diff options
Diffstat (limited to 'arch/x86/mm')
68 files changed, 13871 insertions, 9019 deletions
diff --git a/arch/x86/mm/Makefile b/arch/x86/mm/Makefile index 23d8e5fecf76..5b9908f13dcf 100644 --- a/arch/x86/mm/Makefile +++ b/arch/x86/mm/Makefile @@ -1,30 +1,59 @@ -obj-y := init.o init_$(BITS).o fault.o ioremap.o extable.o pageattr.o mmap.o \ - pat.o pgtable.o physaddr.o gup.o setup_nx.o +# SPDX-License-Identifier: GPL-2.0 +# Kernel does not boot with instrumentation of tlb.c and mem_encrypt*.c +KCOV_INSTRUMENT_tlb.o := n +KCOV_INSTRUMENT_mem_encrypt.o := n +KCOV_INSTRUMENT_mem_encrypt_amd.o := n +KCOV_INSTRUMENT_pgprot.o := n + +KASAN_SANITIZE_mem_encrypt.o := n +KASAN_SANITIZE_mem_encrypt_amd.o := n +KASAN_SANITIZE_pgprot.o := n + +# Disable KCSAN entirely, because otherwise we get warnings that some functions +# reference __initdata sections. +KCSAN_SANITIZE := n +# Avoid recursion by not calling KMSAN hooks for CEA code. +KMSAN_SANITIZE_cpu_entry_area.o := n + +ifdef CONFIG_FUNCTION_TRACER +CFLAGS_REMOVE_mem_encrypt.o = -pg +CFLAGS_REMOVE_mem_encrypt_amd.o = -pg +CFLAGS_REMOVE_pgprot.o = -pg +endif + +obj-y := init.o init_$(BITS).o fault.o ioremap.o extable.o mmap.o \ + pgtable.o physaddr.o tlb.o cpu_entry_area.o maccess.o pgprot.o + +obj-y += pat/ # Make sure __phys_addr has no stackprotector -nostackp := $(call cc-option, -fno-stack-protector) -CFLAGS_physaddr.o := $(nostackp) -CFLAGS_setup_nx.o := $(nostackp) - -obj-$(CONFIG_X86_PAT) += pat_rbtree.o -obj-$(CONFIG_SMP) += tlb.o +CFLAGS_physaddr.o := -fno-stack-protector obj-$(CONFIG_X86_32) += pgtable_32.o iomap_32.o obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o -obj-$(CONFIG_X86_PTDUMP) += dump_pagetables.o +obj-$(CONFIG_PTDUMP) += dump_pagetables.o +obj-$(CONFIG_PTDUMP_DEBUGFS) += debug_pagetables.o -obj-$(CONFIG_HIGHMEM) += highmem_32.o +KASAN_SANITIZE_kasan_init_$(BITS).o := n +obj-$(CONFIG_KASAN) += kasan_init_$(BITS).o -obj-$(CONFIG_KMEMCHECK) += kmemcheck/ +KMSAN_SANITIZE_kmsan_shadow.o := n +obj-$(CONFIG_KMSAN) += kmsan_shadow.o obj-$(CONFIG_MMIOTRACE) += mmiotrace.o mmiotrace-y := kmmio.o pf_in.o mmio-mod.o obj-$(CONFIG_MMIOTRACE_TEST) += testmmiotrace.o -obj-$(CONFIG_NUMA) += numa.o numa_$(BITS).o +obj-$(CONFIG_NUMA) += numa.o obj-$(CONFIG_AMD_NUMA) += amdtopology.o obj-$(CONFIG_ACPI_NUMA) += srat.o -obj-$(CONFIG_NUMA_EMU) += numa_emulation.o -obj-$(CONFIG_MEMTEST) += memtest.o +obj-$(CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) += pkeys.o +obj-$(CONFIG_RANDOMIZE_MEMORY) += kaslr.o +obj-$(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION) += pti.o + +obj-$(CONFIG_X86_MEM_ENCRYPT) += mem_encrypt.o +obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_amd.o + +obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_boot.o diff --git a/arch/x86/mm/amdtopology.c b/arch/x86/mm/amdtopology.c index 2ca15b59fb3f..f980b0eb0105 100644 --- a/arch/x86/mm/amdtopology.c +++ b/arch/x86/mm/amdtopology.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0 /* * AMD NUMA support. * Discover the memory map and associated nodes. @@ -9,10 +10,9 @@ #include <linux/kernel.h> #include <linux/init.h> #include <linux/string.h> -#include <linux/module.h> #include <linux/nodemask.h> #include <linux/memblock.h> -#include <linux/bootmem.h> +#include <linux/numa_memblks.h> #include <asm/io.h> #include <linux/pci_ids.h> @@ -20,12 +20,12 @@ #include <asm/types.h> #include <asm/mmzone.h> #include <asm/proto.h> -#include <asm/e820.h> +#include <asm/e820/api.h> #include <asm/pci-direct.h> #include <asm/numa.h> #include <asm/mpspec.h> #include <asm/apic.h> -#include <asm/amd_nb.h> +#include <asm/amd/nb.h> static unsigned char __initdata nodeids[8]; @@ -53,30 +53,13 @@ static __init int find_northbridge(void) return -ENOENT; } -static __init void early_get_boot_cpu_id(void) -{ - /* - * need to get the APIC ID of the BSP so can use that to - * create apicid_to_node in amd_scan_nodes() - */ -#ifdef CONFIG_X86_MPPARSE - /* - * get boot-time SMP configuration: - */ - if (smp_found_config) - early_get_smp_config(); -#endif -} - int __init amd_numa_init(void) { - u64 start = PFN_PHYS(0); + unsigned int numnodes, cores, apicid; + u64 prevbase, start = PFN_PHYS(0); u64 end = PFN_PHYS(max_pfn); - unsigned numnodes; - u64 prevbase; - int i, j, nb; u32 nodeid, reg; - unsigned int bits, cores, apicid_base; + int i, j, nb; if (!early_pci_allowed()) return -EINVAL; @@ -170,27 +153,22 @@ int __init amd_numa_init(void) node_set(nodeid, numa_nodes_parsed); } - if (!nodes_weight(numa_nodes_parsed)) + if (nodes_empty(numa_nodes_parsed)) return -ENOENT; /* - * We seem to have valid NUMA configuration. Map apicids to nodes - * using the coreid bits from early_identify_cpu. + * We seem to have valid NUMA configuration. Map apicids to nodes + * using the size of the core domain in the APIC space. */ - bits = boot_cpu_data.x86_coreid_bits; - cores = 1 << bits; - apicid_base = 0; - - /* get the APIC ID of the BSP early for systems with apicid lifting */ - early_get_boot_cpu_id(); - if (boot_cpu_physical_apicid > 0) { - pr_info("BSP APIC ID: %02x\n", boot_cpu_physical_apicid); - apicid_base = boot_cpu_physical_apicid; - } + cores = topology_get_domain_size(TOPO_CORE_DOMAIN); - for_each_node_mask(i, numa_nodes_parsed) - for (j = apicid_base; j < cores + apicid_base; j++) - set_apicid_to_node((i << bits) + j, i); + apicid = boot_cpu_physical_apicid; + if (apicid > 0) + pr_info("BSP APIC ID: %02x\n", apicid); + for_each_node_mask(i, numa_nodes_parsed) { + for (j = 0; j < cores; j++, apicid++) + set_apicid_to_node(apicid, i); + } return 0; } diff --git a/arch/x86/mm/cpu_entry_area.c b/arch/x86/mm/cpu_entry_area.c new file mode 100644 index 000000000000..575f863f3c75 --- /dev/null +++ b/arch/x86/mm/cpu_entry_area.c @@ -0,0 +1,279 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include <linux/spinlock.h> +#include <linux/percpu.h> +#include <linux/kallsyms.h> +#include <linux/kcore.h> +#include <linux/pgtable.h> + +#include <asm/cpu_entry_area.h> +#include <asm/fixmap.h> +#include <asm/desc.h> +#include <asm/kasan.h> +#include <asm/setup.h> + +static DEFINE_PER_CPU_PAGE_ALIGNED(struct entry_stack_page, entry_stack_storage); + +#ifdef CONFIG_X86_64 +static DEFINE_PER_CPU_PAGE_ALIGNED(struct exception_stacks, exception_stacks); +DEFINE_PER_CPU(struct cea_exception_stacks*, cea_exception_stacks); + +static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, _cea_offset); + +static __always_inline unsigned int cea_offset(unsigned int cpu) +{ + return per_cpu(_cea_offset, cpu); +} + +static __init void init_cea_offsets(void) +{ + unsigned int max_cea; + unsigned int i, j; + + if (!kaslr_enabled()) { + for_each_possible_cpu(i) + per_cpu(_cea_offset, i) = i; + return; + } + + max_cea = (CPU_ENTRY_AREA_MAP_SIZE - PAGE_SIZE) / CPU_ENTRY_AREA_SIZE; + + /* O(sodding terrible) */ + for_each_possible_cpu(i) { + unsigned int cea; + +again: + cea = get_random_u32_below(max_cea); + + for_each_possible_cpu(j) { + if (cea_offset(j) == cea) + goto again; + + if (i == j) + break; + } + + per_cpu(_cea_offset, i) = cea; + } +} +#else /* !X86_64 */ +DECLARE_PER_CPU_PAGE_ALIGNED(struct doublefault_stack, doublefault_stack); + +static __always_inline unsigned int cea_offset(unsigned int cpu) +{ + return cpu; +} +static inline void init_cea_offsets(void) { } +#endif + +/* Is called from entry code, so must be noinstr */ +noinstr struct cpu_entry_area *get_cpu_entry_area(int cpu) +{ + unsigned long va = CPU_ENTRY_AREA_PER_CPU + cea_offset(cpu) * CPU_ENTRY_AREA_SIZE; + BUILD_BUG_ON(sizeof(struct cpu_entry_area) % PAGE_SIZE != 0); + + return (struct cpu_entry_area *) va; +} +EXPORT_SYMBOL(get_cpu_entry_area); + +void cea_set_pte(void *cea_vaddr, phys_addr_t pa, pgprot_t flags) +{ + unsigned long va = (unsigned long) cea_vaddr; + pte_t pte = pfn_pte(pa >> PAGE_SHIFT, flags); + + /* + * The cpu_entry_area is shared between the user and kernel + * page tables. All of its ptes can safely be global. + * _PAGE_GLOBAL gets reused to help indicate PROT_NONE for + * non-present PTEs, so be careful not to set it in that + * case to avoid confusion. + */ + if (boot_cpu_has(X86_FEATURE_PGE) && + (pgprot_val(flags) & _PAGE_PRESENT)) + pte = pte_set_flags(pte, _PAGE_GLOBAL); + + set_pte_vaddr(va, pte); +} + +static void __init +cea_map_percpu_pages(void *cea_vaddr, void *ptr, int pages, pgprot_t prot) +{ + for ( ; pages; pages--, cea_vaddr+= PAGE_SIZE, ptr += PAGE_SIZE) + cea_set_pte(cea_vaddr, per_cpu_ptr_to_phys(ptr), prot); +} + +static void __init percpu_setup_debug_store(unsigned int cpu) +{ +#ifdef CONFIG_CPU_SUP_INTEL + unsigned int npages; + void *cea; + + if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) + return; + + cea = &get_cpu_entry_area(cpu)->cpu_debug_store; + npages = sizeof(struct debug_store) / PAGE_SIZE; + BUILD_BUG_ON(sizeof(struct debug_store) % PAGE_SIZE != 0); + cea_map_percpu_pages(cea, &per_cpu(cpu_debug_store, cpu), npages, + PAGE_KERNEL); + + cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers; + /* + * Force the population of PMDs for not yet allocated per cpu + * memory like debug store buffers. + */ + npages = sizeof(struct debug_store_buffers) / PAGE_SIZE; + for (; npages; npages--, cea += PAGE_SIZE) + cea_set_pte(cea, 0, PAGE_NONE); +#endif +} + +#ifdef CONFIG_X86_64 + +#define cea_map_stack(name) do { \ + npages = sizeof(estacks->name## _stack) / PAGE_SIZE; \ + cea_map_percpu_pages(cea->estacks.name## _stack, \ + estacks->name## _stack, npages, PAGE_KERNEL); \ + } while (0) + +static void __init percpu_setup_exception_stacks(unsigned int cpu) +{ + struct exception_stacks *estacks = per_cpu_ptr(&exception_stacks, cpu); + struct cpu_entry_area *cea = get_cpu_entry_area(cpu); + unsigned int npages; + + BUILD_BUG_ON(sizeof(exception_stacks) % PAGE_SIZE != 0); + + per_cpu(cea_exception_stacks, cpu) = &cea->estacks; + + /* + * The exceptions stack mappings in the per cpu area are protected + * by guard pages so each stack must be mapped separately. DB2 is + * not mapped; it just exists to catch triple nesting of #DB. + */ + cea_map_stack(DF); + cea_map_stack(NMI); + cea_map_stack(DB); + cea_map_stack(MCE); + + if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) { + if (cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) { + cea_map_stack(VC); + cea_map_stack(VC2); + } + } +} +#else +static void __init percpu_setup_exception_stacks(unsigned int cpu) +{ + struct cpu_entry_area *cea = get_cpu_entry_area(cpu); + + cea_map_percpu_pages(&cea->doublefault_stack, + &per_cpu(doublefault_stack, cpu), 1, PAGE_KERNEL); +} +#endif + +/* Setup the fixmap mappings only once per-processor */ +static void __init setup_cpu_entry_area(unsigned int cpu) +{ + struct cpu_entry_area *cea = get_cpu_entry_area(cpu); +#ifdef CONFIG_X86_64 + /* On 64-bit systems, we use a read-only fixmap GDT and TSS. */ + pgprot_t gdt_prot = PAGE_KERNEL_RO; + pgprot_t tss_prot = PAGE_KERNEL_RO; +#else + /* + * On 32-bit systems, the GDT cannot be read-only because + * our double fault handler uses a task gate, and entering through + * a task gate needs to change an available TSS to busy. If the + * GDT is read-only, that will triple fault. The TSS cannot be + * read-only because the CPU writes to it on task switches. + */ + pgprot_t gdt_prot = PAGE_KERNEL; + pgprot_t tss_prot = PAGE_KERNEL; +#endif + + kasan_populate_shadow_for_vaddr(cea, CPU_ENTRY_AREA_SIZE, + early_cpu_to_node(cpu)); + + cea_set_pte(&cea->gdt, get_cpu_gdt_paddr(cpu), gdt_prot); + + cea_map_percpu_pages(&cea->entry_stack_page, + per_cpu_ptr(&entry_stack_storage, cpu), 1, + PAGE_KERNEL); + + /* + * The Intel SDM says (Volume 3, 7.2.1): + * + * Avoid placing a page boundary in the part of the TSS that the + * processor reads during a task switch (the first 104 bytes). The + * processor may not correctly perform address translations if a + * boundary occurs in this area. During a task switch, the processor + * reads and writes into the first 104 bytes of each TSS (using + * contiguous physical addresses beginning with the physical address + * of the first byte of the TSS). So, after TSS access begins, if + * part of the 104 bytes is not physically contiguous, the processor + * will access incorrect information without generating a page-fault + * exception. + * + * There are also a lot of errata involving the TSS spanning a page + * boundary. Assert that we're not doing that. + */ + BUILD_BUG_ON((offsetof(struct tss_struct, x86_tss) ^ + offsetofend(struct tss_struct, x86_tss)) & PAGE_MASK); + BUILD_BUG_ON(sizeof(struct tss_struct) % PAGE_SIZE != 0); + /* + * VMX changes the host TR limit to 0x67 after a VM exit. This is + * okay, since 0x67 covers the size of struct x86_hw_tss. Make sure + * that this is correct. + */ + BUILD_BUG_ON(offsetof(struct tss_struct, x86_tss) != 0); + BUILD_BUG_ON(sizeof(struct x86_hw_tss) != 0x68); + + cea_map_percpu_pages(&cea->tss, &per_cpu(cpu_tss_rw, cpu), + sizeof(struct tss_struct) / PAGE_SIZE, tss_prot); + +#ifdef CONFIG_X86_32 + per_cpu(cpu_entry_area, cpu) = cea; +#endif + + percpu_setup_exception_stacks(cpu); + + percpu_setup_debug_store(cpu); +} + +static __init void setup_cpu_entry_area_ptes(void) +{ +#ifdef CONFIG_X86_32 + unsigned long start, end; + + /* The +1 is for the readonly IDT: */ + BUILD_BUG_ON((CPU_ENTRY_AREA_PAGES+1)*PAGE_SIZE != CPU_ENTRY_AREA_MAP_SIZE); + BUG_ON(CPU_ENTRY_AREA_BASE & ~PMD_MASK); + + start = CPU_ENTRY_AREA_BASE; + end = start + CPU_ENTRY_AREA_MAP_SIZE; + + /* Careful here: start + PMD_SIZE might wrap around */ + for (; start < end && start >= CPU_ENTRY_AREA_BASE; start += PMD_SIZE) + populate_extra_pte(start); +#endif +} + +void __init setup_cpu_entry_areas(void) +{ + unsigned int cpu; + + init_cea_offsets(); + + setup_cpu_entry_area_ptes(); + + for_each_possible_cpu(cpu) + setup_cpu_entry_area(cpu); + + /* + * This is the last essential update to swapper_pgdir which needs + * to be synchronized to initial_page_table on 32bit. + */ + sync_initial_page_table(); +} diff --git a/arch/x86/mm/debug_pagetables.c b/arch/x86/mm/debug_pagetables.c new file mode 100644 index 000000000000..ae5c213a1cb0 --- /dev/null +++ b/arch/x86/mm/debug_pagetables.c @@ -0,0 +1,75 @@ +// SPDX-License-Identifier: GPL-2.0-only +#include <linux/debugfs.h> +#include <linux/efi.h> +#include <linux/module.h> +#include <linux/seq_file.h> +#include <linux/pgtable.h> + +static int ptdump_show(struct seq_file *m, void *v) +{ + ptdump_walk_pgd_level_debugfs(m, &init_mm, false); + return 0; +} + +DEFINE_SHOW_ATTRIBUTE(ptdump); + +static int ptdump_curknl_show(struct seq_file *m, void *v) +{ + if (current->mm->pgd) + ptdump_walk_pgd_level_debugfs(m, current->mm, false); + return 0; +} + +DEFINE_SHOW_ATTRIBUTE(ptdump_curknl); + +#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION +static int ptdump_curusr_show(struct seq_file *m, void *v) +{ + if (current->mm->pgd) + ptdump_walk_pgd_level_debugfs(m, current->mm, true); + return 0; +} + +DEFINE_SHOW_ATTRIBUTE(ptdump_curusr); +#endif + +#if defined(CONFIG_EFI) && defined(CONFIG_X86_64) +static int ptdump_efi_show(struct seq_file *m, void *v) +{ + if (efi_mm.pgd) + ptdump_walk_pgd_level_debugfs(m, &efi_mm, false); + return 0; +} + +DEFINE_SHOW_ATTRIBUTE(ptdump_efi); +#endif + +static struct dentry *dir; + +static int __init pt_dump_debug_init(void) +{ + dir = debugfs_create_dir("page_tables", NULL); + + debugfs_create_file("kernel", 0400, dir, NULL, &ptdump_fops); + debugfs_create_file("current_kernel", 0400, dir, NULL, + &ptdump_curknl_fops); + +#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION + debugfs_create_file("current_user", 0400, dir, NULL, + &ptdump_curusr_fops); +#endif +#if defined(CONFIG_EFI) && defined(CONFIG_X86_64) + debugfs_create_file("efi", 0400, dir, NULL, &ptdump_efi_fops); +#endif + return 0; +} + +static void __exit pt_dump_debug_exit(void) +{ + debugfs_remove_recursive(dir); +} + +module_init(pt_dump_debug_init); +module_exit(pt_dump_debug_exit); +MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>"); +MODULE_DESCRIPTION("Kernel debugging helper that dumps pagetables"); diff --git a/arch/x86/mm/dump_pagetables.c b/arch/x86/mm/dump_pagetables.c index 0002a3a33081..2afa7a23340e 100644 --- a/arch/x86/mm/dump_pagetables.c +++ b/arch/x86/mm/dump_pagetables.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * Debug helper to dump the current kernel pagetables of the system * so that we can see what the various memory ranges are set to. @@ -5,19 +6,19 @@ * (C) Copyright 2008 Intel Corporation * * Author: Arjan van de Ven <arjan@linux.intel.com> - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; version 2 - * of the License. */ #include <linux/debugfs.h> +#include <linux/kasan.h> #include <linux/mm.h> -#include <linux/module.h> +#include <linux/init.h> +#include <linux/sched.h> #include <linux/seq_file.h> +#include <linux/highmem.h> +#include <linux/pci.h> +#include <linux/ptdump.h> -#include <asm/pgtable.h> +#include <asm/e820/types.h> /* * The dumper groups pagetable entries of the same type into one, and for @@ -25,351 +26,520 @@ * when a "break" in the continuity is found. */ struct pg_state { + struct ptdump_state ptdump; int level; - pgprot_t current_prot; + pgprotval_t current_prot; + pgprotval_t effective_prot; + pgprotval_t prot_levels[5]; unsigned long start_address; - unsigned long current_address; const struct addr_marker *marker; + unsigned long lines; + bool to_dmesg; + bool check_wx; + unsigned long wx_pages; + struct seq_file *seq; }; struct addr_marker { unsigned long start_address; const char *name; + unsigned long max_lines; }; -/* indices for address_markers; keep sync'd w/ address_markers below */ +/* Address space markers hints */ + +#ifdef CONFIG_X86_64 + enum address_markers_idx { USER_SPACE_NR = 0, -#ifdef CONFIG_X86_64 KERNEL_SPACE_NR, +#ifdef CONFIG_MODIFY_LDT_SYSCALL + LDT_NR, +#endif LOW_KERNEL_NR, VMALLOC_START_NR, VMEMMAP_START_NR, +#ifdef CONFIG_KASAN + KASAN_SHADOW_START_NR, + KASAN_SHADOW_END_NR, +#endif + CPU_ENTRY_AREA_NR, +#ifdef CONFIG_X86_ESPFIX64 + ESPFIX_START_NR, +#endif +#ifdef CONFIG_EFI + EFI_END_NR, +#endif HIGH_KERNEL_NR, MODULES_VADDR_NR, MODULES_END_NR, -#else + FIXADDR_START_NR, + END_OF_SPACE_NR, +}; + +static struct addr_marker address_markers[] = { + [USER_SPACE_NR] = { 0, "User Space" }, + [KERNEL_SPACE_NR] = { (1UL << 63), "Kernel Space" }, + [LOW_KERNEL_NR] = { 0UL, "Low Kernel Mapping" }, + [VMALLOC_START_NR] = { 0UL, "vmalloc() Area" }, + [VMEMMAP_START_NR] = { 0UL, "Vmemmap" }, +#ifdef CONFIG_KASAN + /* + * These fields get initialized with the (dynamic) + * KASAN_SHADOW_{START,END} values in pt_dump_init(). + */ + [KASAN_SHADOW_START_NR] = { 0UL, "KASAN shadow" }, + [KASAN_SHADOW_END_NR] = { 0UL, "KASAN shadow end" }, +#endif +#ifdef CONFIG_MODIFY_LDT_SYSCALL + [LDT_NR] = { 0UL, "LDT remap" }, +#endif + [CPU_ENTRY_AREA_NR] = { CPU_ENTRY_AREA_BASE,"CPU entry Area" }, +#ifdef CONFIG_X86_ESPFIX64 + [ESPFIX_START_NR] = { ESPFIX_BASE_ADDR, "ESPfix Area", 16 }, +#endif +#ifdef CONFIG_EFI + [EFI_END_NR] = { EFI_VA_END, "EFI Runtime Services" }, +#endif + [HIGH_KERNEL_NR] = { __START_KERNEL_map, "High Kernel Mapping" }, + [MODULES_VADDR_NR] = { MODULES_VADDR, "Modules" }, + [MODULES_END_NR] = { MODULES_END, "End Modules" }, + [FIXADDR_START_NR] = { FIXADDR_START, "Fixmap Area" }, + [END_OF_SPACE_NR] = { -1, NULL } +}; + +#define INIT_PGD ((pgd_t *) &init_top_pgt) + +#else /* CONFIG_X86_64 */ + +enum address_markers_idx { + USER_SPACE_NR = 0, KERNEL_SPACE_NR, VMALLOC_START_NR, VMALLOC_END_NR, -# ifdef CONFIG_HIGHMEM +#ifdef CONFIG_HIGHMEM PKMAP_BASE_NR, -# endif - FIXADDR_START_NR, #endif +#ifdef CONFIG_MODIFY_LDT_SYSCALL + LDT_NR, +#endif + CPU_ENTRY_AREA_NR, + FIXADDR_START_NR, + END_OF_SPACE_NR, }; -/* Address space markers hints */ static struct addr_marker address_markers[] = { - { 0, "User Space" }, -#ifdef CONFIG_X86_64 - { 0x8000000000000000UL, "Kernel Space" }, - { PAGE_OFFSET, "Low Kernel Mapping" }, - { VMALLOC_START, "vmalloc() Area" }, - { VMEMMAP_START, "Vmemmap" }, - { __START_KERNEL_map, "High Kernel Mapping" }, - { MODULES_VADDR, "Modules" }, - { MODULES_END, "End Modules" }, -#else - { PAGE_OFFSET, "Kernel Mapping" }, - { 0/* VMALLOC_START */, "vmalloc() Area" }, - { 0/*VMALLOC_END*/, "vmalloc() End" }, -# ifdef CONFIG_HIGHMEM - { 0/*PKMAP_BASE*/, "Persisent kmap() Area" }, -# endif - { 0/*FIXADDR_START*/, "Fixmap Area" }, + [USER_SPACE_NR] = { 0, "User Space" }, + [KERNEL_SPACE_NR] = { PAGE_OFFSET, "Kernel Mapping" }, + [VMALLOC_START_NR] = { 0UL, "vmalloc() Area" }, + [VMALLOC_END_NR] = { 0UL, "vmalloc() End" }, +#ifdef CONFIG_HIGHMEM + [PKMAP_BASE_NR] = { 0UL, "Persistent kmap() Area" }, #endif - { -1, NULL } /* End of list */ +#ifdef CONFIG_MODIFY_LDT_SYSCALL + [LDT_NR] = { 0UL, "LDT remap" }, +#endif + [CPU_ENTRY_AREA_NR] = { 0UL, "CPU entry area" }, + [FIXADDR_START_NR] = { 0UL, "Fixmap area" }, + [END_OF_SPACE_NR] = { -1, NULL } }; +#define INIT_PGD (swapper_pg_dir) + +#endif /* !CONFIG_X86_64 */ + /* Multipliers for offsets within the PTEs */ #define PTE_LEVEL_MULT (PAGE_SIZE) #define PMD_LEVEL_MULT (PTRS_PER_PTE * PTE_LEVEL_MULT) #define PUD_LEVEL_MULT (PTRS_PER_PMD * PMD_LEVEL_MULT) -#define PGD_LEVEL_MULT (PTRS_PER_PUD * PUD_LEVEL_MULT) +#define P4D_LEVEL_MULT (PTRS_PER_PUD * PUD_LEVEL_MULT) +#define PGD_LEVEL_MULT (PTRS_PER_P4D * P4D_LEVEL_MULT) + +#define pt_dump_seq_printf(m, to_dmesg, fmt, args...) \ +({ \ + if (to_dmesg) \ + printk(KERN_INFO fmt, ##args); \ + else \ + if (m) \ + seq_printf(m, fmt, ##args); \ +}) + +#define pt_dump_cont_printf(m, to_dmesg, fmt, args...) \ +({ \ + if (to_dmesg) \ + printk(KERN_CONT fmt, ##args); \ + else \ + if (m) \ + seq_printf(m, fmt, ##args); \ +}) /* * Print a readable form of a pgprot_t to the seq_file */ -static void printk_prot(struct seq_file *m, pgprot_t prot, int level) +static void printk_prot(struct seq_file *m, pgprotval_t pr, int level, bool dmsg) { - pgprotval_t pr = pgprot_val(prot); static const char * const level_name[] = - { "cr3", "pgd", "pud", "pmd", "pte" }; + { "pgd", "p4d", "pud", "pmd", "pte" }; - if (!pgprot_val(prot)) { + if (!(pr & _PAGE_PRESENT)) { /* Not present */ - seq_printf(m, " "); + pt_dump_cont_printf(m, dmsg, " "); } else { if (pr & _PAGE_USER) - seq_printf(m, "USR "); + pt_dump_cont_printf(m, dmsg, "USR "); else - seq_printf(m, " "); + pt_dump_cont_printf(m, dmsg, " "); if (pr & _PAGE_RW) - seq_printf(m, "RW "); + pt_dump_cont_printf(m, dmsg, "RW "); else - seq_printf(m, "ro "); + pt_dump_cont_printf(m, dmsg, "ro "); if (pr & _PAGE_PWT) - seq_printf(m, "PWT "); + pt_dump_cont_printf(m, dmsg, "PWT "); else - seq_printf(m, " "); + pt_dump_cont_printf(m, dmsg, " "); if (pr & _PAGE_PCD) - seq_printf(m, "PCD "); + pt_dump_cont_printf(m, dmsg, "PCD "); else - seq_printf(m, " "); - - /* Bit 9 has a different meaning on level 3 vs 4 */ - if (level <= 3) { - if (pr & _PAGE_PSE) - seq_printf(m, "PSE "); - else - seq_printf(m, " "); - } else { - if (pr & _PAGE_PAT) - seq_printf(m, "pat "); - else - seq_printf(m, " "); - } + pt_dump_cont_printf(m, dmsg, " "); + + /* Bit 7 has a different meaning on level 3 vs 4 */ + if (level <= 3 && pr & _PAGE_PSE) + pt_dump_cont_printf(m, dmsg, "PSE "); + else + pt_dump_cont_printf(m, dmsg, " "); + if ((level == 4 && pr & _PAGE_PAT) || + ((level == 3 || level == 2) && pr & _PAGE_PAT_LARGE)) + pt_dump_cont_printf(m, dmsg, "PAT "); + else + pt_dump_cont_printf(m, dmsg, " "); if (pr & _PAGE_GLOBAL) - seq_printf(m, "GLB "); + pt_dump_cont_printf(m, dmsg, "GLB "); else - seq_printf(m, " "); + pt_dump_cont_printf(m, dmsg, " "); if (pr & _PAGE_NX) - seq_printf(m, "NX "); + pt_dump_cont_printf(m, dmsg, "NX "); else - seq_printf(m, "x "); + pt_dump_cont_printf(m, dmsg, "x "); } - seq_printf(m, "%s\n", level_name[level]); + pt_dump_cont_printf(m, dmsg, "%s\n", level_name[level]); } -/* - * On 64 bits, sign-extend the 48 bit address to 64 bit - */ -static unsigned long normalize_addr(unsigned long u) +static void note_wx(struct pg_state *st, unsigned long addr) { -#ifdef CONFIG_X86_64 - return (signed long)(u << 16) >> 16; -#else - return u; + unsigned long npages; + + npages = (addr - st->start_address) / PAGE_SIZE; + +#ifdef CONFIG_PCI_BIOS + /* + * If PCI BIOS is enabled, the PCI BIOS area is forced to WX. + * Inform about it, but avoid the warning. + */ + if (pcibios_enabled && st->start_address >= PAGE_OFFSET + BIOS_BEGIN && + addr <= PAGE_OFFSET + BIOS_END) { + pr_warn_once("x86/mm: PCI BIOS W+X mapping %lu pages\n", npages); + return; + } #endif + /* Account the WX pages */ + st->wx_pages += npages; + WARN_ONCE(__supported_pte_mask & _PAGE_NX, + "x86/mm: Found insecure W+X mapping at address %pS\n", + (void *)st->start_address); +} + +static void effective_prot(struct ptdump_state *pt_st, int level, u64 val) +{ + struct pg_state *st = container_of(pt_st, struct pg_state, ptdump); + pgprotval_t prot = val & PTE_FLAGS_MASK; + pgprotval_t effective; + + if (level > 0) { + pgprotval_t higher_prot = st->prot_levels[level - 1]; + + effective = (higher_prot & prot & (_PAGE_USER | _PAGE_RW)) | + ((higher_prot | prot) & _PAGE_NX); + } else { + effective = prot; + } + + st->prot_levels[level] = effective; +} + +static void effective_prot_pte(struct ptdump_state *st, pte_t pte) +{ + effective_prot(st, 4, pte_val(pte)); +} + +static void effective_prot_pmd(struct ptdump_state *st, pmd_t pmd) +{ + effective_prot(st, 3, pmd_val(pmd)); +} + +static void effective_prot_pud(struct ptdump_state *st, pud_t pud) +{ + effective_prot(st, 2, pud_val(pud)); } +static void effective_prot_p4d(struct ptdump_state *st, p4d_t p4d) +{ + effective_prot(st, 1, p4d_val(p4d)); +} + +static void effective_prot_pgd(struct ptdump_state *st, pgd_t pgd) +{ + effective_prot(st, 0, pgd_val(pgd)); +} + + /* * This function gets called on a break in a continuous series * of PTE entries; the next one is different so we need to * print what we collected so far. */ -static void note_page(struct seq_file *m, struct pg_state *st, - pgprot_t new_prot, int level) +static void note_page(struct ptdump_state *pt_st, unsigned long addr, int level, + u64 val) { - pgprotval_t prot, cur; - static const char units[] = "KMGTPE"; + struct pg_state *st = container_of(pt_st, struct pg_state, ptdump); + pgprotval_t new_prot, new_eff; + pgprotval_t cur, eff; + static const char units[] = "BKMGTPE"; + struct seq_file *m = st->seq; + + new_prot = val & PTE_FLAGS_MASK; + if (!val) + new_eff = 0; + else + new_eff = st->prot_levels[level]; /* * If we have a "break" in the series, we need to flush the state that * we have now. "break" is either changing perms, levels or * address space marker. */ - prot = pgprot_val(new_prot) & PTE_FLAGS_MASK; - cur = pgprot_val(st->current_prot) & PTE_FLAGS_MASK; + cur = st->current_prot; + eff = st->effective_prot; - if (!st->level) { + if (st->level == -1) { /* First entry */ st->current_prot = new_prot; + st->effective_prot = new_eff; st->level = level; st->marker = address_markers; - seq_printf(m, "---[ %s ]---\n", st->marker->name); - } else if (prot != cur || level != st->level || - st->current_address >= st->marker[1].start_address) { + st->lines = 0; + pt_dump_seq_printf(m, st->to_dmesg, "---[ %s ]---\n", + st->marker->name); + } else if (new_prot != cur || new_eff != eff || level != st->level || + addr >= st->marker[1].start_address) { const char *unit = units; unsigned long delta; int width = sizeof(unsigned long) * 2; + if (st->check_wx && (eff & _PAGE_RW) && !(eff & _PAGE_NX)) + note_wx(st, addr); + /* * Now print the actual finished series */ - seq_printf(m, "0x%0*lx-0x%0*lx ", - width, st->start_address, - width, st->current_address); - - delta = (st->current_address - st->start_address) >> 10; - while (!(delta & 1023) && unit[1]) { - delta >>= 10; - unit++; + if (!st->marker->max_lines || + st->lines < st->marker->max_lines) { + pt_dump_seq_printf(m, st->to_dmesg, + "0x%0*lx-0x%0*lx ", + width, st->start_address, + width, addr); + + delta = addr - st->start_address; + while (!(delta & 1023) && unit[1]) { + delta >>= 10; + unit++; + } + pt_dump_cont_printf(m, st->to_dmesg, "%9lu%c ", + delta, *unit); + printk_prot(m, st->current_prot, st->level, + st->to_dmesg); } - seq_printf(m, "%9lu%c ", delta, *unit); - printk_prot(m, st->current_prot, st->level); + st->lines++; /* * We print markers for special areas of address space, * such as the start of vmalloc space etc. * This helps in the interpretation. */ - if (st->current_address >= st->marker[1].start_address) { + if (addr >= st->marker[1].start_address) { + if (st->marker->max_lines && + st->lines > st->marker->max_lines) { + unsigned long nskip = + st->lines - st->marker->max_lines; + pt_dump_seq_printf(m, st->to_dmesg, + "... %lu entr%s skipped ... \n", + nskip, + nskip == 1 ? "y" : "ies"); + } st->marker++; - seq_printf(m, "---[ %s ]---\n", st->marker->name); + st->lines = 0; + pt_dump_seq_printf(m, st->to_dmesg, "---[ %s ]---\n", + st->marker->name); } - st->start_address = st->current_address; + st->start_address = addr; st->current_prot = new_prot; + st->effective_prot = new_eff; st->level = level; } } -static void walk_pte_level(struct seq_file *m, struct pg_state *st, pmd_t addr, - unsigned long P) +static void note_page_pte(struct ptdump_state *pt_st, unsigned long addr, pte_t pte) { - int i; - pte_t *start; - - start = (pte_t *) pmd_page_vaddr(addr); - for (i = 0; i < PTRS_PER_PTE; i++) { - pgprot_t prot = pte_pgprot(*start); - - st->current_address = normalize_addr(P + i * PTE_LEVEL_MULT); - note_page(m, st, prot, 4); - start++; - } + note_page(pt_st, addr, 4, pte_val(pte)); } -#if PTRS_PER_PMD > 1 - -static void walk_pmd_level(struct seq_file *m, struct pg_state *st, pud_t addr, - unsigned long P) +static void note_page_pmd(struct ptdump_state *pt_st, unsigned long addr, pmd_t pmd) { - int i; - pmd_t *start; - - start = (pmd_t *) pud_page_vaddr(addr); - for (i = 0; i < PTRS_PER_PMD; i++) { - st->current_address = normalize_addr(P + i * PMD_LEVEL_MULT); - if (!pmd_none(*start)) { - pgprotval_t prot = pmd_val(*start) & PTE_FLAGS_MASK; - - if (pmd_large(*start) || !pmd_present(*start)) - note_page(m, st, __pgprot(prot), 3); - else - walk_pte_level(m, st, *start, - P + i * PMD_LEVEL_MULT); - } else - note_page(m, st, __pgprot(0), 3); - start++; - } + note_page(pt_st, addr, 3, pmd_val(pmd)); } -#else -#define walk_pmd_level(m,s,a,p) walk_pte_level(m,s,__pmd(pud_val(a)),p) -#define pud_large(a) pmd_large(__pmd(pud_val(a))) -#define pud_none(a) pmd_none(__pmd(pud_val(a))) -#endif - -#if PTRS_PER_PUD > 1 - -static void walk_pud_level(struct seq_file *m, struct pg_state *st, pgd_t addr, - unsigned long P) +static void note_page_pud(struct ptdump_state *pt_st, unsigned long addr, pud_t pud) { - int i; - pud_t *start; + note_page(pt_st, addr, 2, pud_val(pud)); +} - start = (pud_t *) pgd_page_vaddr(addr); +static void note_page_p4d(struct ptdump_state *pt_st, unsigned long addr, p4d_t p4d) +{ + note_page(pt_st, addr, 1, p4d_val(p4d)); +} - for (i = 0; i < PTRS_PER_PUD; i++) { - st->current_address = normalize_addr(P + i * PUD_LEVEL_MULT); - if (!pud_none(*start)) { - pgprotval_t prot = pud_val(*start) & PTE_FLAGS_MASK; +static void note_page_pgd(struct ptdump_state *pt_st, unsigned long addr, pgd_t pgd) +{ + note_page(pt_st, addr, 0, pgd_val(pgd)); +} - if (pud_large(*start) || !pud_present(*start)) - note_page(m, st, __pgprot(prot), 2); - else - walk_pmd_level(m, st, *start, - P + i * PUD_LEVEL_MULT); - } else - note_page(m, st, __pgprot(0), 2); +static void note_page_flush(struct ptdump_state *pt_st) +{ + pte_t pte_zero = {0}; - start++; - } + note_page(pt_st, 0, -1, pte_val(pte_zero)); } -#else -#define walk_pud_level(m,s,a,p) walk_pmd_level(m,s,__pud(pgd_val(a)),p) -#define pgd_large(a) pud_large(__pud(pgd_val(a))) -#define pgd_none(a) pud_none(__pud(pgd_val(a))) -#endif - -static void walk_pgd_level(struct seq_file *m) +bool ptdump_walk_pgd_level_core(struct seq_file *m, + struct mm_struct *mm, pgd_t *pgd, + bool checkwx, bool dmesg) { + const struct ptdump_range ptdump_ranges[] = { #ifdef CONFIG_X86_64 - pgd_t *start = (pgd_t *) &init_level4_pgt; + {0, PTRS_PER_PGD * PGD_LEVEL_MULT / 2}, + {GUARD_HOLE_END_ADDR, ~0UL}, #else - pgd_t *start = swapper_pg_dir; + {0, ~0UL}, #endif - int i; - struct pg_state st; - - memset(&st, 0, sizeof(st)); - - for (i = 0; i < PTRS_PER_PGD; i++) { - st.current_address = normalize_addr(i * PGD_LEVEL_MULT); - if (!pgd_none(*start)) { - pgprotval_t prot = pgd_val(*start) & PTE_FLAGS_MASK; + {0, 0} +}; - if (pgd_large(*start) || !pgd_present(*start)) - note_page(m, &st, __pgprot(prot), 1); - else - walk_pud_level(m, &st, *start, - i * PGD_LEVEL_MULT); - } else - note_page(m, &st, __pgprot(0), 1); + struct pg_state st = { + .ptdump = { + .note_page_pte = note_page_pte, + .note_page_pmd = note_page_pmd, + .note_page_pud = note_page_pud, + .note_page_p4d = note_page_p4d, + .note_page_pgd = note_page_pgd, + .note_page_flush = note_page_flush, + .effective_prot_pte = effective_prot_pte, + .effective_prot_pmd = effective_prot_pmd, + .effective_prot_pud = effective_prot_pud, + .effective_prot_p4d = effective_prot_p4d, + .effective_prot_pgd = effective_prot_pgd, + .range = ptdump_ranges + }, + .level = -1, + .to_dmesg = dmesg, + .check_wx = checkwx, + .seq = m + }; + + ptdump_walk_pgd(&st.ptdump, mm, pgd); + + if (!checkwx) + return true; + if (st.wx_pages) { + pr_info("x86/mm: Checked W+X mappings: FAILED, %lu W+X pages found.\n", + st.wx_pages); + + return false; + } else { + pr_info("x86/mm: Checked W+X mappings: passed, no W+X pages found.\n"); - start++; + return true; } - - /* Flush out the last page */ - st.current_address = normalize_addr(PTRS_PER_PGD*PGD_LEVEL_MULT); - note_page(m, &st, __pgprot(0), 0); } -static int ptdump_show(struct seq_file *m, void *v) +void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm) { - walk_pgd_level(m); - return 0; + ptdump_walk_pgd_level_core(m, mm, mm->pgd, false, true); } -static int ptdump_open(struct inode *inode, struct file *filp) +void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, + bool user) { - return single_open(filp, ptdump_show, NULL); + pgd_t *pgd = mm->pgd; +#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION + if (user && boot_cpu_has(X86_FEATURE_PTI)) + pgd = kernel_to_user_pgdp(pgd); +#endif + ptdump_walk_pgd_level_core(m, mm, pgd, false, false); } -static const struct file_operations ptdump_fops = { - .open = ptdump_open, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, -}; +void ptdump_walk_user_pgd_level_checkwx(void) +{ +#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION + pgd_t *pgd = INIT_PGD; + + if (!(__supported_pte_mask & _PAGE_NX) || + !boot_cpu_has(X86_FEATURE_PTI)) + return; -static int pt_dump_init(void) + pr_info("x86/mm: Checking user space page tables\n"); + pgd = kernel_to_user_pgdp(pgd); + ptdump_walk_pgd_level_core(NULL, &init_mm, pgd, true, false); +#endif +} + +bool ptdump_walk_pgd_level_checkwx(void) { - struct dentry *pe; + if (!(__supported_pte_mask & _PAGE_NX)) + return true; + + return ptdump_walk_pgd_level_core(NULL, &init_mm, INIT_PGD, true, false); +} +static int __init pt_dump_init(void) +{ + /* + * Various markers are not compile-time constants, so assign them + * here. + */ +#ifdef CONFIG_X86_64 + address_markers[LOW_KERNEL_NR].start_address = PAGE_OFFSET; + address_markers[VMALLOC_START_NR].start_address = VMALLOC_START; + address_markers[VMEMMAP_START_NR].start_address = VMEMMAP_START; +#ifdef CONFIG_MODIFY_LDT_SYSCALL + address_markers[LDT_NR].start_address = LDT_BASE_ADDR; +#endif +#ifdef CONFIG_KASAN + address_markers[KASAN_SHADOW_START_NR].start_address = KASAN_SHADOW_START; + address_markers[KASAN_SHADOW_END_NR].start_address = KASAN_SHADOW_END; +#endif +#endif #ifdef CONFIG_X86_32 - /* Not a compile-time constant on x86-32 */ address_markers[VMALLOC_START_NR].start_address = VMALLOC_START; address_markers[VMALLOC_END_NR].start_address = VMALLOC_END; # ifdef CONFIG_HIGHMEM address_markers[PKMAP_BASE_NR].start_address = PKMAP_BASE; # endif address_markers[FIXADDR_START_NR].start_address = FIXADDR_START; + address_markers[CPU_ENTRY_AREA_NR].start_address = CPU_ENTRY_AREA_BASE; +# ifdef CONFIG_MODIFY_LDT_SYSCALL + address_markers[LDT_NR].start_address = LDT_BASE_ADDR; +# endif #endif - - pe = debugfs_create_file("kernel_page_tables", 0600, NULL, NULL, - &ptdump_fops); - if (!pe) - return -ENOMEM; - return 0; } - __initcall(pt_dump_init); -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>"); -MODULE_DESCRIPTION("Kernel debugging helper that dumps pagetables"); diff --git a/arch/x86/mm/extable.c b/arch/x86/mm/extable.c index 903ec1e9c326..2fdc1f1f5adb 100644 --- a/arch/x86/mm/extable.c +++ b/arch/x86/mm/extable.c @@ -1,169 +1,437 @@ -#include <linux/module.h> -#include <linux/spinlock.h> -#include <linux/sort.h> -#include <asm/uaccess.h> +// SPDX-License-Identifier: GPL-2.0-only +#include <linux/extable.h> +#include <linux/uaccess.h> +#include <linux/sched/debug.h> +#include <linux/bitfield.h> +#include <xen/xen.h> -static inline unsigned long -ex_insn_addr(const struct exception_table_entry *x) +#include <asm/fpu/api.h> +#include <asm/fred.h> +#include <asm/sev.h> +#include <asm/traps.h> +#include <asm/kdebug.h> +#include <asm/insn-eval.h> +#include <asm/sgx.h> + +static inline unsigned long *pt_regs_nr(struct pt_regs *regs, int nr) { - return (unsigned long)&x->insn + x->insn; + int reg_offset = pt_regs_offset(regs, nr); + static unsigned long __dummy; + + if (WARN_ON_ONCE(reg_offset < 0)) + return &__dummy; + + return (unsigned long *)((unsigned long)regs + reg_offset); } + static inline unsigned long ex_fixup_addr(const struct exception_table_entry *x) { return (unsigned long)&x->fixup + x->fixup; } -int fixup_exception(struct pt_regs *regs) +static bool ex_handler_default(const struct exception_table_entry *e, + struct pt_regs *regs) { - const struct exception_table_entry *fixup; - unsigned long new_ip; + if (e->data & EX_FLAG_CLEAR_AX) + regs->ax = 0; + if (e->data & EX_FLAG_CLEAR_DX) + regs->dx = 0; -#ifdef CONFIG_PNPBIOS - if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) { - extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp; - extern u32 pnp_bios_is_utter_crap; - pnp_bios_is_utter_crap = 1; - printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n"); - __asm__ volatile( - "movl %0, %%esp\n\t" - "jmp *%1\n\t" - : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip)); - panic("do_trap: can't hit this"); - } -#endif + regs->ip = ex_fixup_addr(e); + return true; +} - fixup = search_exception_tables(regs->ip); - if (fixup) { - new_ip = ex_fixup_addr(fixup); +/* + * This is the *very* rare case where we do a "load_unaligned_zeropad()" + * and it's a page crosser into a non-existent page. + * + * This happens when we optimistically load a pathname a word-at-a-time + * and the name is less than the full word and the next page is not + * mapped. Typically that only happens for CONFIG_DEBUG_PAGEALLOC. + * + * NOTE! The faulting address is always a 'mov mem,reg' type instruction + * of size 'long', and the exception fixup must always point to right + * after the instruction. + */ +static bool ex_handler_zeropad(const struct exception_table_entry *e, + struct pt_regs *regs, + unsigned long fault_addr) +{ + struct insn insn; + const unsigned long mask = sizeof(long) - 1; + unsigned long offset, addr, next_ip, len; + unsigned long *reg; - if (fixup->fixup - fixup->insn >= 0x7ffffff0 - 4) { - /* Special hack for uaccess_err */ - current_thread_info()->uaccess_err = 1; - new_ip -= 0x7ffffff0; - } - regs->ip = new_ip; - return 1; - } + next_ip = ex_fixup_addr(e); + len = next_ip - regs->ip; + if (len > MAX_INSN_SIZE) + return false; - return 0; -} + if (insn_decode(&insn, (void *) regs->ip, len, INSN_MODE_KERN)) + return false; + if (insn.length != len) + return false; -/* Restricted version used during very early boot */ -int __init early_fixup_exception(unsigned long *ip) -{ - const struct exception_table_entry *fixup; - unsigned long new_ip; + if (insn.opcode.bytes[0] != 0x8b) + return false; + if (insn.opnd_bytes != sizeof(long)) + return false; - fixup = search_exception_tables(*ip); - if (fixup) { - new_ip = ex_fixup_addr(fixup); + addr = (unsigned long) insn_get_addr_ref(&insn, regs); + if (addr == ~0ul) + return false; - if (fixup->fixup - fixup->insn >= 0x7ffffff0 - 4) { - /* uaccess handling not supported during early boot */ - return 0; - } + offset = addr & mask; + addr = addr & ~mask; + if (fault_addr != addr + sizeof(long)) + return false; - *ip = new_ip; - return 1; - } + reg = insn_get_modrm_reg_ptr(&insn, regs); + if (!reg) + return false; + + *reg = *(unsigned long *)addr >> (offset * 8); + return ex_handler_default(e, regs); +} + +static bool ex_handler_fault(const struct exception_table_entry *fixup, + struct pt_regs *regs, int trapnr) +{ + regs->ax = trapnr; + return ex_handler_default(fixup, regs); +} - return 0; +static bool ex_handler_sgx(const struct exception_table_entry *fixup, + struct pt_regs *regs, int trapnr) +{ + regs->ax = trapnr | SGX_ENCLS_FAULT_FLAG; + return ex_handler_default(fixup, regs); } /* - * Search one exception table for an entry corresponding to the - * given instruction address, and return the address of the entry, - * or NULL if none is found. - * We use a binary search, and thus we assume that the table is - * already sorted. + * Handler for when we fail to restore a task's FPU state. We should never get + * here because the FPU state of a task using the FPU (struct fpu::fpstate) + * should always be valid. However, past bugs have allowed userspace to set + * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn(). + * These caused XRSTOR to fail when switching to the task, leaking the FPU + * registers of the task previously executing on the CPU. Mitigate this class + * of vulnerability by restoring from the initial state (essentially, zeroing + * out all the FPU registers) if we can't restore from the task's FPU state. */ -const struct exception_table_entry * -search_extable(const struct exception_table_entry *first, - const struct exception_table_entry *last, - unsigned long value) -{ - while (first <= last) { - const struct exception_table_entry *mid; - unsigned long addr; - - mid = ((last - first) >> 1) + first; - addr = ex_insn_addr(mid); - if (addr < value) - first = mid + 1; - else if (addr > value) - last = mid - 1; - else - return mid; - } - return NULL; +static bool ex_handler_fprestore(const struct exception_table_entry *fixup, + struct pt_regs *regs) +{ + WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.", + (void *)instruction_pointer(regs)); + + fpu_reset_from_exception_fixup(); + + return ex_handler_default(fixup, regs); } /* - * The exception table needs to be sorted so that the binary - * search that we use to find entries in it works properly. - * This is used both for the kernel exception table and for - * the exception tables of modules that get loaded. + * On x86-64, we end up being imprecise with 'access_ok()', and allow + * non-canonical user addresses to make the range comparisons simpler, + * and to not have to worry about LAM being enabled. * + * In fact, we allow up to one page of "slop" at the sign boundary, + * which means that we can do access_ok() by just checking the sign + * of the pointer for the common case of having a small access size. */ -static int cmp_ex(const void *a, const void *b) +static bool gp_fault_address_ok(unsigned long fault_address) +{ +#ifdef CONFIG_X86_64 + /* Is it in the "user space" part of the non-canonical space? */ + if (valid_user_address(fault_address)) + return true; + + /* .. or just above it? */ + fault_address -= PAGE_SIZE; + if (valid_user_address(fault_address)) + return true; +#endif + return false; +} + +static bool ex_handler_uaccess(const struct exception_table_entry *fixup, + struct pt_regs *regs, int trapnr, + unsigned long fault_address) +{ + WARN_ONCE(trapnr == X86_TRAP_GP && !gp_fault_address_ok(fault_address), + "General protection fault in user access. Non-canonical address?"); + return ex_handler_default(fixup, regs); +} + +static bool ex_handler_msr(const struct exception_table_entry *fixup, + struct pt_regs *regs, bool wrmsr, bool safe, int reg) +{ + if (__ONCE_LITE_IF(!safe && wrmsr)) { + pr_warn("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", + (unsigned int)regs->cx, (unsigned int)regs->dx, + (unsigned int)regs->ax, regs->ip, (void *)regs->ip); + show_stack_regs(regs); + } + + if (__ONCE_LITE_IF(!safe && !wrmsr)) { + pr_warn("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", + (unsigned int)regs->cx, regs->ip, (void *)regs->ip); + show_stack_regs(regs); + } + + if (!wrmsr) { + /* Pretend that the read succeeded and returned 0. */ + regs->ax = 0; + regs->dx = 0; + } + + if (safe) + *pt_regs_nr(regs, reg) = -EIO; + + return ex_handler_default(fixup, regs); +} + +static bool ex_handler_clear_fs(const struct exception_table_entry *fixup, + struct pt_regs *regs) +{ + if (static_cpu_has(X86_BUG_NULL_SEG)) + asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS)); + asm volatile ("mov %0, %%fs" : : "rm" (0)); + return ex_handler_default(fixup, regs); +} + +static bool ex_handler_imm_reg(const struct exception_table_entry *fixup, + struct pt_regs *regs, int reg, int imm) +{ + *pt_regs_nr(regs, reg) = (long)imm; + return ex_handler_default(fixup, regs); +} + +static bool ex_handler_ucopy_len(const struct exception_table_entry *fixup, + struct pt_regs *regs, int trapnr, + unsigned long fault_address, + int reg, int imm) +{ + regs->cx = imm * regs->cx + *pt_regs_nr(regs, reg); + return ex_handler_uaccess(fixup, regs, trapnr, fault_address); +} + +#ifdef CONFIG_X86_FRED +static bool ex_handler_eretu(const struct exception_table_entry *fixup, + struct pt_regs *regs, unsigned long error_code) { - const struct exception_table_entry *x = a, *y = b; + struct pt_regs *uregs = (struct pt_regs *)(regs->sp - offsetof(struct pt_regs, orig_ax)); + unsigned short ss = uregs->ss; + unsigned short cs = uregs->cs; + + /* + * Move the NMI bit from the invalid stack frame, which caused ERETU + * to fault, to the fault handler's stack frame, thus to unblock NMI + * with the fault handler's ERETS instruction ASAP if NMI is blocked. + */ + regs->fred_ss.nmi = uregs->fred_ss.nmi; /* - * This value will always end up fittin in an int, because on - * both i386 and x86-64 the kernel symbol-reachable address - * space is < 2 GiB. + * Sync event information to uregs, i.e., the ERETU return frame, but + * is it safe to write to the ERETU return frame which is just above + * current event stack frame? * - * This compare is only valid after normalization. + * The RSP used by FRED to push a stack frame is not the value in %rsp, + * it is calculated from %rsp with the following 2 steps: + * 1) RSP = %rsp - (IA32_FRED_CONFIG & 0x1c0) // Reserve N*64 bytes + * 2) RSP = RSP & ~0x3f // Align to a 64-byte cache line + * when an event delivery doesn't trigger a stack level change. + * + * Here is an example with N*64 (N=1) bytes reserved: + * + * 64-byte cache line ==> ______________ + * |___Reserved___| + * |__Event_data__| + * |_____SS_______| + * |_____RSP______| + * |_____FLAGS____| + * |_____CS_______| + * |_____IP_______| + * 64-byte cache line ==> |__Error_code__| <== ERETU return frame + * |______________| + * |______________| + * |______________| + * |______________| + * |______________| + * |______________| + * |______________| + * 64-byte cache line ==> |______________| <== RSP after step 1) and 2) + * |___Reserved___| + * |__Event_data__| + * |_____SS_______| + * |_____RSP______| + * |_____FLAGS____| + * |_____CS_______| + * |_____IP_______| + * 64-byte cache line ==> |__Error_code__| <== ERETS return frame + * + * Thus a new FRED stack frame will always be pushed below a previous + * FRED stack frame ((N*64) bytes may be reserved between), and it is + * safe to write to a previous FRED stack frame as they never overlap. */ - return x->insn - y->insn; + fred_info(uregs)->edata = fred_event_data(regs); + uregs->ssx = regs->ssx; + uregs->fred_ss.ss = ss; + /* The NMI bit was moved away above */ + uregs->fred_ss.nmi = 0; + uregs->csx = regs->csx; + uregs->fred_cs.sl = 0; + uregs->fred_cs.wfe = 0; + uregs->cs = cs; + uregs->orig_ax = error_code; + + return ex_handler_default(fixup, regs); +} +#endif + +int ex_get_fixup_type(unsigned long ip) +{ + const struct exception_table_entry *e = search_exception_tables(ip); + + return e ? FIELD_GET(EX_DATA_TYPE_MASK, e->data) : EX_TYPE_NONE; } -void sort_extable(struct exception_table_entry *start, - struct exception_table_entry *finish) +int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code, + unsigned long fault_addr) { - struct exception_table_entry *p; - int i; + const struct exception_table_entry *e; + int type, reg, imm; - /* Convert all entries to being relative to the start of the section */ - i = 0; - for (p = start; p < finish; p++) { - p->insn += i; - i += 4; - p->fixup += i; - i += 4; +#ifdef CONFIG_PNPBIOS + if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) { + extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp; + extern u32 pnp_bios_is_utter_crap; + pnp_bios_is_utter_crap = 1; + printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n"); + __asm__ volatile( + "movl %0, %%esp\n\t" + "jmp *%1\n\t" + : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip)); + panic("do_trap: can't hit this"); } +#endif - sort(start, finish - start, sizeof(struct exception_table_entry), - cmp_ex, NULL); + e = search_exception_tables(regs->ip); + if (!e) + return 0; - /* Denormalize all entries */ - i = 0; - for (p = start; p < finish; p++) { - p->insn -= i; - i += 4; - p->fixup -= i; - i += 4; + type = FIELD_GET(EX_DATA_TYPE_MASK, e->data); + reg = FIELD_GET(EX_DATA_REG_MASK, e->data); + imm = FIELD_GET(EX_DATA_IMM_MASK, e->data); + + switch (type) { + case EX_TYPE_DEFAULT: + case EX_TYPE_DEFAULT_MCE_SAFE: + return ex_handler_default(e, regs); + case EX_TYPE_FAULT: + case EX_TYPE_FAULT_MCE_SAFE: + return ex_handler_fault(e, regs, trapnr); + case EX_TYPE_UACCESS: + return ex_handler_uaccess(e, regs, trapnr, fault_addr); + case EX_TYPE_CLEAR_FS: + return ex_handler_clear_fs(e, regs); + case EX_TYPE_FPU_RESTORE: + return ex_handler_fprestore(e, regs); + case EX_TYPE_BPF: + return ex_handler_bpf(e, regs); + case EX_TYPE_WRMSR: + return ex_handler_msr(e, regs, true, false, reg); + case EX_TYPE_RDMSR: + return ex_handler_msr(e, regs, false, false, reg); + case EX_TYPE_WRMSR_SAFE: + return ex_handler_msr(e, regs, true, true, reg); + case EX_TYPE_RDMSR_SAFE: + return ex_handler_msr(e, regs, false, true, reg); + case EX_TYPE_WRMSR_IN_MCE: + ex_handler_msr_mce(regs, true); + break; + case EX_TYPE_RDMSR_IN_MCE: + ex_handler_msr_mce(regs, false); + break; + case EX_TYPE_POP_REG: + regs->sp += sizeof(long); + fallthrough; + case EX_TYPE_IMM_REG: + return ex_handler_imm_reg(e, regs, reg, imm); + case EX_TYPE_FAULT_SGX: + return ex_handler_sgx(e, regs, trapnr); + case EX_TYPE_UCOPY_LEN: + return ex_handler_ucopy_len(e, regs, trapnr, fault_addr, reg, imm); + case EX_TYPE_ZEROPAD: + return ex_handler_zeropad(e, regs, fault_addr); +#ifdef CONFIG_X86_FRED + case EX_TYPE_ERETU: + return ex_handler_eretu(e, regs, error_code); +#endif } + BUG(); } -#ifdef CONFIG_MODULES -/* - * If the exception table is sorted, any referring to the module init - * will be at the beginning or the end. - */ -void trim_init_extable(struct module *m) +extern unsigned int early_recursion_flag; + +/* Restricted version used during very early boot */ +void __init early_fixup_exception(struct pt_regs *regs, int trapnr) { - /*trim the beginning*/ - while (m->num_exentries && - within_module_init(ex_insn_addr(&m->extable[0]), m)) { - m->extable++; - m->num_exentries--; + /* Ignore early NMIs. */ + if (trapnr == X86_TRAP_NMI) + return; + + if (early_recursion_flag > 2) + goto halt_loop; + + /* + * Old CPUs leave the high bits of CS on the stack + * undefined. I'm not sure which CPUs do this, but at least + * the 486 DX works this way. + * Xen pv domains are not using the default __KERNEL_CS. + */ + if (!xen_pv_domain() && regs->cs != __KERNEL_CS) + goto fail; + + /* + * The full exception fixup machinery is available as soon as + * the early IDT is loaded. This means that it is the + * responsibility of extable users to either function correctly + * when handlers are invoked early or to simply avoid causing + * exceptions before they're ready to handle them. + * + * This is better than filtering which handlers can be used, + * because refusing to call a handler here is guaranteed to + * result in a hard-to-debug panic. + * + * Keep in mind that not all vectors actually get here. Early + * page faults, for example, are special. + */ + if (fixup_exception(regs, trapnr, regs->orig_ax, 0)) + return; + + if (trapnr == X86_TRAP_UD) { + if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) { + /* Skip the ud2. */ + regs->ip += LEN_UD2; + return; + } + + /* + * If this was a BUG and report_bug returns or if this + * was just a normal #UD, we want to continue onward and + * crash. + */ } - /*trim the end*/ - while (m->num_exentries && - within_module_init(ex_insn_addr(&m->extable[m->num_exentries-1]), m)) - m->num_exentries--; + +fail: + early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n", + (unsigned)trapnr, (unsigned long)regs->cs, regs->ip, + regs->orig_ax, read_cr2()); + + show_regs(regs); + +halt_loop: + while (true) + halt(); } -#endif /* CONFIG_MODULES */ diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c index 654be4ae3047..998bd807fc7b 100644 --- a/arch/x86/mm/fault.c +++ b/arch/x86/mm/fault.c @@ -1,48 +1,49 @@ +// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1995 Linus Torvalds * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar */ -#include <linux/magic.h> /* STACK_END_MAGIC */ #include <linux/sched.h> /* test_thread_flag(), ... */ +#include <linux/sched/task_stack.h> /* task_stack_*(), ... */ #include <linux/kdebug.h> /* oops_begin/end, ... */ -#include <linux/module.h> /* search_exception_table */ -#include <linux/bootmem.h> /* max_low_pfn */ -#include <linux/kprobes.h> /* __kprobes, ... */ +#include <linux/memblock.h> /* max_low_pfn */ +#include <linux/kfence.h> /* kfence_handle_page_fault */ +#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ #include <linux/mmiotrace.h> /* kmmio_handler, ... */ #include <linux/perf_event.h> /* perf_sw_event */ #include <linux/hugetlb.h> /* hstate_index_to_shift */ -#include <linux/prefetch.h> /* prefetchw */ #include <linux/context_tracking.h> /* exception_enter(), ... */ +#include <linux/uaccess.h> /* faulthandler_disabled() */ +#include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/ +#include <linux/mm_types.h> +#include <linux/mm.h> /* find_and_lock_vma() */ +#include <linux/vmalloc.h> +#include <asm/cpufeature.h> /* boot_cpu_has, ... */ #include <asm/traps.h> /* dotraplinkage, ... */ -#include <asm/pgalloc.h> /* pgd_*(), ... */ -#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */ -#include <asm/fixmap.h> /* VSYSCALL_START */ - -/* - * Page fault error code bits: - * - * bit 0 == 0: no page found 1: protection fault - * bit 1 == 0: read access 1: write access - * bit 2 == 0: kernel-mode access 1: user-mode access - * bit 3 == 1: use of reserved bit detected - * bit 4 == 1: fault was an instruction fetch - */ -enum x86_pf_error_code { - - PF_PROT = 1 << 0, - PF_WRITE = 1 << 1, - PF_USER = 1 << 2, - PF_RSVD = 1 << 3, - PF_INSTR = 1 << 4, -}; +#include <asm/fixmap.h> /* VSYSCALL_ADDR */ +#include <asm/vsyscall.h> /* emulate_vsyscall */ +#include <asm/vm86.h> /* struct vm86 */ +#include <asm/mmu_context.h> /* vma_pkey() */ +#include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/ +#include <asm/desc.h> /* store_idt(), ... */ +#include <asm/cpu_entry_area.h> /* exception stack */ +#include <asm/pgtable_areas.h> /* VMALLOC_START, ... */ +#include <asm/kvm_para.h> /* kvm_handle_async_pf */ +#include <asm/vdso.h> /* fixup_vdso_exception() */ +#include <asm/irq_stack.h> +#include <asm/fred.h> +#include <asm/sev.h> /* snp_dump_hva_rmpentry() */ + +#define CREATE_TRACE_POINTS +#include <trace/events/exceptions.h> /* * Returns 0 if mmiotrace is disabled, or if the fault is not * handled by mmiotrace: */ -static inline int __kprobes +static nokprobe_inline int kmmio_fault(struct pt_regs *regs, unsigned long addr) { if (unlikely(is_kmmio_active())) @@ -51,28 +52,13 @@ kmmio_fault(struct pt_regs *regs, unsigned long addr) return 0; } -static inline int __kprobes notify_page_fault(struct pt_regs *regs) -{ - int ret = 0; - - /* kprobe_running() needs smp_processor_id() */ - if (kprobes_built_in() && !user_mode_vm(regs)) { - preempt_disable(); - if (kprobe_running() && kprobe_fault_handler(regs, 14)) - ret = 1; - preempt_enable(); - } - - return ret; -} - /* * Prefetch quirks: * * 32-bit mode: * * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. - * Check that here and ignore it. + * Check that here and ignore it. This is AMD erratum #91. * * 64-bit mode: * @@ -101,11 +87,7 @@ check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, #ifdef CONFIG_X86_64 case 0x40: /* - * In AMD64 long mode 0x40..0x4F are valid REX prefixes - * Need to figure out under what instruction mode the - * instruction was issued. Could check the LDT for lm, - * but for now it's good enough to assume that long - * mode only uses well known segments or kernel. + * In 64-bit mode 0x40..0x4F are valid REX prefixes */ return (!user_mode(regs) || user_64bit_mode(regs)); #endif @@ -117,7 +99,7 @@ check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, return !instr_lo || (instr_lo>>1) == 1; case 0x00: /* Prefetch instruction is 0x0F0D or 0x0F18 */ - if (probe_kernel_address(instr, opcode)) + if (get_kernel_nofault(opcode, instr)) return 0; *prefetch = (instr_lo == 0xF) && @@ -128,6 +110,15 @@ check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, } } +static bool is_amd_k8_pre_npt(void) +{ + struct cpuinfo_x86 *c = &boot_cpu_data; + + return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) && + c->x86_vendor == X86_VENDOR_AMD && + c->x86 == 0xf && c->x86_model < 0x40); +} + static int is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) { @@ -135,51 +126,46 @@ is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) unsigned char *instr; int prefetch = 0; + /* Erratum #91 affects AMD K8, pre-NPT CPUs */ + if (!is_amd_k8_pre_npt()) + return 0; + /* * If it was a exec (instruction fetch) fault on NX page, then * do not ignore the fault: */ - if (error_code & PF_INSTR) + if (error_code & X86_PF_INSTR) return 0; instr = (void *)convert_ip_to_linear(current, regs); max_instr = instr + 15; - if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) - return 0; + /* + * This code has historically always bailed out if IP points to a + * not-present page (e.g. due to a race). No one has ever + * complained about this. + */ + pagefault_disable(); while (instr < max_instr) { unsigned char opcode; - if (probe_kernel_address(instr, opcode)) - break; + if (user_mode(regs)) { + if (get_user(opcode, (unsigned char __user *) instr)) + break; + } else { + if (get_kernel_nofault(opcode, instr)) + break; + } instr++; if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) break; } - return prefetch; -} -static void -force_sig_info_fault(int si_signo, int si_code, unsigned long address, - struct task_struct *tsk, int fault) -{ - unsigned lsb = 0; - siginfo_t info; - - info.si_signo = si_signo; - info.si_errno = 0; - info.si_code = si_code; - info.si_addr = (void __user *)address; - if (fault & VM_FAULT_HWPOISON_LARGE) - lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); - if (fault & VM_FAULT_HWPOISON) - lsb = PAGE_SHIFT; - info.si_addr_lsb = lsb; - - force_sig_info(si_signo, &info, tsk); + pagefault_enable(); + return prefetch; } DEFINE_SPINLOCK(pgd_lock); @@ -190,6 +176,7 @@ static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) { unsigned index = pgd_index(address); pgd_t *pgd_k; + p4d_t *p4d, *p4d_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; @@ -202,63 +189,47 @@ static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) /* * set_pgd(pgd, *pgd_k); here would be useless on PAE * and redundant with the set_pmd() on non-PAE. As would - * set_pud. + * set_p4d/set_pud. */ - pud = pud_offset(pgd, address); - pud_k = pud_offset(pgd_k, address); + p4d = p4d_offset(pgd, address); + p4d_k = p4d_offset(pgd_k, address); + if (!p4d_present(*p4d_k)) + return NULL; + + pud = pud_offset(p4d, address); + pud_k = pud_offset(p4d_k, address); if (!pud_present(*pud_k)) return NULL; pmd = pmd_offset(pud, address); pmd_k = pmd_offset(pud_k, address); - if (!pmd_present(*pmd_k)) - return NULL; - if (!pmd_present(*pmd)) + if (pmd_present(*pmd) != pmd_present(*pmd_k)) set_pmd(pmd, *pmd_k); + + if (!pmd_present(*pmd_k)) + return NULL; else - BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); + BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k)); return pmd_k; } -void vmalloc_sync_all(void) -{ - unsigned long address; - - if (SHARED_KERNEL_PMD) - return; - - for (address = VMALLOC_START & PMD_MASK; - address >= TASK_SIZE && address < FIXADDR_TOP; - address += PMD_SIZE) { - struct page *page; - - spin_lock(&pgd_lock); - list_for_each_entry(page, &pgd_list, lru) { - spinlock_t *pgt_lock; - pmd_t *ret; - - /* the pgt_lock only for Xen */ - pgt_lock = &pgd_page_get_mm(page)->page_table_lock; - - spin_lock(pgt_lock); - ret = vmalloc_sync_one(page_address(page), address); - spin_unlock(pgt_lock); - - if (!ret) - break; - } - spin_unlock(&pgd_lock); - } -} - /* - * 32-bit: - * * Handle a fault on the vmalloc or module mapping area + * + * This is needed because there is a race condition between the time + * when the vmalloc mapping code updates the PMD to the point in time + * where it synchronizes this update with the other page-tables in the + * system. + * + * In this race window another thread/CPU can map an area on the same + * PMD, finds it already present and does not synchronize it with the + * rest of the system yet. As a result v[mz]alloc might return areas + * which are not mapped in every page-table in the system, causing an + * unhandled page-fault when they are accessed. */ -static noinline __kprobes int vmalloc_fault(unsigned long address) +static noinline int vmalloc_fault(unsigned long address) { unsigned long pgd_paddr; pmd_t *pmd_k; @@ -268,8 +239,6 @@ static noinline __kprobes int vmalloc_fault(unsigned long address) if (!(address >= VMALLOC_START && address < VMALLOC_END)) return -1; - WARN_ON_ONCE(in_nmi()); - /* * Synchronize this task's top level page-table * with the 'reference' page table. @@ -277,33 +246,44 @@ static noinline __kprobes int vmalloc_fault(unsigned long address) * Do _not_ use "current" here. We might be inside * an interrupt in the middle of a task switch.. */ - pgd_paddr = read_cr3(); + pgd_paddr = read_cr3_pa(); pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); if (!pmd_k) return -1; + if (pmd_leaf(*pmd_k)) + return 0; + pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) return -1; return 0; } +NOKPROBE_SYMBOL(vmalloc_fault); -/* - * Did it hit the DOS screen memory VA from vm86 mode? - */ -static inline void -check_v8086_mode(struct pt_regs *regs, unsigned long address, - struct task_struct *tsk) +void arch_sync_kernel_mappings(unsigned long start, unsigned long end) { - unsigned long bit; + unsigned long addr; - if (!v8086_mode(regs)) - return; + for (addr = start & PMD_MASK; + addr >= TASK_SIZE_MAX && addr < VMALLOC_END; + addr += PMD_SIZE) { + struct page *page; + + spin_lock(&pgd_lock); + list_for_each_entry(page, &pgd_list, lru) { + spinlock_t *pgt_lock; + + /* the pgt_lock only for Xen */ + pgt_lock = &pgd_page_get_mm(page)->page_table_lock; - bit = (address - 0xA0000) >> PAGE_SHIFT; - if (bit < 32) - tsk->thread.screen_bitmap |= 1 << bit; + spin_lock(pgt_lock); + vmalloc_sync_one(page_address(page), addr); + spin_unlock(pgt_lock); + } + spin_unlock(&pgd_lock); + } } static bool low_pfn(unsigned long pfn) @@ -313,18 +293,26 @@ static bool low_pfn(unsigned long pfn) static void dump_pagetable(unsigned long address) { - pgd_t *base = __va(read_cr3()); + pgd_t *base = __va(read_cr3_pa()); pgd_t *pgd = &base[pgd_index(address)]; + p4d_t *p4d; + pud_t *pud; pmd_t *pmd; pte_t *pte; #ifdef CONFIG_X86_PAE - printk("*pdpt = %016Lx ", pgd_val(*pgd)); + pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) goto out; +#define pr_pde pr_cont +#else +#define pr_pde pr_info #endif - pmd = pmd_offset(pud_offset(pgd, address), address); - printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); + p4d = p4d_offset(pgd, address); + pud = pud_offset(p4d, address); + pmd = pmd_offset(pud, address); + pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); +#undef pr_pde /* * We must not directly access the pte in the highpte @@ -332,97 +320,17 @@ static void dump_pagetable(unsigned long address) * And let's rather not kmap-atomic the pte, just in case * it's allocated already: */ - if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) + if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd)) goto out; pte = pte_offset_kernel(pmd, address); - printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); + pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); out: - printk("\n"); + pr_cont("\n"); } #else /* CONFIG_X86_64: */ -void vmalloc_sync_all(void) -{ - sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END); -} - -/* - * 64-bit: - * - * Handle a fault on the vmalloc area - * - * This assumes no large pages in there. - */ -static noinline __kprobes int vmalloc_fault(unsigned long address) -{ - pgd_t *pgd, *pgd_ref; - pud_t *pud, *pud_ref; - pmd_t *pmd, *pmd_ref; - pte_t *pte, *pte_ref; - - /* Make sure we are in vmalloc area: */ - if (!(address >= VMALLOC_START && address < VMALLOC_END)) - return -1; - - WARN_ON_ONCE(in_nmi()); - - /* - * Copy kernel mappings over when needed. This can also - * happen within a race in page table update. In the later - * case just flush: - */ - pgd = pgd_offset(current->active_mm, address); - pgd_ref = pgd_offset_k(address); - if (pgd_none(*pgd_ref)) - return -1; - - if (pgd_none(*pgd)) { - set_pgd(pgd, *pgd_ref); - arch_flush_lazy_mmu_mode(); - } else { - BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); - } - - /* - * Below here mismatches are bugs because these lower tables - * are shared: - */ - - pud = pud_offset(pgd, address); - pud_ref = pud_offset(pgd_ref, address); - if (pud_none(*pud_ref)) - return -1; - - if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) - BUG(); - - pmd = pmd_offset(pud, address); - pmd_ref = pmd_offset(pud_ref, address); - if (pmd_none(*pmd_ref)) - return -1; - - if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) - BUG(); - - pte_ref = pte_offset_kernel(pmd_ref, address); - if (!pte_present(*pte_ref)) - return -1; - - pte = pte_offset_kernel(pmd, address); - - /* - * Don't use pte_page here, because the mappings can point - * outside mem_map, and the NUMA hash lookup cannot handle - * that: - */ - if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) - BUG(); - - return 0; -} - #ifdef CONFIG_CPU_SUP_AMD static const char errata93_warning[] = KERN_ERR @@ -432,26 +340,18 @@ KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; #endif -/* - * No vm86 mode in 64-bit mode: - */ -static inline void -check_v8086_mode(struct pt_regs *regs, unsigned long address, - struct task_struct *tsk) -{ -} - static int bad_address(void *p) { unsigned long dummy; - return probe_kernel_address((unsigned long *)p, dummy); + return get_kernel_nofault(dummy, (unsigned long *)p); } static void dump_pagetable(unsigned long address) { - pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK); + pgd_t *base = __va(read_cr3_pa()); pgd_t *pgd = base + pgd_index(address); + p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; @@ -459,37 +359,45 @@ static void dump_pagetable(unsigned long address) if (bad_address(pgd)) goto bad; - printk("PGD %lx ", pgd_val(*pgd)); + pr_info("PGD %lx ", pgd_val(*pgd)); if (!pgd_present(*pgd)) goto out; - pud = pud_offset(pgd, address); + p4d = p4d_offset(pgd, address); + if (bad_address(p4d)) + goto bad; + + pr_cont("P4D %lx ", p4d_val(*p4d)); + if (!p4d_present(*p4d) || p4d_leaf(*p4d)) + goto out; + + pud = pud_offset(p4d, address); if (bad_address(pud)) goto bad; - printk("PUD %lx ", pud_val(*pud)); - if (!pud_present(*pud) || pud_large(*pud)) + pr_cont("PUD %lx ", pud_val(*pud)); + if (!pud_present(*pud) || pud_leaf(*pud)) goto out; pmd = pmd_offset(pud, address); if (bad_address(pmd)) goto bad; - printk("PMD %lx ", pmd_val(*pmd)); - if (!pmd_present(*pmd) || pmd_large(*pmd)) + pr_cont("PMD %lx ", pmd_val(*pmd)); + if (!pmd_present(*pmd) || pmd_leaf(*pmd)) goto out; pte = pte_offset_kernel(pmd, address); if (bad_address(pte)) goto bad; - printk("PTE %lx", pte_val(*pte)); + pr_cont("PTE %lx", pte_val(*pte)); out: - printk("\n"); + pr_cont("\n"); return; bad: - printk("BAD\n"); + pr_info("BAD\n"); } #endif /* CONFIG_X86_64 */ @@ -515,6 +423,9 @@ static int is_errata93(struct pt_regs *regs, unsigned long address) || boot_cpu_data.x86 != 0xf) return 0; + if (user_mode(regs)) + return 0; + if (address != regs->ip) return 0; @@ -549,56 +460,131 @@ static int is_errata100(struct pt_regs *regs, unsigned long address) return 0; } -static int is_f00f_bug(struct pt_regs *regs, unsigned long address) +/* Pentium F0 0F C7 C8 bug workaround: */ +static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code, + unsigned long address) { #ifdef CONFIG_X86_F00F_BUG - unsigned long nr; - - /* - * Pentium F0 0F C7 C8 bug workaround: - */ - if (boot_cpu_has_bug(X86_BUG_F00F)) { - nr = (address - idt_descr.address) >> 3; - - if (nr == 6) { - do_invalid_op(regs, 0); - return 1; - } + if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) && + idt_is_f00f_address(address)) { + handle_invalid_op(regs); + return 1; } #endif return 0; } -static const char nx_warning[] = KERN_CRIT -"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n"; +static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) +{ + u32 offset = (index >> 3) * sizeof(struct desc_struct); + unsigned long addr; + struct ldttss_desc desc; + + if (index == 0) { + pr_alert("%s: NULL\n", name); + return; + } + + if (offset + sizeof(struct ldttss_desc) >= gdt->size) { + pr_alert("%s: 0x%hx -- out of bounds\n", name, index); + return; + } + + if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset), + sizeof(struct ldttss_desc))) { + pr_alert("%s: 0x%hx -- GDT entry is not readable\n", + name, index); + return; + } + + addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); +#ifdef CONFIG_X86_64 + addr |= ((u64)desc.base3 << 32); +#endif + pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", + name, index, addr, (desc.limit0 | (desc.limit1 << 16))); +} static void -show_fault_oops(struct pt_regs *regs, unsigned long error_code, - unsigned long address) +show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) { if (!oops_may_print()) return; - if (error_code & PF_INSTR) { + if (error_code & X86_PF_INSTR) { unsigned int level; - - pte_t *pte = lookup_address(address, &level); - - if (pte && pte_present(*pte) && !pte_exec(*pte)) - printk(nx_warning, from_kuid(&init_user_ns, current_uid())); + bool nx, rw; + pgd_t *pgd; + pte_t *pte; + + pgd = __va(read_cr3_pa()); + pgd += pgd_index(address); + + pte = lookup_address_in_pgd_attr(pgd, address, &level, &nx, &rw); + + if (pte && pte_present(*pte) && (!pte_exec(*pte) || nx)) + pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", + from_kuid(&init_user_ns, current_uid())); + if (pte && pte_present(*pte) && pte_exec(*pte) && !nx && + (pgd_flags(*pgd) & _PAGE_USER) && + (__read_cr4() & X86_CR4_SMEP)) + pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", + from_kuid(&init_user_ns, current_uid())); } - printk(KERN_ALERT "BUG: unable to handle kernel "); - if (address < PAGE_SIZE) - printk(KERN_CONT "NULL pointer dereference"); + if (address < PAGE_SIZE && !user_mode(regs)) + pr_alert("BUG: kernel NULL pointer dereference, address: %px\n", + (void *)address); else - printk(KERN_CONT "paging request"); + pr_alert("BUG: unable to handle page fault for address: %px\n", + (void *)address); + + pr_alert("#PF: %s %s in %s mode\n", + (error_code & X86_PF_USER) ? "user" : "supervisor", + (error_code & X86_PF_INSTR) ? "instruction fetch" : + (error_code & X86_PF_WRITE) ? "write access" : + "read access", + user_mode(regs) ? "user" : "kernel"); + pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code, + !(error_code & X86_PF_PROT) ? "not-present page" : + (error_code & X86_PF_RSVD) ? "reserved bit violation" : + (error_code & X86_PF_PK) ? "protection keys violation" : + (error_code & X86_PF_RMP) ? "RMP violation" : + "permissions violation"); + + if (!(error_code & X86_PF_USER) && user_mode(regs)) { + struct desc_ptr idt, gdt; + u16 ldtr, tr; - printk(KERN_CONT " at %p\n", (void *) address); - printk(KERN_ALERT "IP:"); - printk_address(regs->ip, 1); + /* + * This can happen for quite a few reasons. The more obvious + * ones are faults accessing the GDT, or LDT. Perhaps + * surprisingly, if the CPU tries to deliver a benign or + * contributory exception from user code and gets a page fault + * during delivery, the page fault can be delivered as though + * it originated directly from user code. This could happen + * due to wrong permissions on the IDT, GDT, LDT, TSS, or + * kernel or IST stack. + */ + store_idt(&idt); + + /* Usable even on Xen PV -- it's just slow. */ + native_store_gdt(&gdt); + + pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", + idt.address, idt.size, gdt.address, gdt.size); + + store_ldt(ldtr); + show_ldttss(&gdt, "LDTR", ldtr); + + store_tr(tr); + show_ldttss(&gdt, "TR", tr); + } dump_pagetable(address); + + if (error_code & X86_PF_RMP) + snp_dump_hva_rmpentry(address); } static noinline void @@ -617,55 +603,97 @@ pgtable_bad(struct pt_regs *regs, unsigned long error_code, tsk->comm, address); dump_pagetable(address); - tsk->thread.cr2 = address; - tsk->thread.trap_nr = X86_TRAP_PF; - tsk->thread.error_code = error_code; - if (__die("Bad pagetable", regs, error_code)) sig = 0; oops_end(flags, regs, sig); } -static noinline void -no_context(struct pt_regs *regs, unsigned long error_code, - unsigned long address, int signal, int si_code) +static void sanitize_error_code(unsigned long address, + unsigned long *error_code) +{ + /* + * To avoid leaking information about the kernel page + * table layout, pretend that user-mode accesses to + * kernel addresses are always protection faults. + * + * NB: This means that failed vsyscalls with vsyscall=none + * will have the PROT bit. This doesn't leak any + * information and does not appear to cause any problems. + */ + if (address >= TASK_SIZE_MAX) + *error_code |= X86_PF_PROT; +} + +static void set_signal_archinfo(unsigned long address, + unsigned long error_code) { struct task_struct *tsk = current; - unsigned long *stackend; + + tsk->thread.trap_nr = X86_TRAP_PF; + tsk->thread.error_code = error_code | X86_PF_USER; + tsk->thread.cr2 = address; +} + +static noinline void +page_fault_oops(struct pt_regs *regs, unsigned long error_code, + unsigned long address) +{ +#ifdef CONFIG_VMAP_STACK + struct stack_info info; +#endif unsigned long flags; int sig; - /* Are we prepared to handle this kernel fault? */ - if (fixup_exception(regs)) { - if (current_thread_info()->sig_on_uaccess_error && signal) { - tsk->thread.trap_nr = X86_TRAP_PF; - tsk->thread.error_code = error_code | PF_USER; - tsk->thread.cr2 = address; - - /* XXX: hwpoison faults will set the wrong code. */ - force_sig_info_fault(signal, si_code, address, tsk, 0); - } - return; + if (user_mode(regs)) { + /* + * Implicit kernel access from user mode? Skip the stack + * overflow and EFI special cases. + */ + goto oops; } +#ifdef CONFIG_VMAP_STACK /* - * 32-bit: - * - * Valid to do another page fault here, because if this fault - * had been triggered by is_prefetch fixup_exception would have - * handled it. - * - * 64-bit: - * - * Hall of shame of CPU/BIOS bugs. + * Stack overflow? During boot, we can fault near the initial + * stack in the direct map, but that's not an overflow -- check + * that we're in vmalloc space to avoid this. */ - if (is_prefetch(regs, error_code, address)) - return; + if (is_vmalloc_addr((void *)address) && + get_stack_guard_info((void *)address, &info)) { + /* + * We're likely to be running with very little stack space + * left. It's plausible that we'd hit this condition but + * double-fault even before we get this far, in which case + * we're fine: the double-fault handler will deal with it. + * + * We don't want to make it all the way into the oops code + * and then double-fault, though, because we're likely to + * break the console driver and lose most of the stack dump. + */ + call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*), + handle_stack_overflow, + ASM_CALL_ARG3, + , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info)); + + BUG(); + } +#endif - if (is_errata93(regs, address)) + /* + * Buggy firmware could access regions which might page fault. If + * this happens, EFI has a special OOPS path that will try to + * avoid hanging the system. + */ + if (IS_ENABLED(CONFIG_EFI)) + efi_crash_gracefully_on_page_fault(address); + + /* Only not-present faults should be handled by KFENCE. */ + if (!(error_code & X86_PF_PROT) && + kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs)) return; +oops: /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice: @@ -674,14 +702,9 @@ no_context(struct pt_regs *regs, unsigned long error_code, show_fault_oops(regs, error_code, address); - stackend = end_of_stack(tsk); - if (tsk != &init_task && *stackend != STACK_END_MAGIC) + if (task_stack_end_corrupted(current)) printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); - tsk->thread.cr2 = address; - tsk->thread.trap_nr = X86_TRAP_PF; - tsk->thread.error_code = error_code; - sig = SIGKILL; if (__die("Oops", regs, error_code)) sig = 0; @@ -692,6 +715,27 @@ no_context(struct pt_regs *regs, unsigned long error_code, oops_end(flags, regs, sig); } +static noinline void +kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code, + unsigned long address, int signal, int si_code, + u32 pkey) +{ + WARN_ON_ONCE(user_mode(regs)); + + /* Are we prepared to handle this kernel fault? */ + if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) + return; + + /* + * AMD erratum #91 manifests as a spurious page fault on a PREFETCH + * instruction. + */ + if (is_prefetch(regs, error_code, address)) + return; + + page_fault_oops(regs, error_code, address); +} + /* * Print out info about fatal segfaults, if the show_unhandled_signals * sysctl is set: @@ -700,126 +744,175 @@ static inline void show_signal_msg(struct pt_regs *regs, unsigned long error_code, unsigned long address, struct task_struct *tsk) { + const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; + /* This is a racy snapshot, but it's better than nothing. */ + int cpu = raw_smp_processor_id(); + if (!unhandled_signal(tsk, SIGSEGV)) return; if (!printk_ratelimit()) return; - printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx", - task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, - tsk->comm, task_pid_nr(tsk), address, + printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", + loglvl, tsk->comm, task_pid_nr(tsk), address, (void *)regs->ip, (void *)regs->sp, error_code); print_vma_addr(KERN_CONT " in ", regs->ip); + /* + * Dump the likely CPU where the fatal segfault happened. + * This can help identify faulty hardware. + */ + printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu, + topology_core_id(cpu), topology_physical_package_id(cpu)); + + printk(KERN_CONT "\n"); + + show_opcodes(regs, loglvl); } static void __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, - unsigned long address, int si_code) + unsigned long address, u32 pkey, int si_code) { struct task_struct *tsk = current; - /* User mode accesses just cause a SIGSEGV */ - if (error_code & PF_USER) { - /* - * It's possible to have interrupts off here: - */ - local_irq_enable(); - - /* - * Valid to do another page fault here because this one came - * from user space: - */ - if (is_prefetch(regs, error_code, address)) - return; + if (!user_mode(regs)) { + kernelmode_fixup_or_oops(regs, error_code, address, + SIGSEGV, si_code, pkey); + return; + } - if (is_errata100(regs, address)) - return; + if (!(error_code & X86_PF_USER)) { + /* Implicit user access to kernel memory -- just oops */ + page_fault_oops(regs, error_code, address); + return; + } -#ifdef CONFIG_X86_64 - /* - * Instruction fetch faults in the vsyscall page might need - * emulation. - */ - if (unlikely((error_code & PF_INSTR) && - ((address & ~0xfff) == VSYSCALL_START))) { - if (emulate_vsyscall(regs, address)) - return; - } -#endif - /* Kernel addresses are always protection faults: */ - if (address >= TASK_SIZE) - error_code |= PF_PROT; + /* + * User mode accesses just cause a SIGSEGV. + * It's possible to have interrupts off here: + */ + local_irq_enable(); - if (likely(show_unhandled_signals)) - show_signal_msg(regs, error_code, address, tsk); + /* + * Valid to do another page fault here because this one came + * from user space: + */ + if (is_prefetch(regs, error_code, address)) + return; - tsk->thread.cr2 = address; - tsk->thread.error_code = error_code; - tsk->thread.trap_nr = X86_TRAP_PF; + if (is_errata100(regs, address)) + return; - force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0); + sanitize_error_code(address, &error_code); + if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) return; - } - if (is_f00f_bug(regs, address)) - return; + if (likely(show_unhandled_signals)) + show_signal_msg(regs, error_code, address, tsk); + + set_signal_archinfo(address, error_code); + + if (si_code == SEGV_PKUERR) + force_sig_pkuerr((void __user *)address, pkey); + else + force_sig_fault(SIGSEGV, si_code, (void __user *)address); - no_context(regs, error_code, address, SIGSEGV, si_code); + local_irq_disable(); } static noinline void bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, unsigned long address) { - __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR); + __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR); } static void __bad_area(struct pt_regs *regs, unsigned long error_code, - unsigned long address, int si_code) + unsigned long address, struct mm_struct *mm, + struct vm_area_struct *vma, u32 pkey, int si_code) { - struct mm_struct *mm = current->mm; - /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ - up_read(&mm->mmap_sem); + if (mm) + mmap_read_unlock(mm); + else + vma_end_read(vma); - __bad_area_nosemaphore(regs, error_code, address, si_code); + __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); } -static noinline void -bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) +static inline bool bad_area_access_from_pkeys(unsigned long error_code, + struct vm_area_struct *vma) { - __bad_area(regs, error_code, address, SEGV_MAPERR); + /* This code is always called on the current mm */ + bool foreign = false; + + if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) + return false; + if (error_code & X86_PF_PK) + return true; + /* this checks permission keys on the VMA: */ + if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), + (error_code & X86_PF_INSTR), foreign)) + return true; + return false; } static noinline void bad_area_access_error(struct pt_regs *regs, unsigned long error_code, - unsigned long address) + unsigned long address, struct mm_struct *mm, + struct vm_area_struct *vma) { - __bad_area(regs, error_code, address, SEGV_ACCERR); + /* + * This OSPKE check is not strictly necessary at runtime. + * But, doing it this way allows compiler optimizations + * if pkeys are compiled out. + */ + if (bad_area_access_from_pkeys(error_code, vma)) { + /* + * A protection key fault means that the PKRU value did not allow + * access to some PTE. Userspace can figure out what PKRU was + * from the XSAVE state. This function captures the pkey from + * the vma and passes it to userspace so userspace can discover + * which protection key was set on the PTE. + * + * If we get here, we know that the hardware signaled a X86_PF_PK + * fault and that there was a VMA once we got in the fault + * handler. It does *not* guarantee that the VMA we find here + * was the one that we faulted on. + * + * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); + * 2. T1 : set PKRU to deny access to pkey=4, touches page + * 3. T1 : faults... + * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); + * 5. T1 : enters fault handler, takes mmap_lock, etc... + * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really + * faulted on a pte with its pkey=4. + */ + u32 pkey = vma_pkey(vma); + + __bad_area(regs, error_code, address, mm, vma, pkey, SEGV_PKUERR); + } else { + __bad_area(regs, error_code, address, mm, vma, 0, SEGV_ACCERR); + } } static void do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, - unsigned int fault) + vm_fault_t fault) { - struct task_struct *tsk = current; - struct mm_struct *mm = tsk->mm; - int code = BUS_ADRERR; - - up_read(&mm->mmap_sem); - /* Kernel mode? Handle exceptions or die: */ - if (!(error_code & PF_USER)) { - no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); + if (!user_mode(regs)) { + kernelmode_fixup_or_oops(regs, error_code, address, + SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY); return; } @@ -827,72 +920,38 @@ do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, if (is_prefetch(regs, error_code, address)) return; - tsk->thread.cr2 = address; - tsk->thread.error_code = error_code; - tsk->thread.trap_nr = X86_TRAP_PF; + sanitize_error_code(address, &error_code); + + if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) + return; + + set_signal_archinfo(address, error_code); #ifdef CONFIG_MEMORY_FAILURE if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { - printk(KERN_ERR + struct task_struct *tsk = current; + unsigned lsb = 0; + + pr_err( "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", tsk->comm, tsk->pid, address); - code = BUS_MCEERR_AR; + if (fault & VM_FAULT_HWPOISON_LARGE) + lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); + if (fault & VM_FAULT_HWPOISON) + lsb = PAGE_SHIFT; + force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); + return; } #endif - force_sig_info_fault(SIGBUS, code, address, tsk, fault); + force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); } -static noinline int -mm_fault_error(struct pt_regs *regs, unsigned long error_code, - unsigned long address, unsigned int fault) +static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) { - /* - * Pagefault was interrupted by SIGKILL. We have no reason to - * continue pagefault. - */ - if (fatal_signal_pending(current)) { - if (!(fault & VM_FAULT_RETRY)) - up_read(¤t->mm->mmap_sem); - if (!(error_code & PF_USER)) - no_context(regs, error_code, address, 0, 0); - return 1; - } - if (!(fault & VM_FAULT_ERROR)) + if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) return 0; - if (fault & VM_FAULT_OOM) { - /* Kernel mode? Handle exceptions or die: */ - if (!(error_code & PF_USER)) { - up_read(¤t->mm->mmap_sem); - no_context(regs, error_code, address, - SIGSEGV, SEGV_MAPERR); - return 1; - } - - up_read(¤t->mm->mmap_sem); - - /* - * We ran out of memory, call the OOM killer, and return the - * userspace (which will retry the fault, or kill us if we got - * oom-killed): - */ - pagefault_out_of_memory(); - } else { - if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| - VM_FAULT_HWPOISON_LARGE)) - do_sigbus(regs, error_code, address, fault); - else - BUG(); - } - return 1; -} - -static int spurious_fault_check(unsigned long error_code, pte_t *pte) -{ - if ((error_code & PF_WRITE) && !pte_write(*pte)) - return 0; - - if ((error_code & PF_INSTR) && !pte_exec(*pte)) + if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) return 0; return 1; @@ -907,45 +966,71 @@ static int spurious_fault_check(unsigned long error_code, pte_t *pte) * cross-processor TLB flush, even if no stale TLB entries exist * on other processors. * + * Spurious faults may only occur if the TLB contains an entry with + * fewer permission than the page table entry. Non-present (P = 0) + * and reserved bit (R = 1) faults are never spurious. + * * There are no security implications to leaving a stale TLB when * increasing the permissions on a page. + * + * Returns non-zero if a spurious fault was handled, zero otherwise. + * + * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 + * (Optional Invalidation). */ -static noinline __kprobes int -spurious_fault(unsigned long error_code, unsigned long address) +static noinline int +spurious_kernel_fault(unsigned long error_code, unsigned long address) { pgd_t *pgd; + p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; int ret; - /* Reserved-bit violation or user access to kernel space? */ - if (error_code & (PF_USER | PF_RSVD)) + /* + * Only writes to RO or instruction fetches from NX may cause + * spurious faults. + * + * These could be from user or supervisor accesses but the TLB + * is only lazily flushed after a kernel mapping protection + * change, so user accesses are not expected to cause spurious + * faults. + */ + if (error_code != (X86_PF_WRITE | X86_PF_PROT) && + error_code != (X86_PF_INSTR | X86_PF_PROT)) return 0; pgd = init_mm.pgd + pgd_index(address); if (!pgd_present(*pgd)) return 0; - pud = pud_offset(pgd, address); + p4d = p4d_offset(pgd, address); + if (!p4d_present(*p4d)) + return 0; + + if (p4d_leaf(*p4d)) + return spurious_kernel_fault_check(error_code, (pte_t *) p4d); + + pud = pud_offset(p4d, address); if (!pud_present(*pud)) return 0; - if (pud_large(*pud)) - return spurious_fault_check(error_code, (pte_t *) pud); + if (pud_leaf(*pud)) + return spurious_kernel_fault_check(error_code, (pte_t *) pud); pmd = pmd_offset(pud, address); if (!pmd_present(*pmd)) return 0; - if (pmd_large(*pmd)) - return spurious_fault_check(error_code, (pte_t *) pmd); + if (pmd_leaf(*pmd)) + return spurious_kernel_fault_check(error_code, (pte_t *) pmd); pte = pte_offset_kernel(pmd, address); if (!pte_present(*pte)) return 0; - ret = spurious_fault_check(error_code, pte); + ret = spurious_kernel_fault_check(error_code, pte); if (!ret) return 0; @@ -953,87 +1038,114 @@ spurious_fault(unsigned long error_code, unsigned long address) * Make sure we have permissions in PMD. * If not, then there's a bug in the page tables: */ - ret = spurious_fault_check(error_code, (pte_t *) pmd); + ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd); WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); return ret; } +NOKPROBE_SYMBOL(spurious_kernel_fault); int show_unhandled_signals = 1; static inline int access_error(unsigned long error_code, struct vm_area_struct *vma) { - if (error_code & PF_WRITE) { + /* This is only called for the current mm, so: */ + bool foreign = false; + + /* + * Read or write was blocked by protection keys. This is + * always an unconditional error and can never result in + * a follow-up action to resolve the fault, like a COW. + */ + if (error_code & X86_PF_PK) + return 1; + + /* + * SGX hardware blocked the access. This usually happens + * when the enclave memory contents have been destroyed, like + * after a suspend/resume cycle. In any case, the kernel can't + * fix the cause of the fault. Handle the fault as an access + * error even in cases where no actual access violation + * occurred. This allows userspace to rebuild the enclave in + * response to the signal. + */ + if (unlikely(error_code & X86_PF_SGX)) + return 1; + + /* + * Make sure to check the VMA so that we do not perform + * faults just to hit a X86_PF_PK as soon as we fill in a + * page. + */ + if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), + (error_code & X86_PF_INSTR), foreign)) + return 1; + + /* + * Shadow stack accesses (PF_SHSTK=1) are only permitted to + * shadow stack VMAs. All other accesses result in an error. + */ + if (error_code & X86_PF_SHSTK) { + if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK))) + return 1; + if (unlikely(!(vma->vm_flags & VM_WRITE))) + return 1; + return 0; + } + + if (error_code & X86_PF_WRITE) { /* write, present and write, not present: */ + if (unlikely(vma->vm_flags & VM_SHADOW_STACK)) + return 1; if (unlikely(!(vma->vm_flags & VM_WRITE))) return 1; return 0; } /* read, present: */ - if (unlikely(error_code & PF_PROT)) + if (unlikely(error_code & X86_PF_PROT)) return 1; /* read, not present: */ - if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) + if (unlikely(!vma_is_accessible(vma))) return 1; return 0; } -static int fault_in_kernel_space(unsigned long address) -{ - return address >= TASK_SIZE_MAX; -} - -static inline bool smap_violation(int error_code, struct pt_regs *regs) +bool fault_in_kernel_space(unsigned long address) { - if (error_code & PF_USER) - return false; - - if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC)) + /* + * On 64-bit systems, the vsyscall page is at an address above + * TASK_SIZE_MAX, but is not considered part of the kernel + * address space. + */ + if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address)) return false; - return true; + return address >= TASK_SIZE_MAX; } /* - * This routine handles page faults. It determines the address, - * and the problem, and then passes it off to one of the appropriate - * routines. + * Called for all faults where 'address' is part of the kernel address + * space. Might get called for faults that originate from *code* that + * ran in userspace or the kernel. */ -static void __kprobes -__do_page_fault(struct pt_regs *regs, unsigned long error_code) +static void +do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, + unsigned long address) { - struct vm_area_struct *vma; - struct task_struct *tsk; - unsigned long address; - struct mm_struct *mm; - int fault; - int write = error_code & PF_WRITE; - unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE | - (write ? FAULT_FLAG_WRITE : 0); - - tsk = current; - mm = tsk->mm; - - /* Get the faulting address: */ - address = read_cr2(); - /* - * Detect and handle instructions that would cause a page fault for - * both a tracked kernel page and a userspace page. + * Protection keys exceptions only happen on user pages. We + * have no user pages in the kernel portion of the address + * space, so do not expect them here. */ - if (kmemcheck_active(regs)) - kmemcheck_hide(regs); - prefetchw(&mm->mmap_sem); - - if (unlikely(kmmio_fault(regs, address))) - return; + WARN_ON_ONCE(hw_error_code & X86_PF_PK); +#ifdef CONFIG_X86_32 /* - * We fault-in kernel-space virtual memory on-demand. The + * We can fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may @@ -1041,132 +1153,212 @@ __do_page_fault(struct pt_regs *regs, unsigned long error_code) * only copy the information from the master page table, * nothing more. * - * This verifies that the fault happens in kernel space - * (error_code & 4) == 0, and that the fault was not a - * protection error (error_code & 9) == 0. + * Before doing this on-demand faulting, ensure that the + * fault is not any of the following: + * 1. A fault on a PTE with a reserved bit set. + * 2. A fault caused by a user-mode access. (Do not demand- + * fault kernel memory due to user-mode accesses). + * 3. A fault caused by a page-level protection violation. + * (A demand fault would be on a non-present page which + * would have X86_PF_PROT==0). + * + * This is only needed to close a race condition on x86-32 in + * the vmalloc mapping/unmapping code. See the comment above + * vmalloc_fault() for details. On x86-64 the race does not + * exist as the vmalloc mappings don't need to be synchronized + * there. */ - if (unlikely(fault_in_kernel_space(address))) { - if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) { - if (vmalloc_fault(address) >= 0) - return; + if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { + if (vmalloc_fault(address) >= 0) + return; + } +#endif - if (kmemcheck_fault(regs, address, error_code)) - return; - } + if (is_f00f_bug(regs, hw_error_code, address)) + return; - /* Can handle a stale RO->RW TLB: */ - if (spurious_fault(error_code, address)) - return; + /* Was the fault spurious, caused by lazy TLB invalidation? */ + if (spurious_kernel_fault(hw_error_code, address)) + return; - /* kprobes don't want to hook the spurious faults: */ - if (notify_page_fault(regs)) - return; + /* kprobes don't want to hook the spurious faults: */ + if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) + return; + + /* + * Note, despite being a "bad area", there are quite a few + * acceptable reasons to get here, such as erratum fixups + * and handling kernel code that can fault, like get_user(). + * + * Don't take the mm semaphore here. If we fixup a prefetch + * fault we could otherwise deadlock: + */ + bad_area_nosemaphore(regs, hw_error_code, address); +} +NOKPROBE_SYMBOL(do_kern_addr_fault); + +/* + * Handle faults in the user portion of the address space. Nothing in here + * should check X86_PF_USER without a specific justification: for almost + * all purposes, we should treat a normal kernel access to user memory + * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction. + * The one exception is AC flag handling, which is, per the x86 + * architecture, special for WRUSS. + */ +static inline +void do_user_addr_fault(struct pt_regs *regs, + unsigned long error_code, + unsigned long address) +{ + struct vm_area_struct *vma; + struct task_struct *tsk; + struct mm_struct *mm; + vm_fault_t fault; + unsigned int flags = FAULT_FLAG_DEFAULT; + + tsk = current; + mm = tsk->mm; + + if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) { /* - * Don't take the mm semaphore here. If we fixup a prefetch - * fault we could otherwise deadlock: + * Whoops, this is kernel mode code trying to execute from + * user memory. Unless this is AMD erratum #93, which + * corrupts RIP such that it looks like a user address, + * this is unrecoverable. Don't even try to look up the + * VMA or look for extable entries. */ - bad_area_nosemaphore(regs, error_code, address); + if (is_errata93(regs, address)) + return; + page_fault_oops(regs, error_code, address); return; } /* kprobes don't want to hook the spurious faults: */ - if (unlikely(notify_page_fault(regs))) + if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) return; + /* - * It's safe to allow irq's after cr2 has been saved and the - * vmalloc fault has been handled. - * - * User-mode registers count as a user access even for any - * potential system fault or CPU buglet: + * Reserved bits are never expected to be set on + * entries in the user portion of the page tables. */ - if (user_mode_vm(regs)) { - local_irq_enable(); - error_code |= PF_USER; - } else { - if (regs->flags & X86_EFLAGS_IF) - local_irq_enable(); - } - - if (unlikely(error_code & PF_RSVD)) + if (unlikely(error_code & X86_PF_RSVD)) pgtable_bad(regs, error_code, address); - if (static_cpu_has(X86_FEATURE_SMAP)) { - if (unlikely(smap_violation(error_code, regs))) { - bad_area_nosemaphore(regs, error_code, address); - return; - } + /* + * If SMAP is on, check for invalid kernel (supervisor) access to user + * pages in the user address space. The odd case here is WRUSS, + * which, according to the preliminary documentation, does not respect + * SMAP and will have the USER bit set so, in all cases, SMAP + * enforcement appears to be consistent with the USER bit. + */ + if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && + !(error_code & X86_PF_USER) && + !