw_error_code & X86_PF_PK);
+#ifdef CONFIG_X86_32
/*
- * We fault-in kernel-space virtual memory on-demand. The
+ * We can fault-in kernel-space virtual memory on-demand. The
* 'reference' page table is init_mm.pgd.
*
* NOTE! We MUST NOT take any locks for this case. We may
@@ -1041,132 +1153,212 @@ __do_page_fault(struct pt_regs *regs, unsigned long error_code)
* only copy the information from the master page table,
* nothing more.
*
- * This verifies that the fault happens in kernel space
- * (error_code & 4) == 0, and that the fault was not a
- * protection error (error_code & 9) == 0.
+ * Before doing this on-demand faulting, ensure that the
+ * fault is not any of the following:
+ * 1. A fault on a PTE with a reserved bit set.
+ * 2. A fault caused by a user-mode access. (Do not demand-
+ * fault kernel memory due to user-mode accesses).
+ * 3. A fault caused by a page-level protection violation.
+ * (A demand fault would be on a non-present page which
+ * would have X86_PF_PROT==0).
+ *
+ * This is only needed to close a race condition on x86-32 in
+ * the vmalloc mapping/unmapping code. See the comment above
+ * vmalloc_fault() for details. On x86-64 the race does not
+ * exist as the vmalloc mappings don't need to be synchronized
+ * there.
*/
- if (unlikely(fault_in_kernel_space(address))) {
- if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
- if (vmalloc_fault(address) >= 0)
- return;
+ if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
+ if (vmalloc_fault(address) >= 0)
+ return;
+ }
+#endif
- if (kmemcheck_fault(regs, address, error_code))
- return;
- }
+ if (is_f00f_bug(regs, hw_error_code, address))
+ return;
- /* Can handle a stale RO->RW TLB: */
- if (spurious_fault(error_code, address))
- return;
+ /* Was the fault spurious, caused by lazy TLB invalidation? */
+ if (spurious_kernel_fault(hw_error_code, address))
+ return;
- /* kprobes don't want to hook the spurious faults: */
- if (notify_page_fault(regs))
- return;
+ /* kprobes don't want to hook the spurious faults: */
+ if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
+ return;
+
+ /*
+ * Note, despite being a "bad area", there are quite a few
+ * acceptable reasons to get here, such as erratum fixups
+ * and handling kernel code that can fault, like get_user().
+ *
+ * Don't take the mm semaphore here. If we fixup a prefetch
+ * fault we could otherwise deadlock:
+ */
+ bad_area_nosemaphore(regs, hw_error_code, address);
+}
+NOKPROBE_SYMBOL(do_kern_addr_fault);
+
+/*
+ * Handle faults in the user portion of the address space. Nothing in here
+ * should check X86_PF_USER without a specific justification: for almost
+ * all purposes, we should treat a normal kernel access to user memory
+ * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
+ * The one exception is AC flag handling, which is, per the x86
+ * architecture, special for WRUSS.
+ */
+static inline
+void do_user_addr_fault(struct pt_regs *regs,
+ unsigned long error_code,
+ unsigned long address)
+{
+ struct vm_area_struct *vma;
+ struct task_struct *tsk;
+ struct mm_struct *mm;
+ vm_fault_t fault;
+ unsigned int flags = FAULT_FLAG_DEFAULT;
+
+ tsk = current;
+ mm = tsk->mm;
+
+ if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
/*
- * Don't take the mm semaphore here. If we fixup a prefetch
- * fault we could otherwise deadlock:
+ * Whoops, this is kernel mode code trying to execute from
+ * user memory. Unless this is AMD erratum #93, which
+ * corrupts RIP such that it looks like a user address,
+ * this is unrecoverable. Don't even try to look up the
+ * VMA or look for extable entries.
*/
- bad_area_nosemaphore(regs, error_code, address);
+ if (is_errata93(regs, address))
+ return;
+ page_fault_oops(regs, error_code, address);
return;
}
/* kprobes don't want to hook the spurious faults: */
- if (unlikely(notify_page_fault(regs)))
+ if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
return;
+
/*
- * It's safe to allow irq's after cr2 has been saved and the
- * vmalloc fault has been handled.
- *
- * User-mode registers count as a user access even for any
- * potential system fault or CPU buglet:
+ * Reserved bits are never expected to be set on
+ * entries in the user portion of the page tables.