(regs->flags & X86_EFLAGS_AC))) { + /* + * No extable entry here. This was a kernel access to an + * invalid pointer. get_kernel_nofault() will not get here. + */ + page_fault_oops(regs, error_code, address); + return; } - perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); - /* * If we're in an interrupt, have no user context or are running - * in an atomic region then we must not take the fault: + * in a region with pagefaults disabled then we must not take the fault */ - if (unlikely(in_atomic() || !mm)) { + if (unlikely(faulthandler_disabled() || !mm)) { + bad_area_nosemaphore(regs, error_code, address); + return; + } + + /* Legacy check - remove this after verifying that it doesn't trigger */ + if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) { bad_area_nosemaphore(regs, error_code, address); return; } + local_irq_enable(); + + perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); + + /* + * Read-only permissions can not be expressed in shadow stack PTEs. + * Treat all shadow stack accesses as WRITE faults. This ensures + * that the MM will prepare everything (e.g., break COW) such that + * maybe_mkwrite() can create a proper shadow stack PTE. + */ + if (error_code & X86_PF_SHSTK) + flags |= FAULT_FLAG_WRITE; + if (error_code & X86_PF_WRITE) + flags |= FAULT_FLAG_WRITE; + if (error_code & X86_PF_INSTR) + flags |= FAULT_FLAG_INSTRUCTION; + + /* + * We set FAULT_FLAG_USER based on the register state, not + * based on X86_PF_USER. User space accesses that cause + * system page faults are still user accesses. + */ + if (user_mode(regs)) + flags |= FAULT_FLAG_USER; + +#ifdef CONFIG_X86_64 /* - * When running in the kernel we expect faults to occur only to - * addresses in user space. All other faults represent errors in - * the kernel and should generate an OOPS. Unfortunately, in the - * case of an erroneous fault occurring in a code path which already - * holds mmap_sem we will deadlock attempting to validate the fault - * against the address space. Luckily the kernel only validly - * references user space from well defined areas of code, which are - * listed in the exceptions table. + * Faults in the vsyscall page might need emulation. The + * vsyscall page is at a high address (>PAGE_OFFSET), but is + * considered to be part of the user address space. * - * As the vast majority of faults will be valid we will only perform - * the source reference check when there is a possibility of a - * deadlock. Attempt to lock the address space, if we cannot we then - * validate the source. If this is invalid we can skip the address - * space check, thus avoiding the deadlock: + * The vsyscall page does not have a "real" VMA, so do this + * emulation before we go searching for VMAs. + * + * PKRU never rejects instruction fetches, so we don't need + * to consider the PF_PK bit. */ - if (unlikely(!down_read_trylock(&mm->mmap_sem))) { - if ((error_code & PF_USER) == 0 && - !search_exception_tables(regs->ip)) { - bad_area_nosemaphore(regs, error_code, address); + if (is_vsyscall_vaddr(address)) { + if (emulate_vsyscall(error_code, regs, address)) return; - } -retry: - down_read(&mm->mmap_sem); - } else { - /* - * The above down_read_trylock() might have succeeded in - * which case we'll have missed the might_sleep() from - * down_read(): - */ - might_sleep(); } +#endif - vma = find_vma(mm, address); - if (unlikely(!vma)) { - bad_area(regs, error_code, address); + if (!(flags & FAULT_FLAG_USER)) + goto lock_mmap; + + vma = lock_vma_under_rcu(mm, address); + if (!vma) + goto lock_mmap; + + if (unlikely(access_error(error_code, vma))) { + bad_area_access_error(regs, error_code, address, NULL, vma); + count_vm_vma_lock_event(VMA_LOCK_SUCCESS); return; } - if (likely(vma->vm_start <= address)) - goto good_area; - if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { - bad_area(regs, error_code, address); - return; + fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs); + if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) + vma_end_read(vma); + + if (!(fault & VM_FAULT_RETRY)) { + count_vm_vma_lock_event(VMA_LOCK_SUCCESS); + goto done; } - if (error_code & PF_USER) { - /* - * Accessing the stack below %sp is always a bug. - * The large cushion allows instructions like enter - * and pusha to work. ("enter $65535, $31" pushes - * 32 pointers and then decrements %sp by 65535.) - */ - if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { - bad_area(regs, error_code, address); - return; - } + count_vm_vma_lock_event(VMA_LOCK_RETRY); + if (fault & VM_FAULT_MAJOR) + flags |= FAULT_FLAG_TRIED; + + /* Quick path to respond to signals */ + if (fault_signal_pending(fault, regs)) { + if (!user_mode(regs)) + kernelmode_fixup_or_oops(regs, error_code, address, + SIGBUS, BUS_ADRERR, + ARCH_DEFAULT_PKEY); + return; } - if (unlikely(expand_stack(vma, address))) { - bad_area(regs, error_code, address); +lock_mmap: + +retry: + vma = lock_mm_and_find_vma(mm, address, regs); + if (unlikely(!vma)) { + bad_area_nosemaphore(regs, error_code, address); return; } @@ -1174,59 +1366,171 @@ retry: * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ -good_area: if (unlikely(access_error(error_code, vma))) { - bad_area_access_error(regs, error_code, address); + bad_area_access_error(regs, error_code, address, mm, vma); return; } /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo - * the fault: + * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if + * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked. + * + * Note that handle_userfault() may also release and reacquire mmap_lock + * (and not return with VM_FAULT_RETRY), when returning to userland to + * repeat the page fault later with a VM_FAULT_NOPAGE retval + * (potentially after handling any pending signal during the return to + * userland). The return to userland is identified whenever + * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. */ - fault = handle_mm_fault(mm, vma, address, flags); + fault = handle_mm_fault(vma, address, flags, regs); - if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) { - if (mm_fault_error(regs, error_code, address, fault)) - return; + if (fault_signal_pending(fault, regs)) { + /* + * Quick path to respond to signals. The core mm code + * has unlocked the mm for us if we get here. + */ + if (!user_mode(regs)) + kernelmode_fixup_or_oops(regs, error_code, address, + SIGBUS, BUS_ADRERR, + ARCH_DEFAULT_PKEY); + return; } + /* The fault is fully completed (including releasing mmap lock) */ + if (fault & VM_FAULT_COMPLETED) + return; + /* - * Major/minor page fault accounting is only done on the - * initial attempt. If we go through a retry, it is extremely - * likely that the page will be found in page cache at that point. + * If we need to retry the mmap_lock has already been released, + * and if there is a fatal signal pending there is no guarantee + * that we made any progress. Handle this case first. */ - if (flags & FAULT_FLAG_ALLOW_RETRY) { - if (fault & VM_FAULT_MAJOR) { - tsk->maj_flt++; - perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, - regs, address); - } else { - tsk->min_flt++; - perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, - regs, address); - } - if (fault & VM_FAULT_RETRY) { - /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk - * of starvation. */ - flags &= ~FAULT_FLAG_ALLOW_RETRY; - flags |= FAULT_FLAG_TRIED; - goto retry; + if (unlikely(fault & VM_FAULT_RETRY)) { + flags |= FAULT_FLAG_TRIED; + goto retry; + } + + mmap_read_unlock(mm); +done: + if (likely(!(fault & VM_FAULT_ERROR))) + return; + + if (fatal_signal_pending(current) && !user_mode(regs)) { + kernelmode_fixup_or_oops(regs, error_code, address, + 0, 0, ARCH_DEFAULT_PKEY); + return; + } + + if (fault & VM_FAULT_OOM) { + /* Kernel mode? Handle exceptions or die: */ + if (!user_mode(regs)) { + kernelmode_fixup_or_oops(regs, error_code, address, + SIGSEGV, SEGV_MAPERR, + ARCH_DEFAULT_PKEY); + return; } + + /* + * We ran out of memory, call the OOM killer, and return the + * userspace (which will retry the fault, or kill us if we got + * oom-killed): + */ + pagefault_out_of_memory(); + } else { + if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| + VM_FAULT_HWPOISON_LARGE)) + do_sigbus(regs, error_code, address, fault); + else if (fault & VM_FAULT_SIGSEGV) + bad_area_nosemaphore(regs, error_code, address); + else + BUG(); } +} +NOKPROBE_SYMBOL(do_user_addr_fault); + +static __always_inline void +trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code, + unsigned long address) +{ + if (user_mode(regs)) + trace_page_fault_user(address, regs, error_code); + else + trace_page_fault_kernel(address, regs, error_code); +} - check_v8086_mode(regs, address, tsk); +static __always_inline void +handle_page_fault(struct pt_regs *regs, unsigned long error_code, + unsigned long address) +{ + trace_page_fault_entries(regs, error_code, address); + + if (unlikely(kmmio_fault(regs, address))) + return; - up_read(&mm->mmap_sem); + /* Was the fault on kernel-controlled part of the address space? */ + if (unlikely(fault_in_kernel_space(address))) { + do_kern_addr_fault(regs, error_code, address); + } else { + do_user_addr_fault(regs, error_code, address); + /* + * User address page fault handling might have reenabled + * interrupts. Fixing up all potential exit points of + * do_user_addr_fault() and its leaf functions is just not + * doable w/o creating an unholy mess or turning the code + * upside down. + */ + local_irq_disable(); + } } -dotraplinkage void __kprobes -do_page_fault(struct pt_regs *regs, unsigned long error_code) +DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault) { - enum ctx_state prev_state; + irqentry_state_t state; + unsigned long address; + + address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2(); + + /* + * KVM uses #PF vector to deliver 'page not present' events to guests + * (asynchronous page fault mechanism). The event happens when a + * userspace task is trying to access some valid (from guest's point of + * view) memory which is not currently mapped by the host (e.g. the + * memory is swapped out). Note, the corresponding "page ready" event + * which is injected when the memory becomes available, is delivered via + * an interrupt mechanism and not a #PF exception + * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()). + * + * We are relying on the interrupted context being sane (valid RSP, + * relevant locks not held, etc.), which is fine as long as the + * interrupted context had IF=1. We are also relying on the KVM + * async pf type field and CR2 being read consistently instead of + * getting values from real and async page faults mixed up. + * + * Fingers crossed. + * + * The async #PF handling code takes care of idtentry handling + * itself. + */ + if (kvm_handle_async_pf(regs, (u32)address)) + return; + + /* + * Entry handling for valid #PF from kernel mode is slightly + * different: RCU is already watching and ct_irq_enter() must not + * be invoked because a kernel fault on a user space address might + * sleep. + * + * In case the fault hit a RCU idle region the conditional entry + * code reenabled RCU to avoid subsequent wreckage which helps + * debuggability. + */ + state = irqentry_enter(regs); + + instrumentation_begin(); + handle_page_fault(regs, error_code, address); + instrumentation_end(); - prev_state = exception_enter(); - __do_page_fault(regs, error_code); - exception_exit(prev_state); + irqentry_exit(regs, state); } diff --git a/arch/x86/mm/gup.c b/arch/x86/mm/gup.c deleted file mode 100644 index dd74e46828c0..000000000000 --- a/arch/x86/mm/gup.c +++ /dev/null @@ -1,393 +0,0 @@ -/* - * Lockless get_user_pages_fast for x86 - * - * Copyright (C) 2008 Nick Piggin - * Copyright (C) 2008 Novell Inc. - */ -#include <linux/sched.h> -#include <linux/mm.h> -#include <linux/vmstat.h> -#include <linux/highmem.h> -#include <linux/swap.h> - -#include <asm/pgtable.h> - -static inline pte_t gup_get_pte(pte_t *ptep) -{ -#ifndef CONFIG_X86_PAE - return ACCESS_ONCE(*ptep); -#else - /* - * With get_user_pages_fast, we walk down the pagetables without taking - * any locks. For this we would like to load the pointers atomically, - * but that is not possible (without expensive cmpxchg8b) on PAE. What - * we do have is the guarantee that a pte will only either go from not - * present to present, or present to not present or both -- it will not - * switch to a completely different present page without a TLB flush in - * between; something that we are blocking by holding interrupts off. - * - * Setting ptes from not present to present goes: - * ptep->pte_high = h; - * smp_wmb(); - * ptep->pte_low = l; - * - * And present to not present goes: - * ptep->pte_low = 0; - * smp_wmb(); - * ptep->pte_high = 0; - * - * We must ensure here that the load of pte_low sees l iff pte_high - * sees h. We load pte_high *after* loading pte_low, which ensures we - * don't see an older value of pte_high. *Then* we recheck pte_low, - * which ensures that we haven't picked up a changed pte high. We might - * have got rubbish values from pte_low and pte_high, but we are - * guaranteed that pte_low will not have the present bit set *unless* - * it is 'l'. And get_user_pages_fast only operates on present ptes, so - * we're safe. - * - * gup_get_pte should not be used or copied outside gup.c without being - * very careful -- it does not atomically load the pte or anything that - * is likely to be useful for you. - */ - pte_t pte; - -retry: - pte.pte_low = ptep->pte_low; - smp_rmb(); - pte.pte_high = ptep->pte_high; - smp_rmb(); - if (unlikely(pte.pte_low != ptep->pte_low)) - goto retry; - - return pte; -#endif -} - -/* - * The performance critical leaf functions are made noinline otherwise gcc - * inlines everything into a single function which results in too much - * register pressure. - */ -static noinline int gup_pte_range(pmd_t pmd, unsigned long addr, - unsigned long end, int write, struct page **pages, int *nr) -{ - unsigned long mask; - pte_t *ptep; - - mask = _PAGE_PRESENT|_PAGE_USER; - if (write) - mask |= _PAGE_RW; - - ptep = pte_offset_map(&pmd, addr); - do { - pte_t pte = gup_get_pte(ptep); - struct page *page; - - if ((pte_flags(pte) & (mask | _PAGE_SPECIAL)) != mask) { - pte_unmap(ptep); - return 0; - } - VM_BUG_ON(!pfn_valid(pte_pfn(pte))); - page = pte_page(pte); - get_page(page); - SetPageReferenced(page); - pages[*nr] = page; - (*nr)++; - - } while (ptep++, addr += PAGE_SIZE, addr != end); - pte_unmap(ptep - 1); - - return 1; -} - -static inline void get_head_page_multiple(struct page *page, int nr) -{ - VM_BUG_ON(page != compound_head(page)); - VM_BUG_ON(page_count(page) == 0); - atomic_add(nr, &page->_count); - SetPageReferenced(page); -} - -static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr, - unsigned long end, int write, struct page **pages, int *nr) -{ - unsigned long mask; - pte_t pte = *(pte_t *)&pmd; - struct page *head, *page; - int refs; - - mask = _PAGE_PRESENT|_PAGE_USER; - if (write) - mask |= _PAGE_RW; - if ((pte_flags(pte) & mask) != mask) - return 0; - /* hugepages are never "special" */ - VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL); - VM_BUG_ON(!pfn_valid(pte_pfn(pte))); - - refs = 0; - head = pte_page(pte); - page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT); - do { - VM_BUG_ON(compound_head(page) != head); - pages[*nr] = page; - if (PageTail(page)) - get_huge_page_tail(page); - (*nr)++; - page++; - refs++; - } while (addr += PAGE_SIZE, addr != end); - get_head_page_multiple(head, refs); - - return 1; -} - -static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, - int write, struct page **pages, int *nr) -{ - unsigned long next; - pmd_t *pmdp; - - pmdp = pmd_offset(&pud, addr); - do { - pmd_t pmd = *pmdp; - - next = pmd_addr_end(addr, end); - /* - * The pmd_trans_splitting() check below explains why - * pmdp_splitting_flush has to flush the tlb, to stop - * this gup-fast code from running while we set the - * splitting bit in the pmd. Returning zero will take - * the slow path that will call wait_split_huge_page() - * if the pmd is still in splitting state. gup-fast - * can't because it has irq disabled and - * wait_split_huge_page() would never return as the - * tlb flush IPI wouldn't run. - */ - if (pmd_none(pmd) || pmd_trans_splitting(pmd)) - return 0; - if (unlikely(pmd_large(pmd))) { - if (!gup_huge_pmd(pmd, addr, next, write, pages, nr)) - return 0; - } else { - if (!gup_pte_range(pmd, addr, next, write, pages, nr)) - return 0; - } - } while (pmdp++, addr = next, addr != end); - - return 1; -} - -static noinline int gup_huge_pud(pud_t pud, unsigned long addr, - unsigned long end, int write, struct page **pages, int *nr) -{ - unsigned long mask; - pte_t pte = *(pte_t *)&pud; - struct page *head, *page; - int refs; - - mask = _PAGE_PRESENT|_PAGE_USER; - if (write) - mask |= _PAGE_RW; - if ((pte_flags(pte) & mask) != mask) - return 0; - /* hugepages are never "special" */ - VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL); - VM_BUG_ON(!pfn_valid(pte_pfn(pte))); - - refs = 0; - head = pte_page(pte); - page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT); - do { - VM_BUG_ON(compound_head(page) != head); - pages[*nr] = page; - if (PageTail(page)) - get_huge_page_tail(page); - (*nr)++; - page++; - refs++; - } while (addr += PAGE_SIZE, addr != end); - get_head_page_multiple(head, refs); - - return 1; -} - -static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end, - int write, struct page **pages, int *nr) -{ - unsigned long next; - pud_t *pudp; - - pudp = pud_offset(&pgd, addr); - do { - pud_t pud = *pudp; - - next = pud_addr_end(addr, end); - if (pud_none(pud)) - return 0; - if (unlikely(pud_large(pud))) { - if (!gup_huge_pud(pud, addr, next, write, pages, nr)) - return 0; - } else { - if (!gup_pmd_range(pud, addr, next, write, pages, nr)) - return 0; - } - } while (pudp++, addr = next, addr != end); - - return 1; -} - -/* - * Like get_user_pages_fast() except its IRQ-safe in that it won't fall - * back to the regular GUP. - */ -int __get_user_pages_fast(unsigned long start, int nr_pages, int write, - struct page **pages) -{ - struct mm_struct *mm = current->mm; - unsigned long addr, len, end; - unsigned long next; - unsigned long flags; - pgd_t *pgdp; - int nr = 0; - - start &= PAGE_MASK; - addr = start; - len = (unsigned long) nr_pages << PAGE_SHIFT; - end = start + len; - if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, - (void __user *)start, len))) - return 0; - - /* - * XXX: batch / limit 'nr', to avoid large irq off latency - * needs some instrumenting to determine the common sizes used by - * important workloads (eg. DB2), and whether limiting the batch size - * will decrease performance. - * - * It seems like we're in the clear for the moment. Direct-IO is - * the main guy that batches up lots of get_user_pages, and even - * they are limited to 64-at-a-time which is not so many. - */ - /* - * This doesn't prevent pagetable teardown, but does prevent - * the pagetables and pages from being freed on x86. - * - * So long as we atomically load page table pointers versus teardown - * (which we do on x86, with the above PAE exception), we can follow the - * address down to the the page and take a ref on it. - */ - local_irq_save(flags); - pgdp = pgd_offset(mm, addr); - do { - pgd_t pgd = *pgdp; - - next = pgd_addr_end(addr, end); - if (pgd_none(pgd)) - break; - if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) - break; - } while (pgdp++, addr = next, addr != end); - local_irq_restore(flags); - - return nr; -} - -/** - * get_user_pages_fast() - pin user pages in memory - * @start: starting user address - * @nr_pages: number of pages from start to pin - * @write: whether pages will be written to - * @pages: array that receives pointers to the pages pinned. - * Should be at least nr_pages long. - * - * Attempt to pin user pages in memory without taking mm->mmap_sem. - * If not successful, it will fall back to taking the lock and - * calling get_user_pages(). - * - * Returns number of pages pinned. This may be fewer than the number - * requested. If nr_pages is 0 or negative, returns 0. If no pages - * were pinned, returns -errno. - */ -int get_user_pages_fast(unsigned long start, int nr_pages, int write, - struct page **pages) -{ - struct mm_struct *mm = current->mm; - unsigned long addr, len, end; - unsigned long next; - pgd_t *pgdp; - int nr = 0; - - start &= PAGE_MASK; - addr = start; - len = (unsigned long) nr_pages << PAGE_SHIFT; - - end = start + len; - if (end < start) - goto slow_irqon; - -#ifdef CONFIG_X86_64 - if (end >> __VIRTUAL_MASK_SHIFT) - goto slow_irqon; -#endif - - /* - * XXX: batch / limit 'nr', to avoid large irq off latency - * needs some instrumenting to determine the common sizes used by - * important workloads (eg. DB2), and whether limiting the batch size - * will decrease performance. - * - * It seems like we're in the clear for the moment. Direct-IO is - * the main guy that batches up lots of get_user_pages, and even - * they are limited to 64-at-a-time which is not so many. - */ - /* - * This doesn't prevent pagetable teardown, but does prevent - * the pagetables and pages from being freed on x86. - * - * So long as we atomically load page table pointers versus teardown - * (which we do on x86, with the above PAE exception), we can follow the - * address down to the the page and take a ref on it. - */ - local_irq_disable(); - pgdp = pgd_offset(mm, addr); - do { - pgd_t pgd = *pgdp; - - next = pgd_addr_end(addr, end); - if (pgd_none(pgd)) - goto slow; - if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) - goto slow; - } while (pgdp++, addr = next, addr != end); - local_irq_enable(); - - VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT); - return nr; - - { - int ret; - -slow: - local_irq_enable(); -slow_irqon: - /* Try to get the remaining pages with get_user_pages */ - start += nr << PAGE_SHIFT; - pages += nr; - - down_read(&mm->mmap_sem); - ret = get_user_pages(current, mm, start, - (end - start) >> PAGE_SHIFT, write, 0, pages, NULL); - up_read(&mm->mmap_sem); - - /* Have to be a bit careful with return values */ - if (nr > 0) { - if (ret < 0) - ret = nr; - else - ret += nr; - } - - return ret; - } -} diff --git a/arch/x86/mm/highmem_32.c b/arch/x86/mm/highmem_32.c deleted file mode 100644 index 4500142bc4aa..000000000000 --- a/arch/x86/mm/highmem_32.c +++ /dev/null @@ -1,146 +0,0 @@ -#include <linux/highmem.h> -#include <linux/module.h> -#include <linux/swap.h> /* for totalram_pages */ -#include <linux/bootmem.h> - -void *kmap(struct page *page) -{ - might_sleep(); - if (!PageHighMem(page)) - return page_address(page); - return kmap_high(page); -} -EXPORT_SYMBOL(kmap); - -void kunmap(struct page *page) -{ - if (in_interrupt()) - BUG(); - if (!PageHighMem(page)) - return; - kunmap_high(page); -} -EXPORT_SYMBOL(kunmap); - -/* - * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap because - * no global lock is needed and because the kmap code must perform a global TLB - * invalidation when the kmap pool wraps. - * - * However when holding an atomic kmap it is not legal to sleep, so atomic - * kmaps are appropriate for short, tight code paths only. - */ -void *kmap_atomic_prot(struct page *page, pgprot_t prot) -{ - unsigned long vaddr; - int idx, type; - - /* even !CONFIG_PREEMPT needs this, for in_atomic in do_page_fault */ - pagefault_disable(); - - if (!PageHighMem(page)) - return page_address(page); - - type = kmap_atomic_idx_push(); - idx = type + KM_TYPE_NR*smp_processor_id(); - vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); - BUG_ON(!pte_none(*(kmap_pte-idx))); - set_pte(kmap_pte-idx, mk_pte(page, prot)); - arch_flush_lazy_mmu_mode(); - - return (void *)vaddr; -} -EXPORT_SYMBOL(kmap_atomic_prot); - -void *kmap_atomic(struct page *page) -{ - return kmap_atomic_prot(page, kmap_prot); -} -EXPORT_SYMBOL(kmap_atomic); - -/* - * This is the same as kmap_atomic() but can map memory that doesn't - * have a struct page associated with it. - */ -void *kmap_atomic_pfn(unsigned long pfn) -{ - return kmap_atomic_prot_pfn(pfn, kmap_prot); -} -EXPORT_SYMBOL_GPL(kmap_atomic_pfn); - -void __kunmap_atomic(void *kvaddr) -{ - unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK; - - if (vaddr >= __fix_to_virt(FIX_KMAP_END) && - vaddr <= __fix_to_virt(FIX_KMAP_BEGIN)) { - int idx, type; - - type = kmap_atomic_idx(); - idx = type + KM_TYPE_NR * smp_processor_id(); - -#ifdef CONFIG_DEBUG_HIGHMEM - WARN_ON_ONCE(vaddr != __fix_to_virt(FIX_KMAP_BEGIN + idx)); -#endif - /* - * Force other mappings to Oops if they'll try to access this - * pte without first remap it. Keeping stale mappings around - * is a bad idea also, in case the page changes cacheability - * attributes or becomes a protected page in a hypervisor. - */ - kpte_clear_flush(kmap_pte-idx, vaddr); - kmap_atomic_idx_pop(); - arch_flush_lazy_mmu_mode(); - } -#ifdef CONFIG_DEBUG_HIGHMEM - else { - BUG_ON(vaddr < PAGE_OFFSET); - BUG_ON(vaddr >= (unsigned long)high_memory); - } -#endif - - pagefault_enable(); -} -EXPORT_SYMBOL(__kunmap_atomic); - -struct page *kmap_atomic_to_page(void *ptr) -{ - unsigned long idx, vaddr = (unsigned long)ptr; - pte_t *pte; - - if (vaddr < FIXADDR_START) - return virt_to_page(ptr); - - idx = virt_to_fix(vaddr); - pte = kmap_pte - (idx - FIX_KMAP_BEGIN); - return pte_page(*pte); -} -EXPORT_SYMBOL(kmap_atomic_to_page); - -void __init set_highmem_pages_init(void) -{ - struct zone *zone; - int nid; - - /* - * Explicitly reset zone->managed_pages because set_highmem_pages_init() - * is invoked before free_all_bootmem() - */ - reset_all_zones_managed_pages(); - for_each_zone(zone) { - unsigned long zone_start_pfn, zone_end_pfn; - - if (!is_highmem(zone)) - continue; - - zone_start_pfn = zone->zone_start_pfn; - zone_end_pfn = zone_start_pfn + zone->spanned_pages; - - nid = zone_to_nid(zone); - printk(KERN_INFO "Initializing %s for node %d (%08lx:%08lx)\n", - zone->name, nid, zone_start_pfn, zone_end_pfn); - - add_highpages_with_active_regions(nid, zone_start_pfn, - zone_end_pfn); - } -} diff --git a/arch/x86/mm/hugetlbpage.c b/arch/x86/mm/hugetlbpage.c index 7e73e8c69096..58f7f2bd535d 100644 --- a/arch/x86/mm/hugetlbpage.c +++ b/arch/x86/mm/hugetlbpage.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0 /* * IA-32 Huge TLB Page Support for Kernel. * @@ -7,180 +8,37 @@ #include <linux/init.h> #include <linux/fs.h> #include <linux/mm.h> +#include <linux/sched/mm.h> #include <linux/hugetlb.h> #include <linux/pagemap.h> #include <linux/err.h> #include <linux/sysctl.h> +#include <linux/compat.h> #include <asm/mman.h> #include <asm/tlb.h> #include <asm/tlbflush.h> -#include <asm/pgalloc.h> +#include <asm/elf.h> -#if 0 /* This is just for testing */ -struct page * -follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) -{ - unsigned long start = address; - int length = 1; - int nr; - struct page *page; - struct vm_area_struct *vma; - - vma = find_vma(mm, addr); - if (!vma || !is_vm_hugetlb_page(vma)) - return ERR_PTR(-EINVAL); - - pte = huge_pte_offset(mm, address); - - /* hugetlb should be locked, and hence, prefaulted */ - WARN_ON(!pte || pte_none(*pte)); - - page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)]; - - WARN_ON(!PageHead(page)); - - return page; -} - -int pmd_huge(pmd_t pmd) -{ - return 0; -} - -int pud_huge(pud_t pud) -{ - return 0; -} - -struct page * -follow_huge_pmd(struct mm_struct *mm, unsigned long address, - pmd_t *pmd, int write) -{ - return NULL; -} - -#else - -struct page * -follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) -{ - return ERR_PTR(-EINVAL); -} - -int pmd_huge(pmd_t pmd) -{ - return !!(pmd_val(pmd) & _PAGE_PSE); -} - -int pud_huge(pud_t pud) -{ - return !!(pud_val(pud) & _PAGE_PSE); -} - -#endif - -/* x86_64 also uses this file */ - -#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA -static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file, - unsigned long addr, unsigned long len, - unsigned long pgoff, unsigned long flags) -{ - struct hstate *h = hstate_file(file); - struct vm_unmapped_area_info info; - - info.flags = 0; - info.length = len; - info.low_limit = TASK_UNMAPPED_BASE; - info.high_limit = TASK_SIZE; - info.align_mask = PAGE_MASK & ~huge_page_mask(h); - info.align_offset = 0; - return vm_unmapped_area(&info); -} - -static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file, - unsigned long addr0, unsigned long len, - unsigned long pgoff, unsigned long flags) -{ - struct hstate *h = hstate_file(file); - struct vm_unmapped_area_info info; - unsigned long addr; - info.flags = VM_UNMAPPED_AREA_TOPDOWN; - info.length = len; - info.low_limit = PAGE_SIZE; - info.high_limit = current->mm->mmap_base; - info.align_mask = PAGE_MASK & ~huge_page_mask(h); - info.align_offset = 0; - addr = vm_unmapped_area(&info); - - /* - * A failed mmap() very likely causes application failure, - * so fall back to the bottom-up function here. This scenario - * can happen with large stack limits and large mmap() - * allocations. - */ - if (addr & ~PAGE_MASK) { - VM_BUG_ON(addr != -ENOMEM); - info.flags = 0; - info.low_limit = TASK_UNMAPPED_BASE; - info.high_limit = TASK_SIZE; - addr = vm_unmapped_area(&info); - } - - return addr; -} - -unsigned long -hugetlb_get_unmapped_area(struct file *file, unsigned long addr, - unsigned long len, unsigned long pgoff, unsigned long flags) +#ifdef CONFIG_X86_64 +bool __init arch_hugetlb_valid_size(unsigned long size) { - struct hstate *h = hstate_file(file); - struct mm_struct *mm = current->mm; - struct vm_area_struct *vma; - - if (len & ~huge_page_mask(h)) - return -EINVAL; - if (len > TASK_SIZE) - return -ENOMEM; - - if (flags & MAP_FIXED) { - if (prepare_hugepage_range(file, addr, len)) - return -EINVAL; - return addr; - } - - if (addr) { - addr = ALIGN(addr, huge_page_size(h)); - vma = find_vma(mm, addr); - if (TASK_SIZE - len >= addr && - (!vma || addr + len <= vma->vm_start)) - return addr; - } - if (mm->get_unmapped_area == arch_get_unmapped_area) - return hugetlb_get_unmapped_area_bottomup(file, addr, len, - pgoff, flags); + if (size == PMD_SIZE) + return true; + else if (size == PUD_SIZE && boot_cpu_has(X86_FEATURE_GBPAGES)) + return true; else - return hugetlb_get_unmapped_area_topdown(file, addr, len, - pgoff, flags); + return false; } -#endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/ - -#ifdef CONFIG_X86_64 -static __init int setup_hugepagesz(char *opt) +#ifdef CONFIG_CONTIG_ALLOC +static __init int gigantic_pages_init(void) { - unsigned long ps = memparse(opt, &opt); - if (ps == PMD_SIZE) { - hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT); - } else if (ps == PUD_SIZE && cpu_has_gbpages) { + /* With compaction or CMA we can allocate gigantic pages at runtime */ + if (boot_cpu_has(X86_FEATURE_GBPAGES)) hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT); - } else { - printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n", - ps >> 20); - return 0; - } - return 1; + return 0; } -__setup("hugepagesz=", setup_hugepagesz); +arch_initcall(gigantic_pages_init); +#endif #endif diff --git a/arch/x86/mm/ident_map.c b/arch/x86/mm/ident_map.c new file mode 100644 index 000000000000..bd5d101c5c37 --- /dev/null +++ b/arch/x86/mm/ident_map.c @@ -0,0 +1,225 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Helper routines for building identity mapping page tables. This is + * included by both the compressed kernel and the regular kernel. + */ + +static void free_pte(struct x86_mapping_info *info, pmd_t *pmd) +{ + pte_t *pte = pte_offset_kernel(pmd, 0); + + info->free_pgt_page(pte, info->context); +} + +static void free_pmd(struct x86_mapping_info *info, pud_t *pud) +{ + pmd_t *pmd = pmd_offset(pud, 0); + int i; + + for (i = 0; i < PTRS_PER_PMD; i++) { + if (!pmd_present(pmd[i])) + continue; + + if (pmd_leaf(pmd[i])) + continue; + + free_pte(info, &pmd[i]); + } + + info->free_pgt_page(pmd, info->context); +} + +static void free_pud(struct x86_mapping_info *info, p4d_t *p4d) +{ + pud_t *pud = pud_offset(p4d, 0); + int i; + + for (i = 0; i < PTRS_PER_PUD; i++) { + if (!pud_present(pud[i])) + continue; + + if (pud_leaf(pud[i])) + continue; + + free_pmd(info, &pud[i]); + } + + info->free_pgt_page(pud, info->context); +} + +static void free_p4d(struct x86_mapping_info *info, pgd_t *pgd) +{ + p4d_t *p4d = p4d_offset(pgd, 0); + int i; + + for (i = 0; i < PTRS_PER_P4D; i++) { + if (!p4d_present(p4d[i])) + continue; + + free_pud(info, &p4d[i]); + } + + if (pgtable_l5_enabled()) + info->free_pgt_page(p4d, info->context); +} + +void kernel_ident_mapping_free(struct x86_mapping_info *info, pgd_t *pgd) +{ + int i; + + for (i = 0; i < PTRS_PER_PGD; i++) { + if (!pgd_present(pgd[i])) + continue; + + free_p4d(info, &pgd[i]); + } + + info->free_pgt_page(pgd, info->context); +} + +static void ident_pmd_init(struct x86_mapping_info *info, pmd_t *pmd_page, + unsigned long addr, unsigned long end) +{ + addr &= PMD_MASK; + for (; addr < end; addr += PMD_SIZE) { + pmd_t *pmd = pmd_page + pmd_index(addr); + + if (pmd_present(*pmd)) + continue; + + set_pmd(pmd, __pmd((addr - info->offset) | info->page_flag)); + } +} + +static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page, + unsigned long addr, unsigned long end) +{ + unsigned long next; + + for (; addr < end; addr = next) { + pud_t *pud = pud_page + pud_index(addr); + pmd_t *pmd; + bool use_gbpage; + + next = pud_addr_end(addr, end); + + /* if this is already a gbpage, this portion is already mapped */ + if (pud_leaf(*pud)) + continue; + + /* Is using a gbpage allowed? */ + use_gbpage = info->direct_gbpages; + + /* Don't use gbpage if it maps more than the requested region. */ + /* at the begining: */ + use_gbpage &= ((addr & ~PUD_MASK) == 0); + /* ... or at the end: */ + use_gbpage &= ((next & ~PUD_MASK) == 0); + + /* Never overwrite existing mappings */ + use_gbpage &= !pud_present(*pud); + + if (use_gbpage) { + pud_t pudval; + + pudval = __pud((addr - info->offset) | info->page_flag); + set_pud(pud, pudval); + continue; + } + + if (pud_present(*pud)) { + pmd = pmd_offset(pud, 0); + ident_pmd_init(info, pmd, addr, next); + continue; + } + pmd = (pmd_t *)info->alloc_pgt_page(info->context); + if (!pmd) + return -ENOMEM; + ident_pmd_init(info, pmd, addr, next); + set_pud(pud, __pud(__pa(pmd) | info->kernpg_flag)); + } + + return 0; +} + +static int ident_p4d_init(struct x86_mapping_info *info, p4d_t *p4d_page, + unsigned long addr, unsigned long end) +{ + unsigned long next; + int result; + + for (; addr < end; addr = next) { + p4d_t *p4d = p4d_page + p4d_index(addr); + pud_t *pud; + + next = p4d_addr_end(addr, end); + if (p4d_present(*p4d)) { + pud = pud_offset(p4d, 0); + result = ident_pud_init(info, pud, addr, next); + if (result) + return result; + + continue; + } + pud = (pud_t *)info->alloc_pgt_page(info->context); + if (!pud) + return -ENOMEM; + + result = ident_pud_init(info, pud, addr, next); + if (result) + return result; + + set_p4d(p4d, __p4d(__pa(pud) | info->kernpg_flag | _PAGE_NOPTISHADOW)); + } + + return 0; +} + +int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page, + unsigned long pstart, unsigned long pend) +{ + unsigned long addr = pstart + info->offset; + unsigned long end = pend + info->offset; + unsigned long next; + int result; + + /* Set the default pagetable flags if not supplied */ + if (!info->kernpg_flag) + info->kernpg_flag = _KERNPG_TABLE; + + /* Filter out unsupported __PAGE_KERNEL_* bits: */ + info->kernpg_flag &= __default_kernel_pte_mask; + + for (; addr < end; addr = next) { + pgd_t *pgd = pgd_page + pgd_index(addr); + p4d_t *p4d; + + next = pgd_addr_end(addr, end); + if (pgd_present(*pgd)) { + p4d = p4d_offset(pgd, 0); + result = ident_p4d_init(info, p4d, addr, next); + if (result) + return result; + continue; + } + + p4d = (p4d_t *)info->alloc_pgt_page(info->context); + if (!p4d) + return -ENOMEM; + result = ident_p4d_init(info, p4d, addr, next); + if (result) + return result; + if (pgtable_l5_enabled()) { + set_pgd(pgd, __pgd(__pa(p4d) | info->kernpg_flag | _PAGE_NOPTISHADOW)); + } else { + /* + * With p4d folded, pgd is equal to p4d. + * The pgd entry has to point to the pud page table in this case. + */ + pud_t *pud = pud_offset(p4d, 0); + set_pgd(pgd, __pgd(__pa(pud) | info->kernpg_flag | _PAGE_NOPTISHADOW)); + } + } + + return 0; +} diff --git a/arch/x86/mm/init.c b/arch/x86/mm/init.c index 2ec29ac78ae6..8bf6ad4b9400 100644 --- a/arch/x86/mm/init.c +++ b/arch/x86/mm/init.c @@ -3,10 +3,15 @@ #include <linux/ioport.h> #include <linux/swap.h> #include <linux/memblock.h> -#include <linux/bootmem.h> /* for max_low_pfn */ - -#include <asm/cacheflush.h> -#include <asm/e820.h> +#include <linux/swapfile.h> +#include <linux/swapops.h> +#include <linux/kmemleak.h> +#include <linux/sched/task.h> +#include <linux/execmem.h> + +#include <asm/set_memory.h> +#include <asm/cpu_device_id.h> +#include <asm/e820/api.h> #include <asm/init.h> #include <asm/page.h> #include <asm/page_types.h> @@ -16,10 +21,92 @@ #include <asm/tlb.h> #include <asm/proto.h> #include <asm/dma.h> /* for MAX_DMA_PFN */ -#include <asm/microcode.h> +#include <asm/kaslr.h> +#include <asm/hypervisor.h> +#include <asm/cpufeature.h> +#include <asm/pti.h> +#include <asm/text-patching.h> +#include <asm/memtype.h> +#include <asm/paravirt.h> +#include <asm/mmu_context.h> + +/* + * We need to define the tracepoints somewhere, and tlb.c + * is only compiled when SMP=y. + */ +#define CREATE_TRACE_POINTS +#include <trace/events/tlb.h> #include "mm_internal.h" +/* + * Tables translating between page_cache_type_t and pte encoding. + * + * The default values are defined statically as minimal supported mode; + * WC and WT fall back to UC-. pat_init() updates these values to support + * more cache modes, WC and WT, when it is safe to do so. See pat_init() + * for the details. Note, __early_ioremap() used during early boot-time + * takes pgprot_t (pte encoding) and does not use these tables. + * + * Index into __cachemode2pte_tbl[] is the cachemode. + * + * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte + * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. + */ +static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { + [_PAGE_CACHE_MODE_WB ] = 0 | 0 , + [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD, + [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD, + [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD, + [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD, + [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD, +}; + +unsigned long cachemode2protval(enum page_cache_mode pcm) +{ + if (likely(pcm == 0)) + return 0; + return __cachemode2pte_tbl[pcm]; +} +EXPORT_SYMBOL(cachemode2protval); + +static uint8_t __pte2cachemode_tbl[8] = { + [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB, + [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, + [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, + [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC, + [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, + [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, + [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, + [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, +}; + +/* + * Check that the write-protect PAT entry is set for write-protect. + * To do this without making assumptions how PAT has been set up (Xen has + * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache + * mode via the __cachemode2pte_tbl[] into protection bits (those protection + * bits will select a cache mode of WP or better), and then translate the + * protection bits back into the cache mode using __pte2cm_idx() and the + * __pte2cachemode_tbl[] array. This will return the really used cache mode. + */ +bool x86_has_pat_wp(void) +{ + uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP]; + + return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP; +} + +enum page_cache_mode pgprot2cachemode(pgprot_t pgprot) +{ + unsigned long masked; + + masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK; + if (likely(masked == 0)) + return 0; + return __pte2cachemode_tbl[__pte2cm_idx(masked)]; +} + static unsigned long __initdata pgt_buf_start; static unsigned long __initdata pgt_buf_end; static unsigned long __initdata pgt_buf_top; @@ -46,26 +133,28 @@ __ref void *alloc_low_pages(unsigned int num) unsigned int order; order = get_order((unsigned long)num << PAGE_SHIFT); - return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK | - __GFP_ZERO, order); + return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); } if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { - unsigned long ret; - if (min_pfn_mapped >= max_pfn_mapped) - panic("alloc_low_page: ran out of memory"); - ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT, - max_pfn_mapped << PAGE_SHIFT, - PAGE_SIZE * num , PAGE_SIZE); + unsigned long ret = 0; + + if (min_pfn_mapped < max_pfn_mapped) { + ret = memblock_phys_alloc_range( + PAGE_SIZE * num, PAGE_SIZE, + min_pfn_mapped << PAGE_SHIFT, + max_pfn_mapped << PAGE_SHIFT); + } + if (!ret && can_use_brk_pgt) + ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE)); + if (!ret) - panic("alloc_low_page: can not alloc memory"); - memblock_reserve(ret, PAGE_SIZE * num); + panic("alloc_low_pages: can not alloc memory"); + pfn = ret >> PAGE_SHIFT; } else { pfn = pgt_buf_end; pgt_buf_end += num; - printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n", - pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1); } for (i = 0; i < num; i++) { @@ -78,8 +167,23 @@ __ref void *alloc_low_pages(unsigned int num) return __va(pfn << PAGE_SHIFT); } -/* need 4 4k for initial PMD_SIZE, 4k for 0-ISA_END_ADDRESS */ -#define INIT_PGT_BUF_SIZE (5 * PAGE_SIZE) +/* + * By default need to be able to allocate page tables below PGD firstly for + * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping. + * With KASLR memory randomization, depending on the machine e820 memory and the + * PUD alignment, twice that many pages may be needed when KASLR memory + * randomization is enabled. + */ + +#define INIT_PGD_PAGE_TABLES 4 + +#ifndef CONFIG_RANDOMIZE_MEMORY +#define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES) +#else +#define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES) +#endif + +#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE) RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); void __init early_alloc_pgt_buf(void) { @@ -95,21 +199,7 @@ void __init early_alloc_pgt_buf(void) int after_bootmem; -int direct_gbpages -#ifdef CONFIG_DIRECT_GBPAGES - = 1 -#endif -; - -static void __init init_gbpages(void) -{ -#ifdef CONFIG_X86_64 - if (direct_gbpages && cpu_has_gbpages) - printk(KERN_INFO "Using GB pages for direct mapping\n"); - else - direct_gbpages = 0; -#endif -} +early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); struct map_range { unsigned long start; @@ -119,31 +209,113 @@ struct map_range { static int page_size_mask; -static void __init probe_page_size_mask(void) +/* + * Save some of cr4 feature set we're using (e.g. Pentium 4MB + * enable and PPro Global page enable), so that any CPU's that boot + * up after us can get the correct flags. Invoked on the boot CPU. + */ +static inline void cr4_set_bits_and_update_boot(unsigned long mask) { - init_gbpages(); + mmu_cr4_features |= mask; + if (trampoline_cr4_features) + *trampoline_cr4_features = mmu_cr4_features; + cr4_set_bits(mask); +} -#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK) +static void __init probe_page_size_mask(void) +{ /* - * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages. + * For pagealloc debugging, identity mapping will use small pages. * This will simplify cpa(), which otherwise needs to support splitting * large pages into small in interrupt context, etc. */ - if (direct_gbpages) - page_size_mask |= 1 << PG_LEVEL_1G; - if (cpu_has_pse) + if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled()) page_size_mask |= 1 << PG_LEVEL_2M; -#endif + else + direct_gbpages = 0; /* Enable PSE if available */ - if (cpu_has_pse) - set_in_cr4(X86_CR4_PSE); + if (boot_cpu_has(X86_FEATURE_PSE)) + cr4_set_bits_and_update_boot(X86_CR4_PSE); /* Enable PGE if available */ - if (cpu_has_pge) { - set_in_cr4(X86_CR4_PGE); + __supported_pte_mask &= ~_PAGE_GLOBAL; + if (boot_cpu_has(X86_FEATURE_PGE)) { + cr4_set_bits_and_update_boot(X86_CR4_PGE); __supported_pte_mask |= _PAGE_GLOBAL; } + + /* By the default is everything supported: */ + __default_kernel_pte_mask = __supported_pte_mask; + /* Except when with PTI where the kernel is mostly non-Global: */ + if (cpu_feature_enabled(X86_FEATURE_PTI)) + __default_kernel_pte_mask &= ~_PAGE_GLOBAL; + + /* Enable 1 GB linear kernel mappings if available: */ + if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { + printk(KERN_INFO "Using GB pages for direct mapping\n"); + page_size_mask |= 1 << PG_LEVEL_1G; + } else { + direct_gbpages = 0; + } +} + +/* + * INVLPG may not properly flush Global entries on + * these CPUs. New microcode fixes the issue. + */ +static const struct x86_cpu_id invlpg_miss_ids[] = { + X86_MATCH_VFM(INTEL_ALDERLAKE, 0x2e), + X86_MATCH_VFM(INTEL_ALDERLAKE_L, 0x42c), + X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0x11), + X86_MATCH_VFM(INTEL_RAPTORLAKE, 0x118), + X86_MATCH_VFM(INTEL_RAPTORLAKE_P, 0x4117), + X86_MATCH_VFM(INTEL_RAPTORLAKE_S, 0x2e), + {} +}; + +static void setup_pcid(void) +{ + const struct x86_cpu_id *invlpg_miss_match; + + if (!IS_ENABLED(CONFIG_X86_64)) + return; + + if (!boot_cpu_has(X86_FEATURE_PCID)) + return; + + invlpg_miss_match = x86_match_cpu(invlpg_miss_ids); + + if (invlpg_miss_match && + boot_cpu_data.microcode < invlpg_miss_match->driver_data) { + pr_info("Incomplete global flushes, disabling PCID"); + setup_clear_cpu_cap(X86_FEATURE_PCID); + return; + } + + if (boot_cpu_has(X86_FEATURE_PGE)) { + /* + * This can't be cr4_set_bits_and_update_boot() -- the + * trampoline code can't handle CR4.PCIDE and it wouldn't + * do any good anyway. Despite the name, + * cr4_set_bits_and_update_boot() doesn't actually cause + * the bits in question to remain set all the way through + * the secondary boot asm. + * + * Instead, we brute-force it and set CR4.PCIDE manually in + * start_secondary(). + */ + cr4_set_bits(X86_CR4_PCIDE); + } else { + /* + * flush_tlb_all(), as currently implemented, won't work if + * PCID is on but PGE is not. Since that combination + * doesn't exist on real hardware, there's no reason to try + * to fully support it, but it's polite to avoid corrupting + * data if we're on an improperly configured VM. + */ + setup_clear_cpu_cap(X86_FEATURE_PCID); + } } #ifdef CONFIG_X86_32 @@ -172,7 +344,7 @@ static int __meminit save_mr(struct map_range *mr, int nr_range, * adjust the page_size_mask for small range to go with * big page size instead small one if nearby are ram too. */ -static void __init_refok adjust_range_page_size_mask(struct map_range *mr, +static void __ref adjust_range_page_size_mask(struct map_range *mr, int nr_range) { int i; @@ -202,6 +374,31 @@ static void __init_refok adjust_range_page_size_mask(struct map_range *mr, } } +static const char *page_size_string(struct map_range *mr) +{ + static const char str_1g[] = "1G"; + static const char str_2m[] = "2M"; + static const char str_4m[] = "4M"; + static const char str_4k[] = "4k"; + + if (mr->page_size_mask & (1<<PG_LEVEL_1G)) + return str_1g; + /* + * 32-bit without PAE has a 4M large page size. + * PG_LEVEL_2M is misnamed, but we can at least + * print out the right size in the string. + */ + if (IS_ENABLED(CONFIG_X86_32) && + !IS_ENABLED(CONFIG_X86_PAE) && + mr->page_size_mask & (1<<PG_LEVEL_2M)) + return str_4m; + + if (mr->page_size_mask & (1<<PG_LEVEL_2M)) + return str_2m; + + return str_4k; +} + static int __meminit split_mem_range(struct map_range *mr, int nr_range, unsigned long start, unsigned long end) @@ -295,22 +492,21 @@ static int __meminit split_mem_range(struct map_range *mr, int nr_range, } for (i = 0; i < nr_range; i++) - printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n", + pr_debug(" [mem %#010lx-%#010lx] page %s\n", mr[i].start, mr[i].end - 1, - (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":( - (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k")); + page_size_string(&mr[i])); return nr_range; } -struct range pfn_mapped[E820_X_MAX]; +struct range pfn_mapped[E820_MAX_ENTRIES]; int nr_pfn_mapped; static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) { - nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX, + nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES, nr_pfn_mapped, start_pfn, end_pfn); - nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX); + nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES); max_pfn_mapped = max(max_pfn_mapped, end_pfn); @@ -336,14 +532,14 @@ bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) * This runs before bootmem is initialized and gets pages directly from * the physical memory. To access them they are temporarily mapped. */ -unsigned long __init_refok init_memory_mapping(unsigned long start, - unsigned long end) +unsigned long __ref init_memory_mapping(unsigned long start, + unsigned long end, pgprot_t prot) { struct map_range mr[NR_RANGE_MR]; unsigned long ret = 0; int nr_range, i; - pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n", + pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n", start, end - 1); memset(mr, 0, sizeof(mr)); @@ -351,7 +547,8 @@ unsigned long __init_refok init_memory_mapping(unsigned long start, for (i = 0; i < nr_range; i++) ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, - mr[i].page_size_mask); + mr[i].page_size_mask, + prot); add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); @@ -360,7 +557,7 @@ unsigned long __init_refok init_memory_mapping(unsigned long start, /* * We need to iterate through the E820 memory map and create direct mappings - * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply + * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply * create direct mappings for all pfns from [0 to max_low_pfn) and * [4GB to max_pfn) because of possible memory holes in high addresses * that cannot be marked as UC by fixed/variable range MTRRs. @@ -391,7 +588,7 @@ static unsigned long __init init_range_memory_mapping( */ can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= min(end, (u64)pgt_buf_top<<PAGE_SHIFT); - init_memory_mapping(start, end); + init_memory_mapping(start, end, PAGE_KERNEL); mapped_ram_size += end - start; can_use_brk_pgt = true; } @@ -399,36 +596,66 @@ static unsigned long __init init_range_memory_mapping( return mapped_ram_size; } -/* (PUD_SHIFT-PMD_SHIFT)/2 */ -#define STEP_SIZE_SHIFT 5 -void __init init_mem_mapping(void) +static unsigned long __init get_new_step_size(unsigned long step_size) { - unsigned long end, real_end, start, last_start; + /* + * Initial mapped size is PMD_SIZE (2M). + * We can not set step_size to be PUD_SIZE (1G) yet. + * In worse case, when we cross the 1G boundary, and + * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k) + * to map 1G range with PTE. Hence we use one less than the + * difference of page table level shifts. + * + * Don't need to worry about overflow in the top-down case, on 32bit, + * when step_size is 0, round_down() returns 0 for start, and that + * turns it into 0x100000000ULL. + * In the bottom-up case, round_up(x, 0) returns 0 though too, which + * needs to be taken into consideration by the code below. + */ + return step_size << (PMD_SHIFT - PAGE_SHIFT - 1); +} + +/** + * memory_map_top_down - Map [map_start, map_end) top down + * @map_start: start address of the target memory range + * @map_end: end address of the target memory range + * + * This function will setup direct mapping for memory range + * [map_start, map_end) in top-down. That said, the page tables + * will be allocated at the end of the memory, and we map the + * memory in top-down. + */ +static void __init memory_map_top_down(unsigned long map_start, + unsigned long map_end) +{ + unsigned long real_end, last_start; unsigned long step_size; unsigned long addr; unsigned long mapped_ram_size = 0; - unsigned long new_mapped_ram_size; - - probe_page_size_mask(); - -#ifdef CONFIG_X86_64 - end = max_pfn << PAGE_SHIFT; -#else - end = max_low_pfn << PAGE_SHIFT; -#endif - - /* the ISA range is always mapped regardless of memory holes */ - init_memory_mapping(0, ISA_END_ADDRESS); - /* xen has big range in reserved near end of ram, skip it at first.*/ - addr = memblock_find_in_range(ISA_END_ADDRESS, end, PMD_SIZE, PMD_SIZE); - real_end = addr + PMD_SIZE; + /* + * Systems that have many reserved areas near top of the memory, + * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will + * require lots of 4K mappings which may exhaust pgt_buf. + * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure + * there is enough mapped memory that can be allocated from + * memblock. + */ + addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start, + map_end); + if (!addr) { + pr_warn("Failed to release memory for alloc_low_pages()"); + real_end = max(map_start, ALIGN_DOWN(map_end, PMD_SIZE)); + } else { + memblock_phys_free(addr, PMD_SIZE); + real_end = addr + PMD_SIZE; + } /* step_size need to be small so pgt_buf from BRK could cover it */ step_size = PMD_SIZE; max_pfn_mapped = 0; /* will get exact value next */ min_pfn_mapped = real_end >> PAGE_SHIFT; - last_start = start = real_end; + last_start = real_end; /* * We start from the top (end of memory) and go to the bottom. @@ -436,29 +663,142 @@ void __init init_mem_mapping(void) * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages * for page table. */ - while (last_start > ISA_END_ADDRESS) { + while (last_start > map_start) { + unsigned long start; + if (last_start > step_size) { start = round_down(last_start - 1, step_size); - if (start < ISA_END_ADDRESS) - start = ISA_END_ADDRESS; + if (start < map_start) + start = map_start; } else - start = ISA_END_ADDRESS; - new_mapped_ram_size = init_range_memory_mapping(start, + start = map_start; + mapped_ram_size += init_range_memory_mapping(start, last_start); last_start = start; min_pfn_mapped = last_start >> PAGE_SHIFT; - /* only increase step_size after big range get mapped */ - if (new_mapped_ram_size > mapped_ram_size) - step_size <<= STEP_SIZE_SHIFT; - mapped_ram_size += new_mapped_ram_size; + if (mapped_ram_size >= step_size) + step_size = get_new_step_size(step_size); } - if (real_end < end) - init_range_memory_mapping(real_end, end); + if (real_end < map_end) + init_range_memory_mapping(real_end, map_end); +} + +/** + * memory_map_bottom_up - Map [map_start, map_end) bottom up + * @map_start: start address of the target memory range + * @map_end: end address of the target memory range + * + * This function will setup direct mapping for memory range + * [map_start, map_end) in bottom-up. Since we have limited the + * bottom-up allocation above the kernel, the page tables will + * be allocated just above the kernel and we map the memory + * in [map_start, map_end) in bottom-up. + */ +static void __init memory_map_bottom_up(unsigned long map_start, + unsigned long map_end) +{ + unsigned long next, start; + unsigned long mapped_ram_size = 0; + /* step_size need to be small so pgt_buf from BRK could cover it */ + unsigned long step_size = PMD_SIZE; + + start = map_start; + min_pfn_mapped = start >> PAGE_SHIFT; + + /* + * We start from the bottom (@map_start) and go to the top (@map_end). + * The memblock_find_in_range() gets us a block of RAM from the + * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages + * for page table. + */ + while (start < map_end) { + if (step_size && map_end - start > step_size) { + next = round_up(start + 1, step_size); + if (next > map_end) + next = map_end; + } else { + next = map_end; + } + + mapped_ram_size += init_range_memory_mapping(start, next); + start = next; + + if (mapped_ram_size >= step_size) + step_size = get_new_step_size(step_size); + } +} + +/* + * The real mode trampoline, which is required for bootstrapping CPUs + * occupies only a small area under the low 1MB. See reserve_real_mode() + * for details. + * + * If KASLR is disabled the first PGD entry of the direct mapping is copied + * to map the real mode trampoline. + * + * If KASLR is enabled, copy only the PUD which covers the low 1MB + * area. This limits the randomization granularity to 1GB for both 4-level + * and 5-level paging. + */ +static void __init init_trampoline(void) +{ +#ifdef CONFIG_X86_64 + /* + * The code below will alias kernel page-tables in the user-range of the + * address space, including the Global bit. So global TLB entries will + * be created when using the trampoline page-table. + */ + if (!kaslr_memory_enabled()) + trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; + else + init_trampoline_kaslr(); +#endif +} + +void __init init_mem_mapping(void) +{ + unsigned long end; + + pti_check_boottime_disable(); + probe_page_size_mask(); + setup_pcid(); + +#ifdef CONFIG_X86_64 + end = max_pfn << PAGE_SHIFT; +#else + end = max_low_pfn << PAGE_SHIFT; +#endif + + /* the ISA range is always mapped regardless of memory holes */ + init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL); + + /* Init the trampoline, possibly with KASLR memory offset */ + init_trampoline(); + + /* + * If the allocation is in bottom-up direction, we setup direct mapping + * in bottom-up, otherwise we setup direct mapping in top-down. + */ + if (memblock_bottom_up()) { + unsigned long kernel_end = __pa_symbol(_end); + + /* + * we need two separate calls here. This is because we want to + * allocate page tables above the kernel. So we first map + * [kernel_end, end) to make memory above the kernel be mapped + * as soon as possible. And then use page tables allocated above + * the kernel to map [ISA_END_ADDRESS, kernel_end). + */ + memory_map_bottom_up(kernel_end, end); + memory_map_bottom_up(ISA_END_ADDRESS, kernel_end); + } else { + memory_map_top_down(ISA_END_ADDRESS, end); + } #ifdef CONFIG_X86_64 if (max_pfn > max_low_pfn) { - /* can we preseve max_low_pfn ?*/ + /* can we preserve max_low_pfn ?*/ max_low_pfn = max_pfn; } #else @@ -468,31 +808,94 @@ void __init init_mem_mapping(void) load_cr3(swapper_pg_dir); __flush_tlb_all(); + x86_init.hyper.init_mem_mapping(); + early_memtest(0, max_pfn_mapped << PAGE_SHIFT); } /* + * Initialize an mm_struct to be used during poking and a pointer to be used + * during patching. + */ +void __init poking_init(void) +{ + spinlock_t *ptl; + pte_t *ptep; + + text_poke_mm = mm_alloc(); + BUG_ON(!text_poke_mm); + + /* Xen PV guests need the PGD to be pinned. */ + paravirt_enter_mmap(text_poke_mm); + + set_notrack_mm(text_poke_mm); + + /* + * Randomize the poking address, but make sure that the following page + * will be mapped at the same PMD. We need 2 pages, so find space for 3, + * and adjust the address if the PMD ends after the first one. + */ + text_poke_mm_addr = TASK_UNMAPPED_BASE; + if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) + text_poke_mm_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) % + (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE); + + if (((text_poke_mm_addr + PAGE_SIZE) & ~PMD_MASK) == 0) + text_poke_mm_addr += PAGE_SIZE; + + /* + * We need to trigger the allocation of the page-tables that will be + * needed for poking now. Later, poking may be performed in an atomic + * section, which might cause allocation to fail. + */ + ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl); + BUG_ON(!ptep); + pte_unmap_unlock(ptep, ptl); +} + +/* * devmem_is_allowed() checks to see if /dev/mem access to a certain address * is valid. The argument is a physical page number. * - * - * On x86, access has to be given to the first megabyte of ram because that area - * contains bios code and data regions used by X and dosemu and similar apps. - * Access has to be given to non-kernel-ram areas as well, these contain the PCI - * mmio resources as well as potential bios/acpi data regions. + * On x86, access has to be given to the first megabyte of RAM because that + * area traditionally contains BIOS code and data regions used by X, dosemu, + * and similar apps. Since they map the entire memory range, the whole range + * must be allowed (for mapping), but any areas that would otherwise be + * disallowed are flagged as being "zero filled" instead of rejected. + * Access has to be given to non-kernel-ram areas as well, these contain the + * PCI mmio resources as well as potential bios/acpi data regions. */ int devmem_is_allowed(unsigned long pagenr) { - if (pagenr < 256) - return 1; - if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) + if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE, + IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE) + != REGION_DISJOINT) { + /* + * For disallowed memory regions in the low 1MB range, + * request that the page be shown as all zeros. + */ + if (pagenr < 256) + return 2; + + return 0; + } + + /* + * This must follow RAM test, since System RAM is considered a + * restricted resource under CONFIG_STRICT_DEVMEM. + */ + if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) { + /* Low 1MB bypasses iomem restrictions. */ + if (pagenr < 256) + return 1; + return 0; - if (!page_is_ram(pagenr)) - return 1; - return 0; + } + + return 1; } -void free_init_pages(char *what, unsigned long begin, unsigned long end) +void free_init_pages(const char *what, unsigned long begin, unsigned long end) { unsigned long begin_aligned, end_aligned; @@ -513,45 +916,77 @@ void free_init_pages(char *what, unsigned long begin, unsigned long end) * mark them not present - any buggy init-section access will * create a kernel page fault: */ -#ifdef CONFIG_DEBUG_PAGEALLOC - printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n", - begin, end - 1); - set_memory_np(begin, (end - begin) >> PAGE_SHIFT); -#else + if (debug_pagealloc_enabled()) { + pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n", + begin, end - 1); + /* + * Inform kmemleak about the hole in the memory since the + * corresponding pages will be unmapped. + */ + kmemleak_free_part((void *)begin, end - begin); + set_memory_np(begin, (end - begin) >> PAGE_SHIFT); + } else { + /* + * We just marked the kernel text read only above, now that + * we are going to free part of that, we need to make that + * writeable and non-executable first. + */ + set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); + set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); + + free_reserved_area((void *)begin, (void *)end, + POISON_FREE_INITMEM, what); + } +} + +/* + * begin/end can be in the direct map or the "high kernel mapping" + * used for the kernel image only. free_init_pages() will do the + * right thing for either kind of address. + */ +void free_kernel_image_pages(const char *what, void *begin, void *end) +{ + unsigned long begin_ul = (unsigned long)begin; + unsigned long end_ul = (unsigned long)end; + unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT; + + free_init_pages(what, begin_ul, end_ul); + /* - * We just marked the kernel text read only above, now that - * we are going to free part of that, we need to make that - * writeable and non-executable first. + * PTI maps some of the kernel into userspace. For performance, + * this includes some kernel areas that do not contain secrets. + * Those areas might be adjacent to the parts of the kernel image + * being freed, which may contain secrets. Remove the "high kernel + * image mapping" for these freed areas, ensuring they are not even + * potentially vulnerable to Meltdown regardless of the specific + * optimizations PTI is currently using. + * + * The "noalias" prevents unmapping the direct map alias which is + * needed to access the freed pages. + * + * This is only valid for 64bit kernels. 32bit has only one mapping + * which can't be treated in this way for obvious reasons. */ - set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); - set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); - - free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what); -#endif + if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI)) + set_memory_np_noalias(begin_ul, len_pages); } -void free_initmem(void) +void __ref free_initmem(void) { - free_init_pages("unused kernel", - (unsigned long)(&__init_begin), - (unsigned long)(&__init_end)); + e820__reallocate_tables(); + + mem_encrypt_free_decrypted_mem(); + + free_kernel_image_pages("unused kernel image (initmem)", + &__init_begin, &__init_end); } #ifdef CONFIG_BLK_DEV_INITRD void __init free_initrd_mem(unsigned long start, unsigned long end) { -#ifdef CONFIG_MICROCODE_EARLY - /* - * Remember, initrd memory may contain microcode or other useful things. - * Before we lose initrd mem, we need to find a place to hold them - * now that normal virtual memory is enabled. - */ - save_microcode_in_initrd(); -#endif - /* * end could be not aligned, and We can not align that, - * decompresser could be confused by aligned initrd_end + * decompressor could be confused by aligned initrd_end * We already reserve the end partial page before in * - i386_start_kernel() * - x86_64_start_kernel() @@ -569,16 +1004,132 @@ void __init zone_sizes_init(void) memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); #ifdef CONFIG_ZONE_DMA - max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; + max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn); #endif #ifdef CONFIG_ZONE_DMA32 - max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; + max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn); #endif max_zone_pfns[ZONE_NORMAL] = max_low_pfn; #ifdef CONFIG_HIGHMEM max_zone_pfns[ZONE_HIGHMEM] = max_pfn; #endif - free_area_init_nodes(max_zone_pfns); + free_area_init(max_zone_pfns); } +__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = { + .loaded_mm = &init_mm, + .next_asid = 1, + .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */ +}; + +#ifdef CONFIG_ADDRESS_MASKING +DEFINE_PER_CPU(u64, tlbstate_untag_mask); +EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask); +#endif + +void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) +{ + /* entry 0 MUST be WB (hardwired to speed up translations) */ + BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); + + __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); + __pte2cachemode_tbl[entry] = cache; +} + +#ifdef CONFIG_SWAP +unsigned long arch_max_swapfile_size(void) +{ + unsigned long pages; + + pages = generic_max_swapfile_size(); + + if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) { + /* Limit the swap file size to MAX_PA/2 for L1TF workaround */ + unsigned long long l1tf_limit = l1tf_pfn_limit(); + /* + * We encode swap offsets also with 3 bits below those for pfn + * which makes the usable limit higher. + */ +#if CONFIG_PGTABLE_LEVELS > 2 + l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT; +#endif + pages = min_t(unsigned long long, l1tf_limit, pages); + } + return pages; +} +#endif + +#ifdef CONFIG_EXECMEM +static struct execmem_info execmem_info __ro_after_init; + +#ifdef CONFIG_ARCH_HAS_EXECMEM_ROX +void execmem_fill_trapping_insns(void *ptr, size_t size) +{ + memset(ptr, INT3_INSN_OPCODE, size); +} +#endif + +struct execmem_info __init *execmem_arch_setup(void) +{ + unsigned long start, offset = 0; + enum execmem_range_flags flags; + pgprot_t pgprot; + + if (kaslr_enabled()) + offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE; + + start = MODULES_VADDR + offset; + + if (IS_ENABLED(CONFIG_ARCH_HAS_EXECMEM_ROX) && + cpu_feature_enabled(X86_FEATURE_PSE)) { + pgprot = PAGE_KERNEL_ROX; + flags = EXECMEM_KASAN_SHADOW | EXECMEM_ROX_CACHE; + } else { + pgprot = PAGE_KERNEL; + flags = EXECMEM_KASAN_SHADOW; + } + + execmem_info = (struct execmem_info){ + .ranges = { + [EXECMEM_MODULE_TEXT] = { + .flags = flags, + .start = start, + .end = MODULES_END, + .pgprot = pgprot, + .alignment = MODULE_ALIGN, + }, + [EXECMEM_KPROBES] = { + .flags = flags, + .start = start, + .end = MODULES_END, + .pgprot = PAGE_KERNEL_ROX, + .alignment = MODULE_ALIGN, + }, + [EXECMEM_FTRACE] = { + .flags = flags, + .start = start, + .end = MODULES_END, + .pgprot = pgprot, + .alignment = MODULE_ALIGN, + }, + [EXECMEM_BPF] = { + .flags = EXECMEM_KASAN_SHADOW, + .start = start, + .end = MODULES_END, + .pgprot = PAGE_KERNEL, + .alignment = MODULE_ALIGN, + }, + [EXECMEM_MODULE_DATA] = { + .flags = EXECMEM_KASAN_SHADOW, + .start = start, + .end = MODULES_END, + .pgprot = PAGE_KERNEL, + .alignment = MODULE_ALIGN, + }, + }, + }; + + return &execmem_info; +} +#endif /* CONFIG_EXECMEM */ diff --git a/arch/x86/mm/init_32.c b/arch/x86/mm/init_32.c index 4287f1ffba7e..8a34fff6ab2b 100644 --- a/arch/x86/mm/init_32.c +++ b/arch/x86/mm/init_32.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 1995 Linus Torvalds @@ -5,7 +6,6 @@ * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 */ -#include <linux/module.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/kernel.h> @@ -24,7 +24,6 @@ #include <linux/pci.h> #include <linux/pfn.h> #include <linux/poison.h> -#include <linux/bootmem.h> #include <linux/memblock.h> #include <linux/proc_fs.h> #include <linux/memory_hotplug.h> @@ -35,11 +34,10 @@ #include <asm/asm.h> #include <asm/bios_ebda.h> #include <asm/processor.h> -#include <asm/uaccess.h> -#include <asm/pgtable.h> +#include <linux/uaccess.h> #include <asm/dma.h> #include <asm/fixmap.h> -#include <asm/e820.h> +#include <asm/e820/api.h> #include <asm/apic.h> #include <asm/bugs.h> #include <asm/tlb.h> @@ -47,18 +45,18 @@ #include <asm/olpc_ofw.h> #include <asm/pgalloc.h> #include <asm/sections.h> -#include <asm/paravirt.h> #include <asm/setup.h> -#include <asm/cacheflush.h> +#include <asm/set_memory.h> #include <asm/page_types.h> +#include <asm/cpu_entry_area.h> #include <asm/init.h> +#include <asm/pgtable_areas.h> +#include <asm/numa.h> #include "mm_internal.h" unsigned long highstart_pfn, highend_pfn; -static noinline int do_test_wp_bit(void); - bool __read_mostly __vmalloc_start_set = false; /* @@ -68,21 +66,23 @@ bool __read_mostly __vmalloc_start_set = false; */ static pmd_t * __init one_md_table_init(pgd_t *pgd) { + p4d_t *p4d; pud_t *pud; pmd_t *pmd_table; #ifdef CONFIG_X86_PAE if (!(pgd_val(*pgd) & _PAGE_PRESENT)) { pmd_table = (pmd_t *)alloc_low_page(); - paravirt_alloc_pmd(&init_mm, __pa(pmd_table) >> PAGE_SHIFT); set_pgd(pgd, __pgd(__pa(pmd_table) | _PAGE_PRESENT)); - pud = pud_offset(pgd, 0); + p4d = p4d_offset(pgd, 0); + pud = pud_offset(p4d, 0); BUG_ON(pmd_table != pmd_offset(pud, 0)); return pmd_table; } #endif - pud = pud_offset(pgd, 0); + p4d = p4d_offset(pgd, 0); + pud = pud_offset(p4d, 0); pmd_table = pmd_offset(pud, 0); return pmd_table; @@ -97,7 +97,6 @@ static pte_t * __init one_page_table_init(pmd_t *pmd) if (!(pmd_val(*pmd) & _PAGE_PRESENT)) { pte_t *page_table = (pte_t *)alloc_low_page(); - paravirt_alloc_pte(&init_mm, __pa(page_table) >> PAGE_SHIFT); set_pmd(pmd, __pmd(__pa(page_table) | _PAGE_TABLE)); BUG_ON(page_table != pte_offset_kernel(pmd, 0)); } @@ -137,6 +136,7 @@ page_table_range_init_count(unsigned long start, unsigned long end) vaddr = start; pgd_idx = pgd_index(vaddr); + pmd_idx = pmd_index(vaddr); for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd_idx++) { for (; (pmd_idx < PTRS_PER_PMD) && (vaddr != end); @@ -178,12 +178,10 @@ static pte_t *__init page_table_kmap_check(pte_t *pte, pmd_t *pmd, set_pte(newpte + i, pte[i]); *adr = (void *)(((unsigned long)(*adr)) + PAGE_SIZE); - paravirt_alloc_pte(&init_mm, __pa(newpte) >> PAGE_SHIFT); set_pmd(pmd, __pmd(__pa(newpte)|_PAGE_TABLE)); BUG_ON(newpte != pte_offset_kernel(pmd, 0)); __flush_tlb_all(); - paravirt_release_pte(__pa(pte) >> PAGE_SHIFT); pte = newpte; } BUG_ON(vaddr < fix_to_virt(FIX_KMAP_BEGIN - 1) @@ -235,7 +233,7 @@ page_table_range_init(unsigned long start, unsigned long end, pgd_t *pgd_base) } } -static inline int is_kernel_text(unsigned long addr) +static inline int is_x86_32_kernel_text(unsigned long addr) { if (addr >= (unsigned long)_text && addr <= (unsigned long)__init_end) return 1; @@ -250,7 +248,8 @@ static inline int is_kernel_text(unsigned long addr) unsigned long __init kernel_physical_mapping_init(unsigned long start, unsigned long end, - unsigned long page_size_mask) + unsigned long page_size_mask, + pgprot_t prot) { int use_pse = page_size_mask == (1<<PG_LEVEL_2M); unsigned long last_map_addr = end; @@ -283,7 +282,7 @@ kernel_physical_mapping_init(unsigned long start, */ mapping_iter = 1; - if (!cpu_has_pse) + if (!boot_cpu_has(X86_FEATURE_PSE)) use_pse = 0; repeat: @@ -325,8 +324,8 @@ repeat: addr2 = (pfn + PTRS_PER_PTE-1) * PAGE_SIZE + PAGE_OFFSET + PAGE_SIZE-1; - if (is_kernel_text(addr) || - is_kernel_text(addr2)) + if (is_x86_32_kernel_text(addr) || + is_x86_32_kernel_text(addr2)) prot = PAGE_KERNEL_LARGE_EXEC; pages_2m++; @@ -351,7 +350,7 @@ repeat: */ pgprot_t init_prot = __pgprot(PTE_IDENT_ATTR); - if (is_kernel_text(addr)) + if (is_x86_32_kernel_text(addr)) prot = PAGE_KERNEL_EXEC; pages_4k++; @@ -386,62 +385,14 @@ repeat: return last_map_addr; } -pte_t *kmap_pte; -pgprot_t kmap_prot; - -static inline pte_t *kmap_get_fixmap_pte(unsigned long vaddr) -{ - return pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), - vaddr), vaddr), vaddr); -} - -static void __init kmap_init(void) -{ - unsigned long kmap_vstart; - - /* - * Cache the first kmap pte: - */ - kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN); - kmap_pte = kmap_get_fixmap_pte(kmap_vstart); - - kmap_prot = PAGE_KERNEL; -} - #ifdef CONFIG_HIGHMEM static void __init permanent_kmaps_init(pgd_t *pgd_base) { - unsigned long vaddr; - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - pte_t *pte; + unsigned long vaddr = PKMAP_BASE; - vaddr = PKMAP_BASE; page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base); - pgd = swapper_pg_dir + pgd_index(vaddr); - pud = pud_offset(pgd, vaddr); - pmd = pmd_offset(pud, vaddr); - pte = pte_offset_kernel(pmd, vaddr); - pkmap_page_table = pte; -} - -void __init add_highpages_with_active_regions(int nid, - unsigned long start_pfn, unsigned long end_pfn) -{ - phys_addr_t start, end; - u64 i; - - for_each_free_mem_range(i, nid, &start, &end, NULL) { - unsigned long pfn = clamp_t(unsigned long, PFN_UP(start), - start_pfn, end_pfn); - unsigned long e_pfn = clamp_t(unsigned long, PFN_DOWN(end), - start_pfn, end_pfn); - for ( ; pfn < e_pfn; pfn++) - if (pfn_valid(pfn)) - free_highmem_page(pfn_to_page(pfn)); - } + pkmap_page_table = virt_to_kpte(vaddr); } #else static inline void permanent_kmaps_init(pgd_t *pgd_base) @@ -449,10 +400,26 @@ static inline void permanent_kmaps_init(pgd_t *pgd_base) } #endif /* CONFIG_HIGHMEM */ +void __init sync_initial_page_table(void) +{ + clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY, + swapper_pg_dir + KERNEL_PGD_BOUNDARY, + KERNEL_PGD_PTRS); + + /* + * sync back low identity map too. It is used for example + * in the 32-bit EFI stub. + */ + clone_pgd_range(initial_page_table, + swapper_pg_dir + KERNEL_PGD_BOUNDARY, + min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY)); +} + void __init native_pagetable_init(void) { unsigned long pfn, va; pgd_t *pgd, *base = swapper_pg_dir; + p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; @@ -472,13 +439,14 @@ void __init native_pagetable_init(void) if (!pgd_present(*pgd)) break; - pud = pud_offset(pgd, va); + p4d = p4d_offset(pgd, va); + pud = pud_offset(p4d, va); pmd = pmd_offset(pud, va); if (!pmd_present(*pmd)) break; /* should not be large page here */ - if (pmd_large(*pmd)) { + if (pmd_leaf(*pmd)) { pr_warn("try to clear pte for ram above max_low_pfn: pfn: %lx pmd: %p pmd phys: %lx, but pmd is big page and is not using pte !\n", pfn, pmd, __pa(pmd)); BUG_ON(1); @@ -492,7 +460,6 @@ void __init native_pagetable_init(void) pfn, pmd, __pa(pmd), pte, __pa(pte)); pte_clear(NULL, va, pte); } - paravirt_alloc_pmd(&init_mm, __pa(base) >> PAGE_SHIFT); paging_init(); } @@ -501,15 +468,8 @@ void __init native_pagetable_init(void) * point, we've been running on some set of pagetables constructed by * the boot process. * - * If we're booting on native hardware, this will be a pagetable - * constructed in arch/x86/kernel/head_32.S. The root of the - * pagetable will be swapper_pg_dir. - * - * If we're booting paravirtualized under a hypervisor, then there are - * more options: we may already be running PAE, and the pagetable may - * or may not be based in swapper_pg_dir. In any case, - * paravirt_pagetable_init() will set up swapper_pg_dir - * appropriately for the rest of the initialization to work. + * This will be a pagetable constructed in arch/x86/kernel/head_32.S. + * The root of the pagetable will be swapper_pg_dir. * * In general, pagetable_init() assumes that the pagetable may already * be partially populated, and so it avoids stomping on any existing @@ -537,8 +497,14 @@ static void __init pagetable_init(void) permanent_kmaps_init(pgd_base); } -pteval_t __supported_pte_mask __read_mostly = ~(_PAGE_NX | _PAGE_GLOBAL | _PAGE_IOMAP); +#define DEFAULT_PTE_MASK ~(_PAGE_NX | _PAGE_GLOBAL) +/* Bits supported by the hardware: */ +pteval_t __supported_pte_mask __read_mostly = DEFAULT_PTE_MASK; +/* Bits allowed in normal kernel mappings: */ +pteval_t __default_kernel_pte_mask __read_mostly = DEFAULT_PTE_MASK; EXPORT_SYMBOL_GPL(__supported_pte_mask); +/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */ +EXPORT_SYMBOL(__default_kernel_pte_mask); /* user-defined highmem size */ static unsigned int highmem_pages = -1; @@ -599,7 +565,7 @@ static void __init lowmem_pfn_init(void) "only %luMB highmem pages available, ignoring highmem size of %luMB!\n" #define MSG_HIGHMEM_TRIMMED \ - "Warning: only 4GB will be used. Use a HIGHMEM64G enabled kernel!\n" + "Warning: only 4GB will be used. Support for CONFIG_HIGHMEM64G was removed!\n" /* * We have more RAM than fits into lowmem - we try to put it into * highmem, also taking the highmem=x boot parameter into account: @@ -623,18 +589,13 @@ static void __init highmem_pfn_init(void) #ifndef CONFIG_HIGHMEM /* Maximum memory usable is what is directly addressable */ printk(KERN_WARNING "Warning only %ldMB will be used.\n", MAXMEM>>20); - if (max_pfn > MAX_NONPAE_PFN) - printk(KERN_WARNING "Use a HIGHMEM64G enabled kernel.\n"); - else - printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n"); + printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n"); max_pfn = MAXMEM_PFN; #else /* !CONFIG_HIGHMEM */ -#ifndef CONFIG_HIGHMEM64G if (max_pfn > MAX_NONPAE_PFN) { max_pfn = MAX_NONPAE_PFN; printk(KERN_WARNING MSG_HIGHMEM_TRIMMED); } -#endif /* !CONFIG_HIGHMEM64G */ #endif /* !CONFIG_HIGHMEM */ } @@ -651,7 +612,6 @@ void __init find_low_pfn_range(void) highmem_pfn_init(); } -#ifndef CONFIG_NEED_MULTIPLE_NODES void __init initmem_init(void) { #ifdef CONFIG_HIGHMEM @@ -665,23 +625,13 @@ void __init initmem_init(void) high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1; #endif - memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0); - sparse_memory_present_with_active_regions(0); + memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); -#ifdef CONFIG_FLATMEM - max_mapnr = IS_ENABLED(CONFIG_HIGHMEM) ? highend_pfn : max_low_pfn; -#endif __vmalloc_start_set = true; printk(KERN_NOTICE "%ldMB LOWMEM available.\n", pages_to_mb(max_low_pfn)); - setup_bootmem_allocator(); -} -#endif /* !CONFIG_NEED_MULTIPLE_NODES */ - -void __init setup_bootmem_allocator(void) -{ printk(KERN_INFO " mapped low ram: 0 - %08lx\n", max_pfn_mapped<<PAGE_SHIFT); printk(KERN_INFO " low ram: 0 - %08lx\n", max_low_pfn<<PAGE_SHIFT); @@ -700,13 +650,10 @@ void __init paging_init(void) __flush_tlb_all(); - kmap_init(); - /* * NOTE: at this point the bootmem allocator is fully available. */ olpc_dt_build_devicetree(); - sparse_memory_present_with_active_regions(MAX_NUMNODES); sparse_init(); zone_sizes_init(); } @@ -719,79 +666,35 @@ void __init paging_init(void) */ static void __init test_wp_bit(void) { - printk(KERN_INFO - "Checking if this processor honours the WP bit even in supervisor mode..."); - - /* Any page-aligned address will do, the test is non-destructive */ - __set_fixmap(FIX_WP_TEST, __pa(&swapper_pg_dir), PAGE_KERNEL_RO); - boot_cpu_data.wp_works_ok = do_test_wp_bit(); - clear_fixmap(FIX_WP_TEST); - - if (!boot_cpu_data.wp_works_ok) { - printk(KERN_CONT "No.\n"); - panic("Linux doesn't support CPUs with broken WP."); - } else { + char z = 0; + + printk(KERN_INFO "Checking if this processor honours the WP bit even in supervisor mode..."); + + __set_fixmap(FIX_WP_TEST, __pa_symbol(empty_zero_page), PAGE_KERNEL_RO); + + if (copy_to_kernel_nofault((char *)fix_to_virt(FIX_WP_TEST), &z, 1)) { + clear_fixmap(FIX_WP_TEST); printk(KERN_CONT "Ok.\n"); + return; } + + printk(KERN_CONT "No.\n"); + panic("Linux doesn't support CPUs with broken WP."); } -void __init mem_init(void) +void __init arch_mm_preinit(void) { pci_iommu_alloc(); #ifdef CONFIG_FLATMEM BUG_ON(!mem_map); #endif - /* - * With CONFIG_DEBUG_PAGEALLOC initialization of highmem pages has to - * be done before free_all_bootmem(). Memblock use free low memory for - * temporary data (see find_range_array()) and for this purpose can use - * pages that was already passed to the buddy allocator, hence marked as - * not accessible in the page tables when compiled with - * CONFIG_DEBUG_PAGEALLOC. Otherwise order of initialization is not - * important here. - */ - set_highmem_pages_init(); - - /* this will put all low memory onto the freelists */ - free_all_bootmem(); +} +void __init mem_init(void) +{ after_bootmem = 1; - - mem_init_print_info(NULL); - printk(KERN_INFO "virtual kernel memory layout:\n" - " fixmap : 0x%08lx - 0x%08lx (%4ld kB)\n" -#ifdef CONFIG_HIGHMEM - " pkmap : 0x%08lx - 0x%08lx (%4ld kB)\n" -#endif - " vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n" - " lowmem : 0x%08lx - 0x%08lx (%4ld MB)\n" - " .init : 0x%08lx - 0x%08lx (%4ld kB)\n" - " .data : 0x%08lx - 0x%08lx (%4ld kB)\n" - " .text : 0x%08lx - 0x%08lx (%4ld kB)\n", - FIXADDR_START, FIXADDR_TOP, - (FIXADDR_TOP - FIXADDR_START) >> 10, - -#ifdef CONFIG_HIGHMEM - PKMAP_BASE, PKMAP_BASE+LAST_PKMAP*PAGE_SIZE, - (LAST_PKMAP*PAGE_SIZE) >> 10, -#endif - - VMALLOC_START, VMALLOC_END, - (VMALLOC_END - VMALLOC_START) >> 20, - - (unsigned long)__va(0), (unsigned long)high_memory, - ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, - - (unsigned long)&__init_begin, (unsigned long)&__init_end, - ((unsigned long)&__init_end - - (unsigned long)&__init_begin) >> 10, - - (unsigned long)&_etext, (unsigned long)&_edata, - ((unsigned long)&_edata - (unsigned long)&_etext) >> 10, - - (unsigned long)&_text, (unsigned long)&_etext, - ((unsigned long)&_etext - (unsigned long)&_text) >> 10); + x86_init.hyper.init_after_bootmem(); /* * Check boundaries twice: Some fundamental inconsistencies can @@ -814,92 +717,11 @@ void __init mem_init(void) BUG_ON(VMALLOC_START >= VMALLOC_END); BUG_ON((unsigned long)high_memory > VMALLOC_START); - if (boot_cpu_data.wp_works_ok < 0) - test_wp_bit(); -} - -#ifdef CONFIG_MEMORY_HOTPLUG -int arch_add_memory(int nid, u64 start, u64 size) -{ - struct pglist_data *pgdata = NODE_DATA(nid); - struct zone *zone = pgdata->node_zones + ZONE_HIGHMEM; - unsigned long start_pfn = start >> PAGE_SHIFT; - unsigned long nr_pages = size >> PAGE_SHIFT; - - return __add_pages(nid, zone, start_pfn, nr_pages); -} - -#ifdef CONFIG_MEMORY_HOTREMOVE -int arch_remove_memory(u64 start, u64 size) -{ - unsigned long start_pfn = start >> PAGE_SHIFT; - unsigned long nr_pages = size >> PAGE_SHIFT; - struct zone *zone; - - zone = page_zone(pfn_to_page(start_pfn)); - return __remove_pages(zone, start_pfn, nr_pages); + test_wp_bit(); } -#endif -#endif - -/* - * This function cannot be __init, since exceptions don't work in that - * section. Put this after the callers, so that it cannot be inlined. - */ -static noinline int do_test_wp_bit(void) -{ - char tmp_reg; - int flag; - - __asm__ __volatile__( - " movb %0, %1 \n" - "1: movb %1, %0 \n" - " xorl %2, %2 \n" - "2: \n" - _ASM_EXTABLE(1b,2b) - :"=m" (*(char *)fix_to_virt(FIX_WP_TEST)), - "=q" (tmp_reg), - "=r" (flag) - :"2" (1) - :"memory"); - - return flag; -} - -#ifdef CONFIG_DEBUG_RODATA -const int rodata_test_data = 0xC3; -EXPORT_SYMBOL_GPL(rodata_test_data); int kernel_set_to_readonly __read_mostly; -void set_kernel_text_rw(void) -{ - unsigned long start = PFN_ALIGN(_text); - unsigned long size = PFN_ALIGN(_etext) - start; - - if (!kernel_set_to_readonly) - return; - - pr_debug("Set kernel text: %lx - %lx for read write\n", - start, start+size); - - set_pages_rw(virt_to_page(start), size >> PAGE_SHIFT); -} - -void set_kernel_text_ro(void) -{ - unsigned long start = PFN_ALIGN(_text); - unsigned long size = PFN_ALIGN(_etext) - start; - - if (!kernel_set_to_readonly) - return; - - pr_debug("Set kernel text: %lx - %lx for read only\n", - start, start+size); - - set_pages_ro(virt_to_page(start), size >> PAGE_SHIFT); -} - static void mark_nxdata_nx(void) { /* @@ -908,50 +730,32 @@ static void mark_nxdata_nx(void) */ unsigned long start = PFN_ALIGN(_etext); /* - * This comes from is_kernel_text upper limit. Also HPAGE where used: + * This comes from is_x86_32_kernel_text upper limit. Also HPAGE where used: */ unsigned long size = (((unsigned long)__init_end + HPAGE_SIZE) & HPAGE_MASK) - start; if (__supported_pte_mask & _PAGE_NX) printk(KERN_INFO "NX-protecting the kernel data: %luk\n", size >> 10); - set_pages_nx(virt_to_page(start), size >> PAGE_SHIFT); + set_memory_nx(start, size >> PAGE_SHIFT); } void mark_rodata_ro(void) { unsigned long start = PFN_ALIGN(_text); - unsigned long size = PFN_ALIGN(_etext) - start; + unsigned long size = (unsigned long)__end_rodata - start; set_pages_ro(virt_to_page(start), size >> PAGE_SHIFT); - printk(KERN_INFO "Write protecting the kernel text: %luk\n", + pr_info("Write protecting kernel text and read-only data: %luk\n", size >> 10); kernel_set_to_readonly = 1; #ifdef CONFIG_CPA_DEBUG - printk(KERN_INFO "Testing CPA: Reverting %lx-%lx\n", - start, start+size); - set_pages_rw(virt_to_page(start), size>>PAGE_SHIFT); - - printk(KERN_INFO "Testing CPA: write protecting again\n"); - set_pages_ro(virt_to_page(start), size>>PAGE_SHIFT); -#endif - - start += size; - size = (unsigned long)__end_rodata - start; - set_pages_ro(virt_to_page(start), size >> PAGE_SHIFT); - printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", - size >> 10); - rodata_test(); - -#ifdef CONFIG_CPA_DEBUG - printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, start + size); + pr_info("Testing CPA: Reverting %lx-%lx\n", start, start + size); set_pages_rw(virt_to_page(start), size >> PAGE_SHIFT); - printk(KERN_INFO "Testing CPA: write protecting again\n"); + pr_info("Testing CPA: write protecting again\n"); set_pages_ro(virt_to_page(start), size >> PAGE_SHIFT); #endif mark_nxdata_nx(); } -#endif - diff --git a/arch/x86/mm/init_64.c b/arch/x86/mm/init_64.c index 104d56a9245f..9983017ecbe0 100644 --- a/arch/x86/mm/init_64.c +++ b/arch/x86/mm/init_64.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/x86_64/mm/init.c * @@ -20,28 +21,27 @@ #include <linux/init.h> #include <linux/initrd.h> #include <linux/pagemap.h> -#include <linux/bootmem.h> #include <linux/memblock.h> #include <linux/proc_fs.h> #include <linux/pci.h> #include <linux/pfn.h> #include <linux/poison.h> #include <linux/dma-mapping.h> -#include <linux/module.h> #include <linux/memory.h> #include <linux/memory_hotplug.h> +#include <linux/memremap.h> #include <linux/nmi.h> #include <linux/gfp.h> #include <linux/kcore.h> +#include <linux/bootmem_info.h> #include <asm/processor.h> #include <asm/bios_ebda.h> -#include <asm/uaccess.h> -#include <asm/pgtable.h> +#include <linux/uaccess.h> #include <asm/pgalloc.h> #include <asm/dma.h> #include <asm/fixmap.h> -#include <asm/e820.h> +#include <asm/e820/api.h> #include <asm/apic.h> #include <asm/tlb.h> #include <asm/mmu_context.h> @@ -50,100 +50,52 @@ #include <asm/sections.h> #include <asm/kdebug.h> #include <asm/numa.h> -#include <asm/cacheflush.h> +#include <asm/set_memory.h> #include <asm/init.h> #include <asm/uv/uv.h> #include <asm/setup.h> +#include <asm/ftrace.h> #include "mm_internal.h" -static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page, - unsigned long addr, unsigned long end) -{ - addr &= PMD_MASK; - for (; addr < end; addr += PMD_SIZE) { - pmd_t *pmd = pmd_page + pmd_index(addr); +#include "ident_map.c" - if (!pmd_present(*pmd)) - set_pmd(pmd, __pmd(addr | pmd_flag)); - } +#define DEFINE_POPULATE(fname, type1, type2, init) \ +static inline void fname##_init(struct mm_struct *mm, \ + type1##_t *arg1, type2##_t *arg2, bool init) \ +{ \ + if (init) \ + fname##_safe(mm, arg1, arg2); \ + else \ + fname(mm, arg1, arg2); \ } -static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page, - unsigned long addr, unsigned long end) -{ - unsigned long next; - - for (; addr < end; addr = next) { - pud_t *pud = pud_page + pud_index(addr); - pmd_t *pmd; - - next = (addr & PUD_MASK) + PUD_SIZE; - if (next > end) - next = end; - if (pud_present(*pud)) { - pmd = pmd_offset(pud, 0); - ident_pmd_init(info->pmd_flag, pmd, addr, next); - continue; - } - pmd = (pmd_t *)info->alloc_pgt_page(info->context); - if (!pmd) - return -ENOMEM; - ident_pmd_init(info->pmd_flag, pmd, addr, next); - set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); - } - - return 0; +DEFINE_POPULATE(p4d_populate, p4d, pud, init) +DEFINE_POPULATE(pgd_populate, pgd, p4d, init) +DEFINE_POPULATE(pud_populate, pud, pmd, init) +DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init) + +#define DEFINE_ENTRY(type1, type2, init) \ +static inline void set_##type1##_init(type1##_t *arg1, \ + type2##_t arg2, bool init) \ +{ \ + if (init) \ + set_##type1##_safe(arg1, arg2); \ + else \ + set_##type1(arg1, arg2); \ } -int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page, - unsigned long addr, unsigned long end) -{ - unsigned long next; - int result; - int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0; - - for (; addr < end; addr = next) { - pgd_t *pgd = pgd_page + pgd_index(addr) + off; - pud_t *pud; - - next = (addr & PGDIR_MASK) + PGDIR_SIZE; - if (next > end) - next = end; - - if (pgd_present(*pgd)) { - pud = pud_offset(pgd, 0); - result = ident_pud_init(info, pud, addr, next); - if (result) - return result; - continue; - } +DEFINE_ENTRY(p4d, p4d, init) +DEFINE_ENTRY(pud, pud, init) +DEFINE_ENTRY(pmd, pmd, init) +DEFINE_ENTRY(pte, pte, init) - pud = (pud_t *)info->alloc_pgt_page(info->context); - if (!pud) - return -ENOMEM; - result = ident_pud_init(info, pud, addr, next); - if (result) - return result; - set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE)); - } - - return 0; -} - -static int __init parse_direct_gbpages_off(char *arg) +static inline pgprot_t prot_sethuge(pgprot_t prot) { - direct_gbpages = 0; - return 0; -} -early_param("nogbpages", parse_direct_gbpages_off); + WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT); -static int __init parse_direct_gbpages_on(char *arg) -{ - direct_gbpages = 1; - return 0; + return __pgprot(pgprot_val(prot) | _PAGE_PSE); } -early_param("gbpages", parse_direct_gbpages_on); /* * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the @@ -151,15 +103,19 @@ early_param("gbpages", parse_direct_gbpages_on); * around without checking the pgd every time. */ -pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP; +/* Bits supported by the hardware: */ +pteval_t __supported_pte_mask __read_mostly = ~0; +/* Bits allowed in normal kernel mappings: */ +pteval_t __default_kernel_pte_mask __read_mostly = ~0; EXPORT_SYMBOL_GPL(__supported_pte_mask); +/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */ +EXPORT_SYMBOL(__default_kernel_pte_mask); int force_personality32; /* * noexec32=on|off * Control non executable heap for 32bit processes. - * To control the stack too use noexec=off * * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) * off PROT_READ implies PROT_EXEC @@ -174,18 +130,18 @@ static int __init nonx32_setup(char *str) } __setup("noexec32=", nonx32_setup); -/* - * When memory was added/removed make sure all the processes MM have - * suitable PGD entries in the local PGD level page. - */ -void sync_global_pgds(unsigned long start, unsigned long end) +static void sync_global_pgds_l5(unsigned long start, unsigned long end) { - unsigned long address; + unsigned long addr; - for (address = start; address <= end; address += PGDIR_SIZE) { - const pgd_t *pgd_ref = pgd_offset_k(address); + for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { + const pgd_t *pgd_ref = pgd_offset_k(addr); struct page *page; + /* Check for overflow */ + if (addr < start) + break; + if (pgd_none(*pgd_ref)) continue; @@ -194,16 +150,16 @@ void sync_global_pgds(unsigned long start, unsigned long end) pgd_t *pgd; spinlock_t *pgt_lock; - pgd = (pgd_t *)page_address(page) + pgd_index(address); + pgd = (pgd_t *)page_address(page) + pgd_index(addr); /* the pgt_lock only for Xen */ pgt_lock = &pgd_page_get_mm(page)->page_table_lock; spin_lock(pgt_lock); + if (!pgd_none(*pgd_ref) && !pgd_none(*pgd)) + BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); + if (pgd_none(*pgd)) set_pgd(pgd, *pgd_ref); - else - BUG_ON(pgd_page_vaddr(*pgd) - != pgd_page_vaddr(*pgd_ref)); spin_unlock(pgt_lock); } @@ -211,6 +167,80 @@ void sync_global_pgds(unsigned long start, unsigned long end) } } +static void sync_global_pgds_l4(unsigned long start, unsigned long end) +{ + unsigned long addr; + + for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { + pgd_t *pgd_ref = pgd_offset_k(addr); + const p4d_t *p4d_ref; + struct page *page; + + /* + * With folded p4d, pgd_none() is always false, we need to + * handle synchronization on p4d level. + */ + MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref)); + p4d_ref = p4d_offset(pgd_ref, addr); + + if (p4d_none(*p4d_ref)) + continue; + + spin_lock(&pgd_lock); + list_for_each_entry(page, &pgd_list, lru) { + pgd_t *pgd; + p4d_t *p4d; + spinlock_t *pgt_lock; + + pgd = (pgd_t *)page_address(page) + pgd_index(addr); + p4d = p4d_offset(pgd, addr); + /* the pgt_lock only for Xen */ + pgt_lock = &pgd_page_get_mm(page)->page_table_lock; + spin_lock(pgt_lock); + + if (!p4d_none(*p4d_ref) && !p4d_none(*p4d)) + BUG_ON(p4d_pgtable(*p4d) + != p4d_pgtable(*p4d_ref)); + + if (p4d_none(*p4d)) + set_p4d(p4d, *p4d_ref); + + spin_unlock(pgt_lock); + } + spin_unlock(&pgd_lock); + } +} + +/* + * When memory was added make sure all the processes MM have + * suitable PGD entries in the local PGD level page. + */ +static void sync_global_pgds(unsigned long start, unsigned long end) +{ + if (pgtable_l5_enabled()) + sync_global_pgds_l5(start, end); + else + sync_global_pgds_l4(start, end); +} + +/* + * Make kernel mappings visible in all page tables in the system. + * This is necessary except when the init task populates kernel mappings + * during the boot process. In that case, all processes originating from + * the init task copies the kernel mappings, so there is no issue. + * Otherwise, missing synchronization could lead to kernel crashes due + * to missing page table entries for certain kernel mappings. + * + * Synchronization is performed at the top level, which is the PGD in + * 5-level paging systems. But in 4-level paging systems, however, + * pgd_populate() is a no-op, so synchronization is done at the P4D level. + * sync_global_pgds() handles this difference between paging levels. + */ +void arch_sync_kernel_mappings(unsigned long start, unsigned long end) +{ + sync_global_pgds(start, end); +} + /* * NOTE: This function is marked __ref because it calls __init function * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. @@ -220,9 +250,9 @@ static __ref void *spp_getpage(void) void *ptr; if (after_bootmem) - ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK); + ptr = (void *) get_zeroed_page(GFP_ATOMIC); else - ptr = alloc_bootmem_pages(PAGE_SIZE); + ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE); if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { panic("set_pte_phys: cannot allocate page data %s\n", @@ -234,16 +264,28 @@ static __ref void *spp_getpage(void) return ptr; } -static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr) +static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr) { if (pgd_none(*pgd)) { - pud_t *pud = (pud_t *)spp_getpage(); - pgd_populate(&init_mm, pgd, pud); - if (pud != pud_offset(pgd, 0)) + p4d_t *p4d = (p4d_t *)spp_getpage(); + pgd_populate(&init_mm, pgd, p4d); + if (p4d != p4d_offset(pgd, 0)) printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n", - pud, pud_offset(pgd, 0)); + p4d, p4d_offset(pgd, 0)); } - return pud_offset(pgd, vaddr); + return p4d_offset(pgd, vaddr); +} + +static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr) +{ + if (p4d_none(*p4d)) { + pud_t *pud = (pud_t *)spp_getpage(); + p4d_populate(&init_mm, p4d, pud); + if (pud != pud_offset(p4d, 0)) + printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", + pud, pud_offset(p4d, 0)); + } + return pud_offset(p4d, vaddr); } static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) @@ -252,7 +294,7 @@ static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) pmd_t *pmd = (pmd_t *) spp_getpage(); pud_populate(&init_mm, pud, pmd); if (pmd != pmd_offset(pud, 0)) - printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", + printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n", pmd, pmd_offset(pud, 0)); } return pmd_offset(pud, vaddr); @@ -264,20 +306,15 @@ static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr) pte_t *pte = (pte_t *) spp_getpage(); pmd_populate_kernel(&init_mm, pmd, pte); if (pte != pte_offset_kernel(pmd, 0)) - printk(KERN_ERR "PAGETABLE BUG #02!\n"); + printk(KERN_ERR "PAGETABLE BUG #03!\n"); } return pte_offset_kernel(pmd, vaddr); } -void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) +static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte) { - pud_t *pud; - pmd_t *pmd; - pte_t *pte; - - pud = pud_page + pud_index(vaddr); - pmd = fill_pmd(pud, vaddr); - pte = fill_pte(pmd, vaddr); + pmd_t *pmd = fill_pmd(pud, vaddr); + pte_t *pte = fill_pte(pmd, vaddr); set_pte(pte, new_pte); @@ -285,13 +322,28 @@ void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) * It's enough to flush this one mapping. * (PGE mappings get flushed as well) */ - __flush_tlb_one(vaddr); + flush_tlb_one_kernel(vaddr); +} + +void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte) +{ + p4d_t *p4d = p4d_page + p4d_index(vaddr); + pud_t *pud = fill_pud(p4d, vaddr); + + __set_pte_vaddr(pud, vaddr, new_pte); +} + +void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) +{ + pud_t *pud = pud_page + pud_index(vaddr); + + __set_pte_vaddr(pud, vaddr, new_pte); } void set_pte_vaddr(unsigned long vaddr, pte_t pteval) { pgd_t *pgd; - pud_t *pud_page; + p4d_t *p4d_page; pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); @@ -301,17 +353,20 @@ void set_pte_vaddr(unsigned long vaddr, pte_t pteval) "PGD FIXMAP MISSING, it should be setup in head.S!\n"); return; } - pud_page = (pud_t*)pgd_page_vaddr(*pgd); - set_pte_vaddr_pud(pud_page, vaddr, pteval); + + p4d_page = p4d_offset(pgd, 0); + set_pte_vaddr_p4d(p4d_page, vaddr, pteval); } pmd_t * __init populate_extra_pmd(unsigned long vaddr) { pgd_t *pgd; + p4d_t *p4d; pud_t *pud; pgd = pgd_offset_k(vaddr); - pud = fill_pud(pgd, vaddr); + p4d = fill_p4d(pgd, vaddr); + pud = fill_pud(p4d, vaddr); return fill_pmd(pud, vaddr); } @@ -327,21 +382,31 @@ pte_t * __init populate_extra_pte(unsigned long vaddr) * Create large page table mappings for a range of physical addresses. */ static void __init __init_extra_mapping(unsigned long phys, unsigned long size, - pgprot_t prot) + enum page_cache_mode cache) { pgd_t *pgd; + p4d_t *p4d; pud_t *pud; pmd_t *pmd; + pgprot_t prot; + pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) | + protval_4k_2_large(cachemode2protval(cache)); BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { pgd = pgd_offset_k((unsigned long)__va(phys)); if (pgd_none(*pgd)) { + p4d = (p4d_t *) spp_getpage(); + set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE | + _PAGE_USER)); + } + p4d = p4d_offset(pgd, (unsigned long)__va(phys)); + if (p4d_none(*p4d)) { pud = (pud_t *) spp_getpage(); - set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE | + set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE | _PAGE_USER)); } - pud = pud_offset(pgd, (unsigned long)__va(phys)); + pud = pud_offset(p4d, (unsigned long)__va(phys)); if (pud_none(*pud)) { pmd = (pmd_t *) spp_getpage(); set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | @@ -355,12 +420,12 @@ static void __init __init_extra_mapping(unsigned long phys, unsigned long size, void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) { - __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE); + __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB); } void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) { - __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE); + __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC); } /* @@ -399,23 +464,31 @@ void __init cleanup_highmap(void) } } +/* + * Create PTE level page table mapping for physical addresses. + * It returns the last physical address mapped. + */ static unsigned long __meminit -phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end, - pgprot_t prot) +phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end, + pgprot_t prot, bool init) { - unsigned long pages = 0, next; - unsigned long last_map_addr = end; + unsigned long pages = 0, paddr_next; + unsigned long paddr_last = paddr_end; + pte_t *pte; int i; - pte_t *pte = pte_page + pte_index(addr); + pte = pte_page + pte_index(paddr); + i = pte_index(paddr); - for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) { - next = (addr & PAGE_MASK) + PAGE_SIZE; - if (addr >= end) { + for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) { + paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE; + if (paddr >= paddr_end) { if (!after_bootmem && - !