*/
- if (user_mode_vm(regs)) {
- local_irq_enable();
- error_code |= PF_USER;
- } else {
- if (regs->flags & X86_EFLAGS_IF)
- local_irq_enable();
- }
-
- if (unlikely(error_code & PF_RSVD))
+ if (unlikely(error_code & X86_PF_RSVD))
pgtable_bad(regs, error_code, address);
- if (static_cpu_has(X86_FEATURE_SMAP)) {
- if (unlikely(smap_violation(error_code, regs))) {
- bad_area_nosemaphore(regs, error_code, address);
- return;
- }
+ /*
+ * If SMAP is on, check for invalid kernel (supervisor) access to user
+ * pages in the user address space. The odd case here is WRUSS,
+ * which, according to the preliminary documentation, does not respect
+ * SMAP and will have the USER bit set so, in all cases, SMAP
+ * enforcement appears to be consistent with the USER bit.
+ */
+ if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
+ !(error_code & X86_PF_USER) &&
+ !(regs->flags & X86_EFLAGS_AC))) {
+ /*
+ * No extable entry here. This was a kernel access to an
+ * invalid pointer. get_kernel_nofault() will not get here.
+ */
+ page_fault_oops(regs, error_code, address);
+ return;
}
- perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
-
/*
* If we're in an interrupt, have no user context or are running
- * in an atomic region then we must not take the fault:
+ * in a region with pagefaults disabled then we must not take the fault
*/
- if (unlikely(in_atomic() || !mm)) {
+ if (unlikely(faulthandler_disabled() || !mm)) {
+ bad_area_nosemaphore(regs, error_code, address);
+ return;
+ }
+
+ /* Legacy check - remove this after verifying that it doesn't trigger */
+ if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) {
bad_area_nosemaphore(regs, error_code, address);
return;
}
+ local_irq_enable();
+
+ perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
+
+ /*
+ * Read-only permissions can not be expressed in shadow stack PTEs.
+ * Treat all shadow stack accesses as WRITE faults. This ensures
+ * that the MM will prepare everything (e.g., break COW) such that
+ * maybe_mkwrite() can create a proper shadow stack PTE.
+ */
+ if (error_code & X86_PF_SHSTK)
+ flags |= FAULT_FLAG_WRITE;
+ if (error_code & X86_PF_WRITE)
+ flags |= FAULT_FLAG_WRITE;
+ if (error_code & X86_PF_INSTR)
+ flags |= FAULT_FLAG_INSTRUCTION;
+
+ /*
+ * We set FAULT_FLAG_USER based on the register state, not
+ * based on X86_PF_USER. User space accesses that cause
+ * system page faults are still user accesses.
+ */
+ if (user_mode(regs))
+ flags |= FAULT_FLAG_USER;
+
+#ifdef CONFIG_X86_64
/*
- * When running in the kernel we expect faults to occur only to
- * addresses in user space. All other faults represent errors in
- * the kernel and should generate an OOPS. Unfortunately, in the
- * case of an erroneous fault occurring in a code path which already
- * holds mmap_sem we will deadlock attempting to validate the fault
- * against the address space. Luckily the kernel only validly
- * references user space from well defined areas of code, which are
- * listed in the exceptions table.
+ * Faults in the vsyscall page might need emulation. The
+ * vsyscall page is at a high address (>PAGE_OFFSET), but is
+ * considered to be part of the user address space.
*
- * As the vast majority of faults will be valid we will only perform
- * the source reference check when there is a possibility of a
- * deadlock. Attempt to lock the address space, if we cannot we then
- * validate the source. If this is invalid we can skip the address
- * space check, thus avoiding the deadlock:
+ * The vsyscall page does not have a "real" VMA, so do this
+ * emulation before we go searching for VMAs.
+ *
+ * PKRU never rejects instruction fetches, so we don't need
+ * to consider the PF_PK bit.