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) && - !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN)) - set_pte(pte, __pte(0)); + !e820__mapped_any(paddr & PAGE_MASK, paddr_next, + E820_TYPE_RAM) && + !e820__mapped_any(paddr & PAGE_MASK, paddr_next, + E820_TYPE_ACPI)) + set_pte_init(pte, __pte(0), init); continue; } @@ -425,54 +498,59 @@ phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end, * pagetable pages as RO. So assume someone who pre-setup * these mappings are more intelligent. */ - if (pte_val(*pte)) { + if (!pte_none(*pte)) { if (!after_bootmem) pages++; continue; } - if (0) - printk(" pte=%p addr=%lx pte=%016lx\n", - pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte); pages++; - set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot)); - last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE; + set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init); + paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE; } update_page_count(PG_LEVEL_4K, pages); - return last_map_addr; + return paddr_last; } +/* + * Create PMD level page table mapping for physical addresses. The virtual + * and physical address have to be aligned at this level. + * It returns the last physical address mapped. + */ static unsigned long __meminit -phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end, - unsigned long page_size_mask, pgprot_t prot) +phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end, + unsigned long page_size_mask, pgprot_t prot, bool init) { - unsigned long pages = 0, next; - unsigned long last_map_addr = end; + unsigned long pages = 0, paddr_next; + unsigned long paddr_last = paddr_end; - int i = pmd_index(address); + int i = pmd_index(paddr); - for (; i < PTRS_PER_PMD; i++, address = next) { - pmd_t *pmd = pmd_page + pmd_index(address); + for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) { + pmd_t *pmd = pmd_page + pmd_index(paddr); pte_t *pte; pgprot_t new_prot = prot; - next = (address & PMD_MASK) + PMD_SIZE; - if (address >= end) { + paddr_next = (paddr & PMD_MASK) + PMD_SIZE; + if (paddr >= paddr_end) { if (!after_bootmem && - !e820_any_mapped(address & PMD_MASK, next, E820_RAM) && - !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN)) - set_pmd(pmd, __pmd(0)); + !e820__mapped_any(paddr & PMD_MASK, paddr_next, + E820_TYPE_RAM) && + !e820__mapped_any(paddr & PMD_MASK, paddr_next, + E820_TYPE_ACPI)) + set_pmd_init(pmd, __pmd(0), init); continue; } - if (pmd_val(*pmd)) { - if (!pmd_large(*pmd)) { + if (!pmd_none(*pmd)) { + if (!pmd_leaf(*pmd)) { spin_lock(&init_mm.page_table_lock); pte = (pte_t *)pmd_page_vaddr(*pmd); - last_map_addr = phys_pte_init(pte, address, - end, prot); + paddr_last = phys_pte_init(pte, paddr, + paddr_end, prot, + init); spin_unlock(&init_mm.page_table_lock); continue; } @@ -491,7 +569,7 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end, if (page_size_mask & (1 << PG_LEVEL_2M)) { if (!after_bootmem) pages++; - last_map_addr = next; + paddr_last = paddr_next; continue; } new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); @@ -500,53 +578,66 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end, if (page_size_mask & (1<<PG_LEVEL_2M)) { pages++; spin_lock(&init_mm.page_table_lock); - set_pte((pte_t *)pmd, - pfn_pte((address & PMD_MASK) >> PAGE_SHIFT, - __pgprot(pgprot_val(prot) | _PAGE_PSE))); + set_pmd_init(pmd, + pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)), + init); spin_unlock(&init_mm.page_table_lock); - last_map_addr = next; + paddr_last = paddr_next; continue; } pte = alloc_low_page(); - last_map_addr = phys_pte_init(pte, address, end, new_prot); + paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init); spin_lock(&init_mm.page_table_lock); - pmd_populate_kernel(&init_mm, pmd, pte); + pmd_populate_kernel_init(&init_mm, pmd, pte, init); spin_unlock(&init_mm.page_table_lock); } update_page_count(PG_LEVEL_2M, pages); - return last_map_addr; + return paddr_last; } +/* + * Create PUD level page table mapping for physical addresses. The virtual + * and physical address do not have to be aligned at this level. KASLR can + * randomize virtual addresses up to this level. + * It returns the last physical address mapped. + */ static unsigned long __meminit -phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end, - unsigned long page_size_mask) +phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end, + unsigned long page_size_mask, pgprot_t _prot, bool init) { - unsigned long pages = 0, next; - unsigned long last_map_addr = end; - int i = pud_index(addr); + unsigned long pages = 0, paddr_next; + unsigned long paddr_last = paddr_end; + unsigned long vaddr = (unsigned long)__va(paddr); + int i = pud_index(vaddr); - for (; i < PTRS_PER_PUD; i++, addr = next) { - pud_t *pud = pud_page + pud_index(addr); + for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) { + pud_t *pud; pmd_t *pmd; - pgprot_t prot = PAGE_KERNEL; + pgprot_t prot = _prot; + + vaddr = (unsigned long)__va(paddr); + pud = pud_page + pud_index(vaddr); + paddr_next = (paddr & PUD_MASK) + PUD_SIZE; - next = (addr & PUD_MASK) + PUD_SIZE; - if (addr >= end) { + if (paddr >= paddr_end) { if (!after_bootmem && - !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) && - !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN)) - set_pud(pud, __pud(0)); + !e820__mapped_any(paddr & PUD_MASK, paddr_next, + E820_TYPE_RAM) && + !e820__mapped_any(paddr & PUD_MASK, paddr_next, + E820_TYPE_ACPI)) + set_pud_init(pud, __pud(0), init); continue; } - if (pud_val(*pud)) { - if (!pud_large(*pud)) { + if (!pud_none(*pud)) { + if (!pud_leaf(*pud)) { pmd = pmd_offset(pud, 0); - last_map_addr = phys_pmd_init(pmd, addr, end, - page_size_mask, prot); - __flush_tlb_all(); + paddr_last = phys_pmd_init(pmd, paddr, + paddr_end, + page_size_mask, + prot, init); continue; } /* @@ -564,7 +655,7 @@ phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end, if (page_size_mask & (1 << PG_LEVEL_1G)) { if (!after_bootmem) pages++; - last_map_addr = next; + paddr_last = paddr_next; continue; } prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); @@ -573,83 +664,175 @@ phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end, if (page_size_mask & (1<<PG_LEVEL_1G)) { pages++; spin_lock(&init_mm.page_table_lock); - set_pte((pte_t *)pud, - pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT, - PAGE_KERNEL_LARGE)); + set_pud_init(pud, + pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)), + init); spin_unlock(&init_mm.page_table_lock); - last_map_addr = next; + paddr_last = paddr_next; continue; } pmd = alloc_low_page(); - last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask, - prot); + paddr_last = phys_pmd_init(pmd, paddr, paddr_end, + page_size_mask, prot, init); spin_lock(&init_mm.page_table_lock); - pud_populate(&init_mm, pud, pmd); + pud_populate_init(&init_mm, pud, pmd, init); spin_unlock(&init_mm.page_table_lock); } - __flush_tlb_all(); update_page_count(PG_LEVEL_1G, pages); - return last_map_addr; + return paddr_last; } -unsigned long __meminit -kernel_physical_mapping_init(unsigned long start, - unsigned long end, - unsigned long page_size_mask) +static unsigned long __meminit +phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end, + unsigned long page_size_mask, pgprot_t prot, bool init) { - bool pgd_changed = false; - unsigned long next, last_map_addr = end; - unsigned long addr; + unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last; - start = (unsigned long)__va(start); - end = (unsigned long)__va(end); - addr = start; + paddr_last = paddr_end; + vaddr = (unsigned long)__va(paddr); + vaddr_end = (unsigned long)__va(paddr_end); - for (; start < end; start = next) { - pgd_t *pgd = pgd_offset_k(start); + if (!pgtable_l5_enabled()) + return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, + page_size_mask, prot, init); + + for (; vaddr < vaddr_end; vaddr = vaddr_next) { + p4d_t *p4d = p4d_page + p4d_index(vaddr); pud_t *pud; - next = (start & PGDIR_MASK) + PGDIR_SIZE; + vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE; + paddr = __pa(vaddr); - if (pgd_val(*pgd)) { - pud = (pud_t *)pgd_page_vaddr(*pgd); - last_map_addr = phys_pud_init(pud, __pa(start), - __pa(end), page_size_mask); + if (paddr >= paddr_end) { + paddr_next = __pa(vaddr_next); + if (!after_bootmem && + !e820__mapped_any(paddr & P4D_MASK, paddr_next, + E820_TYPE_RAM) && + !e820__mapped_any(paddr & P4D_MASK, paddr_next, + E820_TYPE_ACPI)) + set_p4d_init(p4d, __p4d(0), init); + continue; + } + + if (!p4d_none(*p4d)) { + pud = pud_offset(p4d, 0); + paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end), + page_size_mask, prot, init); continue; } pud = alloc_low_page(); - last_map_addr = phys_pud_init(pud, __pa(start), __pa(end), - page_size_mask); + paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end), + page_size_mask, prot, init); spin_lock(&init_mm.page_table_lock); - pgd_populate(&init_mm, pgd, pud); + p4d_populate_init(&init_mm, p4d, pud, init); + spin_unlock(&init_mm.page_table_lock); + } + + return paddr_last; +} + +static unsigned long __meminit +__kernel_physical_mapping_init(unsigned long paddr_start, + unsigned long paddr_end, + unsigned long page_size_mask, + pgprot_t prot, bool init) +{ + bool pgd_changed = false; + unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last; + + paddr_last = paddr_end; + vaddr = (unsigned long)__va(paddr_start); + vaddr_end = (unsigned long)__va(paddr_end); + vaddr_start = vaddr; + + for (; vaddr < vaddr_end; vaddr = vaddr_next) { + pgd_t *pgd = pgd_offset_k(vaddr); + p4d_t *p4d; + + vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE; + + if (pgd_val(*pgd)) { + p4d = (p4d_t *)pgd_page_vaddr(*pgd); + paddr_last = phys_p4d_init(p4d, __pa(vaddr), + __pa(vaddr_end), + page_size_mask, + prot, init); + continue; + } + + p4d = alloc_low_page(); + paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end), + page_size_mask, prot, init); + + spin_lock(&init_mm.page_table_lock); + if (pgtable_l5_enabled()) + pgd_populate_init(&init_mm, pgd, p4d, init); + else + p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr), + (pud_t *) p4d, init); + spin_unlock(&init_mm.page_table_lock); pgd_changed = true; } if (pgd_changed) - sync_global_pgds(addr, end - 1); + sync_global_pgds(vaddr_start, vaddr_end - 1); - __flush_tlb_all(); + return paddr_last; +} + + +/* + * Create page table mapping for the physical memory for specific physical + * addresses. Note that it can only be used to populate non-present entries. + * The virtual and physical addresses have to be aligned on PMD level + * down. It returns the last physical address mapped. + */ +unsigned long __meminit +kernel_physical_mapping_init(unsigned long paddr_start, + unsigned long paddr_end, + unsigned long page_size_mask, pgprot_t prot) +{ + return __kernel_physical_mapping_init(paddr_start, paddr_end, + page_size_mask, prot, true); +} - return last_map_addr; +/* + * This function is similar to kernel_physical_mapping_init() above with the + * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe() + * when updating the mapping. The caller is responsible to flush the TLBs after + * the function returns. + */ +unsigned long __meminit +kernel_physical_mapping_change(unsigned long paddr_start, + unsigned long paddr_end, + unsigned long page_size_mask) +{ + return __kernel_physical_mapping_init(paddr_start, paddr_end, + page_size_mask, PAGE_KERNEL, + false); } #ifndef CONFIG_NUMA -void __init initmem_init(void) +static __always_inline void x86_numa_init(void) { - memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0); + memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); } #endif +void __init initmem_init(void) +{ + x86_numa_init(); +} + void __init paging_init(void) { - sparse_memory_present_with_active_regions(MAX_NUMNODES); sparse_init(); /* @@ -659,12 +842,110 @@ void __init paging_init(void) * will not set it back. */ node_clear_state(0, N_MEMORY); - if (N_MEMORY != N_NORMAL_MEMORY) - node_clear_state(0, N_NORMAL_MEMORY); + node_clear_state(0, N_NORMAL_MEMORY); zone_sizes_init(); } +#define PAGE_UNUSED 0xFD + +/* + * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges + * from unused_pmd_start to next PMD_SIZE boundary. + */ +static unsigned long unused_pmd_start __meminitdata; + +static void __meminit vmemmap_flush_unused_pmd(void) +{ + if (!unused_pmd_start) + return; + /* + * Clears (unused_pmd_start, PMD_END] + */ + memset((void *)unused_pmd_start, PAGE_UNUSED, + ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start); + unused_pmd_start = 0; +} + +#ifdef CONFIG_MEMORY_HOTPLUG +/* Returns true if the PMD is completely unused and thus it can be freed */ +static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end) +{ + unsigned long start = ALIGN_DOWN(addr, PMD_SIZE); + + /* + * Flush the unused range cache to ensure that memchr_inv() will work + * for the whole range. + */ + vmemmap_flush_unused_pmd(); + memset((void *)addr, PAGE_UNUSED, end - addr); + + return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE); +} +#endif + +static void __meminit __vmemmap_use_sub_pmd(unsigned long start) +{ + /* + * As we expect to add in the same granularity as we remove, it's + * sufficient to mark only some piece used to block the memmap page from + * getting removed when removing some other adjacent memmap (just in + * case the first memmap never gets initialized e.g., because the memory + * block never gets onlined). + */ + memset((void *)start, 0, sizeof(struct page)); +} + +static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end) +{ + /* + * We only optimize if the new used range directly follows the + * previously unused range (esp., when populating consecutive sections). + */ + if (unused_pmd_start == start) { + if (likely(IS_ALIGNED(end, PMD_SIZE))) + unused_pmd_start = 0; + else + unused_pmd_start = end; + return; + } + + /* + * If the range does not contiguously follows previous one, make sure + * to mark the unused range of the previous one so it can be removed. + */ + vmemmap_flush_unused_pmd(); + __vmemmap_use_sub_pmd(start); +} + + +static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end) +{ + const unsigned long page = ALIGN_DOWN(start, PMD_SIZE); + + vmemmap_flush_unused_pmd(); + + /* + * Could be our memmap page is filled with PAGE_UNUSED already from a + * previous remove. Make sure to reset it. + */ + __vmemmap_use_sub_pmd(start); + + /* + * Mark with PAGE_UNUSED the unused parts of the new memmap range + */ + if (!IS_ALIGNED(start, PMD_SIZE)) + memset((void *)page, PAGE_UNUSED, start - page); + + /* + * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of + * consecutive sections. Remember for the last added PMD where the + * unused range begins. + */ + if (!IS_ALIGNED(end, PMD_SIZE)) + unused_pmd_start = end; +} + /* * Memory hotplug specific functions */ @@ -673,7 +954,7 @@ void __init paging_init(void) * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need * updating. */ -static void update_end_of_memory_vars(u64 start, u64 size) +static void update_end_of_memory_vars(u64 start, u64 size) { unsigned long end_pfn = PFN_UP(start + size); @@ -684,50 +965,80 @@ static void update_end_of_memory_vars(u64 start, u64 size) } } -/* - * Memory is added always to NORMAL zone. This means you will never get - * additional DMA/DMA32 memory. - */ -int arch_add_memory(int nid, u64 start, u64 size) +int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages, + struct mhp_params *params) { - struct pglist_data *pgdat = NODE_DATA(nid); - struct zone *zone = pgdat->node_zones + ZONE_NORMAL; - unsigned long start_pfn = start >> PAGE_SHIFT; - unsigned long nr_pages = size >> PAGE_SHIFT; + unsigned long end = ((start_pfn + nr_pages) << PAGE_SHIFT) - 1; int ret; - init_memory_mapping(start, start + size); + if (WARN_ON_ONCE(end > DIRECT_MAP_PHYSMEM_END)) + return -ERANGE; - ret = __add_pages(nid, zone, start_pfn, nr_pages); + ret = __add_pages(nid, start_pfn, nr_pages, params); WARN_ON_ONCE(ret); - /* update max_pfn, max_low_pfn and high_memory */ - update_end_of_memory_vars(start, size); + /* + * Special case: add_pages() is called by memremap_pages() for adding device + * private pages. Do not bump up max_pfn in the device private path, + * because max_pfn changes affect dma_addressing_limited(). + * + * dma_addressing_limited() returning true when max_pfn is the device's + * addressable memory can force device drivers to use bounce buffers + * and impact their performance negatively: + */ + if (!params->pgmap) + /* update max_pfn, max_low_pfn and high_memory */ + update_end_of_memory_vars(start_pfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT); return ret; } -EXPORT_SYMBOL_GPL(arch_add_memory); -#define PAGE_INUSE 0xFD +int arch_add_memory(int nid, u64 start, u64 size, + struct mhp_params *params) +{ + unsigned long start_pfn = start >> PAGE_SHIFT; + unsigned long nr_pages = size >> PAGE_SHIFT; -static void __meminit free_pagetable(struct page *page, int order) + init_memory_mapping(start, start + size, params->pgprot); + + return add_pages(nid, start_pfn, nr_pages, params); +} + +static void free_reserved_pages(struct page *page, unsigned long nr_pages) { - unsigned long magic; - unsigned int nr_pages = 1 << order; + while (nr_pages--) + free_reserved_page(page++); +} +static void __meminit free_pagetable(struct page *page, int order) +{ /* bootmem page has reserved flag */ if (PageReserved(page)) { - __ClearPageReserved(page); + unsigned long nr_pages = 1 << order; +#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE + enum bootmem_type type = bootmem_type(page); - magic = (unsigned long)page->lru.next; - if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) { + if (type == SECTION_INFO || type == MIX_SECTION_INFO) { while (nr_pages--) put_page_bootmem(page++); - } else - while (nr_pages--) - free_reserved_page(page++); - } else - free_pages((unsigned long)page_address(page), order); + } else { + free_reserved_pages(page, nr_pages); + } +#else + free_reserved_pages(page, nr_pages); +#endif + } else { + pagetable_free(page_ptdesc(page)); + } +} + +static void __meminit free_hugepage_table(struct page *page, + struct vmem_altmap *altmap) +{ + if (altmap) + vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE); + else + free_pagetable(page, get_order(PMD_SIZE)); } static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) @@ -737,11 +1048,11 @@ static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) for (i = 0; i < PTRS_PER_PTE; i++) { pte = pte_start + i; - if (pte_val(*pte)) + if (!pte_none(*pte)) return; } - /* free a pte talbe */ + /* free a pte table */ free_pagetable(pmd_page(*pmd), 0); spin_lock(&init_mm.page_table_lock); pmd_clear(pmd); @@ -755,36 +1066,33 @@ static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) for (i = 0; i < PTRS_PER_PMD; i++) { pmd = pmd_start + i; - if (pmd_val(*pmd)) + if (!pmd_none(*pmd)) return; } - /* free a pmd talbe */ + /* free a pmd table */ free_pagetable(pud_page(*pud), 0); spin_lock(&init_mm.page_table_lock); pud_clear(pud); spin_unlock(&init_mm.page_table_lock); } -/* Return true if pgd is changed, otherwise return false. */ -static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd) +static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d) { pud_t *pud; int i; for (i = 0; i < PTRS_PER_PUD; i++) { pud = pud_start + i; - if (pud_val(*pud)) - return false; + if (!pud_none(*pud)) + return; } /* free a pud table */ - free_pagetable(pgd_page(*pgd), 0); + free_pagetable(p4d_page(*p4d), 0); spin_lock(&init_mm.page_table_lock); - pgd_clear(pgd); + p4d_clear(p4d); spin_unlock(&init_mm.page_table_lock); - - return true; } static void __meminit @@ -793,7 +1101,6 @@ remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, { unsigned long next, pages = 0; pte_t *pte; - void *page_addr; phys_addr_t phys_addr; pte = pte_start + pte_index(addr); @@ -814,43 +1121,15 @@ remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, if (phys_addr < (phys_addr_t)0x40000000) return; - if (IS_ALIGNED(addr, PAGE_SIZE) && - IS_ALIGNED(next, PAGE_SIZE)) { - /* - * Do not free direct mapping pages since they were - * freed when offlining, or simplely not in use. - */ - if (!direct) - free_pagetable(pte_page(*pte), 0); - - spin_lock(&init_mm.page_table_lock); - pte_clear(&init_mm, addr, pte); - spin_unlock(&init_mm.page_table_lock); - - /* For non-direct mapping, pages means nothing. */ - pages++; - } else { - /* - * If we are here, we are freeing vmemmap pages since - * direct mapped memory ranges to be freed are aligned. - * - * If we are not removing the whole page, it means - * other page structs in this page are being used and - * we canot remove them. So fill the unused page_structs - * with 0xFD, and remove the page when it is wholly - * filled with 0xFD. - */ - memset((void *)addr, PAGE_INUSE, next - addr); + if (!direct) + free_pagetable(pte_page(*pte), 0); - page_addr = page_address(pte_page(*pte)); - if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) { - free_pagetable(pte_page(*pte), 0); + spin_lock(&init_mm.page_table_lock); + pte_clear(&init_mm, addr, pte); + spin_unlock(&init_mm.page_table_lock); - spin_lock(&init_mm.page_table_lock); - pte_clear(&init_mm, addr, pte); - spin_unlock(&init_mm.page_table_lock); - } - } + /* For non-direct mapping, pages means nothing. */ + pages++; } /* Call free_pte_table() in remove_pmd_table(). */ @@ -861,12 +1140,11 @@ remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, - bool direct) + bool direct, struct vmem_altmap *altmap) { unsigned long next, pages = 0; pte_t *pte_base; pmd_t *pmd; - void *page_addr; pmd = pmd_start + pmd_index(addr); for (; addr < end; addr = next, pmd++) { @@ -875,33 +1153,24 @@ remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, if (!pmd_present(*pmd)) continue; - if (pmd_large(*pmd)) { + if (pmd_leaf(*pmd)) { if (IS_ALIGNED(addr, PMD_SIZE) && IS_ALIGNED(next, PMD_SIZE)) { if (!direct) - free_pagetable(pmd_page(*pmd), - get_order(PMD_SIZE)); + free_hugepage_table(pmd_page(*pmd), + altmap); spin_lock(&init_mm.page_table_lock); pmd_clear(pmd); spin_unlock(&init_mm.page_table_lock); pages++; - } else { - /* If here, we are freeing vmemmap pages. */ - memset((void *)addr, PAGE_INUSE, next - addr); - - page_addr = page_address(pmd_page(*pmd)); - if (!memchr_inv(page_addr, PAGE_INUSE, - PMD_SIZE)) { - free_pagetable(pmd_page(*pmd), - get_order(PMD_SIZE)); - + } else if (vmemmap_pmd_is_unused(addr, next)) { + free_hugepage_table(pmd_page(*pmd), + altmap); spin_lock(&init_mm.page_table_lock); pmd_clear(pmd); spin_unlock(&init_mm.page_table_lock); - } } - continue; } @@ -917,12 +1186,11 @@ remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end, - bool direct) + struct vmem_altmap *altmap, bool direct) { unsigned long next, pages = 0; pmd_t *pmd_base; pud_t *pud; - void *page_addr; pud = pud_start + pud_index(addr); for (; addr < end; addr = next, pud++) { @@ -931,110 +1199,114 @@ remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end, if (!pud_present(*pud)) continue; - if (pud_large(*pud)) { - if (IS_ALIGNED(addr, PUD_SIZE) && - IS_ALIGNED(next, PUD_SIZE)) { - if (!direct) - free_pagetable(pud_page(*pud), - get_order(PUD_SIZE)); + if (pud_leaf(*pud) && + IS_ALIGNED(addr, PUD_SIZE) && + IS_ALIGNED(next, PUD_SIZE)) { + spin_lock(&init_mm.page_table_lock); + pud_clear(pud); + spin_unlock(&init_mm.page_table_lock); + pages++; + continue; + } - spin_lock(&init_mm.page_table_lock); - pud_clear(pud); - spin_unlock(&init_mm.page_table_lock); - pages++; - } else { - /* If here, we are freeing vmemmap pages. */ - memset((void *)addr, PAGE_INUSE, next - addr); + pmd_base = pmd_offset(pud, 0); + remove_pmd_table(pmd_base, addr, next, direct, altmap); + free_pmd_table(pmd_base, pud); + } - page_addr = page_address(pud_page(*pud)); - if (!memchr_inv(page_addr, PAGE_INUSE, - PUD_SIZE)) { - free_pagetable(pud_page(*pud), - get_order(PUD_SIZE)); + if (direct) + update_page_count(PG_LEVEL_1G, -pages); +} - spin_lock(&init_mm.page_table_lock); - pud_clear(pud); - spin_unlock(&init_mm.page_table_lock); - } - } +static void __meminit +remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end, + struct vmem_altmap *altmap, bool direct) +{ + unsigned long next, pages = 0; + pud_t *pud_base; + p4d_t *p4d; + + p4d = p4d_start + p4d_index(addr); + for (; addr < end; addr = next, p4d++) { + next = p4d_addr_end(addr, end); + if (!p4d_present(*p4d)) continue; - } - pmd_base = (pmd_t *)pud_page_vaddr(*pud); - remove_pmd_table(pmd_base, addr, next, direct); - free_pmd_table(pmd_base, pud); + BUILD_BUG_ON(p4d_leaf(*p4d)); + + pud_base = pud_offset(p4d, 0); + remove_pud_table(pud_base, addr, next, altmap, direct); + /* + * For 4-level page tables we do not want to free PUDs, but in the + * 5-level case we should free them. This code will have to change + * to adapt for boot-time switching between 4 and 5 level page tables. + */ + if (pgtable_l5_enabled()) + free_pud_table(pud_base, p4d); } if (direct) - update_page_count(PG_LEVEL_1G, -pages); + update_page_count(PG_LEVEL_512G, -pages); } /* start and end are both virtual address. */ static void __meminit -remove_pagetable(unsigned long start, unsigned long end, bool direct) +remove_pagetable(unsigned long start, unsigned long end, bool direct, + struct vmem_altmap *altmap) { unsigned long next; + unsigned long addr; pgd_t *pgd; - pud_t *pud; - bool pgd_changed = false; + p4d_t *p4d; - for (; start < end; start = next) { - next = pgd_addr_end(start, end); + for (addr = start; addr < end; addr = next) { + next = pgd_addr_end(addr, end); - pgd = pgd_offset_k(start); + pgd = pgd_offset_k(addr); if (!pgd_present(*pgd)) continue; - pud = (pud_t *)pgd_page_vaddr(*pgd); - remove_pud_table(pud, start, next, direct); - if (free_pud_table(pud, pgd)) - pgd_changed = true; + p4d = p4d_offset(pgd, 0); + remove_p4d_table(p4d, addr, next, altmap, direct); } - if (pgd_changed) - sync_global_pgds(start, end - 1); - flush_tlb_all(); } -void __ref vmemmap_free(unsigned long start, unsigned long end) +void __ref vmemmap_free(unsigned long start, unsigned long end, + struct vmem_altmap *altmap) { - remove_pagetable(start, end, false); + VM_BUG_ON(!PAGE_ALIGNED(start)); + VM_BUG_ON(!PAGE_ALIGNED(end)); + + remove_pagetable(start, end, false, altmap); } -#ifdef CONFIG_MEMORY_HOTREMOVE static void __meminit kernel_physical_mapping_remove(unsigned long start, unsigned long end) { start = (unsigned long)__va(start); end = (unsigned long)__va(end); - remove_pagetable(start, end, true); + remove_pagetable(start, end, true, NULL); } -int __ref arch_remove_memory(u64 start, u64 size) +void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) { unsigned long start_pfn = start >> PAGE_SHIFT; unsigned long nr_pages = size >> PAGE_SHIFT; - struct zone *zone; - int ret; - zone = page_zone(pfn_to_page(start_pfn)); + __remove_pages(start_pfn, nr_pages, altmap); kernel_physical_mapping_remove(start, start + size); - ret = __remove_pages(zone, start_pfn, nr_pages); - WARN_ON_ONCE(ret); - - return ret; } -#endif #endif /* CONFIG_MEMORY_HOTPLUG */ static struct kcore_list kcore_vsyscall; static void __init register_page_bootmem_info(void) { -#ifdef CONFIG_NUMA +#if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP) int i; for_each_online_node(i) @@ -1042,75 +1314,93 @@ static void __init register_page_bootmem_info(void) #endif } -void __init mem_init(void) +/* + * Pre-allocates page-table pages for the vmalloc area in the kernel page-table. + * Only the level which needs to be synchronized between all page-tables is + * allocated because the synchronization can be expensive. + */ +static void __init preallocate_vmalloc_pages(void) { - pci_iommu_alloc(); - - /* clear_bss() already clear the empty_zero_page */ - - register_page_bootmem_info(); - - /* this will put all memory onto the freelists */ - free_all_bootmem(); - after_bootmem = 1; - - /* Register memory areas for /proc/kcore */ - kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START, - VSYSCALL_END - VSYSCALL_START, KCORE_OTHER); + unsigned long addr; + const char *lvl; - mem_init_print_info(NULL); -} + for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) { + pgd_t *pgd = pgd_offset_k(addr); + p4d_t *p4d; + pud_t *pud; -#ifdef CONFIG_DEBUG_RODATA -const int rodata_test_data = 0xC3; -EXPORT_SYMBOL_GPL(rodata_test_data); + lvl = "p4d"; + p4d = p4d_alloc(&init_mm, pgd, addr); + if (!p4d) + goto failed; -int kernel_set_to_readonly; + if (pgtable_l5_enabled()) + continue; -void set_kernel_text_rw(void) -{ - unsigned long start = PFN_ALIGN(_text); - unsigned long end = PFN_ALIGN(__stop___ex_table); + /* + * The goal here is to allocate all possibly required + * hardware page tables pointed to by the top hardware + * level. + * + * On 4-level systems, the P4D layer is folded away and + * the above code does no preallocation. Below, go down + * to the pud _software_ level to ensure the second + * hardware level is allocated on 4-level systems too. + */ + lvl = "pud"; + pud = pud_alloc(&init_mm, p4d, addr); + if (!pud) + goto failed; + } - if (!kernel_set_to_readonly) - return; + return; - pr_debug("Set kernel text: %lx - %lx for read write\n", - start, end); +failed: /* - * Make the kernel identity mapping for text RW. Kernel text - * mapping will always be RO. Refer to the comment in - * static_protections() in pageattr.c + * The pages have to be there now or they will be missing in + * process page-tables later. */ - set_memory_rw(start, (end - start) >> PAGE_SHIFT); + panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl); } -void set_kernel_text_ro(void) +void __init arch_mm_preinit(void) { - unsigned long start = PFN_ALIGN(_text); - unsigned long end = PFN_ALIGN(__stop___ex_table); + pci_iommu_alloc(); +} - if (!kernel_set_to_readonly) - return; +void __init mem_init(void) +{ + /* clear_bss() already clear the empty_zero_page */ - pr_debug("Set kernel text: %lx - %lx for read only\n", - start, end); + after_bootmem = 1; + x86_init.hyper.init_after_bootmem(); /* - * Set the kernel identity mapping for text RO. + * Must be done after boot memory is put on freelist, because here we + * might set fields in deferred struct pages that have not yet been + * initialized, and memblock_free_all() initializes all the reserved + * deferred pages for us. */ - set_memory_ro(start, (end - start) >> PAGE_SHIFT); + register_page_bootmem_info(); + + /* Register memory areas for /proc/kcore */ + if (get_gate_vma(&init_mm)) + kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER); + + preallocate_vmalloc_pages(); } +int kernel_set_to_readonly; + void mark_rodata_ro(void) { unsigned long start = PFN_ALIGN(_text); unsigned long rodata_start = PFN_ALIGN(__start_rodata); - unsigned long end = (unsigned long) &__end_rodata_hpage_align; - unsigned long text_end = PFN_ALIGN(&__stop___ex_table); - unsigned long rodata_end = PFN_ALIGN(&__end_rodata); - unsigned long all_end = PFN_ALIGN(&_end); + unsigned long end = (unsigned long)__end_rodata_hpage_align; + unsigned long text_end = PFN_ALIGN(_etext); + unsigned long rodata_end = PFN_ALIGN(__end_rodata); + unsigned long all_end; printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", (end - start) >> 10); @@ -1121,10 +1411,19 @@ void mark_rodata_ro(void) /* * The rodata/data/bss/brk section (but not the kernel text!) * should also be not-executable. + * + * We align all_end to PMD_SIZE because the existing mapping + * is a full PMD. If we would align _brk_end to PAGE_SIZE we + * split the PMD and the reminder between _brk_end and the end + * of the PMD will remain mapped executable. + * + * Any PMD which was setup after the one which covers _brk_end + * has been zapped already via cleanup_highmem(). */ - set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT); + all_end = roundup((unsigned long)_brk_end, PMD_SIZE); + set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT); - rodata_test(); + set_ftrace_ops_ro(); #ifdef CONFIG_CPA_DEBUG printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); @@ -1134,114 +1433,85 @@ void mark_rodata_ro(void) set_memory_ro(start, (end-start) >> PAGE_SHIFT); #endif - free_init_pages("unused kernel", - (unsigned long) __va(__pa_symbol(text_end)), - (unsigned long) __va(__pa_symbol(rodata_start))); - free_init_pages("unused kernel", - (unsigned long) __va(__pa_symbol(rodata_end)), - (unsigned long) __va(__pa_symbol(_sdata))); -} - -#endif - -int kern_addr_valid(unsigned long addr) -{ - unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - pte_t *pte; - - if (above != 0 && above != -1UL) - return 0; - - pgd = pgd_offset_k(addr); - if (pgd_none(*pgd)) - return 0; - - pud = pud_offset(pgd, addr); - if (pud_none(*pud)) - return 0; - - if (pud_large(*pud)) - return pfn_valid(pud_pfn(*pud)); - - pmd = pmd_offset(pud, addr); - if (pmd_none(*pmd)) - return 0; - - if (pmd_large(*pmd)) - return pfn_valid(pmd_pfn(*pmd)); - - pte = pte_offset_kernel(pmd, addr); - if (pte_none(*pte)) - return 0; - - return pfn_valid(pte_pfn(*pte)); + free_kernel_image_pages("unused kernel image (text/rodata gap)", + (void *)text_end, (void *)rodata_start); + free_kernel_image_pages("unused kernel image (rodata/data gap)", + (void *)rodata_end, (void *)_sdata); } /* - * A pseudo VMA to allow ptrace access for the vsyscall page. This only - * covers the 64bit vsyscall page now. 32bit has a real VMA now and does - * not need special handling anymore: + * Block size is the minimum amount of memory which can be hotplugged or + * hotremoved. It must be power of two and must be equal or larger than + * MIN_MEMORY_BLOCK_SIZE. */ -static struct vm_area_struct gate_vma = { - .vm_start = VSYSCALL_START, - .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE), - .vm_page_prot = PAGE_READONLY_EXEC, - .vm_flags = VM_READ | VM_EXEC -}; - -struct vm_area_struct *get_gate_vma(struct mm_struct *mm) -{ -#ifdef CONFIG_IA32_EMULATION - if (!mm || mm->context.ia32_compat) - return NULL; -#endif - return &gate_vma; -} +#define MAX_BLOCK_SIZE (2UL << 30) + +/* Amount of ram needed to start using large blocks */ +#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30) -int in_gate_area(struct mm_struct *mm, unsigned long addr) +/* Adjustable memory block size */ +static unsigned long set_memory_block_size; +int __init set_memory_block_size_order(unsigned int order) { - struct vm_area_struct *vma = get_gate_vma(mm); + unsigned long size = 1UL << order; - if (!vma) - return 0; + if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE) + return -EINVAL; - return (addr >= vma->vm_start) && (addr < vma->vm_end); + set_memory_block_size = size; + return 0; } -/* - * Use this when you have no reliable mm, typically from interrupt - * context. It is less reliable than using a task's mm and may give - * false positives. - */ -int in_gate_area_no_mm(unsigned long addr) +static unsigned long probe_memory_block_size(void) { - return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END); -} + unsigned long boot_mem_end = max_pfn << PAGE_SHIFT; + unsigned long bz; + + /* If memory block size has been set, then use it */ + bz = set_memory_block_size; + if (bz) + goto done; + + /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */ + if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) { + bz = MIN_MEMORY_BLOCK_SIZE; + goto done; + } -const char *arch_vma_name(struct vm_area_struct *vma) -{ - if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso) - return "[vdso]"; - if (vma == &gate_vma) - return "[vsyscall]"; - return NULL; + /* + * When hotplug alignment is not a concern, maximize blocksize + * to minimize overhead. Otherwise, align to the lesser of advice + * alignment and end of memory alignment. + */ + bz = memory_block_advised_max_size(); + if (!bz) { + bz = MAX_BLOCK_SIZE; + if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) + goto done; + } else { + bz = max(min(bz, MAX_BLOCK_SIZE), MIN_MEMORY_BLOCK_SIZE); + } + + /* Find the largest allowed block size that aligns to memory end */ + for (; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) { + if (IS_ALIGNED(boot_mem_end, bz)) + break; + } +done: + pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20); + + return bz; } -#ifdef CONFIG_X86_UV +static unsigned long memory_block_size_probed; unsigned long memory_block_size_bytes(void) { - if (is_uv_system()) { - printk(KERN_INFO "UV: memory block size 2GB\n"); - return 2UL * 1024 * 1024 * 1024; - } - return MIN_MEMORY_BLOCK_SIZE; + if (!memory_block_size_probed) + memory_block_size_probed = probe_memory_block_size(); + + return memory_block_size_probed; } -#endif -#ifdef CONFIG_SPARSEMEM_VMEMMAP /* * Initialise the sparsemem vmemmap using huge-pages at the PMD level. */ @@ -1249,87 +1519,81 @@ static long __meminitdata addr_start, addr_end; static void __meminitdata *p_start, *p_end; static int __meminitdata node_start; -static int __meminit vmemmap_populate_hugepages(unsigned long start, - unsigned long end, int node) +void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, + unsigned long addr, unsigned long next) { - unsigned long addr; - unsigned long next; - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; + pte_t entry; + + entry = pfn_pte(__pa(p) >> PAGE_SHIFT, + PAGE_KERNEL_LARGE); + set_pmd(pmd, __pmd(pte_val(entry))); + + /* check to see if we have contiguous blocks */ + if (p_end != p || node_start != node) { + if (p_start) + pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", + addr_start, addr_end-1, p_start, p_end-1, node_start); + addr_start = addr; + node_start = node; + p_start = p; + } - for (addr = start; addr < end; addr = next) { - next = pmd_addr_end(addr, end); + addr_end = addr + PMD_SIZE; + p_end = p + PMD_SIZE; - pgd = vmemmap_pgd_populate(addr, node); - if (!pgd) - return -ENOMEM; + if (!IS_ALIGNED(addr, PMD_SIZE) || + !IS_ALIGNED(next, PMD_SIZE)) + vmemmap_use_new_sub_pmd(addr, next); +} - pud = vmemmap_pud_populate(pgd, addr, node); - if (!pud) - return -ENOMEM; +int __meminit vmemmap_check_pmd(pmd_t *pmd, int node, + unsigned long addr, unsigned long next) +{ + int large = pmd_leaf(*pmd); - pmd = pmd_offset(pud, addr); - if (pmd_none(*pmd)) { - void *p; - - p = vmemmap_alloc_block_buf(PMD_SIZE, node); - if (p) { - pte_t entry; - - entry = pfn_pte(__pa(p) >> PAGE_SHIFT, - PAGE_KERNEL_LARGE); - set_pmd(pmd, __pmd(pte_val(entry))); - - /* check to see if we have contiguous blocks */ - if (p_end != p || node_start != node) { - if (p_start) - printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", - addr_start, addr_end-1, p_start, p_end-1, node_start); - addr_start = addr; - node_start = node; - p_start = p; - } - - addr_end = addr + PMD_SIZE; - p_end = p + PMD_SIZE; - continue; - } - } else if (pmd_large(*pmd)) { - vmemmap_verify((pte_t *)pmd, node, addr, next); - continue; - } - pr_warn_once("vmemmap: falling back to regular page backing\n"); - if (vmemmap_populate_basepages(addr, next, node)) - return -ENOMEM; + if (pmd_leaf(*pmd)) { + vmemmap_verify((pte_t *)pmd, node, addr, next); + vmemmap_use_sub_pmd(addr, next); } - return 0; + + return large; } -int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node) +int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, + struct vmem_altmap *altmap) { int err; - if (cpu_has_pse) - err = vmemmap_populate_hugepages(start, end, node); - else - err = vmemmap_populate_basepages(start, end, node); + VM_BUG_ON(!PAGE_ALIGNED(start)); + VM_BUG_ON(!PAGE_ALIGNED(end)); + + if (end - start < PAGES_PER_SECTION * sizeof(struct page)) + err = vmemmap_populate_basepages(start, end, node, NULL); + else if (boot_cpu_has(X86_FEATURE_PSE)) + err = vmemmap_populate_hugepages(start, end, node, altmap); + else if (altmap) { + pr_err_once("%s: no cpu support for altmap allocations\n", + __func__); + err = -ENOMEM; + } else + err = vmemmap_populate_basepages(start, end, node, NULL); if (!err) sync_global_pgds(start, end - 1); return err; } -#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE) +#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE void register_page_bootmem_memmap(unsigned long section_nr, - struct page *start_page, unsigned long size) + struct page *start_page, unsigned long nr_pages) { unsigned long addr = (unsigned long)start_page; - unsigned long end = (unsigned long)(start_page + size); + unsigned long end = (unsigned long)(start_page + nr_pages); unsigned long next; pgd_t *pgd; + p4d_t *p4d; pud_t *pud; pmd_t *pmd; - unsigned int nr_pages; + unsigned int nr_pmd_pages; struct page *page; for (; addr < end; addr = next) { @@ -1342,18 +1606,28 @@ void register_page_bootmem_memmap(unsigned long section_nr, } get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO); - pud = pud_offset(pgd, addr); + p4d = p4d_offset(pgd, addr); + if (p4d_none(*p4d)) { + next = (addr + PAGE_SIZE) & PAGE_MASK; + continue; + } + get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO); + + pud = pud_offset(p4d, addr); if (pud_none(*pud)) { next = (addr + PAGE_SIZE) & PAGE_MASK; continue; } get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO); - if (!cpu_has_pse) { + pmd = pmd_offset(pud, addr); + if (pmd_none(*pmd)) { + next = (addr + PAGE_SIZE) & PAGE_MASK; + continue; + } + + if (!boot_cpu_has(X86_FEATURE_PSE) || !pmd_leaf(*pmd)) { next = (addr + PAGE_SIZE) & PAGE_MASK; - pmd = pmd_offset(pud, addr); - if (pmd_none(*pmd)) - continue; get_page_bootmem(section_nr, pmd_page(*pmd), MIX_SECTION_INFO); @@ -1364,14 +1638,9 @@ void register_page_bootmem_memmap(unsigned long section_nr, SECTION_INFO); } else { next = pmd_addr_end(addr, end); - - pmd = pmd_offset(pud, addr); - if (pmd_none(*pmd)) - continue; - - nr_pages = 1 << (get_order(PMD_SIZE)); + nr_pmd_pages = (next - addr) >> PAGE_SHIFT; page = pmd_page(*pmd); - while (nr_pages--) + while (nr_pmd_pages--) get_page_bootmem(section_nr, page++, SECTION_INFO); } @@ -1382,11 +1651,10 @@ void register_page_bootmem_memmap(unsigned long section_nr, void __meminit vmemmap_populate_print_last(void) { if (p_start) { - printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", + pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", addr_start, addr_end-1, p_start, p_end-1, node_start); p_start = NULL; p_end = NULL; node_start = 0; } } -#endif diff --git a/arch/x86/mm/iomap_32.c b/arch/x86/mm/iomap_32.c index 7b179b499fa3..9aaa756ddf21 100644 --- a/arch/x86/mm/iomap_32.c +++ b/arch/x86/mm/iomap_32.c @@ -1,24 +1,11 @@ +// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright © 2008 Ingo Molnar - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, but - * WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include <asm/iomap.h> -#include <asm/pat.h> -#include <linux/module.h> +#include <asm/memtype.h> +#include <linux/export.h> #include <linux/highmem.h> static int is_io_mapping_possible(resource_size_t base, unsigned long size) @@ -33,87 +20,46 @@ static int is_io_mapping_possible(resource_size_t base, unsigned long size) int iomap_create_wc(resource_size_t base, unsigned long size, pgprot_t *prot) { - unsigned long flag = _PAGE_CACHE_WC; + enum page_cache_mode pcm = _PAGE_CACHE_MODE_WC; int ret; if (!is_io_mapping_possible(base, size)) return -EINVAL; - ret = io_reserve_memtype(base, base + size, &flag); + ret = memtype_reserve_io(base, base + size, &pcm); if (ret) return ret; - *prot = __pgprot(__PAGE_KERNEL | flag); + *prot = __pgprot(__PAGE_KERNEL | cachemode2protval(pcm)); + /* Filter out unsupported __PAGE_KERNEL* bits: */ + pgprot_val(*prot) &= __default_kernel_pte_mask; + return 0; } EXPORT_SYMBOL_GPL(iomap_create_wc); void iomap_free(resource_size_t base, unsigned long size) { - io_free_memtype(base, base + size); + memtype_free_io(base, base + size); } EXPORT_SYMBOL_GPL(iomap_free); -void *kmap_atomic_prot_pfn(unsigned long pfn, pgprot_t prot) -{ - unsigned long vaddr; - int idx, type; - - pagefault_disable(); - - type = kmap_atomic_idx_push(); - idx = type + KM_TYPE_NR * smp_processor_id(); - vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); - set_pte(kmap_pte - idx, pfn_pte(pfn, prot)); - arch_flush_lazy_mmu_mode(); - - return (void *)vaddr; -} - -/* - * Map 'pfn' using protections 'prot' - */ -void __iomem * -iomap_atomic_prot_pfn(unsigned long pfn, pgprot_t prot) +void __iomem *__iomap_local_pfn_prot(unsigned long pfn, pgprot_t prot) { /* - * For non-PAT systems, promote PAGE_KERNEL_WC to PAGE_KERNEL_UC_MINUS. - * PAGE_KERNEL_WC maps to PWT, which translates to uncached if the - * MTRR is UC or WC. UC_MINUS gets the real intention, of the - * user, which is "WC if the MTRR is WC, UC if you can't do that." + * For non-PAT systems, translate non-WB request to UC- just in + * case the caller set the PWT bit to prot directly without using + * pgprot_writecombine(). UC- translates to uncached if the MTRR + * is UC or WC. UC- gets the real intention, of the user, which is + * "WC if the MTRR is WC, UC if you can't do that." */ - if (!pat_enabled && pgprot_val(prot) == pgprot_val(PAGE_KERNEL_WC)) - prot = PAGE_KERNEL_UC_MINUS; - - return (void __force __iomem *) kmap_atomic_prot_pfn(pfn, prot); -} -EXPORT_SYMBOL_GPL(iomap_atomic_prot_pfn); - -void -iounmap_atomic(void __iomem *kvaddr) -{ - unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK; - - if (vaddr >= __fix_to_virt(FIX_KMAP_END) && - vaddr <= __fix_to_virt(FIX_KMAP_BEGIN)) { - int idx, type; + if (!pat_enabled() && pgprot2cachemode(prot) != _PAGE_CACHE_MODE_WB) + prot = __pgprot(__PAGE_KERNEL | + cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); - type = kmap_atomic_idx(); - idx = type + KM_TYPE_NR * smp_processor_id(); - -#ifdef CONFIG_DEBUG_HIGHMEM - WARN_ON_ONCE(vaddr != __fix_to_virt(FIX_KMAP_BEGIN + idx)); -#endif - /* - * Force other mappings to Oops if they'll try to access this - * pte without first remap it. Keeping stale mappings around - * is a bad idea also, in case the page changes cacheability - * attributes or becomes a protected page in a hypervisor. - */ - kpte_clear_flush(kmap_pte-idx, vaddr); - kmap_atomic_idx_pop(); - } + /* Filter out unsupported __PAGE_KERNEL* bits: */ + pgprot_val(prot) &= __default_kernel_pte_mask; - pagefault_enable(); + return (void __force __iomem *)__kmap_local_pfn_prot(pfn, prot); } -EXPORT_SYMBOL_GPL(iounmap_atomic); +EXPORT_SYMBOL_GPL(__iomap_local_pfn_prot); diff --git a/arch/x86/mm/ioremap.c b/arch/x86/mm/ioremap.c index 0215e2c563ef..12c8180ca1ba 100644 --- a/arch/x86/mm/ioremap.c +++ b/arch/x86/mm/ioremap.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * Re-map IO memory to kernel address space so that we can access it. * This is needed for high PCI addresses that aren't mapped in the @@ -6,43 +7,59 @@ * (C) Copyright 1995 1996 Linus Torvalds */ -#include <linux/bootmem.h> +#include <linux/memblock.h> #include <linux/init.h> #include <linux/io.h> -#include <linux/module.h> +#include <linux/ioport.h> +#include <linux/ioremap.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/mmiotrace.h> - -#include <asm/cacheflush.h> -#include <asm/e820.h> +#include <linux/cc_platform.h> +#include <linux/efi.h> +#include <linux/pgtable.h> +#include <linux/kmsan.h> + +#include <asm/set_memory.h> +#include <asm/e820/api.h> +#include <asm/efi.h> #include <asm/fixmap.h> -#include <asm/pgtable.h> #include <asm/tlbflush.h> #include <asm/pgalloc.h> -#include <asm/pat.h> +#include <asm/memtype.h> +#include <asm/setup.h> #include "physaddr.h" /* + * Descriptor controlling ioremap() behavior. + */ +struct ioremap_desc { + unsigned int flags; +}; + +/* * Fix up the linear direct mapping of the kernel to avoid cache attribute * conflicts. */ int ioremap_change_attr(unsigned long vaddr, unsigned long size, - unsigned long prot_val) + enum page_cache_mode pcm) { unsigned long nrpages = size >> PAGE_SHIFT; int err; - switch (prot_val) { - case _PAGE_CACHE_UC: + switch (pcm) { + case _PAGE_CACHE_MODE_UC: default: err = _set_memory_uc(vaddr, nrpages); break; - case _PAGE_CACHE_WC: + case _PAGE_CACHE_MODE_WC: err = _set_memory_wc(vaddr, nrpages); break; - case _PAGE_CACHE_WB: + case _PAGE_CACHE_MODE_WT: + err = _set_memory_wt(vaddr, nrpages); + break; + case _PAGE_CACHE_MODE_WB: err = _set_memory_wb(vaddr, nrpages); break; } @@ -50,24 +67,130 @@ int ioremap_change_attr(unsigned long vaddr, unsigned long size, return err; } +/* Does the range (or a subset of) contain normal RAM? */ +static unsigned int __ioremap_check_ram(struct resource *res) +{ + unsigned long start_pfn, stop_pfn; + unsigned long pfn; + + if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM) + return 0; + + start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT; + stop_pfn = (res->end + 1) >> PAGE_SHIFT; + if (stop_pfn > start_pfn) { + for_each_valid_pfn(pfn, start_pfn, stop_pfn) + if (!PageReserved(pfn_to_page(pfn))) + return IORES_MAP_SYSTEM_RAM; + } + + return 0; +} + +/* + * In a SEV guest, NONE and RESERVED should not be mapped encrypted because + * there the whole memory is already encrypted. + */ +static unsigned int __ioremap_check_encrypted(struct resource *res) +{ + if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) + return 0; + + switch (res->desc) { + case IORES_DESC_NONE: + case IORES_DESC_RESERVED: + break; + default: + return IORES_MAP_ENCRYPTED; + } + + return 0; +} + +/* + * The EFI runtime services data area is not covered by walk_mem_res(), but must + * be mapped encrypted when SEV is active. + */ +static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc) +{ + if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) + return; + + if (x86_platform.hyper.is_private_mmio(addr)) { + desc->flags |= IORES_MAP_ENCRYPTED; + return; + } + + if (!IS_ENABLED(CONFIG_EFI)) + return; + + if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA || + (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA && + efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME)) + desc->flags |= IORES_MAP_ENCRYPTED; +} + +static int __ioremap_collect_map_flags(struct resource *res, void *arg) +{ + struct ioremap_desc *desc = arg; + + if (!(desc->flags & IORES_MAP_SYSTEM_RAM)) + desc->flags |= __ioremap_check_ram(res); + + if (!