*/
- if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
- if ((error_code & PF_USER) == 0 &&
- !search_exception_tables(regs->ip)) {
- bad_area_nosemaphore(regs, error_code, address);
+ if (is_vsyscall_vaddr(address)) {
+ if (emulate_vsyscall(error_code, regs, address))
return;
- }
-retry:
- down_read(&mm->mmap_sem);
- } else {
- /*
- * The above down_read_trylock() might have succeeded in
- * which case we'll have missed the might_sleep() from
- * down_read():
- */
- might_sleep();
}
+#endif
- vma = find_vma(mm, address);
- if (unlikely(!vma)) {
- bad_area(regs, error_code, address);
+ if (!(flags & FAULT_FLAG_USER))
+ goto lock_mmap;
+
+ vma = lock_vma_under_rcu(mm, address);
+ if (!vma)
+ goto lock_mmap;
+
+ if (unlikely(access_error(error_code, vma))) {
+ bad_area_access_error(regs, error_code, address, NULL, vma);
+ count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
return;
}
- if (likely(vma->vm_start <= address))
- goto good_area;
- if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
- bad_area(regs, error_code, address);
- return;
+ fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
+ if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
+ vma_end_read(vma);
+
+ if (!(fault & VM_FAULT_RETRY)) {
+ count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
+ goto done;
}
- if (error_code & PF_USER) {
- /*
- * Accessing the stack below %sp is always a bug.
- * The large cushion allows instructions like enter
- * and pusha to work. ("enter $65535, $31" pushes
- * 32 pointers and then decrements %sp by 65535.)
- */
- if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
- bad_area(regs, error_code, address);
- return;
- }
+ count_vm_vma_lock_event(VMA_LOCK_RETRY);
+ if (fault & VM_FAULT_MAJOR)
+ flags |= FAULT_FLAG_TRIED;
+
+ /* Quick path to respond to signals */
+ if (fault_signal_pending(fault, regs)) {
+ if (!user_mode(regs))
+ kernelmode_fixup_or_oops(regs, error_code, address,
+ SIGBUS, BUS_ADRERR,
+ ARCH_DEFAULT_PKEY);
+ return;
}
- if (unlikely(expand_stack(vma, address))) {
- bad_area(regs, error_code, address);
+lock_mmap:
+
+retry:
+ vma = lock_mm_and_find_vma(mm, address, regs);
+ if (unlikely(!vma)) {
+ bad_area_nosemaphore(regs, error_code, address);
return;
}
@@ -1174,59 +1366,171 @@ retry:
* Ok, we have a good vm_area for this memory access, so
* we can handle it..
*/
-good_area:
if (unlikely(access_error(error_code, vma))) {
- bad_area_access_error(regs, error_code, address);
+ bad_area_access_error(regs, error_code, address, mm, vma);
return;
}
/*
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
- * the fault:
+ * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
+ * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
+ *
+ * Note that handle_userfault() may also release and reacquire mmap_lock
+ * (and not return with VM_FAULT_RETRY), when returning to userland to
+ * repeat the page fault later with a VM_FAULT_NOPAGE retval
+ * (potentially after handling any pending signal during the return to
+ * userland). The return to userland is identified whenever
+ * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
*/
- fault = handle_mm_fault(mm, vma, address, flags);
+ fault = handle_mm_fault(vma, address, flags, regs);
- if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
- if (mm_fault_error(regs, error_code, address, fault))
- return;
+ if (fault_signal_pending(fault, regs)) {
+ /*
+ * Quick path to respond to signals. The core mm code
+ * has unlocked the mm for us if we get here.
+ */
+ if (!user_mode(regs))
+ kernelmode_fixup_or_oops(regs, error_code, address,
+ SIGBUS, BUS_ADRERR,
+ ARCH_DEFAULT_PKEY);
+ return;
}
+ /* The fault is fully completed (including releasing mmap lock) */
+ if (fault & VM_FAULT_COMPLETED)
+ return;
+
/*
- * Major/minor page fault accounting is only done on the
- * initial attempt. If we go through a retry, it is extremely
- * likely that the page will be found in page cache at that point.
+ * If we need to retry the mmap_lock has already been released,
+ * and if there is a fatal signal pending there is no guarantee
+ * that we made any progress. Handle this case first.
*/
- if (flags & FAULT_FLAG_ALLOW_RETRY) {
- if (fault & VM_FAULT_MAJOR) {
- tsk->maj_flt++;
- perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
- regs, address);
- } else {
- tsk->min_flt++;
- perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
- regs, address);
- }
- if (fault & VM_FAULT_RETRY) {
- /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
- * of starvation. */
- flags &= ~FAULT_FLAG_ALLOW_RETRY;
- flags |= FAULT_FLAG_TRIED;
- goto retry;
+ if (unlikely(fault & VM_FAULT_RETRY)) {
+ flags |= FAULT_FLAG_TRIED;
+ goto retry;
+ }
+
+ mmap_read_unlock(mm);
+done:
+ if (likely(!(fault & VM_FAULT_ERROR)))
+ return;
+
+ if (fatal_signal_pending(current) && !user_mode(regs)) {
+ kernelmode_fixup_or_oops(regs, error_code, address,
+ 0, 0, ARCH_DEFAULT_PKEY);
+ return;
+ }
+
+ if (fault & VM_FAULT_OOM) {
+ /* Kernel mode? Handle exceptions or die: */
+ if (!user_mode(regs)) {
+ kernelmode_fixup_or_oops(regs, error_code, address,
+ SIGSEGV, SEGV_MAPERR,
+ ARCH_DEFAULT_PKEY);
+ return;
}
+
+ /*
+ * We ran out of memory, call the OOM killer, and return the
+ * userspace (which will retry the fault, or kill us if we got
+ * oom-killed):
+ */
+ pagefault_out_of_memory();
+ } else {
+ if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
+ VM_FAULT_HWPOISON_LARGE))
+ do_sigbus(regs, error_code, address, fault);
+ else if (fault & VM_FAULT_SIGSEGV)
+ bad_area_nosemaphore(regs, error_code, address);
+ else
+ BUG();
}
+}
+NOKPROBE_SYMBOL(do_user_addr_fault);
+
+static __always_inline void
+trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address)
+{
+ if (user_mode(regs))
+ trace_page_fault_user(address, regs, error_code);
+ else
+ trace_page_fault_kernel(address, regs, error_code);
+}
- check_v8086_mode(regs, address, tsk);
+static __always_inline void
+handle_page_fault(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address)
+{
+ trace_page_fault_entries(regs, error_code, address);
+
+ if (unlikely(kmmio_fault(regs, address)))
+ return;
- up_read(&mm->mmap_sem);
+ /* Was the fault on kernel-controlled part of the address space? */
+ if (unlikely(fault_in_kernel_space(address))) {
+ do_kern_addr_fault(regs, error_code, address);
+ } else {
+ do_user_addr_fault(regs, error_code, address);
+ /*
+ * User address page fault handling might have reenabled
+ * interrupts. Fixing up all potential exit points of
+ * do_user_addr_fault() and its leaf functions is just not
+ * doable w/o creating an unholy mess or turning the code
+ * upside down.
+ */
+ local_irq_disable();
+ }
}
-dotraplinkage void __kprobes
-do_page_fault(struct pt_regs *regs, unsigned long error_code)
+DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
{
- enum ctx_state prev_state;
+ irqentry_state_t state;
+ unsigned long address;
+
+ address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
+
+ /*
+ * KVM uses #PF vector to deliver 'page not present' events to guests
+ * (asynchronous page fault mechanism). The event happens when a
+ * userspace task is trying to access some valid (from guest's point of
+ * view) memory which is not currently mapped by the host (e.g. the
+ * memory is swapped out). Note, the corresponding "page ready" event
+ * which is injected when the memory becomes available, is delivered via
+ * an interrupt mechanism and not a #PF exception
+ * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
+ *
+ * We are relying on the interrupted context being sane (valid RSP,
+ * relevant locks not held, etc.), which is fine as long as the
+ * interrupted context had IF=1. We are also relying on the KVM
+ * async pf type field and CR2 being read consistently instead of
+ * getting values from real and async page faults mixed up.
+ *
+ * Fingers crossed.
+ *
+ * The async #PF handling code takes care of idtentry handling
+ * itself.
+ */
+ if (kvm_handle_async_pf(regs, (u32)address))
+ return;
+
+ /*
+ * Entry handling for valid #PF from kernel mode is slightly
+ * different: RCU is already watching and ct_irq_enter() must not
+ * be invoked because a kernel fault on a user space address might
+ * sleep.
+ *
+ * In case the fault hit a RCU idle region the conditional entry
+ * code reenabled RCU to avoid subsequent wreckage which helps
+ * debuggability.
+ */
+ state = irqentry_enter(regs);
+
+ instrumentation_begin();
+ handle_page_fault(regs, error_code, address);
+ instrumentation_end();
- prev_state = exception_enter();
- __do_page_fault(regs, error_code);
- exception_exit(prev_state);
+ irqentry_exit(regs, state);
}