(desc->flags & IORES_MAP_ENCRYPTED)) + desc->flags |= __ioremap_check_encrypted(res); + + return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) == + (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)); +} + +/* + * To avoid multiple resource walks, this function walks resources marked as + * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a + * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES). + * + * After that, deal with misc other ranges in __ioremap_check_other() which do + * not fall into the above category. + */ +static void __ioremap_check_mem(resource_size_t addr, unsigned long size, + struct ioremap_desc *desc) +{ + u64 start, end; + + start = (u64)addr; + end = start + size - 1; + memset(desc, 0, sizeof(struct ioremap_desc)); + + walk_mem_res(start, end, desc, __ioremap_collect_map_flags); + + __ioremap_check_other(addr, desc); +} + /* * Remap an arbitrary physical address space into the kernel virtual - * address space. Needed when the kernel wants to access high addresses - * directly. + * address space. It transparently creates kernel huge I/O mapping when + * the physical address is aligned by a huge page size (1GB or 2MB) and + * the requested size is at least the huge page size. + * + * NOTE: MTRRs can override PAT memory types with a 4KB granularity. + * Therefore, the mapping code falls back to use a smaller page toward 4KB + * when a mapping range is covered by non-WB type of MTRRs. * * NOTE! We need to allow non-page-aligned mappings too: we will obviously * have to convert them into an offset in a page-aligned mapping, but the * caller shouldn't need to know that small detail. */ -static void __iomem *__ioremap_caller(resource_size_t phys_addr, - unsigned long size, unsigned long prot_val, void *caller) +static void __iomem * +__ioremap_caller(resource_size_t phys_addr, unsigned long size, + enum page_cache_mode pcm, void *caller, bool encrypted) { unsigned long offset, vaddr; - resource_size_t pfn, last_pfn, last_addr; + resource_size_t last_addr; const resource_size_t unaligned_phys_addr = phys_addr; const unsigned long unaligned_size = size; + struct ioremap_desc io_desc; struct vm_struct *area; - unsigned long new_prot_val; + enum page_cache_mode new_pcm; pgprot_t prot; int retval; void __iomem *ret_addr; @@ -84,64 +207,82 @@ static void __iomem *__ioremap_caller(resource_size_t phys_addr, return NULL; } - /* - * Don't remap the low PCI/ISA area, it's always mapped.. - */ - if (is_ISA_range(phys_addr, last_addr)) - return (__force void __iomem *)phys_to_virt(phys_addr); + __ioremap_check_mem(phys_addr, size, &io_desc); /* * Don't allow anybody to remap normal RAM that we're using.. */ - last_pfn = last_addr >> PAGE_SHIFT; - for (pfn = phys_addr >> PAGE_SHIFT; pfn <= last_pfn; pfn++) { - int is_ram = page_is_ram(pfn); - - if (is_ram && pfn_valid(pfn) && !PageReserved(pfn_to_page(pfn))) - return NULL; - WARN_ON_ONCE(is_ram); + if (io_desc.flags & IORES_MAP_SYSTEM_RAM) { + WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", + &phys_addr, &last_addr); + return NULL; } /* * Mappings have to be page-aligned */ offset = phys_addr & ~PAGE_MASK; - phys_addr &= PHYSICAL_PAGE_MASK; + phys_addr &= PAGE_MASK; size = PAGE_ALIGN(last_addr+1) - phys_addr; - retval = reserve_memtype(phys_addr, (u64)phys_addr + size, - prot_val, &new_prot_val); + /* + * Mask out any bits not part of the actual physical + * address, like memory encryption bits. + */ + phys_addr &= PHYSICAL_PAGE_MASK; + + retval = memtype_reserve(phys_addr, (u64)phys_addr + size, + pcm, &new_pcm); if (retval) { - printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval); + printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval); return NULL; } - if (prot_val != new_prot_val) { - if (!is_new_memtype_allowed(phys_addr, size, - prot_val, new_prot_val)) { + if (pcm != new_pcm) { + if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) { printk(KERN_ERR - "ioremap error for 0x%llx-0x%llx, requested 0x%lx, got 0x%lx\n", + "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n", (unsigned long long)phys_addr, (unsigned long long)(phys_addr + size), - prot_val, new_prot_val); + pcm, new_pcm); goto err_free_memtype; } - prot_val = new_prot_val; + pcm = new_pcm; } - switch (prot_val) { - case _PAGE_CACHE_UC: + /* + * If the page being mapped is in memory and SEV is active then + * make sure the memory encryption attribute is enabled in the + * resulting mapping. + * In TDX guests, memory is marked private by default. If encryption + * is not requested (using encrypted), explicitly set decrypt + * attribute in all IOREMAPPED memory. + */ + prot = PAGE_KERNEL_IO; + if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted) + prot = pgprot_encrypted(prot); + else + prot = pgprot_decrypted(prot); + + switch (pcm) { + case _PAGE_CACHE_MODE_UC: default: - prot = PAGE_KERNEL_IO_NOCACHE; + prot = __pgprot(pgprot_val(prot) | + cachemode2protval(_PAGE_CACHE_MODE_UC)); + break; + case _PAGE_CACHE_MODE_UC_MINUS: + prot = __pgprot(pgprot_val(prot) | + cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)); break; - case _PAGE_CACHE_UC_MINUS: - prot = PAGE_KERNEL_IO_UC_MINUS; + case _PAGE_CACHE_MODE_WC: + prot = __pgprot(pgprot_val(prot) | + cachemode2protval(_PAGE_CACHE_MODE_WC)); break; - case _PAGE_CACHE_WC: - prot = PAGE_KERNEL_IO_WC; + case _PAGE_CACHE_MODE_WT: + prot = __pgprot(pgprot_val(prot) | + cachemode2protval(_PAGE_CACHE_MODE_WT)); break; - case _PAGE_CACHE_WB: - prot = PAGE_KERNEL_IO; + case _PAGE_CACHE_MODE_WB: break; } @@ -154,7 +295,7 @@ static void __iomem *__ioremap_caller(resource_size_t phys_addr, area->phys_addr = phys_addr; vaddr = (unsigned long) area->addr; - if (kernel_map_sync_memtype(phys_addr, size, prot_val)) + if (memtype_kernel_map_sync(phys_addr, size, pcm)) goto err_free_area; if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot)) @@ -167,23 +308,23 @@ static void __iomem *__ioremap_caller(resource_size_t phys_addr, * Check if the request spans more than any BAR in the iomem resource * tree. */ - WARN_ONCE(iomem_map_sanity_check(unaligned_phys_addr, unaligned_size), - KERN_INFO "Info: mapping multiple BARs. Your kernel is fine."); + if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size)) + pr_warn("caller %pS mapping multiple BARs\n", caller); return ret_addr; err_free_area: free_vm_area(area); err_free_memtype: - free_memtype(phys_addr, phys_addr + size); + memtype_free(phys_addr, phys_addr + size); return NULL; } /** - * ioremap_nocache - map bus memory into CPU space + * ioremap - map bus memory into CPU space * @phys_addr: bus address of the memory * @size: size of the resource to map * - * ioremap_nocache performs a platform specific sequence of operations to + * ioremap performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual @@ -199,21 +340,55 @@ err_free_memtype: * * Must be freed with iounmap. */ -void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size) +void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) { /* * Ideally, this should be: - * pat_enabled ? _PAGE_CACHE_UC : _PAGE_CACHE_UC_MINUS; + * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS; * * Till we fix all X drivers to use ioremap_wc(), we will use - * UC MINUS. + * UC MINUS. Drivers that are certain they need or can already + * be converted over to strong UC can use ioremap_uc(). */ - unsigned long val = _PAGE_CACHE_UC_MINUS; + enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS; + + return __ioremap_caller(phys_addr, size, pcm, + __builtin_return_address(0), false); +} +EXPORT_SYMBOL(ioremap); + +/** + * ioremap_uc - map bus memory into CPU space as strongly uncachable + * @phys_addr: bus address of the memory + * @size: size of the resource to map + * + * ioremap_uc performs a platform specific sequence of operations to + * make bus memory CPU accessible via the readb/readw/readl/writeb/ + * writew/writel functions and the other mmio helpers. The returned + * address is not guaranteed to be usable directly as a virtual + * address. + * + * This version of ioremap ensures that the memory is marked with a strong + * preference as completely uncachable on the CPU when possible. For non-PAT + * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT + * systems this will set the PAT entry for the pages as strong UC. This call + * will honor existing caching rules from things like the PCI bus. Note that + * there are other caches and buffers on many busses. In particular driver + * authors should read up on PCI writes. + * + * It's useful if some control registers are in such an area and + * write combining or read caching is not desirable: + * + * Must be freed with iounmap. + */ +void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size) +{ + enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC; - return __ioremap_caller(phys_addr, size, val, - __builtin_return_address(0)); + return __ioremap_caller(phys_addr, size, pcm, + __builtin_return_address(0), false); } -EXPORT_SYMBOL(ioremap_nocache); +EXPORT_SYMBOL_GPL(ioremap_uc); /** * ioremap_wc - map memory into CPU space write combined @@ -227,26 +402,48 @@ EXPORT_SYMBOL(ioremap_nocache); */ void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size) { - if (pat_enabled) - return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WC, - __builtin_return_address(0)); - else - return ioremap_nocache(phys_addr, size); + return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC, + __builtin_return_address(0), false); } EXPORT_SYMBOL(ioremap_wc); +/** + * ioremap_wt - map memory into CPU space write through + * @phys_addr: bus address of the memory + * @size: size of the resource to map + * + * This version of ioremap ensures that the memory is marked write through. + * Write through stores data into memory while keeping the cache up-to-date. + * + * Must be freed with iounmap. + */ +void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size) +{ + return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT, + __builtin_return_address(0), false); +} +EXPORT_SYMBOL(ioremap_wt); + +void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size) +{ + return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, + __builtin_return_address(0), true); +} +EXPORT_SYMBOL(ioremap_encrypted); + void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size) { - return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WB, - __builtin_return_address(0)); + return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB, + __builtin_return_address(0), false); } EXPORT_SYMBOL(ioremap_cache); void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, - unsigned long prot_val) + pgprot_t prot) { - return __ioremap_caller(phys_addr, size, (prot_val & _PAGE_CACHE_MASK), - __builtin_return_address(0)); + return __ioremap_caller(phys_addr, size, + pgprot2cachemode(prot), + __builtin_return_address(0), false); } EXPORT_SYMBOL(ioremap_prot); @@ -260,23 +457,27 @@ void iounmap(volatile void __iomem *addr) { struct vm_struct *p, *o; - if ((void __force *)addr <= high_memory) + if (WARN_ON_ONCE(!is_ioremap_addr((void __force *)addr))) return; /* - * __ioremap special-cases the PCI/ISA range by not instantiating a - * vm_area and by simply returning an address into the kernel mapping - * of ISA space. So handle that here. + * The PCI/ISA range special-casing was removed from __ioremap() + * so this check, in theory, can be removed. However, there are + * cases where iounmap() is called for addresses not obtained via + * ioremap() (vga16fb for example). Add a warning so that these + * cases can be caught and fixed. */ if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) && - (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) + (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) { + WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n"); return; + } + + mmiotrace_iounmap(addr); addr = (volatile void __iomem *) (PAGE_MASK & (unsigned long __force)addr); - mmiotrace_iounmap(addr); - /* Use the vm area unlocked, assuming the caller ensures there isn't another iounmap for the same address in parallel. Reuse of the virtual address is prevented by @@ -290,7 +491,9 @@ void iounmap(volatile void __iomem *addr) return; } - free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p)); + kmsan_iounmap_page_range((unsigned long)addr, + (unsigned long)addr + get_vm_area_size(p)); + memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p)); /* Finally remove it */ o = remove_vm_area((void __force *)addr); @@ -299,54 +502,334 @@ void iounmap(volatile void __iomem *addr) } EXPORT_SYMBOL(iounmap); +void *arch_memremap_wb(phys_addr_t phys_addr, size_t size, unsigned long flags) +{ + if ((flags & MEMREMAP_DEC) || cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) + return (void __force *)ioremap_cache(phys_addr, size); + + return (void __force *)ioremap_encrypted(phys_addr, size); +} + /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */ -void *xlate_dev_mem_ptr(unsigned long phys) +void *xlate_dev_mem_ptr(phys_addr_t phys) { - void *addr; - unsigned long start = phys & PAGE_MASK; + unsigned long start = phys & PAGE_MASK; + unsigned long offset = phys & ~PAGE_MASK; + void *vaddr; - /* If page is RAM, we can use __va. Otherwise ioremap and unmap. */ - if (page_is_ram(start >> PAGE_SHIFT)) - return __va(phys); + /* memremap() maps if RAM, otherwise falls back to ioremap() */ + vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB); - addr = (void __force *)ioremap_cache(start, PAGE_SIZE); - if (addr) - addr = (void *)((unsigned long)addr | (phys & ~PAGE_MASK)); + /* Only add the offset on success and return NULL if memremap() failed */ + if (vaddr) + vaddr += offset; - return addr; + return vaddr; } -void unxlate_dev_mem_ptr(unsigned long phys, void *addr) +void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) { - if (page_is_ram(phys >> PAGE_SHIFT)) - return; + memunmap((void *)((unsigned long)addr & PAGE_MASK)); +} - iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK)); - return; +#ifdef CONFIG_AMD_MEM_ENCRYPT +/* + * Examine the physical address to determine if it is an area of memory + * that should be mapped decrypted. If the memory is not part of the + * kernel usable area it was accessed and created decrypted, so these + * areas should be mapped decrypted. And since the encryption key can + * change across reboots, persistent memory should also be mapped + * decrypted. + * + * If SEV is active, that implies that BIOS/UEFI also ran encrypted so + * only persistent memory should be mapped decrypted. + */ +static bool memremap_should_map_decrypted(resource_size_t phys_addr, + unsigned long size) +{ + int is_pmem; + + /* + * Check if the address is part of a persistent memory region. + * This check covers areas added by E820, EFI and ACPI. + */ + is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM, + IORES_DESC_PERSISTENT_MEMORY); + if (is_pmem != REGION_DISJOINT) + return true; + + /* + * Check if the non-volatile attribute is set for an EFI + * reserved area. + */ + if (efi_enabled(EFI_BOOT)) { + switch (efi_mem_type(phys_addr)) { + case EFI_RESERVED_TYPE: + if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV) + return true; + break; + default: + break; + } + } + + /* Check if the address is outside kernel usable area */ + switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) { + case E820_TYPE_RESERVED: + case E820_TYPE_ACPI: + case E820_TYPE_NVS: + case E820_TYPE_UNUSABLE: + /* For SEV, these areas are encrypted */ + if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) + break; + fallthrough; + + case E820_TYPE_PRAM: + return true; + default: + break; + } + + return false; } -static int __initdata early_ioremap_debug; +/* + * Examine the physical address to determine if it is EFI data. Check + * it against the boot params structure and EFI tables and memory types. + */ +static bool memremap_is_efi_data(resource_size_t phys_addr) +{ + u64 paddr; + + /* Check if the address is part of EFI boot/runtime data */ + if (!efi_enabled(EFI_BOOT)) + return false; + + paddr = boot_params.efi_info.efi_memmap_hi; + paddr <<= 32; + paddr |= boot_params.efi_info.efi_memmap; + if (phys_addr == paddr) + return true; + + paddr = boot_params.efi_info.efi_systab_hi; + paddr <<= 32; + paddr |= boot_params.efi_info.efi_systab; + if (phys_addr == paddr) + return true; + + if (efi_is_table_address(phys_addr)) + return true; + + switch (efi_mem_type(phys_addr)) { + case EFI_BOOT_SERVICES_DATA: + case EFI_RUNTIME_SERVICES_DATA: + return true; + default: + break; + } + + return false; +} -static int __init early_ioremap_debug_setup(char *str) +/* + * Examine the physical address to determine if it is boot data by checking + * it against the boot params setup_data chain. + */ +static bool __ref __memremap_is_setup_data(resource_size_t phys_addr, bool early) { - early_ioremap_debug = 1; + unsigned int setup_data_sz = sizeof(struct setup_data); + struct setup_indirect *indirect; + struct setup_data *data; + u64 paddr, paddr_next; + + paddr = boot_params.hdr.setup_data; + while (paddr) { + unsigned int len, size; + + if (phys_addr == paddr) + return true; + + if (early) + data = early_memremap_decrypted(paddr, setup_data_sz); + else + data = memremap(paddr, setup_data_sz, MEMREMAP_WB | MEMREMAP_DEC); + if (!data) { + pr_warn("failed to remap setup_data entry\n"); + return false; + } - return 0; + size = setup_data_sz; + + paddr_next = data->next; + len = data->len; + + if ((phys_addr > paddr) && + (phys_addr < (paddr + setup_data_sz + len))) { + if (early) + early_memunmap(data, setup_data_sz); + else + memunmap(data); + return true; + } + + if (data->type == SETUP_INDIRECT) { + size += len; + if (early) { + early_memunmap(data, setup_data_sz); + data = early_memremap_decrypted(paddr, size); + } else { + memunmap(data); + data = memremap(paddr, size, MEMREMAP_WB | MEMREMAP_DEC); + } + if (!data) { + pr_warn("failed to remap indirect setup_data\n"); + return false; + } + + indirect = (struct setup_indirect *)data->data; + + if (indirect->type != SETUP_INDIRECT) { + paddr = indirect->addr; + len = indirect->len; + } + } + + if (early) + early_memunmap(data, size); + else + memunmap(data); + + if ((phys_addr > paddr) && (phys_addr < (paddr + len))) + return true; + + paddr = paddr_next; + } + + return false; +} + +static bool memremap_is_setup_data(resource_size_t phys_addr) +{ + return __memremap_is_setup_data(phys_addr, false); +} + +static bool __init early_memremap_is_setup_data(resource_size_t phys_addr) +{ + return __memremap_is_setup_data(phys_addr, true); +} + +/* + * Architecture function to determine if RAM remap is allowed. By default, a + * RAM remap will map the data as encrypted. Determine if a RAM remap should + * not be done so that the data will be mapped decrypted. + */ +bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, + unsigned long flags) +{ + if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT)) + return true; + + if (flags & MEMREMAP_ENC) + return true; + + if (flags & MEMREMAP_DEC) + return false; + + if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { + if (memremap_is_setup_data(phys_addr) || + memremap_is_efi_data(phys_addr)) + return false; + } + + return !memremap_should_map_decrypted(phys_addr, size); +} + +/* + * Architecture override of __weak function to adjust the protection attributes + * used when remapping memory. By default, early_memremap() will map the data + * as encrypted. Determine if an encrypted mapping should not be done and set + * the appropriate protection attributes. + */ +pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, + unsigned long size, + pgprot_t prot) +{ + bool encrypted_prot; + + if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT)) + return prot; + + encrypted_prot = true; + + if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { + if (early_memremap_is_setup_data(phys_addr) || + memremap_is_efi_data(phys_addr)) + encrypted_prot = false; + } + + if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size)) + encrypted_prot = false; + + return encrypted_prot ? pgprot_encrypted(prot) + : pgprot_decrypted(prot); +} + +bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size) +{ + return arch_memremap_can_ram_remap(phys_addr, size, 0); +} + +/* Remap memory with encryption */ +void __init *early_memremap_encrypted(resource_size_t phys_addr, + unsigned long size) +{ + return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC); } -early_param("early_ioremap_debug", early_ioremap_debug_setup); -static __initdata int after_paging_init; +/* + * Remap memory with encryption and write-protected - cannot be called + * before pat_init() is called + */ +void __init *early_memremap_encrypted_wp(resource_size_t phys_addr, + unsigned long size) +{ + if (!x86_has_pat_wp()) + return NULL; + return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP); +} + +/* Remap memory without encryption */ +void __init *early_memremap_decrypted(resource_size_t phys_addr, + unsigned long size) +{ + return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC); +} + +/* + * Remap memory without encryption and write-protected - cannot be called + * before pat_init() is called + */ +void __init *early_memremap_decrypted_wp(resource_size_t phys_addr, + unsigned long size) +{ + if (!x86_has_pat_wp()) + return NULL; + return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP); +} +#endif /* CONFIG_AMD_MEM_ENCRYPT */ + static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss; static inline pmd_t * __init early_ioremap_pmd(unsigned long addr) { /* Don't assume we're using swapper_pg_dir at this point */ - pgd_t *base = __va(read_cr3()); + pgd_t *base = __va(read_cr3_pa()); pgd_t *pgd = &base[pgd_index(addr)]; - pud_t *pud = pud_offset(pgd, addr); + p4d_t *p4d = p4d_offset(pgd, addr); + pud_t *pud = pud_offset(p4d, addr); pmd_t *pmd = pmd_offset(pud, addr); return pmd; @@ -362,18 +845,17 @@ bool __init is_early_ioremap_ptep(pte_t *ptep) return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)]; } -static unsigned long slot_virt[FIX_BTMAPS_SLOTS] __initdata; - void __init early_ioremap_init(void) { pmd_t *pmd; - int i; - if (early_ioremap_debug) - printk(KERN_INFO "early_ioremap_init()\n"); +#ifdef CONFIG_X86_64 + BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); +#else + WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1)); +#endif - for (i = 0; i < FIX_BTMAPS_SLOTS; i++) - slot_virt[i] = __fix_to_virt(FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*i); + early_ioremap_setup(); pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); memset(bm_pte, 0, sizeof(bm_pte)); @@ -402,13 +884,8 @@ void __init early_ioremap_init(void) } } -void __init early_ioremap_reset(void) -{ - after_paging_init = 1; -} - -static void __init __early_set_fixmap(enum fixed_addresses idx, - phys_addr_t phys, pgprot_t flags) +void __init __early_set_fixmap(enum fixed_addresses idx, + phys_addr_t phys, pgprot_t flags) { unsigned long addr = __fix_to_virt(idx); pte_t *pte; @@ -419,205 +896,12 @@ static void __init __early_set_fixmap(enum fixed_addresses idx, } pte = early_ioremap_pte(addr); + /* Sanitize 'prot' against any unsupported bits: */ + pgprot_val(flags) &= __supported_pte_mask; + if (pgprot_val(flags)) set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); else pte_clear(&init_mm, addr, pte); - __flush_tlb_one(addr); -} - -static inline void __init early_set_fixmap(enum fixed_addresses idx, - phys_addr_t phys, pgprot_t prot) -{ - if (after_paging_init) - __set_fixmap(idx, phys, prot); - else - __early_set_fixmap(idx, phys, prot); -} - -static inline void __init early_clear_fixmap(enum fixed_addresses idx) -{ - if (after_paging_init) - clear_fixmap(idx); - else - __early_set_fixmap(idx, 0, __pgprot(0)); -} - -static void __iomem *prev_map[FIX_BTMAPS_SLOTS] __initdata; -static unsigned long prev_size[FIX_BTMAPS_SLOTS] __initdata; - -void __init fixup_early_ioremap(void) -{ - int i; - - for (i = 0; i < FIX_BTMAPS_SLOTS; i++) { - if (prev_map[i]) { - WARN_ON(1); - break; - } - } - - early_ioremap_init(); -} - -static int __init check_early_ioremap_leak(void) -{ - int count = 0; - int i; - - for (i = 0; i < FIX_BTMAPS_SLOTS; i++) - if (prev_map[i]) - count++; - - if (!count) - return 0; - WARN(1, KERN_WARNING - "Debug warning: early ioremap leak of %d areas detected.\n", - count); - printk(KERN_WARNING - "please boot with early_ioremap_debug and report the dmesg.\n"); - - return 1; -} -late_initcall(check_early_ioremap_leak); - -static void __init __iomem * -__early_ioremap(resource_size_t phys_addr, unsigned long size, pgprot_t prot) -{ - unsigned long offset; - resource_size_t last_addr; - unsigned int nrpages; - enum fixed_addresses idx0, idx; - int i, slot; - - WARN_ON(system_state != SYSTEM_BOOTING); - - slot = -1; - for (i = 0; i < FIX_BTMAPS_SLOTS; i++) { - if (!prev_map[i]) { - slot = i; - break; - } - } - - if (slot < 0) { - printk(KERN_INFO "%s(%08llx, %08lx) not found slot\n", - __func__, (u64)phys_addr, size); - WARN_ON(1); - return NULL; - } - - if (early_ioremap_debug) { - printk(KERN_INFO "%s(%08llx, %08lx) [%d] => ", - __func__, (u64)phys_addr, size, slot); - dump_stack(); - } - - /* Don't allow wraparound or zero size */ - last_addr = phys_addr + size - 1; - if (!size || last_addr < phys_addr) { - WARN_ON(1); - return NULL; - } - - prev_size[slot] = size; - /* - * Mappings have to be page-aligned - */ - offset = phys_addr & ~PAGE_MASK; - phys_addr &= PAGE_MASK; - size = PAGE_ALIGN(last_addr + 1) - phys_addr; - - /* - * Mappings have to fit in the FIX_BTMAP area. - */ - nrpages = size >> PAGE_SHIFT; - if (nrpages > NR_FIX_BTMAPS) { - WARN_ON(1); - return NULL; - } - - /* - * Ok, go for it.. - */ - idx0 = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot; - idx = idx0; - while (nrpages > 0) { - early_set_fixmap(idx, phys_addr, prot); - phys_addr += PAGE_SIZE; - --idx; - --nrpages; - } - if (early_ioremap_debug) - printk(KERN_CONT "%08lx + %08lx\n", offset, slot_virt[slot]); - - prev_map[slot] = (void __iomem *)(offset + slot_virt[slot]); - return prev_map[slot]; -} - -/* Remap an IO device */ -void __init __iomem * -early_ioremap(resource_size_t phys_addr, unsigned long size) -{ - return __early_ioremap(phys_addr, size, PAGE_KERNEL_IO); -} - -/* Remap memory */ -void __init __iomem * -early_memremap(resource_size_t phys_addr, unsigned long size) -{ - return __early_ioremap(phys_addr, size, PAGE_KERNEL); -} - -void __init early_iounmap(void __iomem *addr, unsigned long size) -{ - unsigned long virt_addr; - unsigned long offset; - unsigned int nrpages; - enum fixed_addresses idx; - int i, slot; - - slot = -1; - for (i = 0; i < FIX_BTMAPS_SLOTS; i++) { - if (prev_map[i] == addr) { - slot = i; - break; - } - } - - if (slot < 0) { - printk(KERN_INFO "early_iounmap(%p, %08lx) not found slot\n", - addr, size); - WARN_ON(1); - return; - } - - if (prev_size[slot] != size) { - printk(KERN_INFO "early_iounmap(%p, %08lx) [%d] size not consistent %08lx\n", - addr, size, slot, prev_size[slot]); - WARN_ON(1); - return; - } - - if (early_ioremap_debug) { - printk(KERN_INFO "early_iounmap(%p, %08lx) [%d]\n", addr, - size, slot); - dump_stack(); - } - - virt_addr = (unsigned long)addr; - if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN)) { - WARN_ON(1); - return; - } - offset = virt_addr & ~PAGE_MASK; - nrpages = PAGE_ALIGN(offset + size) >> PAGE_SHIFT; - - idx = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot; - while (nrpages > 0) { - early_clear_fixmap(idx); - --idx; - --nrpages; - } - prev_map[slot] = NULL; + flush_tlb_one_kernel(addr); } diff --git a/arch/x86/mm/kasan_init_64.c b/arch/x86/mm/kasan_init_64.c new file mode 100644 index 000000000000..998b6010d6d3 --- /dev/null +++ b/arch/x86/mm/kasan_init_64.c @@ -0,0 +1,455 @@ +// SPDX-License-Identifier: GPL-2.0 +#define pr_fmt(fmt) "kasan: " fmt + +/* cpu_feature_enabled() cannot be used this early */ +#define USE_EARLY_PGTABLE_L5 + +#include <linux/memblock.h> +#include <linux/kasan.h> +#include <linux/kdebug.h> +#include <linux/mm.h> +#include <linux/sched.h> +#include <linux/sched/task.h> +#include <linux/vmalloc.h> + +#include <asm/e820/types.h> +#include <asm/pgalloc.h> +#include <asm/tlbflush.h> +#include <asm/sections.h> +#include <asm/cpu_entry_area.h> + +extern struct range pfn_mapped[E820_MAX_ENTRIES]; + +static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); + +static __init void *early_alloc(size_t size, int nid, bool should_panic) +{ + void *ptr = memblock_alloc_try_nid(size, size, + __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid); + + if (!ptr && should_panic) + panic("%pS: Failed to allocate page, nid=%d from=%lx\n", + (void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS)); + + return ptr; +} + +static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr, + unsigned long end, int nid) +{ + pte_t *pte; + + if (pmd_none(*pmd)) { + void *p; + + if (boot_cpu_has(X86_FEATURE_PSE) && + ((end - addr) == PMD_SIZE) && + IS_ALIGNED(addr, PMD_SIZE)) { + p = early_alloc(PMD_SIZE, nid, false); + if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL)) + return; + memblock_free(p, PMD_SIZE); + } + + p = early_alloc(PAGE_SIZE, nid, true); + pmd_populate_kernel(&init_mm, pmd, p); + } + + pte = pte_offset_kernel(pmd, addr); + do { + pte_t entry; + void *p; + + if (!pte_none(*pte)) + continue; + + p = early_alloc(PAGE_SIZE, nid, true); + entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL); + set_pte_at(&init_mm, addr, pte, entry); + } while (pte++, addr += PAGE_SIZE, addr != end); +} + +static void __init kasan_populate_pud(pud_t *pud, unsigned long addr, + unsigned long end, int nid) +{ + pmd_t *pmd; + unsigned long next; + + if (pud_none(*pud)) { + void *p; + + if (boot_cpu_has(X86_FEATURE_GBPAGES) && + ((end - addr) == PUD_SIZE) && + IS_ALIGNED(addr, PUD_SIZE)) { + p = early_alloc(PUD_SIZE, nid, false); + if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL)) + return; + memblock_free(p, PUD_SIZE); + } + + p = early_alloc(PAGE_SIZE, nid, true); + pud_populate(&init_mm, pud, p); + } + + pmd = pmd_offset(pud, addr); + do { + next = pmd_addr_end(addr, end); + if (!pmd_leaf(*pmd)) + kasan_populate_pmd(pmd, addr, next, nid); + } while (pmd++, addr = next, addr != end); +} + +static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr, + unsigned long end, int nid) +{ + pud_t *pud; + unsigned long next; + + if (p4d_none(*p4d)) { + void *p = early_alloc(PAGE_SIZE, nid, true); + + p4d_populate(&init_mm, p4d, p); + } + + pud = pud_offset(p4d, addr); + do { + next = pud_addr_end(addr, end); + if (!pud_leaf(*pud)) + kasan_populate_pud(pud, addr, next, nid); + } while (pud++, addr = next, addr != end); +} + +static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr, + unsigned long end, int nid) +{ + void *p; + p4d_t *p4d; + unsigned long next; + + if (pgd_none(*pgd)) { + p = early_alloc(PAGE_SIZE, nid, true); + pgd_populate(&init_mm, pgd, p); + } + + p4d = p4d_offset(pgd, addr); + do { + next = p4d_addr_end(addr, end); + kasan_populate_p4d(p4d, addr, next, nid); + } while (p4d++, addr = next, addr != end); +} + +static void __init kasan_populate_shadow(unsigned long addr, unsigned long end, + int nid) +{ + pgd_t *pgd; + unsigned long next; + + addr = addr & PAGE_MASK; + end = round_up(end, PAGE_SIZE); + pgd = pgd_offset_k(addr); + do { + next = pgd_addr_end(addr, end); + kasan_populate_pgd(pgd, addr, next, nid); + } while (pgd++, addr = next, addr != end); +} + +static void __init map_range(struct range *range) +{ + unsigned long start; + unsigned long end; + + start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start)); + end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end)); + + kasan_populate_shadow(start, end, early_pfn_to_nid(range->start)); +} + +static void __init clear_pgds(unsigned long start, + unsigned long end) +{ + pgd_t *pgd; + /* See comment in kasan_init() */ + unsigned long pgd_end = end & PGDIR_MASK; + + for (; start < pgd_end; start += PGDIR_SIZE) { + pgd = pgd_offset_k(start); + /* + * With folded p4d, pgd_clear() is nop, use p4d_clear() + * instead. + */ + if (pgtable_l5_enabled()) + pgd_clear(pgd); + else + p4d_clear(p4d_offset(pgd, start)); + } + + pgd = pgd_offset_k(start); + for (; start < end; start += P4D_SIZE) + p4d_clear(p4d_offset(pgd, start)); +} + +static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr) +{ + unsigned long p4d; + + if (!pgtable_l5_enabled()) + return (p4d_t *)pgd; + + p4d = pgd_val(*pgd) & PTE_PFN_MASK; + p4d += __START_KERNEL_map - phys_base; + return (p4d_t *)p4d + p4d_index(addr); +} + +static void __init kasan_early_p4d_populate(pgd_t *pgd, + unsigned long addr, + unsigned long end) +{ + pgd_t pgd_entry; + p4d_t *p4d, p4d_entry; + unsigned long next; + + if (pgd_none(*pgd)) { + pgd_entry = __pgd(_KERNPG_TABLE | + __pa_nodebug(kasan_early_shadow_p4d)); + set_pgd(pgd, pgd_entry); + } + + p4d = early_p4d_offset(pgd, addr); + do { + next = p4d_addr_end(addr, end); + + if (!p4d_none(*p4d)) + continue; + + p4d_entry = __p4d(_KERNPG_TABLE | + __pa_nodebug(kasan_early_shadow_pud)); + set_p4d(p4d, p4d_entry); + } while (p4d++, addr = next, addr != end && p4d_none(*p4d)); +} + +static void __init kasan_map_early_shadow(pgd_t *pgd) +{ + /* See comment in kasan_init() */ + unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK; + unsigned long end = KASAN_SHADOW_END; + unsigned long next; + + pgd += pgd_index(addr); + do { + next = pgd_addr_end(addr, end); + kasan_early_p4d_populate(pgd, addr, next); + } while (pgd++, addr = next, addr != end); +} + +static void __init kasan_shallow_populate_p4ds(pgd_t *pgd, + unsigned long addr, + unsigned long end) +{ + p4d_t *p4d; + unsigned long next; + void *p; + + p4d = p4d_offset(pgd, addr); + do { + next = p4d_addr_end(addr, end); + + if (p4d_none(*p4d)) { + p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true); + p4d_populate(&init_mm, p4d, p); + } + } while (p4d++, addr = next, addr != end); +} + +static void __init kasan_shallow_populate_pgds(void *start, void *end) +{ + unsigned long addr, next; + pgd_t *pgd; + void *p; + + addr = (unsigned long)start; + pgd = pgd_offset_k(addr); + do { + next = pgd_addr_end(addr, (unsigned long)end); + + if (pgd_none(*pgd)) { + p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true); + pgd_populate(&init_mm, pgd, p); + } + + /* + * we need to populate p4ds to be synced when running in + * four level mode - see sync_global_pgds_l4() + */ + kasan_shallow_populate_p4ds(pgd, addr, next); + } while (pgd++, addr = next, addr != (unsigned long)end); +} + +void __init kasan_early_init(void) +{ + int i; + pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) | + __PAGE_KERNEL | _PAGE_ENC; + pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE; + pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE; + p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE; + + /* Mask out unsupported __PAGE_KERNEL bits: */ + pte_val &= __default_kernel_pte_mask; + pmd_val &= __default_kernel_pte_mask; + pud_val &= __default_kernel_pte_mask; + p4d_val &= __default_kernel_pte_mask; + + for (i = 0; i < PTRS_PER_PTE; i++) + kasan_early_shadow_pte[i] = __pte(pte_val); + + for (i = 0; i < PTRS_PER_PMD; i++) + kasan_early_shadow_pmd[i] = __pmd(pmd_val); + + for (i = 0; i < PTRS_PER_PUD; i++) + kasan_early_shadow_pud[i] = __pud(pud_val); + + for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++) + kasan_early_shadow_p4d[i] = __p4d(p4d_val); + + kasan_map_early_shadow(early_top_pgt); + kasan_map_early_shadow(init_top_pgt); +} + +static unsigned long kasan_mem_to_shadow_align_down(unsigned long va) +{ + unsigned long shadow = (unsigned long)kasan_mem_to_shadow((void *)va); + + return round_down(shadow, PAGE_SIZE); +} + +static unsigned long kasan_mem_to_shadow_align_up(unsigned long va) +{ + unsigned long shadow = (unsigned long)kasan_mem_to_shadow((void *)va); + + return round_up(shadow, PAGE_SIZE); +} + +void __init kasan_populate_shadow_for_vaddr(void *va, size_t size, int nid) +{ + unsigned long shadow_start, shadow_end; + + shadow_start = kasan_mem_to_shadow_align_down((unsigned long)va); + shadow_end = kasan_mem_to_shadow_align_up((unsigned long)va + size); + kasan_populate_shadow(shadow_start, shadow_end, nid); +} + +void __init kasan_init(void) +{ + unsigned long shadow_cea_begin, shadow_cea_per_cpu_begin, shadow_cea_end; + int i; + + memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt)); + + /* + * We use the same shadow offset for 4- and 5-level paging to + * facilitate boot-time switching between paging modes. + * As result in 5-level paging mode KASAN_SHADOW_START and + * KASAN_SHADOW_END are not aligned to PGD boundary. + * + * KASAN_SHADOW_START doesn't share PGD with anything else. + * We claim whole PGD entry to make things easier. + * + * KASAN_SHADOW_END lands in the last PGD entry and it collides with + * bunch of things like kernel code, modules, EFI mapping, etc. + * We need to take extra steps to not overwrite them. + */ + if (pgtable_l5_enabled()) { + void *ptr; + + ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END)); + memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table)); + set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)], + __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE)); + } + + load_cr3(early_top_pgt); + __flush_tlb_all(); + + clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END); + + kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK), + kasan_mem_to_shadow((void *)PAGE_OFFSET)); + + for (i = 0; i < E820_MAX_ENTRIES; i++) { + if (pfn_mapped[i].end == 0) + break; + + map_range(&pfn_mapped[i]); + } + + shadow_cea_begin = kasan_mem_to_shadow_align_down(CPU_ENTRY_AREA_BASE); + shadow_cea_per_cpu_begin = kasan_mem_to_shadow_align_up(CPU_ENTRY_AREA_PER_CPU); + shadow_cea_end = kasan_mem_to_shadow_align_up(CPU_ENTRY_AREA_BASE + + CPU_ENTRY_AREA_MAP_SIZE); + + kasan_populate_early_shadow( + kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM), + kasan_mem_to_shadow((void *)VMALLOC_START)); + + /* + * If we're in full vmalloc mode, don't back vmalloc space with early + * shadow pages. Instead, prepopulate pgds/p4ds so they are synced to + * the global table and we can populate the lower levels on demand. + */ + if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) + kasan_shallow_populate_pgds( + kasan_mem_to_shadow((void *)VMALLOC_START), + kasan_mem_to_shadow((void *)VMALLOC_END)); + else + kasan_populate_early_shadow( + kasan_mem_to_shadow((void *)VMALLOC_START), + kasan_mem_to_shadow((void *)VMALLOC_END)); + + kasan_populate_early_shadow( + kasan_mem_to_shadow((void *)VMALLOC_END + 1), + (void *)shadow_cea_begin); + + /* + * Populate the shadow for the shared portion of the CPU entry area. + * Shadows for the per-CPU areas are mapped on-demand, as each CPU's + * area is randomly placed somewhere in the 512GiB range and mapping + * the entire 512GiB range is prohibitively expensive. + */ + kasan_populate_shadow(shadow_cea_begin, + shadow_cea_per_cpu_begin, 0); + + kasan_populate_early_shadow((void *)shadow_cea_end, + kasan_mem_to_shadow((void *)__START_KERNEL_map)); + + kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext), + (unsigned long)kasan_mem_to_shadow(_end), + early_pfn_to_nid(__pa(_stext))); + + kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END), + (void *)KASAN_SHADOW_END); + + load_cr3(init_top_pgt); + __flush_tlb_all(); + + /* + * kasan_early_shadow_page has been used as early shadow memory, thus + * it may contain some garbage. Now we can clear and write protect it, + * since after the TLB flush no one should write to it. + */ + memset(kasan_early_shadow_page, 0, PAGE_SIZE); + for (i = 0; i < PTRS_PER_PTE; i++) { + pte_t pte; + pgprot_t prot; + + prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC); + pgprot_val(prot) &= __default_kernel_pte_mask; + + pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot)); + set_pte(&kasan_early_shadow_pte[i], pte); + } + /* Flush TLBs again to be sure that write protection applied. */ + __flush_tlb_all(); + + init_task.kasan_depth = 0; + kasan_init_generic(); +} diff --git a/arch/x86/mm/kaslr.c b/arch/x86/mm/kaslr.c new file mode 100644 index 000000000000..3c306de52fd4 --- /dev/null +++ b/arch/x86/mm/kaslr.c @@ -0,0 +1,211 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This file implements KASLR memory randomization for x86_64. It randomizes + * the virtual address space of kernel memory regions (physical memory + * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates + * exploits relying on predictable kernel addresses. + * + * Entropy is generated using the KASLR early boot functions now shared in + * the lib directory (originally written by Kees Cook). Randomization is + * done on PGD & P4D/PUD page table levels to increase possible addresses. + * The physical memory mapping code was adapted to support P4D/PUD level + * virtual addresses. This implementation on the best configuration provides + * 30,000 possible virtual addresses in average for each memory region. + * An additional low memory page is used to ensure each CPU can start with + * a PGD aligned virtual address (for realmode). + * + * The order of each memory region is not changed. The feature looks at + * the available space for the regions based on different configuration + * options and randomizes the base and space between each. The size of the + * physical memory mapping is the available physical memory. + */ + +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/prandom.h> +#include <linux/memblock.h> +#include <linux/pgtable.h> + +#include <asm/setup.h> +#include <asm/kaslr.h> + +#include "mm_internal.h" + +#define TB_SHIFT 40 + +/* + * The end address could depend on more configuration options to make the + * highest amount of space for randomization available, but that's too hard + * to keep straight and caused issues already. + */ +static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE; + +/* + * Memory regions randomized by KASLR (except modules that use a separate logic + * earlier during boot). The list is ordered based on virtual addresses. This + * order is kept after randomization. + */ +static __initdata struct kaslr_memory_region { + unsigned long *base; + unsigned long *end; + unsigned long size_tb; +} kaslr_regions[] = { + { + .base = &page_offset_base, + .end = &direct_map_physmem_end, + }, + { + .base = &vmalloc_base, + }, + { + .base = &vmemmap_base, + }, +}; + +/* + * The end of the physical address space that can be mapped directly by the + * kernel. This starts out at (1<<MAX_PHYSMEM_BITS) - 1), but KASLR may reduce + * that in order to increase the available entropy for mapping other regions. + */ +unsigned long direct_map_physmem_end __ro_after_init; + +/* Get size in bytes used by the memory region */ +static inline unsigned long get_padding(struct kaslr_memory_region *region) +{ + return (region->size_tb << TB_SHIFT); +} + +/* Initialize base and padding for each memory region randomized with KASLR */ +void __init kernel_randomize_memory(void) +{ + size_t i; + unsigned long vaddr_start, vaddr; + unsigned long rand, memory_tb; + struct rnd_state rand_state; + unsigned long remain_entropy; + unsigned long vmemmap_size; + + vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4; + vaddr = vaddr_start; + + /* + * These BUILD_BUG_ON checks ensure the memory layout is consistent + * with the vaddr_start/vaddr_end variables. These checks are very + * limited.... + */ + BUILD_BUG_ON(vaddr_start >= vaddr_end); + BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE); + BUILD_BUG_ON(vaddr_end > __START_KERNEL_map); + + /* Preset the end of the possible address space for physical memory */ + direct_map_physmem_end = ((1ULL << MAX_PHYSMEM_BITS) - 1); + if (!kaslr_memory_enabled()) + return; + + kaslr_regions[0].size_tb = 1 << (MAX_PHYSMEM_BITS - TB_SHIFT); + kaslr_regions[1].size_tb = VMALLOC_SIZE_TB; + + /* + * Update Physical memory mapping to available and + * add padding if needed (especially for memory hotplug support). + */ + BUG_ON(kaslr_regions[0].base != &page_offset_base); + memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) + + CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING; + + /* + * Adapt physical memory region size based on available memory, + * except when CONFIG_PCI_P2PDMA is enabled. P2PDMA exposes the + * device BAR space assuming the direct map space is large enough + * for creating a ZONE_DEVICE mapping in the direct map corresponding + * to the physical BAR address. + */ + if (!IS_ENABLED(CONFIG_PCI_P2PDMA) && (memory_tb < kaslr_regions[0].size_tb)) + kaslr_regions[0].size_tb = memory_tb; + + /* + * Calculate the vmemmap region size in TBs, aligned to a TB + * boundary. + */ + vmemmap_size = (kaslr_regions[0].size_tb << (TB_SHIFT - PAGE_SHIFT)) * + sizeof(struct page); + kaslr_regions[2].size_tb = DIV_ROUND_UP(vmemmap_size, 1UL << TB_SHIFT); + + /* Calculate entropy available between regions */ + remain_entropy = vaddr_end - vaddr_start; + for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) + remain_entropy -= get_padding(&kaslr_regions[i]); + + prandom_seed_state(&rand_state, kaslr_get_random_long("Memory")); + + for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) { + unsigned long entropy; + + /* + * Select a random virtual address using the extra entropy + * available. + */ + entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i); + prandom_bytes_state(&rand_state, &rand, sizeof(rand)); + entropy = (rand % (entropy + 1)) & PUD_MASK; + vaddr += entropy; + *kaslr_regions[i].base = vaddr; + + /* Calculate the end of the region */ + vaddr += get_padding(&kaslr_regions[i]); + /* + * KASLR trims the maximum possible size of the + * direct-map. Update the direct_map_physmem_end boundary. + * No rounding required as the region starts + * PUD aligned and size is in units of TB. + */ + if (kaslr_regions[i].end) + *kaslr_regions[i].end = __pa_nodebug(vaddr - 1); + + /* Add a minimum padding based on randomization alignment. */ + vaddr = round_up(vaddr + 1, PUD_SIZE); + remain_entropy -= entropy; + } +} + +void __meminit init_trampoline_kaslr(void) +{ + pud_t *pud_page_tramp, *pud, *pud_tramp; + p4d_t *p4d_page_tramp, *p4d, *p4d_tramp; + unsigned long paddr, vaddr; + pgd_t *pgd; + + pud_page_tramp = alloc_low_page(); + + /* + * There are two mappings for the low 1MB area, the direct mapping + * and the 1:1 mapping for the real mode trampoline: + * + * Direct mapping: virt_addr = phys_addr + PAGE_OFFSET + * 1:1 mapping: virt_addr = phys_addr + */ + paddr = 0; + vaddr = (unsigned long)__va(paddr); + pgd = pgd_offset_k(vaddr); + + p4d = p4d_offset(pgd, vaddr); + pud = pud_offset(p4d, vaddr); + + pud_tramp = pud_page_tramp + pud_index(paddr); + *pud_tramp = *pud; + + if (pgtable_l5_enabled()) { + p4d_page_tramp = alloc_low_page(); + + p4d_tramp = p4d_page_tramp + p4d_index(paddr); + + set_p4d(p4d_tramp, + __p4d(_KERNPG_TABLE | __pa(pud_page_tramp))); + + trampoline_pgd_entry = + __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)); + } else { + trampoline_pgd_entry = + __pgd(_KERNPG_TABLE | __pa(pud_page_tramp)); + } +} diff --git a/arch/x86/mm/kmemcheck/Makefile b/arch/x86/mm/kmemcheck/Makefile deleted file mode 100644 index 520b3bce4095..000000000000 --- a/arch/x86/mm/kmemcheck/Makefile +++ /dev/null @@ -1 +0,0 @@ -obj-y := error.o kmemcheck.o opcode.o pte.o selftest.o shadow.o diff --git a/arch/x86/mm/kmemcheck/error.c b/arch/x86/mm/kmemcheck/error.c deleted file mode 100644 index dab41876cdd5..000000000000 --- a/arch/x86/mm/kmemcheck/error.c +++ /dev/null @@ -1,227 +0,0 @@ -#include <linux/interrupt.h> -#include <linux/kdebug.h> -#include <linux/kmemcheck.h> -#include <linux/kernel.h> -#include <linux/types.h> -#include <linux/ptrace.h> -#include <linux/stacktrace.h> -#include <linux/string.h> - -#include "error.h" -#include "shadow.h" - -enum kmemcheck_error_type { - KMEMCHECK_ERROR_INVALID_ACCESS, - KMEMCHECK_ERROR_BUG, -}; - -#define SHADOW_COPY_SIZE (1 << CONFIG_KMEMCHECK_SHADOW_COPY_SHIFT) - -struct kmemcheck_error { - enum kmemcheck_error_type type; - - union { - /* KMEMCHECK_ERROR_INVALID_ACCESS */ - struct { - /* Kind of access that caused the error */ - enum kmemcheck_shadow state; - /* Address and size of the erroneous read */ - unsigned long address; - unsigned int size; - }; - }; - - struct pt_regs regs; - struct stack_trace trace; - unsigned long trace_entries[32]; - - /* We compress it to a char. */ - unsigned char shadow_copy[SHADOW_COPY_SIZE]; - unsigned char memory_copy[SHADOW_COPY_SIZE]; -}; - -/* - * Create a ring queue of errors to output. We can't call printk() directly - * from the kmemcheck traps, since this may call the console drivers and - * result in a recursive fault. - */ -static struct kmemcheck_error error_fifo[CONFIG_KMEMCHECK_QUEUE_SIZE]; -static unsigned int error_count; -static unsigned int error_rd; -static unsigned int error_wr; -static unsigned int error_missed_count; - -static struct kmemcheck_error *error_next_wr(void) -{ - struct kmemcheck_error *e; - - if (error_count == ARRAY_SIZE(error_fifo)) { - ++error_missed_count; - return NULL; - } - - e = &error_fifo[error_wr]; - if (++error_wr == ARRAY_SIZE(error_fifo)) - error_wr = 0; - ++error_count; - return e; -} - -static struct kmemcheck_error *error_next_rd(void) -{ - struct kmemcheck_error *e; - - if (error_count == 0) - return NULL; - - e = &error_fifo[error_rd]; - if (++error_rd == ARRAY_SIZE(error_fifo)) - error_rd = 0; - --error_count; - return e; -} - -void kmemcheck_error_recall(void) -{ - static const char *desc[] = { - [KMEMCHECK_SHADOW_UNALLOCATED] = "unallocated", - [KMEMCHECK_SHADOW_UNINITIALIZED] = "uninitialized", - [KMEMCHECK_SHADOW_INITIALIZED] = "initialized", - [KMEMCHECK_SHADOW_FREED] = "freed", - }; - - static const char short_desc[] = { - [KMEMCHECK_SHADOW_UNALLOCATED] = 'a', - [KMEMCHECK_SHADOW_UNINITIALIZED] = 'u', - [KMEMCHECK_SHADOW_INITIALIZED] = 'i', - [KMEMCHECK_SHADOW_FREED] = 'f', - }; - - struct kmemcheck_error *e; - unsigned int i; - - e = error_next_rd(); - if (!e) - return; - - switch (e->type) { - case KMEMCHECK_ERROR_INVALID_ACCESS: - printk(KERN_WARNING "WARNING: kmemcheck: Caught %d-bit read from %s memory (%p)\n", - 8 * e->size, e->state < ARRAY_SIZE(desc) ? - desc[e->state] : "(invalid shadow state)", - (void *) e->address); - - printk(KERN_WARNING); - for (i = 0; i < SHADOW_COPY_SIZE; ++i) - printk(KERN_CONT "%02x", e->memory_copy[i]); - printk(KERN_CONT "\n"); - - printk(KERN_WARNING); - for (i = 0; i < SHADOW_COPY_SIZE; ++i) { - if (e->shadow_copy[i] < ARRAY_SIZE(short_desc)) - printk(KERN_CONT " %c", short_desc[e->shadow_copy[i]]); - else - printk(KERN_CONT " ?"); - } - printk(KERN_CONT "\n"); - printk(KERN_WARNING "%*c\n", 2 + 2 - * (int) (e->address & (SHADOW_COPY_SIZE - 1)), '^'); - break; - case KMEMCHECK_ERROR_BUG: - printk(KERN_EMERG "ERROR: kmemcheck: Fatal error\n"); - break; - } - - __show_regs(&e->regs, 1); - print_stack_trace(&e->trace, 0); -} - -static void do_wakeup(unsigned long data) -{ - while (error_count > 0) - kmemcheck_error_recall(); - - if (error_missed_count > 0) { - printk(KERN_WARNING "kmemcheck: Lost %d error reports because " - "the queue was too small\n", error_missed_count); - error_missed_count = 0; - } -} - -static DECLARE_TASKLET(kmemcheck_tasklet, &do_wakeup, 0); - -/* - * Save the context of an error report. - */ -void kmemcheck_error_save(enum kmemcheck_shadow state, - unsigned long address, unsigned int size, struct pt_regs *regs) -{ - static unsigned long prev_ip; - - struct kmemcheck_error *e; - void *shadow_copy; - void *memory_copy; - - /* Don't report several adjacent errors from the same EIP. */ - if (regs->ip == prev_ip) - return; - prev_ip = regs->ip; - - e = error_next_wr(); - if (!e) - return; - - e->type = KMEMCHECK_ERROR_INVALID_ACCESS; - - e->state = state; - e->address = address; - e->size = size; - - /* Save regs */ - memcpy(&e->regs, regs, sizeof(*regs)); - - /* Save stack trace */ - e->trace.nr_entries = 0; - e->trace.entries = e->trace_entries; - e->trace.max_entries = ARRAY_SIZE(e->trace_entries); - e->trace.skip = 0; - save_stack_trace_regs(regs, &e->trace); - - /* Round address down to nearest 16 bytes */ - shadow_copy = kmemcheck_shadow_lookup(address - & ~(SHADOW_COPY_SIZE - 1)); - BUG_ON(!shadow_copy); - - memcpy(e->shadow_copy, shadow_copy, SHADOW_COPY_SIZE); - - kmemcheck_show_addr(address); - memory_copy = (void *) (address & ~(SHADOW_COPY_SIZE - 1)); - memcpy(e->memory_copy, memory_copy, SHADOW_COPY_SIZE); - kmemcheck_hide_addr(address); - - tasklet_hi_schedule_first(&kmemcheck_tasklet); -} - -/* - * Save the context of a kmemcheck bug. - */ -void kmemcheck_error_save_bug(struct pt_regs *regs) -{ - struct kmemcheck_error *e; - - e = error_next_wr(); - if (!e) - return; - - e->type = KMEMCHECK_ERROR_BUG; - - memcpy(&e->regs, regs, sizeof(*regs)); - - e->trace.nr_entries = 0; - e->trace.entries = e->trace_entries; - e->trace.max_entries = ARRAY_SIZE(e->trace_entries); - e->trace.skip = 1; - save_stack_trace(&e->trace); - - tasklet_hi_schedule_first(&kmemcheck_tasklet); -} diff --git a/arch/x86/mm/kmemcheck/error.h b/arch/x86/mm/kmemcheck/error.h deleted file mode 100644 index 0efc2e8d0a20..000000000000 --- a/arch/x86/mm/kmemcheck/error.h +++ /dev/null @@ -1,15 +0,0 @@ -#ifndef ARCH__X86__MM__KMEMCHECK__ERROR_H -#define ARCH__X86__MM__KMEMCHECK__ERROR_H - -#include <linux/ptrace.h> - -#include "shadow.h" - -void kmemcheck_error_save(enum kmemcheck_shadow state, - unsigned long address, unsigned int size, struct pt_regs *regs); - -void kmemcheck_error_save_bug(struct pt_regs *regs); - -void kmemcheck_error_recall(void); - -#endif diff --git a/arch/x86/mm/kmemcheck/kmemcheck.c b/arch/x86/mm/kmemcheck/kmemcheck.c deleted file mode 100644 index d87dd6d042d6..000000000000 --- a/arch/x86/mm/kmemcheck/kmemcheck.c +++ /dev/null @@ -1,653 +0,0 @@ -/** - * kmemcheck - a heavyweight memory checker for the linux kernel - * Copyright (C) 2007, 2008 Vegard Nossum <vegardno@ifi.uio.no> - * (With a lot of help from Ingo Molnar and Pekka Enberg.) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License (version 2) as - * published by the Free Software Foundation. - */ - -#include <linux/init.h> -#include <linux/interrupt.h> -#include <linux/kallsyms.h> -#include <linux/kernel.h> -#include <linux/kmemcheck.h> -#include <linux/mm.h> -#include <linux/module.h> -#include <linux/page-flags.h> -#include <linux/percpu.h> -#include <linux/ptrace.h> -#include <linux/string.h> -#include <linux/types.h> - -#include <asm/cacheflush.h> -#include <asm/kmemcheck.h> -#include <asm/pgtable.h> -#include <asm/tlbflush.h> - -#include "error.h" -#include "opcode.h" -#include "pte.h" -#include "selftest.h" -#include "shadow.h" - - -#ifdef CONFIG_KMEMCHECK_DISABLED_BY_DEFAULT -# define KMEMCHECK_ENABLED 0 -#endif - -#ifdef CONFIG_KMEMCHECK_ENABLED_BY_DEFAULT -# define KMEMCHECK_ENABLED 1 -#endif - -#ifdef CONFIG_KMEMCHECK_ONESHOT_BY_DEFAULT -# define KMEMCHECK_ENABLED 2 -#endif - -int kmemcheck_enabled = KMEMCHECK_ENABLED; - -int __init kmemcheck_init(void) -{ -#ifdef CONFIG_SMP - /* - * Limit SMP to use a single CPU. We rely on the fact that this code - * runs before SMP is set up. - */ - if (setup_max_cpus > 1) { - printk(KERN_INFO - "kmemcheck: Limiting number of CPUs to 1.\n"); - setup_max_cpus = 1; - } -#endif - - if (!kmemcheck_selftest()) { - printk(KERN_INFO "kmemcheck: self-tests failed; disabling\n"); - kmemcheck_enabled = 0; - return -EINVAL; - } - - printk(KERN_INFO "kmemcheck: Initialized\n"); - return 0; -} - -early_initcall(kmemcheck_init); - -/* - * We need to parse the kmemcheck= option before any memory is allocated. - */ -static int __init param_kmemcheck(char *str) -{ - if (!str) - return -EINVAL; - - sscanf(str, "%d", &kmemcheck_enabled); - return 0; -} - -early_param("kmemcheck", param_kmemcheck); - -int kmemcheck_show_addr(unsigned long address) -{ - pte_t *pte; - - pte = kmemcheck_pte_lookup(address); - if (!pte) - return 0; - - set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT)); - __flush_tlb_one(address); - return 1; -} - -int kmemcheck_hide_addr(unsigned long address) -{ - pte_t *pte; - - pte = kmemcheck_pte_lookup(address); - if (!pte) - return 0; - - set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT)); - __flush_tlb_one(address); - return 1; -} - -struct kmemcheck_context { - bool busy; - int balance; - - /* - * There can be at most two memory operands to an instruction, but - * each address can cross a page boundary -- so we may need up to - * four addresses that must be hidden/revealed for each fault. - */ - unsigned long addr[4]; - unsigned long n_addrs; - unsigned long flags; - - /* Data size of the instruction that caused a fault. */ - unsigned int size; -}; - -static DEFINE_PER_CPU(struct kmemcheck_context, kmemcheck_context); - -bool kmemcheck_active(struct pt_regs *regs) -{ - struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); - - return data->balance > 0; -} - -/* Save an address that needs to be shown/hidden */ -static void kmemcheck_save_addr(unsigned long addr) -{ - struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); - - BUG_ON(data->n_addrs >= ARRAY_SIZE(data->addr)); - data->addr[data->n_addrs++] = addr; -} - -static unsigned int kmemcheck_show_all(void) -{ - struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); - unsigned int i; - unsigned int n; - - n = 0; - for (i = 0; i < data->n_addrs; ++i) - n += kmemcheck_show_addr(data->addr[i]); - - return n; -} - -static unsigned int kmemcheck_hide_all(void) -{ - struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); - unsigned int i; - unsigned int n; - - n = 0; - for (i = 0; i < data->n_addrs; ++i) - n += kmemcheck_hide_addr(data->addr[i]); - - return n; -} - -/* - * Called from the #PF handler. - */ -void kmemcheck_show(struct pt_regs *regs) -{ - struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); - - BUG_ON(!irqs_disabled()); - - if (unlikely(data->balance != 0)) { - kmemcheck_show_all(); - kmemcheck_error_save_bug(regs); - data->balance = 0; - return; - } - - /* - * None of the addresses actually belonged to kmemcheck. Note that - * this is not an error. - */ - if (kmemcheck_show_all() == 0) - return; - - ++data->balance; - - /* - * The IF needs to be cleared as well, so that the faulting - * instruction can run "uninterrupted". Otherwise, we might take - * an interrupt and start executing that before we've had a chance - * to hide the page again. - * - * NOTE: In the rare case of multiple faults, we must not override - * the original flags: - */ - if (!(regs->flags & X86_EFLAGS_TF)) - data->flags = regs->flags; - - regs->flags |= X86_EFLAGS_TF; - regs->flags &= ~X86_EFLAGS_IF; -} - -/* - * Called from the #DB handler. - */ -void kmemcheck_hide(struct pt_regs *regs) -{ - struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); - int n; - - BUG_ON(!irqs_disabled()); - - if (unlikely(data->balance != 1)) { - kmemcheck_show_all(); - kmemcheck_error_save_bug(regs); - data->n_addrs = 0; - data->balance = 0; - - if (!(data->flags & X86_EFLAGS_TF)) - regs->flags &= ~X86_EFLAGS_TF; - if (data->flags & X86_EFLAGS_IF) - regs->flags |= X86_EFLAGS_IF; - return; - } - - if (kmemcheck_enabled) - n = kmemcheck_hide_all(); - else - n = kmemcheck_show_all(); - - if (n == 0) - return; - - --data->balance; - - data->n_addrs = 0; - - if (!(data->flags & X86_EFLAGS_TF)) - regs->flags &= ~X86_EFLAGS_TF; - if (data->flags & X86_EFLAGS_IF) - regs->flags |= X86_EFLAGS_IF; -} - -void kmemcheck_show_pages(struct page *p, unsigned int n) -{ - unsigned int i; - - for (i = 0; i < n; ++i) { - unsigned long address; - pte_t *pte; - unsigned int level; - - address = (unsigned long) page_address(&p[i]); - pte = lookup_address(address, &level); - BUG_ON(!pte); - BUG_ON(level != PG_LEVEL_4K); - - set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT)); - set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_HIDDEN)); - __flush_tlb_one(address); - } -} - -bool kmemcheck_page_is_tracked(struct page *p) -{ - /* This will also check the "hidden" flag of the PTE. */ - return kmemcheck_pte_lookup((unsigned long) page_address(p)); -} - -void kmemcheck_hide_pages(struct page *p, unsigned int n) -{ - unsigned int i; - - for (i = 0; i < n; ++i) { - unsigned long address; - pte_t *pte; - unsigned int level; - - address = (unsigned long) page_address(&p[i]); - pte = lookup_address(address, &level); - BUG_ON(!pte); - BUG_ON(level != PG_LEVEL_4K); - - set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT)); - set_pte(pte, __pte(pte_val(*pte) | _PAGE_HIDDEN)); - __flush_tlb_one(address); - } -} - -/* Access may NOT cross page boundary */ -static void kmemcheck_read_strict(struct pt_regs *regs, - unsigned long addr, unsigned int size) -{ - void *shadow; - enum kmemcheck_shadow status; - - shadow = kmemcheck_shadow_lookup(addr); - if (!shadow) - return; - - kmemcheck_save_addr(addr); - status = kmemcheck_shadow_test(shadow, size); - if (status == KMEMCHECK_SHADOW_INITIALIZED) - return; - - if (kmemcheck_enabled) - kmemcheck_error_save(status, addr, size, regs); - - if (kmemcheck_enabled == 2) - kmemcheck_enabled = 0; - - /* Don't warn about it again. */ - kmemcheck_shadow_set(shadow, size); -} - -bool kmemcheck_is_obj_initialized(unsigned long addr, size_t size) -{ - enum kmemcheck_shadow status; - void *shadow; - - shadow = kmemcheck_shadow_lookup(addr); - if (!shadow) - return true; - - status = kmemcheck_shadow_test_all(shadow, size); - - return status == KMEMCHECK_SHADOW_INITIALIZED; -} - -/* Access may cross page boundary */ -static void kmemcheck_read(struct pt_regs *regs, - unsigned long addr, unsigned int size) -{ - unsigned long page = addr & PAGE_MASK; - unsigned long next_addr = addr + size - 1; - unsigned long next_page = next_addr & PAGE_MASK; - - if (likely(page == next_page)) { - kmemcheck_read_strict(regs, addr, size); - return; - } - - /* - * What we do is basically to split the access across the - * two pages and handle each part separately. Yes, this means - * that we may now see reads that are 3 + 5 bytes, for - * example (and if both are uninitialized, there will be two - * reports), but it makes the code a lot simpler. - */ - kmemcheck_read_strict(regs, addr, next_page - addr); - kmemcheck_read_strict(regs, next_page, next_addr - next_page); -} - -static void kmemcheck_write_strict(struct pt_regs *regs, - unsigned long addr, unsigned int size) -{ - void *shadow; - - shadow = kmemcheck_shadow_lookup(addr); - if (!shadow) - return; - - kmemcheck_save_addr(addr); - kmemcheck_shadow_set(shadow, size); -} - -static void kmemcheck_write(struct pt_regs *regs, - unsigned long addr, unsigned int size) -{ - unsigned long page = addr & PAGE_MASK; - unsigned long next_addr = addr + size - 1; - unsigned long next_page = next_addr & PAGE_MASK; - - if (likely(page == next_page)) { - kmemcheck_write_strict(regs, addr, size); - return; - } - - /* See comment in kmemcheck_read(). */ - kmemcheck_write_strict(regs, addr, next_page - addr); - kmemcheck_write_strict(regs, next_page, next_addr - next_page); -} - -/* - * Copying is hard. We have two addresses, each of which may be split across - * a page (and each page will have different shadow addresses). - */ -static void kmemcheck_copy(struct pt_regs *regs, - unsigned long src_addr, unsigned long dst_addr, unsigned int size) -{ - uint8_t shadow[8]; - enum kmemcheck_shadow status; - - unsigned long page; - unsigned long next_addr; - unsigned long next_page; - - uint8_t *x; - unsigned int i; - unsigned int n; - - BUG_ON(size > sizeof(shadow)); - - page = src_addr & PAGE_MASK; - next_addr = src_addr + size - 1; - next_page = next_addr & PAGE_MASK; - - if (likely(page == next_page)) { - /* Same page */ - x = kmemcheck_shadow_lookup(src_addr); - if (x) { - kmemcheck_save_addr(src_addr); - for (i = 0; i < size; ++i) - shadow[i] = x[i]; - } else { - for (i = 0; i < size; ++i) - shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; - } - } else { - n = next_page - src_addr; - BUG_ON(n > sizeof(shadow)); - - /* First page */ - x = kmemcheck_shadow_lookup(src_addr); - if (x) { - kmemcheck_save_addr(src_addr); - for (i = 0; i < n; ++i) - shadow[i] = x[i]; - } else { - /* Not tracked */ - for (i = 0; i < n; ++i) - shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; - } - - /* Second page */ - x = kmemcheck_shadow_lookup(next_page); - if (x) { - kmemcheck_save_addr(next_page); - for (i = n; i < size; ++i) - shadow[i] = x[i - n]; - } else { - /* Not tracked */ - for (i = n; i < size; ++i) - shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; - } - } - - page = dst_addr & PAGE_MASK; - next_addr = dst_addr + size - 1; - next_page = next_addr & PAGE_MASK; - - if (likely(page == next_page)) { - /* Same page */ - x = kmemcheck_shadow_lookup(dst_addr); - if (x) { - kmemcheck_save_addr(dst_addr); - for (i = 0; i < size; ++i) { - x[i] = shadow[i]; - shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; - } - } - } else { - n = next_page - dst_addr; - BUG_ON(n > sizeof(shadow)); - - /* First page */ - x = kmemcheck_shadow_lookup(dst_addr); - if (x) { - kmemcheck_save_addr(dst_addr); - for (i = 0; i < n; ++i) { - x[i] = shadow[i]; - shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; - } - } - - /* Second page */ - x = kmemcheck_shadow_lookup(next_page); - if (x) { - kmemcheck_save_addr(next_page); - for (i = n; i < size; ++i) { - x[i - n] = shadow[i]; - shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; - } - } - } - - status = kmemcheck_shadow_test(shadow, size); - if (status == KMEMCHECK_SHADOW_INITIALIZED) - return; - - if (kmemcheck_enabled) - kmemcheck_error_save(status, src_addr, size, regs); - - if (kmemcheck_enabled == 2) - kmemcheck_enabled = 0; -} - -enum kmemcheck_method { - KMEMCHECK_READ, - KMEMCHECK_WRITE, -}; - -static void kmemcheck_access(struct pt_regs *regs, - unsigned long fallback_address, enum kmemcheck_method fallback_method) -{ - const uint8_t *insn; - const uint8_t *insn_primary; - unsigned int size; - - struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); - - /* Recursive fault -- ouch. */ - if (data->busy) { - kmemcheck_show_addr(fallback_address); - kmemcheck_error_save_bug(regs); - return; - } - - data->busy = true; - - insn = (const uint8_t *) regs->ip; - insn_primary = kmemcheck_opcode_get_primary(insn); - - kmemcheck_opcode_decode(insn, &size); - - switch (insn_primary[0]) { -#ifdef CONFIG_KMEMCHECK_BITOPS_OK - /* AND, OR, XOR */ - /* - * Unfortunately, these instructions have to be excluded from - * our regular checking since they access only some (and not - * all) bits. This clears out "bogus" bitfield-access warnings. - */ - case 0x80: - case 0x81: - case 0x82: - case 0x83: - switch ((insn_primary[1] >> 3) & 7) { - /* OR */ - case 1: - /* AND */ - case 4: - /* XOR */ - case 6: - kmemcheck_write(regs, fallback_address, size); - goto out; - - /* ADD */ - case 0: - /* ADC */ - case 2: - /* SBB */ - case 3: - /* SUB */ - case 5: - /* CMP */ - case 7: - break; - } - break; -#endif - - /* MOVS, MOVSB, MOVSW, MOVSD */ - case 0xa4: - case 0xa5: - /* - * These instructions are special because they take two - * addresses, but we only get one page fault. - */ - kmemcheck_copy(regs, regs->si, regs->di, size); - goto out; - - /* CMPS, CMPSB, CMPSW, CMPSD */ - case 0xa6: - case 0xa7: - kmemcheck_read(regs, regs->si, size); - kmemcheck_read(regs, regs->di, size); - goto out; - } - - /* - * If the opcode isn't special in any way, we use the data from the - * page fault handler to determine the address and type of memory - * access. - */ - switch (fallback_method) { - case KMEMCHECK_READ: - kmemcheck_read(regs, fallback_address, size); - goto out; - case KMEMCHECK_WRITE: - kmemcheck_write(regs, fallback_address, size); - goto out; - } - -out: - data->busy = false; -} - -bool kmemcheck_fault(struct pt_regs *regs, unsigned long address, - unsigned long error_code) -{ - pte_t *pte; - - /* - * XXX: Is it safe to assume that memory accesses from virtual 86 - * mode or non-kernel code segments will _never_ access kernel - * memory (e.g. tracked pages)? For now, we need this to avoid - * invoking kmemcheck for PnP BIOS calls. - */ - if (regs->flags & X86_VM_MASK) - return false; - if (regs->cs != __KERNEL_CS) - return false; - - pte = kmemcheck_pte_lookup(address); - if (!pte) - return false; - - WARN_ON_ONCE(in_nmi()); - - if (error_code & 2) - kmemcheck_access(regs, address, KMEMCHECK_WRITE); - else - kmemcheck_access(regs, address, KMEMCHECK_READ); - - kmemcheck_show(regs); - return true; -} - -bool kmemcheck_trap(struct pt_regs *regs) -{ - if (!kmemcheck_active(regs)) - return false; - - /* We're done. */ - kmemcheck_hide(regs); - return true; -} diff --git a/arch/x86/mm/kmemcheck/opcode.c b/arch/x86/mm/kmemcheck/opcode.c deleted file mode 100644 index 324aa3f07237..000000000000 --- a/arch/x86/mm/kmemcheck/opcode.c +++ /dev/null @@ -1,106 +0,0 @@ -#include <linux/types.h> - -#include "opcode.h" - -static bool opcode_is_prefix(uint8_t b) -{ - return - /* Group 1 */ - b == 0xf0 || b == 0xf2 || b == 0xf3 - /* Group 2 */ - || b == 0x2e || b == 0x36 || b == 0x3e || b == 0x26 - || b == 0x64 || b == 0x65 - /* Group 3 */ - || b == 0x66 - /* Group 4 */ - || b == 0x67; -} - -#ifdef CONFIG_X86_64 -static bool opcode_is_rex_prefix(uint8_t b) -{ - return (b & 0xf0) == 0x40; -} -#else -static bool opcode_is_rex_prefix(uint8_t b) -{ - return false; -} -#endif - -#define REX_W (1 << 3) - -/* - * This is a VERY crude opcode decoder. We only need to find the size of the - * load/store that caused our #PF and this should work for all the opcodes - * that we care about. Moreover, the ones who invented this instruction set - * should be shot. - */ -void kmemcheck_opcode_decode(const uint8_t *op, unsigned int *size) -{ - /* Default operand size */ - int operand_size_override = 4; - - /* prefixes */ - for (; opcode_is_prefix(*op); ++op) { - if (*op == 0x66) - operand_size_override = 2; - } - - /* REX prefix */ - if (opcode_is_rex_prefix(*op)) { - uint8_t rex = *op; - - ++op; - if (rex & REX_W) { - switch (*op) { - case 0x63: - *size = 4; - return; - case 0x0f: - ++op; - - switch (*op) { - case 0xb6: - case 0xbe: - *size = 1; - return; - case 0xb7: - case 0xbf: - *size = 2; - return; - } - - break; - } - - *size = 8; - return; - } - } - - /* escape opcode */ - if (*op == 0x0f) { - ++op; - - /* - * This is move with zero-extend and sign-extend, respectively; - * we don't have to think about 0xb6/0xbe, because this is - * already handled in the conditional below. - */ - if (*op == 0xb7 || *op == 0xbf) - operand_size_override = 2; - } - - *size = (*op & 1) ? operand_size_override : 1; -} - -const uint8_t *kmemcheck_opcode_get_primary(const uint8_t *op) -{ - /* skip prefixes */ - while (opcode_is_prefix(*op)) - ++op; - if (opcode_is_rex_prefix(*op)) - ++op; - return op; -} diff --git a/arch/x86/mm/kmemcheck/opcode.h b/arch/x86/mm/kmemcheck/opcode.h deleted file mode 100644 index 6956aad66b5b..000000000000 --- a/arch/x86/mm/kmemcheck/opcode.h +++ /dev/null @@ -1,9 +0,0 @@ -#ifndef ARCH__X86__MM__KMEMCHECK__OPCODE_H -#define ARCH__X86__MM__KMEMCHECK__OPCODE_H - -#include <linux/types.h> - -void kmemcheck_opcode_decode(const uint8_t *op, unsigned int *size); -const uint8_t *kmemcheck_opcode_get_primary(const uint8_t *op); - -#endif diff --git a/arch/x86/mm/kmemcheck/pte.c b/arch/x86/mm/kmemcheck/pte.c deleted file mode 100644 index 4ead26eeaf96..000000000000 --- a/arch/x86/mm/kmemcheck/pte.c +++ /dev/null @@ -1,22 +0,0 @@ -#include <linux/mm.h> - -#include <asm/pgtable.h> - -#include "pte.h" - -pte_t *kmemcheck_pte_lookup(unsigned long address) -{ - pte_t *pte; - unsigned int level; - - pte = lookup_address(address, &level); - if (!pte) - return NULL; - if (level != PG_LEVEL_4K) - return NULL; - if (!pte_hidden(*pte)) - return NULL; - - return pte; -} - diff --git a/arch/x86/mm/kmemcheck/pte.h b/arch/x86/mm/kmemcheck/pte.h deleted file mode 100644 index 9f5966456492..000000000000 --- a/arch/x86/mm/kmemcheck/pte.h +++ /dev/null @@ -1,10 +0,0 @@ -#ifndef ARCH__X86__MM__KMEMCHECK__PTE_H -#define ARCH__X86__MM__KMEMCHECK__PTE_H - -#include <linux/mm.h> - -#include <asm/pgtable.h> - -pte_t *kmemcheck_pte_lookup(unsigned long address); - -#endif diff --git a/arch/x86/mm/kmemcheck/selftest.c b/arch/x86/mm/kmemcheck/selftest.c deleted file mode 100644 index aef7140c0063..000000000000 --- a/arch/x86/mm/kmemcheck/selftest.c +++ /dev/null @@ -1,70 +0,0 @@ -#include <linux/bug.h> -#include <linux/kernel.h> - -#include "opcode.h" -#include "selftest.h" - -struct selftest_opcode { - unsigned int expected_size; - const uint8_t *insn; - const char *desc; -}; - -static const struct selftest_opcode selftest_opcodes[] = { - /* REP MOVS */ - {1, "\xf3\xa4", "rep movsb <mem8>, <mem8>"}, - {4, "\xf3\xa5", "rep movsl <mem32>, <mem32>"}, - - /* MOVZX / MOVZXD */ - {1, "\x66\x0f\xb6\x51\xf8", "movzwq <mem8>, <reg16>"}, - {1, "\x0f\xb6\x51\xf8", "movzwq <mem8>, <reg32>"}, - - /* MOVSX / MOVSXD */ - {1, "\x66\x0f\xbe\x51\xf8", "movswq <mem8>, <reg16>"}, - {1, "\x0f\xbe\x51\xf8", "movswq <mem8>, <reg32>"}, - -#ifdef CONFIG_X86_64 - /* MOVZX / MOVZXD */ - {1, "\x49\x0f\xb6\x51\xf8", "movzbq <mem8>, <reg64>"}, - {2, "\x49\x0f\xb7\x51\xf8", "movzbq <mem16>, <reg64>"}, - - /* MOVSX / MOVSXD */ - {1, "\x49\x0f\xbe\x51\xf8", "movsbq <mem8>, <reg64>"}, - {2, "\x49\x0f\xbf\x51\xf8", "movsbq <mem16>, <reg64>"}, - {4, "\x49\x63\x51\xf8", "movslq <mem32>, <reg64>"}, -#endif -}; - -static bool selftest_opcode_one(const struct selftest_opcode *op) -{ - unsigned size; - - kmemcheck_opcode_decode(op->insn, &size); - - if (size == op->expected_size) - return true; - - printk(KERN_WARNING "kmemcheck: opcode %s: expected size %d, got %d\n", - op->desc, op->expected_size, size); - return false; -} - -static bool selftest_opcodes_all(void) -{ - bool pass = true; - unsigned int i; - - for (i = 0; i < ARRAY_SIZE(selftest_opcodes); ++i) - pass = pass && selftest_opcode_one(&selftest_opcodes[i]); - - return pass; -} - -bool kmemcheck_selftest(void) -{ - bool pass = true; - - pass = pass && selftest_opcodes_all(); - - return pass; -} diff --git a/arch/x86/mm/kmemcheck/selftest.h b/arch/x86/mm/kmemcheck/selftest.h deleted file mode 100644 index 8fed4fe11f95..000000000000 --- a/arch/x86/mm/kmemcheck/selftest.h +++ /dev/null @@ -1,6 +0,0 @@ -#ifndef ARCH_X86_MM_KMEMCHECK_SELFTEST_H -#define ARCH_X86_MM_KMEMCHECK_SELFTEST_H - -bool kmemcheck_selftest(void); - -#endif diff --git a/arch/x86/mm/kmemcheck/shadow.c b/arch/x86/mm/kmemcheck/shadow.c deleted file mode 100644 index aec124214d97..000000000000 --- a/arch/x86/mm/kmemcheck/shadow.c +++ /dev/null @@ -1,173 +0,0 @@ -#include <linux/kmemcheck.h> -#include <linux/module.h> -#include <linux/mm.h> - -#include <asm/page.h> -#include <asm/pgtable.h> - -#include "pte.h" -#include "shadow.h" - -/* - * Return the shadow address for the given address. Returns NULL if the - * address is not tracked. - * - * We need to be extremely careful not to follow any invalid pointers, - * because this function can be called for *any* possible address. - */ -void *kmemcheck_shadow_lookup(unsigned long address) -{ - pte_t *pte; - struct page *page; - - if (!virt_addr_valid(address)) - return NULL; - - pte = kmemcheck_pte_lookup(address); - if (!pte) - return NULL; - - page = virt_to_page(address); - if (!page->shadow) - return NULL; - return page->shadow + (address & (PAGE_SIZE - 1)); -} - -static void mark_shadow(void *address, unsigned int n, - enum kmemcheck_shadow status) -{ - unsigned long addr = (unsigned long) address; - unsigned long last_addr = addr + n - 1; - unsigned long page = addr & PAGE_MASK; - unsigned long last_page = last_addr & PAGE_MASK; - unsigned int first_n; - void *shadow; - - /* If the memory range crosses a page boundary, stop there. */ - if (page == last_page) - first_n = n; - else - first_n = page + PAGE_SIZE - addr; - - shadow = kmemcheck_shadow_lookup(addr); - if (shadow) - memset(shadow, status, first_n); - - addr += first_n; - n -= first_n; - - /* Do full-page memset()s. */ - while (n >= PAGE_SIZE) { - shadow = kmemcheck_shadow_lookup(addr); - if (shadow) - memset(shadow, status, PAGE_SIZE); - - addr += PAGE_SIZE; - n -= PAGE_SIZE; - } - - /* Do the remaining page, if any. */ - if (n > 0) { - shadow = kmemcheck_shadow_lookup(addr); - if (shadow) - memset(shadow, status, n); - } -} - -void kmemcheck_mark_unallocated(void *address, unsigned int n) -{ - mark_shadow(address, n, KMEMCHECK_SHADOW_UNALLOCATED); -} - -void kmemcheck_mark_uninitialized(void *address, unsigned int n) -{ - mark_shadow(address, n, KMEMCHECK_SHADOW_UNINITIALIZED); -} - -/* - * Fill the shadow memory of the given address such that the memory at that - * address is marked as being initialized. - */ -void kmemcheck_mark_initialized(void *address, unsigned int n) -{ - mark_shadow(address, n, KMEMCHECK_SHADOW_INITIALIZED); -} -EXPORT_SYMBOL_GPL(kmemcheck_mark_initialized); - -void kmemcheck_mark_freed(void *address, unsigned int n) -{ - mark_shadow(address, n, KMEMCHECK_SHADOW_FREED); -} - -void kmemcheck_mark_unallocated_pages(struct page *p, unsigned int n) -{ - unsigned int i; - - for (i = 0; i < n; ++i) - kmemcheck_mark_unallocated(page_address(&p[i]), PAGE_SIZE); -} - -void kmemcheck_mark_uninitialized_pages(struct page *p, unsigned int n) -{ - unsigned int i; - - for (i = 0; i < n; ++i) - kmemcheck_mark_uninitialized(page_address(&p[i]), PAGE_SIZE); -} - -void kmemcheck_mark_initialized_pages(struct page *p, unsigned int n) -{ - unsigned int i; - - for (i = 0; i < n; ++i) - kmemcheck_mark_initialized(page_address(&p[i]), PAGE_SIZE); -} - -enum kmemcheck_shadow kmemcheck_shadow_test(void *shadow, unsigned int size) -{ -#ifdef CONFIG_KMEMCHECK_PARTIAL_OK - uint8_t *x; - unsigned int i; - - x = shadow; - - /* - * Make sure _some_ bytes are initialized. Gcc frequently generates - * code to access neighboring bytes. - */ - for (i = 0; i < size; ++i) { - if (x[i] == KMEMCHECK_SHADOW_INITIALIZED) - return x[i]; - } - - return x[0]; -#else - return kmemcheck_shadow_test_all(shadow, size); -#endif -} - -enum kmemcheck_shadow kmemcheck_shadow_test_all(void *shadow, unsigned int size) -{ - uint8_t *x; - unsigned int i; - - x = shadow; - - /* All bytes must be initialized. */ - for (i = 0; i < size; ++i) { - if (x[i] != KMEMCHECK_SHADOW_INITIALIZED) - return x[i]; - } - - return x[0]; -} - -void kmemcheck_shadow_set(void *shadow, unsigned int size) -{ - uint8_t *x; - unsigned int i; - - x = shadow; - for (i = 0; i < size; ++i) - x[i] = KMEMCHECK_SHADOW_INITIALIZED; -} diff --git a/arch/x86/mm/kmemcheck/shadow.h b/arch/x86/mm/kmemcheck/shadow.h deleted file mode 100644 index ff0b2f70fbcb..000000000000 --- a/arch/x86/mm/kmemcheck/shadow.h +++ /dev/null @@ -1,18 +0,0 @@ -#ifndef ARCH__X86__MM__KMEMCHECK__SHADOW_H -#define ARCH__X86__MM__KMEMCHECK__SHADOW_H - -enum kmemcheck_shadow { - KMEMCHECK_SHADOW_UNALLOCATED, - KMEMCHECK_SHADOW_UNINITIALIZED, - KMEMCHECK_SHADOW_INITIALIZED, - KMEMCHECK_SHADOW_FREED, -}; - -void *kmemcheck_shadow_lookup(unsigned long address); - -enum kmemcheck_shadow kmemcheck_shadow_test(void *shadow, unsigned int size); -enum kmemcheck_shadow kmemcheck_shadow_test_all(void *shadow, - unsigned int size); -void kmemcheck_shadow_set(void *shadow, unsigned int size); - -#endif diff --git a/arch/x86/mm/kmmio.c b/arch/x86/mm/kmmio.c index e5d5e2ce9f77..9f82019179e1 100644 --- a/arch/x86/mm/kmmio.c +++ b/arch/x86/mm/kmmio.c @@ -1,5 +1,6 @@ +// SPDX-License-Identifier: GPL-2.0 /* Support for MMIO probes. - * Benfit many code from kprobes + * Benefit many code from kprobes * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>. * 2007 Alexander Eichner * 2008 Pekka Paalanen <pq@iki.fi> @@ -11,8 +12,7 @@ #include <linux/rculist.h> #include <linux/spinlock.h> #include <linux/hash.h> -#include <linux/init.h> -#include <linux/module.h> +#include <linux/export.h> #include <linux/kernel.h> #include <linux/uaccess.h> #include <linux/ptrace.h> @@ -34,7 +34,7 @@ struct kmmio_fault_page { struct list_head list; struct kmmio_fault_page *release_next; - unsigned long page; /* location of the fault page */ + unsigned long addr; /* the requested address */ pteval_t old_presence; /* page presence prior to arming */ bool armed; @@ -62,7 +62,13 @@ struct kmmio_context { int active; }; -static DEFINE_SPINLOCK(kmmio_lock); +/* + * The kmmio_lock is taken in int3 context, which is treated as NMI context. + * This causes lockdep to complain about it bein in both NMI and normal + * context. Hide it from lockdep, as it should not have any other locks + * taken under it, and this is only enabled for debugging mmio anyway. + */ +static arch_spinlock_t kmmio_lock = __ARCH_SPIN_LOCK_UNLOCKED; /* Protected by kmmio_lock */ unsigned int kmmio_count; @@ -71,9 +77,16 @@ unsigned int kmmio_count; static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE]; static LIST_HEAD(kmmio_probes); -static struct list_head *kmmio_page_list(unsigned long page) +static struct list_head *kmmio_page_list(unsigned long addr) { - return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)]; + unsigned int l; + pte_t *pte = lookup_address(addr, &l); + + if (!pte) + return NULL; + addr &= page_level_mask(l); + + return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)]; } /* Accessed per-cpu */ @@ -99,15 +112,19 @@ static struct kmmio_probe *get_kmmio_probe(unsigned long addr) } /* You must be holding RCU read lock. */ -static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page) +static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr) { struct list_head *head; struct kmmio_fault_page *f; + unsigned int l; + pte_t *pte = lookup_address(addr, &l); - page &= PAGE_MASK; - head = kmmio_page_list(page); + if (!pte) + return NULL; + addr &= page_level_mask(l); + head = kmmio_page_list(addr); list_for_each_entry_rcu(f, head, list) { - if (f->page == page) + if (f->addr == addr) return f; } return NULL; @@ -115,33 +132,38 @@ static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page) static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old) { + pmd_t new_pmd; pmdval_t v = pmd_val(*pmd); if (clear) { - *old = v & _PAGE_PRESENT; - v &= ~_PAGE_PRESENT; - } else /* presume this has been called with clear==true previously */ - v |= *old; - set_pmd(pmd, __pmd(v)); + *old = v; + new_pmd = pmd_mkinvalid(*pmd); + } else { + /* Presume this has been called with clear==true previously */ + new_pmd = __pmd(*old); + } + set_pmd(pmd, new_pmd); } static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old) { pteval_t v = pte_val(*pte); if (clear) { - *old = v & _PAGE_PRESENT; - v &= ~_PAGE_PRESENT; - } else /* presume this has been called with clear==true previously */ - v |= *old; - set_pte_atomic(pte, __pte(v)); + *old = v; + /* Nothing should care about address */ + pte_clear(&init_mm, 0, pte); + } else { + /* Presume this has been called with clear==true previously */ + set_pte_atomic(pte, __pte(*old)); + } } static int clear_page_presence(struct kmmio_fault_page *f, bool clear) { unsigned int level; - pte_t *pte = lookup_address(f->page, &level); + pte_t *pte = lookup_address(f->addr, &level); if (!pte) { - pr_err("no pte for page 0x%08lx\n", f->page); + pr_err("no pte for addr 0x%08lx\n", f->addr); return -1; } @@ -157,7 +179,7 @@ static int clear_page_presence(struct kmmio_fault_page *f, bool clear) return -1; } - __flush_tlb_one(f->page); + flush_tlb_one_kernel(f->addr); return 0; } @@ -177,12 +199,12 @@ static int arm_kmmio_fault_page(struct kmmio_fault_page *f) int ret; WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n")); if (f->armed) { - pr_warning("double-arm: page 0x%08lx, ref %d, old %d\n", - f->page, f->count, !!f->old_presence); + pr_warn("double-arm: addr 0x%08lx, ref %d, old %d\n", + f->addr, f->count, !!f->old_presence); } ret = clear_page_presence(f, true); - WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming 0x%08lx failed.\n"), - f->page); + WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"), + f->addr); f->armed = true; return ret; } @@ -192,7 +214,7 @@ static void disarm_kmmio_fault_page(struct kmmio_fault_page *f) { int ret = clear_page_presence(f, false); WARN_ONCE(ret < 0, - KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page); + KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr); f->armed = false; } @@ -216,19 +238,24 @@ int kmmio_handler(struct pt_regs *regs, unsigned long addr) struct kmmio_context *ctx; struct kmmio_fault_page *faultpage; int ret = 0; /* default to fault not handled */ + unsigned long page_base = addr; + unsigned int l; + pte_t *pte = lookup_address(addr, &l); + if (!pte) + return -EINVAL; + page_base &= page_level_mask(l); /* - * Preemption is now disabled to prevent process switch during - * single stepping. We can only handle one active kmmio trace + * Hold the RCU read lock over single stepping to avoid looking + * up the probe and kmmio_fault_page again. The rcu_read_lock_sched() + * also disables preemption and prevents process switch during + * the single stepping. We can only handle one active kmmio trace * per cpu, so ensure that we finish it before something else - * gets to run. We also hold the RCU read lock over single - * stepping to avoid looking up the probe and kmmio_fault_page - * again. + * gets to run. */ - preempt_disable(); - rcu_read_lock(); + rcu_read_lock_sched_notrace(); - faultpage = get_kmmio_fault_page(addr); + faultpage = get_kmmio_fault_page(page_base); if (!faultpage) { /* * Either this page fault is not caused by kmmio, or @@ -238,9 +265,9 @@ int kmmio_handler(struct pt_regs *regs, unsigned long addr) goto no_kmmio; } - ctx = &get_cpu_var(kmmio_ctx); + ctx = this_cpu_ptr(&kmmio_ctx); if (ctx->active) { - if (addr == ctx->addr) { + if (page_base == ctx->addr) { /* * A second fault on the same page means some other * condition needs handling by do_page_fault(), the @@ -263,14 +290,14 @@ int kmmio_handler(struct pt_regs *regs, unsigned long addr) pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr); disarm_kmmio_fault_page(faultpage); } - goto no_kmmio_ctx; + goto no_kmmio; } ctx->active++; ctx->fpage = faultpage; - ctx->probe = get_kmmio_probe(addr); + ctx->probe = get_kmmio_probe(page_base); ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); - ctx->addr = addr; + ctx->addr = page_base; if (ctx->probe && ctx->probe->pre_handler) ctx->probe->pre_handler(ctx->probe, regs, addr); @@ -292,14 +319,10 @@ int kmmio_handler(struct pt_regs *regs, unsigned long addr) * the user should drop to single cpu before tracing. */ - put_cpu_var(kmmio_ctx); return 1; /* fault handled */ -no_kmmio_ctx: - put_cpu_var(kmmio_ctx); no_kmmio: - rcu_read_unlock(); - preempt_enable_no_resched(); + rcu_read_unlock_sched_notrace(); return ret; } @@ -311,7 +334,7 @@ no_kmmio: static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) { int ret = 0; - struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx); + struct kmmio_context *ctx = this_cpu_ptr(&kmmio_ctx); if (!ctx->active) { /* @@ -319,8 +342,7 @@ static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) * something external causing them (f.e. using a debugger while * mmio tracing enabled), or erroneous behaviour */ - pr_warning("unexpected debug trap on CPU %d.\n", - smp_processor_id()); + pr_warn("unexpected debug trap on CPU %d.\n", smp_processor_id()); goto out; } @@ -328,10 +350,10 @@ static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) ctx->probe->post_handler(ctx->probe, condition, regs); /* Prevent racing against release_kmmio_fault_page(). */ - spin_lock(&kmmio_lock); + arch_spin_lock(&kmmio_lock); if (ctx->fpage->count) arm_kmmio_fault_page(ctx->fpage); - spin_unlock(&kmmio_lock); + arch_spin_unlock(&kmmio_lock); regs->flags &= ~X86_EFLAGS_TF; regs->flags |= ctx->saved_flags; @@ -339,8 +361,7 @@ static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) /* These were acquired in kmmio_handler(). */ ctx->active--; BUG_ON(ctx->active); - rcu_read_unlock(); - preempt_enable_no_resched(); + rcu_read_unlock_sched_notrace(); /* * if somebody else is singlestepping across a probe point, flags @@ -350,17 +371,15 @@ static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) if (!(regs->flags & X86_EFLAGS_TF)) ret = 1; out: - put_cpu_var(kmmio_ctx); return ret; } /* You must be holding kmmio_lock. */ -static int add_kmmio_fault_page(unsigned long page) +static int add_kmmio_fault_page(unsigned long addr) { struct kmmio_fault_page *f; - page &= PAGE_MASK; - f = get_kmmio_fault_page(page); + f = get_kmmio_fault_page(addr); if (f) { if (!f->count) arm_kmmio_fault_page(f); @@ -373,26 +392,25 @@ static int add_kmmio_fault_page(unsigned long page) return -1; f->count = 1; - f->page = page; + f->addr = addr; if (arm_kmmio_fault_page(f)) { kfree(f); return -1; } - list_add_rcu(&f->list, kmmio_page_list(f->page)); + list_add_rcu(&f->list, kmmio_page_list(f->addr)); return 0; } /* You must be holding kmmio_lock. */ -static void release_kmmio_fault_page(unsigned long page, +static void release_kmmio_fault_page(unsigned long addr, struct kmmio_fault_page **release_list) { struct kmmio_fault_page *f; - page &= PAGE_MASK; - f = get_kmmio_fault_page(page); + f = get_kmmio_fault_page(addr); if (!f) return; @@ -420,22 +438,35 @@ int register_kmmio_probe(struct kmmio_probe *p) unsigned long flags; int ret = 0; unsigned long size = 0; + unsigned long addr = p->addr & PAGE_MASK; const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); + unsigned int l; + pte_t *pte; - spin_lock_irqsave(&kmmio_lock, flags); - if (get_kmmio_probe(p->addr)) { + local_irq_save(flags); + arch_spin_lock(&kmmio_lock); + if (get_kmmio_probe(addr)) { ret = -EEXIST; goto out; } + + pte = lookup_address(addr, &l); + if (!pte) { + ret = -EINVAL; + goto out; + } + kmmio_count++; list_add_rcu(&p->list, &kmmio_probes); while (size < size_lim) { - if (add_kmmio_fault_page(p->addr + size)) + if (add_kmmio_fault_page(addr + size)) pr_err("Unable to set page fault.\n"); - size += PAGE_SIZE; + size += page_level_size(l); } out: - spin_unlock_irqrestore(&kmmio_lock, flags); + arch_spin_unlock(&kmmio_lock); + local_irq_restore(flags); + /* * XXX: What should I do here? * Here was a call to global_flush_tlb(), but it does not exist @@ -469,7 +500,8 @@ static void remove_kmmio_fault_pages(struct rcu_head *head) struct kmmio_fault_page **prevp = &dr->release_list; unsigned long flags; - spin_lock_irqsave(&kmmio_lock, flags); + local_irq_save(flags); + arch_spin_lock(&kmmio_lock); while (f) { if (!f->count) { list_del_rcu(&f->list); @@ -481,7 +513,8 @@ static void remove_kmmio_fault_pages(struct rcu_head *head) } f = *prevp; } - spin_unlock_irqrestore(&kmmio_lock, flags); + arch_spin_unlock(&kmmio_lock); + local_irq_restore(flags); /* This is the real RCU destroy call. */ call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages); @@ -504,18 +537,27 @@ void unregister_kmmio_probe(struct kmmio_probe *p) { unsigned long flags; unsigned long size = 0; + unsigned long addr = p->addr & PAGE_MASK; const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); struct kmmio_fault_page *release_list = NULL; struct kmmio_delayed_release *drelease; + unsigned int l; + pte_t *pte; + + pte = lookup_address(addr, &l); + if (!pte) + return; - spin_lock_irqsave(&kmmio_lock, flags); + local_irq_save(flags); + arch_spin_lock(&kmmio_lock); while (size < size_lim) { - release_kmmio_fault_page(p->addr + size, &release_list); - size += PAGE_SIZE; + release_kmmio_fault_page(addr + size, &release_list); + size += page_level_size(l); } list_del_rcu(&p->list); kmmio_count--; - spin_unlock_irqrestore(&kmmio_lock, flags); + arch_spin_unlock(&kmmio_lock); + local_irq_restore(flags); if (!release_list) return; diff --git a/arch/x86/mm/kmsan_shadow.c b/arch/x86/mm/kmsan_shadow.c new file mode 100644 index 000000000000..bee2ec4a3bfa --- /dev/null +++ b/arch/x86/mm/kmsan_shadow.c @@ -0,0 +1,20 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * x86-specific bits of KMSAN shadow implementation. + * + * Copyright (C) 2022 Google LLC + * Author: Alexander Potapenko <glider@google.com> + */ + +#include <asm/cpu_entry_area.h> +#include <linux/percpu-defs.h> + +/* + * Addresses within the CPU entry area (including e.g. exception stacks) do not + * have struct page entries corresponding to them, so they need separate + * handling. + * arch_kmsan_get_meta_or_null() (declared in the header) maps the addresses in + * CPU entry area to addresses in cpu_entry_area_shadow/cpu_entry_area_origin. + */ +DEFINE_PER_CPU(char[CPU_ENTRY_AREA_SIZE], cpu_entry_area_shadow); +DEFINE_PER_CPU(char[CPU_ENTRY_AREA_SIZE], cpu_entry_area_origin); diff --git a/arch/x86/mm/maccess.c b/arch/x86/mm/maccess.c new file mode 100644 index 000000000000..42115ac079cf --- /dev/null +++ b/arch/x86/mm/maccess.c @@ -0,0 +1,43 @@ +// SPDX-License-Identifier: GPL-2.0-only + +#include <linux/uaccess.h> +#include <linux/kernel.h> + +#include <asm/vsyscall.h> + +#ifdef CONFIG_X86_64 +bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size) +{ + unsigned long vaddr = (unsigned long)unsafe_src; + + /* + * Do not allow userspace addresses. This disallows + * normal userspace and the userspace guard page: + */ + if (vaddr < TASK_SIZE_MAX + PAGE_SIZE) + return false; + + /* + * Reading from the vsyscall page may cause an unhandled fault in + * certain cases. Though it is at an address above TASK_SIZE_MAX, it is + * usually considered as a user space address. + */ + if (is_vsyscall_vaddr(vaddr)) + return false; + + /* + * Allow everything during early boot before 'x86_virt_bits' + * is initialized. Needed for instruction decoding in early + * exception handlers. + */ + if (!boot_cpu_data.x86_virt_bits) + return true; + + return __is_canonical_address(vaddr, boot_cpu_data.x86_virt_bits); +} +#else +bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size) +{ + return (unsigned long)unsafe_src >= TASK_SIZE_MAX; +} +#endif diff --git a/arch/x86/mm/mem_encrypt.c b/arch/x86/mm/mem_encrypt.c new file mode 100644 index 000000000000..95bae74fdab2 --- /dev/null +++ b/arch/x86/mm/mem_encrypt.c @@ -0,0 +1,140 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Memory Encryption Support Common Code + * + * Copyright (C) 2016 Advanced Micro Devices, Inc. + * + * Author: Tom Lendacky <thomas.lendacky@amd.com> + */ + +#include <linux/dma-direct.h> +#include <linux/dma-mapping.h> +#include <linux/swiotlb.h> +#include <linux/cc_platform.h> +#include <linux/mem_encrypt.h> +#include <linux/virtio_anchor.h> + +#include <asm/sev.h> + +/* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */ +bool force_dma_unencrypted(struct device *dev) +{ + /* + * For SEV, all DMA must be to unencrypted addresses. + */ + if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) + return true; + + /* + * For SME, all DMA must be to unencrypted addresses if the + * device does not support DMA to addresses that include the + * encryption mask. + */ + if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { + u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask)); + u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask, + dev->bus_dma_limit); + + if (dma_dev_mask <= dma_enc_mask) + return true; + } + + return false; +} + +static void print_mem_encrypt_feature_info(void) +{ + pr_info("Memory Encryption Features active: "); + + switch (cc_vendor) { + case CC_VENDOR_INTEL: + pr_cont("Intel TDX\n"); + break; + case CC_VENDOR_AMD: + pr_cont("AMD"); + + /* Secure Memory Encryption */ + if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { + /* + * SME is mutually exclusive with any of the SEV + * features below. + */ + pr_cont(" SME\n"); + return; + } + + /* Secure Encrypted Virtualization */ + if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) + pr_cont(" SEV"); + + /* Encrypted Register State */ + if (cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) + pr_cont(" SEV-ES"); + + /* Secure Nested Paging */ + if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) + pr_cont(" SEV-SNP"); + + pr_cont("\n"); + + sev_show_status(); + + break; + default: + pr_cont("Unknown\n"); + } +} + +/* Architecture __weak replacement functions */ +void __init mem_encrypt_init(void) +{ + if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT)) + return; + + /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ + swiotlb_update_mem_attributes(); + + snp_secure_tsc_prepare(); + + print_mem_encrypt_feature_info(); +} + +void __init mem_encrypt_setup_arch(void) +{ + phys_addr_t total_mem = memblock_phys_mem_size(); + unsigned long size; + + /* + * Do RMP table fixups after the e820 tables have been setup by + * e820__memory_setup(). + */ + if (cc_platform_has(CC_ATTR_HOST_SEV_SNP)) + snp_fixup_e820_tables(); + + if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) + return; + + /* + * For SEV and TDX, all DMA has to occur via shared/unencrypted pages. + * Kernel uses SWIOTLB to make this happen without changing device + * drivers. However, depending on the workload being run, the + * default 64MB of SWIOTLB may not be enough and SWIOTLB may + * run out of buffers for DMA, resulting in I/O errors and/or + * performance degradation especially with high I/O workloads. + * + * Adjust the default size of SWIOTLB using a percentage of guest + * memory for SWIOTLB buffers. Also, as the SWIOTLB bounce buffer + * memory is allocated from low memory, ensure that the adjusted size + * is within the limits of low available memory. + * + * The percentage of guest memory used here for SWIOTLB buffers + * is more of an approximation of the static adjustment which + * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6% + */ + size = total_mem * 6 / 100; + size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G); + swiotlb_adjust_size(size); + + /* Set restricted memory access for virtio. */ + virtio_set_mem_acc_cb(virtio_require_restricted_mem_acc); +} diff --git a/arch/x86/mm/mem_encrypt_amd.c b/arch/x86/mm/mem_encrypt_amd.c new file mode 100644 index 000000000000..2f8c32173972 --- /dev/null +++ b/arch/x86/mm/mem_encrypt_amd.c @@ -0,0 +1,569 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * AMD Memory Encryption Support + * + * Copyright (C) 2016-2024 Advanced Micro Devices, Inc. + * + * Author: Tom Lendacky <thomas.lendacky@amd.com> + */ + +#include <linux/linkage.h> +#include <linux/init.h> +#include <linux/mm.h> +#include <linux/dma-direct.h> +#include <linux/swiotlb.h> +#include <linux/mem_encrypt.h> +#include <linux/device.h> +#include <linux/kernel.h> +#include <linux/bitops.h> +#include <linux/dma-mapping.h> +#include <linux/cc_platform.h> + +#include <asm/tlbflush.h> +#include <asm/fixmap.h> +#include <asm/setup.h> +#include <asm/mem_encrypt.h> +#include <asm/bootparam.h> +#include <asm/set_memory.h> +#include <asm/cacheflush.h> +#include <asm/processor-flags.h> +#include <asm/msr.h> +#include <asm/cmdline.h> +#include <asm/sev.h> +#include <asm/ia32.h> + +#include "mm_internal.h" + +/* + * Since SME related variables are set early in the boot process they must + * reside in the .data section so as not to be zeroed out when the .bss + * section is later cleared. + */ +u64 sme_me_mask __section(".data") = 0; +SYM_PIC_ALIAS(sme_me_mask); +u64 sev_status __section(".data") = 0; +SYM_PIC_ALIAS(sev_status); +u64 sev_check_data __section(".data") = 0; +EXPORT_SYMBOL(sme_me_mask); + +/* Buffer used for early in-place encryption by BSP, no locking needed */ +static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); + +/* + * SNP-specific routine which needs to additionally change the page state from + * private to shared before copying the data from the source to destination and + * restore after the copy. + */ +static inline void __init snp_memcpy(void *dst, void *src, size_t sz, + unsigned long paddr, bool decrypt) +{ + unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT; + + if (decrypt) { + /* + * @paddr needs to be accessed decrypted, mark the page shared in + * the RMP table before copying it. + */ + early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages); + + memcpy(dst, src, sz); + + /* Restore the page state after the memcpy. */ + early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages); + } else { + /* + * @paddr need to be accessed encrypted, no need for the page state + * change. + */ + memcpy(dst, src, sz); + } +} + +/* + * This routine does not change the underlying encryption setting of the + * page(s) that map this memory. It assumes that eventually the memory is + * meant to be accessed as either encrypted or decrypted but the contents + * are currently not in the desired state. + * + * This routine follows the steps outlined in the AMD64 Architecture + * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. + */ +static void __init __sme_early_enc_dec(resource_size_t paddr, + unsigned long size, bool enc) +{ + void *src, *dst; + size_t len; + + if (!sme_me_mask) + return; + + wbinvd(); + + /* + * There are limited number of early mapping slots, so map (at most) + * one page at time. + */ + while (size) { + len = min_t(size_t, sizeof(sme_early_buffer), size); + + /* + * Create mappings for the current and desired format of + * the memory. Use a write-protected mapping for the source. + */ + src = enc ? early_memremap_decrypted_wp(paddr, len) : + early_memremap_encrypted_wp(paddr, len); + + dst = enc ? early_memremap_encrypted(paddr, len) : + early_memremap_decrypted(paddr, len); + + /* + * If a mapping can't be obtained to perform the operation, + * then eventual access of that area in the desired mode + * will cause a crash. + */ + BUG_ON(!src || !dst); + + /* + * Use a temporary buffer, of cache-line multiple size, to + * avoid data corruption as documented in the APM. + */ + if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) { + snp_memcpy(sme_early_buffer, src, len, paddr, enc); + snp_memcpy(dst, sme_early_buffer, len, paddr, !enc); + } else { + memcpy(sme_early_buffer, src, len); + memcpy(dst, sme_early_buffer, len); + } + + early_memunmap(dst, len); + early_memunmap(src, len); + + paddr += len; + size -= len; + } +} + +void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) +{ + __sme_early_enc_dec(paddr, size, true); +} + +void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) +{ + __sme_early_enc_dec(paddr, size, false); +} + +static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, + bool map) +{ + unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; + pmdval_t pmd_flags, pmd; + + /* Use early_pmd_flags but remove the encryption mask */ + pmd_flags = __sme_clr(early_pmd_flags); + + do { + pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; + __early_make_pgtable((unsigned long)vaddr, pmd); + + vaddr += PMD_SIZE; + paddr += PMD_SIZE; + size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; + } while (size); + + flush_tlb_local(); +} + +void __init sme_unmap_bootdata(char *real_mode_data) +{ + struct boot_params *boot_data; + unsigned long cmdline_paddr; + + if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) + return; + + /* Get the command line address before unmapping the real_mode_data */ + boot_data = (struct boot_params *)real_mode_data; + cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); + + __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); + + if (!cmdline_paddr) + return; + + __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); +} + +void __init sme_map_bootdata(char *real_mode_data) +{ + struct boot_params *boot_data; + unsigned long cmdline_paddr; + + if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) + return; + + __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); + + /* Get the command line address after mapping the real_mode_data */ + boot_data = (struct boot_params *)real_mode_data; + cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); + + if (!cmdline_paddr) + return; + + __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); +} + +static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot) +{ + unsigned long pfn = 0; + pgprot_t prot; + + switch (level) { + case PG_LEVEL_4K: + pfn = pte_pfn(*kpte); + prot = pte_pgprot(*kpte); + break; + case PG_LEVEL_2M: + pfn = pmd_pfn(*(pmd_t *)kpte); + prot = pmd_pgprot(*(pmd_t *)kpte); + break; + case PG_LEVEL_1G: + pfn = pud_pfn(*(pud_t *)kpte); + prot = pud_pgprot(*(pud_t *)kpte); + break; + default: + WARN_ONCE(1, "Invalid level for kpte\n"); + return 0; + } + + if (ret_prot) + *ret_prot = prot; + + return pfn; +} + +static bool amd_enc_tlb_flush_required(bool enc) +{ + return true; +} + +static bool amd_enc_cache_flush_required(void) +{ + return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT); +} + +static void enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc) +{ +#ifdef CONFIG_PARAVIRT + unsigned long vaddr_end = vaddr + size; + + while (vaddr < vaddr_end) { + int psize, pmask, level; + unsigned long pfn; + pte_t *kpte; + + kpte = lookup_address(vaddr, &level); + if (!kpte || pte_none(*kpte)) { + WARN_ONCE(1, "kpte lookup for vaddr\n"); + return; + } + + pfn = pg_level_to_pfn(level, kpte, NULL); + if (!pfn) + continue; + + psize = page_level_size(level); + pmask = page_level_mask(level); + + notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc); + + vaddr = (vaddr & pmask) + psize; + } +#endif +} + +static int amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc) +{ + /* + * To maintain the security guarantees of SEV-SNP guests, make sure + * to invalidate the memory before encryption attribute is cleared. + */ + if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc) + snp_set_memory_shared(vaddr, npages); + + return 0; +} + +/* Return true unconditionally: return value doesn't matter for the SEV side */ +static int amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc) +{ + /* + * After memory is mapped encrypted in the page table, validate it + * so that it is consistent with the page table updates. + */ + if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc) + snp_set_memory_private(vaddr, npages); + + if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) + enc_dec_hypercall(vaddr, npages << PAGE_SHIFT, enc); + + return 0; +} + +int prepare_pte_enc(struct pte_enc_desc *d) +{ + pgprot_t old_prot; + + d->pfn = pg_level_to_pfn(d->pte_level, d->kpte, &old_prot); + if (!d->pfn) + return 1; + + d->new_pgprot = old_prot; + if (d->encrypt) + pgprot_val(d->new_pgprot) |= _PAGE_ENC; + else + pgprot_val(d->new_pgprot) &= ~_PAGE_ENC; + + /* If prot is same then do nothing. */ + if (pgprot_val(old_prot) == pgprot_val(d->new_pgprot)) + return 1; + + d->pa = d->pfn << PAGE_SHIFT; + d->size = page_level_size(d->pte_level); + + /* + * In-place en-/decryption and physical page attribute change + * from C=1 to C=0 or vice versa will be performed. Flush the + * caches to ensure that data gets accessed with the correct + * C-bit. + */ + if (d->va) + clflush_cache_range(d->va, d->size); + else + clflush_cache_range(__va(d->pa), d->size); + + return 0; +} + +void set_pte_enc_mask(pte_t *kpte, unsigned long pfn, pgprot_t new_prot) +{ + pte_t new_pte; + + /* Change the page encryption mask. */ + new_pte = pfn_pte(pfn, new_prot); + set_pte_atomic(kpte, new_pte); +} + +static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) +{ + struct pte_enc_desc d = { + .kpte = kpte, + .pte_level = level, + .encrypt = enc + }; + + if (prepare_pte_enc(&d)) + return; + + /* Encrypt/decrypt the contents in-place */ + if (enc) { + sme_early_encrypt(d.pa, d.size); + } else { + sme_early_decrypt(d.pa, d.size); + + /* + * ON SNP, the page state in the RMP table must happen + * before the page table updates. + */ + early_snp_set_memory_shared((unsigned long)__va(d.pa), d.pa, 1); + } + + set_pte_enc_mask(kpte, d.pfn, d.new_pgprot); + + /* + * If page is set encrypted in the page table, then update the RMP table to + * add this page as private. + */ + if (enc) + early_snp_set_memory_private((unsigned long)__va(d.pa), d.pa, 1); +} + +static int __init early_set_memory_enc_dec(unsigned long vaddr, + unsigned long size, bool enc) +{ + unsigned long vaddr_end, vaddr_next, start; + unsigned long psize, pmask; + int split_page_size_mask; + int level, ret; + pte_t *kpte; + + start = vaddr; + vaddr_next = vaddr; + vaddr_end = vaddr + size; + + for (; vaddr < vaddr_end; vaddr = vaddr_next) { + kpte = lookup_address(vaddr, &level); + if (!kpte || pte_none(*kpte)) { + ret = 1; + goto out; + } + + if (level == PG_LEVEL_4K) { + __set_clr_pte_enc(kpte, level, enc); + vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; + continue; + } + + psize = page_level_size(level); + pmask = page_level_mask(level); + + /* + * Check whether we can change the large page in one go. + * We request a split when the address is not aligned and + * the number of pages to set/clear encryption bit is smaller + * than the number of pages in the large page. + */ + if (vaddr == (vaddr & pmask) && + ((vaddr_end - vaddr) >= psize)) { + __set_clr_pte_enc(kpte, level, enc); + vaddr_next = (vaddr & pmask) + psize; + continue; + } + + /* + * The virtual address is part of a larger page, create the next + * level page table mapping (4K or 2M). If it is part of a 2M + * page then we request a split of the large page into 4K + * chunks. A 1GB large page is split into 2M pages, resp. + */ + if (level == PG_LEVEL_2M) + split_page_size_mask = 0; + else + split_page_size_mask = 1 << PG_LEVEL_2M; + + /* + * kernel_physical_mapping_change() does not flush the TLBs, so + * a TLB flush is required after we exit from the for loop. + */ + kernel_physical_mapping_change(__pa(vaddr & pmask), + __pa((vaddr_end & pmask) + psize), + split_page_size_mask); + } + + ret = 0; + + early_set_mem_enc_dec_hypercall(start, size, enc); +out: + __flush_tlb_all(); + return ret; +} + +int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) +{ + return early_set_memory_enc_dec(vaddr, size, false); +} + +int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) +{ + return early_set_memory_enc_dec(vaddr, size, true); +} + +void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc) +{ + enc_dec_hypercall(vaddr, size, enc); +} + +void __init sme_early_init(void) +{ + if (!sme_me_mask) + return; + + early_pmd_flags = __sme_set(early_pmd_flags); + + __supported_pte_mask = __sme_set(__supported_pte_mask); + + /* Update the protection map with memory encryption mask */ + add_encrypt_protection_map(); + + x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare; + x86_platform.guest.enc_status_change_finish = amd_enc_status_change_finish; + x86_platform.guest.enc_tlb_flush_required = amd_enc_tlb_flush_required; + x86_platform.guest.enc_cache_flush_required = amd_enc_cache_flush_required; + x86_platform.guest.enc_kexec_begin = snp_kexec_begin; + x86_platform.guest.enc_kexec_finish = snp_kexec_finish; + + /* + * AMD-SEV-ES intercepts the RDMSR to read the X2APIC ID in the + * parallel bringup low level code. That raises #VC which cannot be + * handled there. + * It does not provide a RDMSR GHCB protocol so the early startup + * code cannot directly communicate with the secure firmware. The + * alternative solution to retrieve the APIC ID via CPUID(0xb), + * which is covered by the GHCB protocol, is not viable either + * because there is no enforcement of the CPUID(0xb) provided + * "initial" APIC ID to be the same as the real APIC ID. + * Disable parallel bootup. + */ + if (sev_status & MSR_AMD64_SEV_ES_ENABLED) + x86_cpuinit.parallel_bringup = false; + + /* + * The VMM is capable of injecting interrupt 0x80 and triggering the + * compatibility syscall path. + * + * By default, the 32-bit emulation is disabled in order to ensure + * the safety of the VM. + */ + if (sev_status & MSR_AMD64_SEV_ENABLED) + ia32_disable(); + + /* + * Override init functions that scan the ROM region in SEV-SNP guests, + * as this memory is not pre-validated and would thus cause a crash. + */ + if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) { + x86_init.mpparse.find_mptable = x86_init_noop; + x86_init.pci.init_irq = x86_init_noop; + x86_init.resources.probe_roms = x86_init_noop; + + /* + * DMI setup behavior for SEV-SNP guests depends on + * efi_enabled(EFI_CONFIG_TABLES), which hasn't been + * parsed yet. snp_dmi_setup() will run after that + * parsing has happened. + */ + x86_init.resources.dmi_setup = snp_dmi_setup; + } + + if (sev_status & MSR_AMD64_SNP_SECURE_TSC) + setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); +} + +void __init mem_encrypt_free_decrypted_mem(void) +{ + unsigned long vaddr, vaddr_end, npages; + int r; + + vaddr = (unsigned long)__start_bss_decrypted_unused; + vaddr_end = (unsigned long)__end_bss_decrypted; + npages = (vaddr_end - vaddr) >> PAGE_SHIFT; + + /* + * If the unused memory range was mapped decrypted, change the encryption + * attribute from decrypted to encrypted before freeing it. Base the + * re-encryption on the same condition used for the decryption in + * sme_postprocess_startup(). Higher level abstractions, such as + * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM + * using vTOM, where sme_me_mask is always zero. + */ + if (sme_me_mask) { + r = set_memory_encrypted(vaddr, npages); + if (r) { + pr_warn("failed to free unused decrypted pages\n"); + return; + } + } + + free_init_pages("unused decrypted", vaddr, vaddr_end); +} diff --git a/arch/x86/mm/mem_encrypt_boot.S b/arch/x86/mm/mem_encrypt_boot.S new file mode 100644 index 000000000000..edbf9c998848 --- /dev/null +++ b/arch/x86/mm/mem_encrypt_boot.S @@ -0,0 +1,163 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * AMD Memory Encryption Support + * + * Copyright (C) 2016 Advanced Micro Devices, Inc. + * + * Author: Tom Lendacky <thomas.lendacky@amd.com> + */ + +#include <linux/linkage.h> +#include <linux/pgtable.h> +#include <asm/page.h> +#include <asm/processor-flags.h> +#include <asm/msr-index.h> +#include <asm/nospec-branch.h> + + .text + .code64 +SYM_FUNC_START(__pi_sme_encrypt_execute) + + /* + * Entry parameters: + * RDI - virtual address for the encrypted mapping + * RSI - virtual address for the decrypted mapping + * RDX - length to encrypt + * RCX - virtual address of the encryption workarea, including: + * - stack page (PAGE_SIZE) + * - encryption routine page (PAGE_SIZE) + * - intermediate copy buffer (PMD_SIZE) + * R8 - physical address of the pagetables to use for encryption + */ + + push %rbp + movq %rsp, %rbp /* RBP now has original stack pointer */ + + /* Set up a one page stack in the non-encrypted memory area */ + movq %rcx, %rax /* Workarea stack page */ + leaq PAGE_SIZE(%rax), %rsp /* Set new stack pointer */ + addq $PAGE_SIZE, %rax /* Workarea encryption routine */ + + push %r12 + movq %rdi, %r10 /* Encrypted area */ + movq %rsi, %r11 /* Decrypted area */ + movq %rdx, %r12 /* Area length */ + + /* Copy encryption routine into the workarea */ + movq %rax, %rdi /* Workarea encryption routine */ + leaq __enc_copy(%rip), %rsi /* Encryption routine */ + movq $(.L__enc_copy_end - __enc_copy), %rcx /* Encryption routine length */ + rep movsb + + /* Setup registers for call */ + movq %r10, %rdi /* Encrypted area */ + movq %r11, %rsi /* Decrypted area */ + movq %r8, %rdx /* Pagetables used for encryption */ + movq %r12, %rcx /* Area length */ + movq %rax, %r8 /* Workarea encryption routine */ + addq $PAGE_SIZE, %r8 /* Workarea intermediate copy buffer */ + + ANNOTATE_RETPOLINE_SAFE + call *%rax /* Call the encryption routine */ + + pop %r12 + + movq %rbp, %rsp /* Restore original stack pointer */ + pop %rbp + + /* Offset to __x86_return_thunk would be wrong here */ + ANNOTATE_UNRET_SAFE + ret + int3 +SYM_FUNC_END(__pi_sme_encrypt_execute) + +SYM_FUNC_START_LOCAL(__enc_copy) + ANNOTATE_NOENDBR +/* + * Routine used to encrypt memory in place. + * This routine must be run outside of the kernel proper since + * the kernel will be encrypted during the process. So this + * routine is defined here and then copied to an area outside + * of the kernel where it will remain and run decrypted + * during execution. + * + * On entry the registers must be: + * RDI - virtual address for the encrypted mapping + * RSI - virtual address for the decrypted mapping + * RDX - address of the pagetables to use for encryption + * RCX - length of area + * R8 - intermediate copy buffer + * + * RAX - points to this routine + * + * The area will be encrypted by copying from the non-encrypted + * memory space to an intermediate buffer and then copying from the + * intermediate buffer back to the encrypted memory space. The physical + * addresses of the two mappings are the same which results in the area + * being encrypted "in place". + */ + /* Enable the new page tables */ + mov %rdx, %cr3 + + /* Flush any global TLBs */ + mov %cr4, %rdx + andq $~X86_CR4_PGE, %rdx + mov %rdx, %cr4 + orq $X86_CR4_PGE, %rdx + mov %rdx, %cr4 + + push %r15 + push %r12 + + movq %rcx, %r9 /* Save area length */ + movq %rdi, %r10 /* Save encrypted area address */ + movq %rsi, %r11 /* Save decrypted area address */ + + /* Set the PAT register PA5 entry to write-protect */ + movl $MSR_IA32_CR_PAT, %ecx + rdmsr + mov %rdx, %r15 /* Save original PAT value */ + andl $0xffff00ff, %edx /* Clear PA5 */ + orl $0x00000500, %edx /* Set PA5 to WP */ + wrmsr + + wbinvd /* Invalidate any cache entries */ + + /* Copy/encrypt up to 2MB at a time */ + movq $PMD_SIZE, %r12 +1: + cmpq %r12, %r9 + jnb 2f + movq %r9, %r12 + +2: + movq %r11, %rsi /* Source - decrypted area */ + movq %r8, %rdi /* Dest - intermediate copy buffer */ + movq %r12, %rcx + rep movsb + + movq %r8, %rsi /* Source - intermediate copy buffer */ + movq %r10, %rdi /* Dest - encrypted area */ + movq %r12, %rcx + rep movsb + + addq %r12, %r11 + addq %r12, %r10 + subq %r12, %r9 /* Kernel length decrement */ + jnz 1b /* Kernel length not zero? */ + + /* Restore PAT register */ + movl $MSR_IA32_CR_PAT, %ecx + rdmsr + mov %r15, %rdx /* Restore original PAT value */ + wrmsr + + pop %r12 + pop %r15 + + /* Offset to __x86_return_thunk would be wrong here */ + ANNOTATE_UNRET_SAFE + ret + int3 +.L__enc_copy_end: +SYM_FUNC_END(__enc_copy) diff --git a/arch/x86/mm/memtest.c b/arch/x86/mm/memtest.c deleted file mode 100644 index 8dabbed409ee..000000000000 --- a/arch/x86/mm/memtest.c +++ /dev/null @@ -1,118 +0,0 @@ -#include <linux/kernel.h> -#include <linux/errno.h> -#include <linux/string.h> -#include <linux/types.h> -#include <linux/mm.h> -#include <linux/smp.h> -#include <linux/init.h> -#include <linux/pfn.h> -#include <linux/memblock.h> - -static u64 patterns[] __initdata = { - /* The first entry has to be 0 to leave memtest with zeroed memory */ - 0, - 0xffffffffffffffffULL, - 0x5555555555555555ULL, - 0xaaaaaaaaaaaaaaaaULL, - 0x1111111111111111ULL, - 0x2222222222222222ULL, - 0x4444444444444444ULL, - 0x8888888888888888ULL, - 0x3333333333333333ULL, - 0x6666666666666666ULL, - 0x9999999999999999ULL, - 0xccccccccccccccccULL, - 0x7777777777777777ULL, - 0xbbbbbbbbbbbbbbbbULL, - 0xddddddddddddddddULL, - 0xeeeeeeeeeeeeeeeeULL, - 0x7a6c7258554e494cULL, /* yeah ;-) */ -}; - -static void __init reserve_bad_mem(u64 pattern, u64 start_bad, u64 end_bad) -{ - printk(KERN_INFO " %016llx bad mem addr %010llx - %010llx reserved\n", - (unsigned long long) pattern, - (unsigned long long) start_bad, - (unsigned long long) end_bad); - memblock_reserve(start_bad, end_bad - start_bad); -} - -static void __init memtest(u64 pattern, u64 start_phys, u64 size) -{ - u64 *p, *start, *end; - u64 start_bad, last_bad; - u64 start_phys_aligned; - const size_t incr = sizeof(pattern); - - start_phys_aligned = ALIGN(start_phys, incr); - start = __va(start_phys_aligned); - end = start + (size - (start_phys_aligned - start_phys)) / incr; - start_bad = 0; - last_bad = 0; - - for (p = start; p < end; p++) - *p = pattern; - - for (p = start; p < end; p++, start_phys_aligned += incr) { - if (*p == pattern) - continue; - if (start_phys_aligned == last_bad + incr) { - last_bad += incr; - continue; - } - if (start_bad) - reserve_bad_mem(pattern, start_bad, last_bad + incr); - start_bad = last_bad = start_phys_aligned; - } - if (start_bad) - reserve_bad_mem(pattern, start_bad, last_bad + incr); -} - -static void __init do_one_pass(u64 pattern, u64 start, u64 end) -{ - u64 i; - phys_addr_t this_start, this_end; - - for_each_free_mem_range(i, MAX_NUMNODES, &this_start, &this_end, NULL) { - this_start = clamp_t(phys_addr_t, this_start, start, end); - this_end = clamp_t(phys_addr_t, this_end, start, end); - if (this_start < this_end) { - printk(KERN_INFO " %010llx - %010llx pattern %016llx\n", - (unsigned long long)this_start, - (unsigned long long)this_end, - (unsigned long long)cpu_to_be64(pattern)); - memtest(pattern, this_start, this_end - this_start); - } - } -} - -/* default is disabled */ -static int memtest_pattern __initdata; - -static int __init parse_memtest(char *arg) -{ - if (arg) - memtest_pattern = simple_strtoul(arg, NULL, 0); - else - memtest_pattern = ARRAY_SIZE(patterns); - - return 0; -} - -early_param("memtest", parse_memtest); - -void __init early_memtest(unsigned long start, unsigned long end) -{ - unsigned int i; - unsigned int idx = 0; - - if (!memtest_pattern) - return; - - printk(KERN_INFO "early_memtest: # of tests: %d\n", memtest_pattern); - for (i = memtest_pattern-1; i < UINT_MAX; --i) { - idx = i % ARRAY_SIZE(patterns); - do_one_pass(patterns[idx], start, end); - } -} diff --git a/arch/x86/mm/mm_internal.h b/arch/x86/mm/mm_internal.h index 6b563a118891..097aadc250f7 100644 --- a/arch/x86/mm/mm_internal.h +++ b/arch/x86/mm/mm_internal.h @@ -1,3 +1,4 @@ +/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __X86_MM_INTERNAL_H #define __X86_MM_INTERNAL_H @@ -11,9 +12,21 @@ void early_ioremap_page_table_range_init(void); unsigned long kernel_physical_mapping_init(unsigned long start, unsigned long end, + unsigned long page_size_mask, + pgprot_t prot); +unsigned long kernel_physical_mapping_change(unsigned long start, + unsigned long end, unsigned long page_size_mask); void zone_sizes_init(void); extern int after_bootmem; +void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache); + +extern unsigned long tlb_single_page_flush_ceiling; + +#ifdef CONFIG_NUMA +void __init x86_numa_init(void); +#endif + #endif /* __X86_MM_INTERNAL_H */ diff --git a/arch/x86/mm/mmap.c b/arch/x86/mm/mmap.c index 62c29a5bfe26..82f3a987f7cf 100644 --- a/arch/x86/mm/mmap.c +++ b/arch/x86/mm/mmap.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-or-later /* * Flexible mmap layout support * @@ -8,115 +9,230 @@ * All Rights Reserved. * Copyright 2005 Andi Kleen, SUSE Labs. * Copyright 2007 Jiri Kosina, SUSE Labs. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/personality.h> #include <linux/mm.h> #include <linux/random.h> #include <linux/limits.h> -#include <linux/sched.h> +#include <linux/sched/signal.h> +#include <linux/sched/mm.h> +#include <linux/compat.h> +#include <linux/elf-randomize.h> #include <asm/elf.h> +#include <asm/io.h> -struct __read_mostly va_alignment va_align = { +#include "physaddr.h" + +struct va_alignment __read_mostly va_align = { .flags = -1, }; -static unsigned int stack_maxrandom_size(void) +unsigned long task_size_32bit(void) { - unsigned int max = 0; - if ((current->flags & PF_RANDOMIZE) && - !(current->personality & ADDR_NO_RANDOMIZE)) { - max = ((-1U) & STACK_RND_MASK) << PAGE_SHIFT; + return IA32_PAGE_OFFSET; +} + +unsigned long task_size_64bit(int full_addr_space) +{ + return full_addr_space ? TASK_SIZE_MAX : DEFAULT_MAP_WINDOW; +} + +static unsigned long stack_maxrandom_size(unsigned long task_size) +{ + unsigned long max = 0; + if (current->flags & PF_RANDOMIZE) { + max = (-1UL) & __STACK_RND_MASK(task_size == task_size_32bit()); + max <<= PAGE_SHIFT; } return max; } -/* - * Top of mmap area (just below the process stack). - * - * Leave an at least ~128 MB hole with possible stack randomization. - */ -#define MIN_GAP (128*1024*1024UL + stack_maxrandom_size()) -#define MAX_GAP (TASK_SIZE/6*5) +#ifdef CONFIG_COMPAT +# define mmap32_rnd_bits mmap_rnd_compat_bits +# define mmap64_rnd_bits mmap_rnd_bits +#else +# define mmap32_rnd_bits mmap_rnd_bits +# define mmap64_rnd_bits mmap_rnd_bits +#endif + +#define SIZE_128M (128 * 1024 * 1024UL) static int mmap_is_legacy(void) { if (current->personality & ADDR_COMPAT_LAYOUT) return 1; - if (rlimit(RLIMIT_STACK) == RLIM_INFINITY) - return 1; - return sysctl_legacy_va_layout; } -static unsigned long mmap_rnd(void) +static unsigned long arch_rnd(unsigned int rndbits) { - unsigned long rnd = 0; + if (!(current->flags & PF_RANDOMIZE)) + return 0; + return (get_random_long() & ((1UL << rndbits) - 1)) << PAGE_SHIFT; +} - /* - * 8 bits of randomness in 32bit mmaps, 20 address space bits - * 28 bits of randomness in 64bit mmaps, 40 address space bits - */ - if (current->flags & PF_RANDOMIZE) { - if (mmap_is_ia32()) - rnd = get_random_int() % (1<<8); - else - rnd = get_random_int() % (1<<28); - } - return rnd << PAGE_SHIFT; +unsigned long arch_mmap_rnd(void) +{ + return arch_rnd(mmap_is_ia32() ? mmap32_rnd_bits : mmap64_rnd_bits); } -static unsigned long mmap_base(void) +static unsigned long mmap_base(unsigned long rnd, unsigned long task_size, + const struct rlimit *rlim_stack) { - unsigned long gap = rlimit(RLIMIT_STACK); + unsigned long gap = rlim_stack->rlim_cur; + unsigned long pad = stack_maxrandom_size(task_size) + stack_guard_gap; + + /* Values close to RLIM_INFINITY can overflow. */ + if (gap + pad > gap) + gap += pad; - if (gap < MIN_GAP) - gap = MIN_GAP; - else if (gap > MAX_GAP) - gap = MAX_GAP; + /* + * Top of mmap area (just below the process stack). + * Leave an at least ~128 MB hole with possible stack randomization. + */ + gap = clamp(gap, SIZE_128M, (task_size / 6) * 5); - return PAGE_ALIGN(TASK_SIZE - gap - mmap_rnd()); + return PAGE_ALIGN(task_size - gap - rnd); } -/* - * Bottom-up (legacy) layout on X86_32 did not support randomization, X86_64 - * does, but not when emulating X86_32 - */ -static unsigned long mmap_legacy_base(void) +static unsigned long mmap_legacy_base(unsigned long rnd, + unsigned long task_size) { - if (mmap_is_ia32()) - return TASK_UNMAPPED_BASE; - else - return TASK_UNMAPPED_BASE + mmap_rnd(); + return __TASK_UNMAPPED_BASE(task_size) + rnd; } /* * This function, called very early during the creation of a new * process VM image, sets up which VM layout function to use: */ -void arch_pick_mmap_layout(struct mm_struct *mm) +static void arch_pick_mmap_base(unsigned long *base, unsigned long *legacy_base, + unsigned long random_factor, unsigned long task_size, + const struct rlimit *rlim_stack) +{ + *legacy_base = mmap_legacy_base(random_factor, task_size); + if (mmap_is_legacy()) + *base = *legacy_base; + else + *base = mmap_base(random_factor, task_size, rlim_stack); +} + +void arch_pick_mmap_layout(struct mm_struct *mm, const struct rlimit *rlim_stack) { - if (mmap_is_legacy()) { - mm->mmap_base = mmap_legacy_base(); - mm->get_unmapped_area = arch_get_unmapped_area; - } else { - mm->mmap_base = mmap_base(); - mm->get_unmapped_area = arch_get_unmapped_area_topdown; + if (mmap_is_legacy()) + mm_flags_clear(MMF_TOPDOWN, mm); + else + mm_flags_set(MMF_TOPDOWN, mm); + + arch_pick_mmap_base(&mm->mmap_base, &mm->mmap_legacy_base, + arch_rnd(mmap64_rnd_bits), task_size_64bit(0), + rlim_stack); + +#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES + /* + * The mmap syscall mapping base decision depends solely on the + * syscall type (64-bit or compat). This applies for 64bit + * applications and 32bit applications. The 64bit syscall uses + * mmap_base, the compat syscall uses mmap_compat_base. + */ + arch_pick_mmap_base(&mm->mmap_compat_base, &mm->mmap_compat_legacy_base, + arch_rnd(mmap32_rnd_bits), task_size_32bit(), + rlim_stack); +#endif +} + +unsigned long get_mmap_base(int is_legacy) +{ + struct mm_struct *mm = current->mm; + +#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES + if (in_32bit_syscall()) { + return is_legacy ? mm->mmap_compat_legacy_base + : mm->mmap_compat_base; } +#endif + return is_legacy ? mm->mmap_legacy_base : mm->mmap_base; +} + +/** + * mmap_address_hint_valid - Validate the address hint of mmap + * @addr: Address hint + * @len: Mapping length + * + * Check whether @addr and @addr + @len result in a valid mapping. + * + * On 32bit this only checks whether @addr + @len is <= TASK_SIZE. + * + * On 64bit with 5-level page tables another sanity check is required + * because mappings requested by mmap(@addr, 0) which cross the 47-bit + * virtual address boundary can cause the following theoretical issue: + * + * An application calls mmap(addr, 0), i.e. without MAP_FIXED, where @addr + * is below the border of the 47-bit address space and @addr + @len is + * above the border. + * + * With 4-level paging this request succeeds, but the resulting mapping + * address will always be within the 47-bit virtual address space, because + * the hint address does not result in a valid mapping and is + * ignored. Hence applications which are not prepared to handle virtual + * addresses above 47-bit work correctly. + * + * With 5-level paging this request would be granted and result in a + * mapping which crosses the border of the 47-bit virtual address + * space. If the application cannot handle addresses above 47-bit this + * will lead to misbehaviour and hard to diagnose failures. + * + * Therefore ignore address hints which would result in a mapping crossing + * the 47-bit virtual address boundary. + * + * Note, that in the same scenario with MAP_FIXED the behaviour is + * different. The request with @addr < 47-bit and @addr + @len > 47-bit + * fails on a 4-level paging machine but succeeds on a 5-level paging + * machine. It is reasonable to expect that an application does not rely on + * the failure of such a fixed mapping request, so the restriction is not + * applied. + */ +bool mmap_address_hint_valid(unsigned long addr, unsigned long len) +{ + if (TASK_SIZE - len < addr) + return false; + + return (addr > DEFAULT_MAP_WINDOW) == (addr + len > DEFAULT_MAP_WINDOW); +} + +/* Can we access it for direct reading/writing? Must be RAM: */ +int valid_phys_addr_range(phys_addr_t addr, size_t count) +{ + return addr + count - 1 <= __pa(high_memory - 1); +} + +/* Can we access it through mmap? Must be a valid physical address: */ +int valid_mmap_phys_addr_range(unsigned long pfn, size_t count) +{ + phys_addr_t addr = (phys_addr_t)pfn << PAGE_SHIFT; + + return phys_addr_valid(addr + count - 1); +} + +/* + * Only allow root to set high MMIO mappings to PROT_NONE. + * This prevents an unpriv. user to set them to PROT_NONE and invert + * them, then pointing to valid memory for L1TF speculation. + * + * Note: for locked down kernels may want to disable the root override. + */ +bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) +{ + if (!boot_cpu_has_bug(X86_BUG_L1TF)) + return true; + if (!__pte_needs_invert(pgprot_val(prot))) + return true; + /* If it's real memory always allow */ + if (pfn_valid(pfn)) + return true; + if (pfn >= l1tf_pfn_limit() && !capable(CAP_SYS_ADMIN)) + return false; + return true; } diff --git a/arch/x86/mm/mmio-mod.c b/arch/x86/mm/mmio-mod.c index dc0b727742f4..c3317f0650d8 100644 --- a/arch/x86/mm/mmio-mod.c +++ b/arch/x86/mm/mmio-mod.c @@ -1,17 +1,5 @@ +// SPDX-License-Identifier: GPL-2.0-or-later /* - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2005 * Jeff Muizelaar, 2006, 2007 @@ -22,17 +10,14 @@ #define pr_fmt(fmt) "mmiotrace: " fmt -#define DEBUG 1 - -#include <linux/module.h> +#include <linux/moduleparam.h> #include <linux/debugfs.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/io.h> -#include <linux/kallsyms.h> -#include <asm/pgtable.h> #include <linux/mmiotrace.h> -#include <asm/e820.h> /* for ISA_START_ADDRESS */ +#include <linux/pgtable.h> +#include <asm/e820/api.h> /* for ISA_START_ADDRESS */ #include <linux/atomic.h> #include <linux/percpu.h> #include <linux/cpu.h> @@ -123,8 +108,8 @@ static void die_kmmio_nesting_error(struct pt_regs *regs, unsigned long addr) pr_emerg("unexpected fault for address: 0x%08lx, last fault for address: 0x%08lx\n", addr, my_reason->addr); print_pte(addr); - print_symbol(KERN_EMERG "faulting IP is at %s\n", regs->ip); - print_symbol(KERN_EMERG "last faulting IP was at %s\n", my_reason->ip); + pr_emerg("faulting IP is at %pS\n", (void *)regs->ip); + pr_emerg("last faulting IP was at %pS\n", (void *)my_reason->ip); #ifdef __i386__ pr_emerg("eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n", regs->ax, regs->bx, regs->cx, regs->dx); @@ -385,21 +370,21 @@ static void enter_uniprocessor(void) int cpu; int err; - if (downed_cpus == NULL && + if (!cpumask_available(downed_cpus) && !alloc_cpumask_var(&downed_cpus, GFP_KERNEL)) { pr_notice("Failed to allocate mask\n"); goto out; } - get_online_cpus(); + cpus_read_lock(); cpumask_copy(downed_cpus, cpu_online_mask); cpumask_clear_cpu(cpumask_first(cpu_online_mask), downed_cpus); if (num_online_cpus() > 1) pr_notice("Disabling non-boot CPUs...\n"); - put_online_cpus(); + cpus_read_unlock(); for_each_cpu(cpu, downed_cpus) { - err = cpu_down(cpu); + err = remove_cpu(cpu); if (!err) pr_info("CPU%d is down.\n", cpu); else @@ -407,21 +392,19 @@ static void enter_uniprocessor(void) } out: if (num_online_cpus() > 1) - pr_warning("multiple CPUs still online, may miss events.\n"); + pr_warn("multiple CPUs still online, may miss events.\n"); } -/* __ref because leave_uniprocessor calls cpu_up which is __cpuinit, - but this whole function is ifdefed CONFIG_HOTPLUG_CPU */ -static void __ref leave_uniprocessor(void) +static void leave_uniprocessor(void) { int cpu; int err; - if (downed_cpus == NULL || cpumask_weight(downed_cpus) == 0) + if (!cpumask_available(downed_cpus) || cpumask_empty(downed_cpus)) return; pr_notice("Re-enabling CPUs...\n"); for_each_cpu(cpu, downed_cpus) { - err = cpu_up(cpu); + err = add_cpu(cpu); if (!err) pr_info("enabled CPU%d.\n", cpu); else @@ -433,8 +416,8 @@ static void __ref leave_uniprocessor(void) static void enter_uniprocessor(void) { if (num_online_cpus() > 1) - pr_warning("multiple CPUs are online, may miss events. " - "Suggest booting with maxcpus=1 kernel argument.\n"); + pr_warn("multiple CPUs are online, may miss events. " + "Suggest booting with maxcpus=1 kernel argument.\n"); } static void leave_uniprocessor(void) diff --git a/arch/x86/mm/numa.c b/arch/x86/mm/numa.c index a71c4e207679..7a97327140df 100644 --- a/arch/x86/mm/numa.c +++ b/arch/x86/mm/numa.c @@ -1,39 +1,29 @@ +// SPDX-License-Identifier: GPL-2.0-only /* Common code for 32 and 64-bit NUMA */ +#include <linux/acpi.h> #include <linux/kernel.h> #include <linux/mm.h> +#include <linux/of.h> #include <linux/string.h> #include <linux/init.h> -#include <linux/bootmem.h> #include <linux/memblock.h> #include <linux/mmzone.h> #include <linux/ctype.h> -#include <linux/module.h> #include <linux/nodemask.h> #include <linux/sched.h> #include <linux/topology.h> +#include <linux/sort.h> +#include <linux/numa_memblks.h> -#include <asm/e820.h> +#include <asm/e820/api.h> #include <asm/proto.h> #include <asm/dma.h> -#include <asm/acpi.h> -#include <asm/amd_nb.h> +#include <asm/numa.h> +#include <asm/amd/nb.h> -#include "numa_internal.h" +#include "mm_internal.h" -int __initdata numa_off; -nodemask_t numa_nodes_parsed __initdata; - -struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; -EXPORT_SYMBOL(node_data); - -static struct numa_meminfo numa_meminfo -#ifndef CONFIG_MEMORY_HOTPLUG -__initdata -#endif -; - -static int numa_distance_cnt; -static u8 *numa_distance; +int numa_off; static __init int numa_setup(char *opt) { @@ -41,14 +31,12 @@ static __init int numa_setup(char *opt) return -EINVAL; if (!strncmp(opt, "off", 3)) numa_off = 1; -#ifdef CONFIG_NUMA_EMU if (!strncmp(opt, "fake=", 5)) - numa_emu_cmdline(opt + 5); -#endif -#ifdef CONFIG_ACPI_NUMA + return numa_emu_cmdline(opt + 5); if (!strncmp(opt, "noacpi", 6)) - acpi_numa = -1; -#endif + disable_srat(); + if (!strncmp(opt, "nohmat", 6)) + disable_hmat(); return 0; } early_param("numa", numa_setup); @@ -60,9 +48,9 @@ s16 __apicid_to_node[MAX_LOCAL_APIC] = { [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE }; -int __cpuinit numa_cpu_node(int cpu) +int numa_cpu_node(int cpu) { - int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); + u32 apicid = early_per_cpu(x86_cpu_to_apicid, cpu); if (apicid != BAD_APICID) return __apicid_to_node[apicid]; @@ -125,401 +113,30 @@ void __init setup_node_to_cpumask_map(void) alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); /* cpumask_of_node() will now work */ - pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids); + pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); } -static int __init numa_add_memblk_to(int nid, u64 start, u64 end, - struct numa_meminfo *mi) +static int __init numa_register_nodes(void) { - /* ignore zero length blks */ - if (start == end) - return 0; - - /* whine about and ignore invalid blks */ - if (start > end || nid < 0 || nid >= MAX_NUMNODES) { - pr_warning("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", - nid, start, end - 1); - return 0; - } + int nid; - if (mi->nr_blks >= NR_NODE_MEMBLKS) { - pr_err("NUMA: too many memblk ranges\n"); - return -EINVAL; - } - - mi->blk[mi->nr_blks].start = start; - mi->blk[mi->nr_blks].end = end; - mi->blk[mi->nr_blks].nid = nid; - mi->nr_blks++; - return 0; -} - -/** - * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo - * @idx: Index of memblk to remove - * @mi: numa_meminfo to remove memblk from - * - * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and - * decrementing @mi->nr_blks. - */ -void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) -{ - mi->nr_blks--; - memmove(&mi->blk[idx], &mi->blk[idx + 1], - (mi->nr_blks - idx) * sizeof(mi->blk[0])); -} - -/** - * numa_add_memblk - Add one numa_memblk to numa_meminfo - * @nid: NUMA node ID of the new memblk - * @start: Start address of the new memblk - * @end: End address of the new memblk - * - * Add a new memblk to the default numa_meminfo. - * - * RETURNS: - * 0 on success, -errno on failure. - */ -int __init numa_add_memblk(int nid, u64 start, u64 end) -{ - return numa_add_memblk_to(nid, start, end, &numa_meminfo); -} - -/* Initialize NODE_DATA for a node on the local memory */ -static void __init setup_node_data(int nid, u64 start, u64 end) -{ - const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); - u64 nd_pa; - void *nd; - int tnid; - - /* - * Don't confuse VM with a node that doesn't have the - * minimum amount of memory: - */ - if (end && (end - start) < NODE_MIN_SIZE) - return; - - start = roundup(start, ZONE_ALIGN); - - printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", - nid, start, end - 1); - - /* - * Allocate node data. Try node-local memory and then any node. - * Never allocate in DMA zone. - */ - nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid); - if (!nd_pa) { - pr_err("Cannot find %zu bytes in node %d\n", - nd_size, nid); - return; - } - nd = __va(nd_pa); - - /* report and initialize */ - printk(KERN_INFO " NODE_DATA [mem %#010Lx-%#010Lx]\n", - nd_pa, nd_pa + nd_size - 1); - tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); - if (tnid != nid) - printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid); - - node_data[nid] = nd; - memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); - NODE_DATA(nid)->node_id = nid; - NODE_DATA(nid)->node_start_pfn = start >> PAGE_SHIFT; - NODE_DATA(nid)->node_spanned_pages = (end - start) >> PAGE_SHIFT; - - node_set_online(nid); -} - -/** - * numa_cleanup_meminfo - Cleanup a numa_meminfo - * @mi: numa_meminfo to clean up - * - * Sanitize @mi by merging and removing unncessary memblks. Also check for - * conflicts and clear unused memblks. - * - * RETURNS: - * 0 on success, -errno on failure. - */ -int __init numa_cleanup_meminfo(struct numa_meminfo *mi) -{ - const u64 low = 0; - const u64 high = PFN_PHYS(max_pfn); - int i, j, k; - - /* first, trim all entries */ - for (i = 0; i < mi->nr_blks; i++) { - struct numa_memblk *bi = &mi->blk[i]; - - /* make sure all blocks are inside the limits */ - bi->start = max(bi->start, low); - bi->end = min(bi->end, high); - - /* and there's no empty block */ - if (bi->start >= bi->end) - numa_remove_memblk_from(i--, mi); - } - - /* merge neighboring / overlapping entries */ - for (i = 0; i < mi->nr_blks; i++) { - struct numa_memblk *bi = &mi->blk[i]; - - for (j = i + 1; j < mi->nr_blks; j++) { - struct numa_memblk *bj = &mi->blk[j]; - u64 start, end; - - /* - * See whether there are overlapping blocks. Whine - * about but allow overlaps of the same nid. They - * will be merged below. - */ - if (bi->end > bj->start && bi->start < bj->end) { - if (bi->nid != bj->nid) { - pr_err("NUMA: node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", - bi->nid, bi->start, bi->end - 1, - bj->nid, bj->start, bj->end - 1); - return -EINVAL; - } - pr_warning("NUMA: Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", - bi->nid, bi->start, bi->end - 1, - bj->start, bj->end - 1); - } - - /* - * Join together blocks on the same node, holes - * between which don't overlap with memory on other - * nodes. - */ - if (bi->nid != bj->nid) - continue; - start = min(bi->start, bj->start); - end = max(bi->end, bj->end); - for (k = 0; k < mi->nr_blks; k++) { - struct numa_memblk *bk = &mi->blk[k]; - - if (bi->nid == bk->nid) - continue; - if (start < bk->end && end > bk->start) - break; - } - if (k < mi->nr_blks) - continue; - printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", - bi->nid, bi->start, bi->end - 1, bj->start, - bj->end - 1, start, end - 1); - bi->start = start; - bi->end = end; - numa_remove_memblk_from(j--, mi); - } - } - - /* clear unused ones */ - for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { - mi->blk[i].start = mi->blk[i].end = 0; - mi->blk[i].nid = NUMA_NO_NODE; - } - - return 0; -} - -/* - * Set nodes, which have memory in @mi, in *@nodemask. - */ -static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, - const struct numa_meminfo *mi) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(mi->blk); i++) - if (mi->blk[i].start != mi->blk[i].end && - mi->blk[i].nid != NUMA_NO_NODE) - node_set(mi->blk[i].nid, *nodemask); -} - -/** - * numa_reset_distance - Reset NUMA distance table - * - * The current table is freed. The next numa_set_distance() call will - * create a new one. - */ -void __init numa_reset_distance(void) -{ - size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); - - /* numa_distance could be 1LU marking allocation failure, test cnt */ - if (numa_distance_cnt) - memblock_free(__pa(numa_distance), size); - numa_distance_cnt = 0; - numa_distance = NULL; /* enable table creation */ -} - -static int __init numa_alloc_distance(void) -{ - nodemask_t nodes_parsed; - size_t size; - int i, j, cnt = 0; - u64 phys; - - /* size the new table and allocate it */ - nodes_parsed = numa_nodes_parsed; - numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); - - for_each_node_mask(i, nodes_parsed) - cnt = i; - cnt++; - size = cnt * cnt * sizeof(numa_distance[0]); - - phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), - size, PAGE_SIZE); - if (!phys) { - pr_warning("NUMA: Warning: can't allocate distance table!\n"); - /* don't retry until explicitly reset */ - numa_distance = (void *)1LU; - return -ENOMEM; - } - memblock_reserve(phys, size); - - numa_distance = __va(phys); - numa_distance_cnt = cnt; - - /* fill with the default distances */ - for (i = 0; i < cnt; i++) - for (j = 0; j < cnt; j++) - numa_distance[i * cnt + j] = i == j ? - LOCAL_DISTANCE : REMOTE_DISTANCE; - printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); - - return 0; -} - -/** - * numa_set_distance - Set NUMA distance from one NUMA to another - * @from: the 'from' node to set distance - * @to: the 'to' node to set distance - * @distance: NUMA distance - * - * Set the distance from node @from to @to to @distance. If distance table - * doesn't exist, one which is large enough to accommodate all the currently - * known nodes will be created. - * - * If such table cannot be allocated, a warning is printed and further - * calls are ignored until the distance table is reset with - * numa_reset_distance(). - * - * If @from or @to is higher than the highest known node or lower than zero - * at the time of table creation or @distance doesn't make sense, the call - * is ignored. - * This is to allow simplification of specific NUMA config implementations. - */ -void __init numa_set_distance(int from, int to, int distance) -{ - if (!numa_distance && numa_alloc_distance() < 0) - return; - - if (from >= numa_distance_cnt || to >= numa_distance_cnt || - from < 0 || to < 0) { - pr_warn_once("NUMA: Warning: node ids are out of bound, from=%d to=%d distance=%d\n", - from, to, distance); - return; - } - - if ((u8)distance != distance || - (from == to && distance != LOCAL_DISTANCE)) { - pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n", - from, to, distance); - return; - } - - numa_distance[from * numa_distance_cnt + to] = distance; -} - -int __node_distance(int from, int to) -{ - if (from >= numa_distance_cnt || to >= numa_distance_cnt) - return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; - return numa_distance[from * numa_distance_cnt + to]; -} -EXPORT_SYMBOL(__node_distance); - -/* - * Sanity check to catch more bad NUMA configurations (they are amazingly - * common). Make sure the nodes cover all memory. - */ -static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) -{ - u64 numaram, e820ram; - int i; - - numaram = 0; - for (i = 0; i < mi->nr_blks; i++) { - u64 s = mi->blk[i].start >> PAGE_SHIFT; - u64 e = mi->blk[i].end >> PAGE_SHIFT; - numaram += e - s; - numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); - if ((s64)numaram < 0) - numaram = 0; - } - - e820ram = max_pfn - absent_pages_in_range(0, max_pfn); - - /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ - if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { - printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n", - (numaram << PAGE_SHIFT) >> 20, - (e820ram << PAGE_SHIFT) >> 20); - return false; - } - return true; -} - -static int __init numa_register_memblks(struct numa_meminfo *mi) -{ - unsigned long uninitialized_var(pfn_align); - int i, nid; - - /* Account for nodes with cpus and no memory */ - node_possible_map = numa_nodes_parsed; - numa_nodemask_from_meminfo(&node_possible_map, mi); - if (WARN_ON(nodes_empty(node_possible_map))) - return -EINVAL; - - for (i = 0; i < mi->nr_blks; i++) { - struct numa_memblk *mb = &mi->blk[i]; - memblock_set_node(mb->start, mb->end - mb->start, mb->nid); - } - - /* - * If sections array is gonna be used for pfn -> nid mapping, check - * whether its granularity is fine enough. - */ -#ifdef NODE_NOT_IN_PAGE_FLAGS - pfn_align = node_map_pfn_alignment(); - if (pfn_align && pfn_align < PAGES_PER_SECTION) { - printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n", - PFN_PHYS(pfn_align) >> 20, - PFN_PHYS(PAGES_PER_SECTION) >> 20); - return -EINVAL; - } -#endif - if (!numa_meminfo_cover_memory(mi)) + if (!memblock_validate_numa_coverage(SZ_1M)) return -EINVAL; /* Finally register nodes. */ for_each_node_mask(nid, node_possible_map) { - u64 start = PFN_PHYS(max_pfn); - u64 end = 0; - - for (i = 0; i < mi->nr_blks; i++) { - if (nid != mi->blk[i].nid) - continue; - start = min(mi->blk[i].start, start); - end = max(mi->blk[i].end, end); - } - - if (start < end) - setup_node_data(nid, start, end); + unsigned long start_pfn, end_pfn; + + /* + * Note, get_pfn_range_for_nid() depends on + * memblock_set_node() having already happened + */ + get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); + if (start_pfn >= end_pfn) + continue; + + alloc_node_data(nid); + node_set_online(nid); } /* Dump memblock with node info and return. */ @@ -543,9 +160,7 @@ static void __init numa_init_array(void) if (early_cpu_to_node(i) != NUMA_NO_NODE) continue; numa_set_node(i, rr); - rr = next_node(rr, node_online_map); - if (rr == MAX_NUMNODES) - rr = first_node(node_online_map); + rr = next_node_in(rr, node_online_map); } } @@ -557,23 +172,11 @@ static int __init numa_init(int (*init_func)(void)) for (i = 0; i < MAX_LOCAL_APIC; i++) set_apicid_to_node(i, NUMA_NO_NODE); - nodes_clear(numa_nodes_parsed); - nodes_clear(node_possible_map); - nodes_clear(node_online_map); - memset(&numa_meminfo, 0, sizeof(numa_meminfo)); - WARN_ON(memblock_set_node(0, ULLONG_MAX, MAX_NUMNODES)); - numa_reset_distance(); - - ret = init_func(); - if (ret < 0) - return ret; - ret = numa_cleanup_meminfo(&numa_meminfo); + ret = numa_memblks_init(init_func, /* memblock_force_top_down */ true); if (ret < 0) return ret; - numa_emulation(&numa_meminfo, numa_distance_cnt); - - ret = numa_register_memblks(&numa_meminfo); + ret = numa_register_nodes(); if (ret < 0) return ret; @@ -586,6 +189,7 @@ static int __init numa_init(int (*init_func)(void)) numa_clear_node(i); } numa_init_array(); + return 0; } @@ -615,16 +219,12 @@ static int __init dummy_numa_init(void) * x86_numa_init - Initialize NUMA * * Try each configured NUMA initialization method until one succeeds. The - * last fallback is dummy single node config encomapssing whole memory and + * last fallback is dummy single node config encompassing whole memory and * never fails. */ void __init x86_numa_init(void) { if (!numa_off) { -#ifdef CONFIG_X86_NUMAQ - if (!numa_init(numaq_numa_init)) - return; -#endif #ifdef CONFIG_ACPI_NUMA if (!numa_init(x86_acpi_numa_init)) return; @@ -633,27 +233,42 @@ void __init x86_numa_init(void) if (!numa_init(amd_numa_init)) return; #endif + if (acpi_disabled && !numa_init(of_numa_init)) + return; } numa_init(dummy_numa_init); } -static __init int find_near_online_node(int node) -{ - int n, val; - int min_val = INT_MAX; - int best_node = -1; - - for_each_online_node(n) { - val = node_distance(node, n); - if (val < min_val) { - min_val = val; - best_node = n; - } - } +/* + * A node may exist which has one or more Generic Initiators but no CPUs and no + * memory. + * + * This function must be called after init_cpu_to_node(), to ensure that any + * memoryless CPU nodes have already been brought online, and before the + * node_data[nid] is needed for zone list setup in build_all_zonelists(). + * + * When this function is called, any nodes containing either memory and/or CPUs + * will already be online and there is no need to do anything extra, even if + * they also contain one or more Generic Initiators. + */ +void __init init_gi_nodes(void) +{ + int nid; - return best_node; + /* + * Exclude this node from + * bringup_nonboot_cpus + * cpu_up + * __try_online_node + * register_node + * because node_subsys is not initialized yet. + * TODO remove dependency on node_online + */ + for_each_node_state(nid, N_GENERIC_INITIATOR) + if (!node_online(nid)) + node_set_online(nid); } /* @@ -673,7 +288,7 @@ static __init int find_near_online_node(int node) void __init init_cpu_to_node(void) { int cpu; - u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); + u32 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); BUG_ON(cpu_to_apicid == NULL); @@ -682,8 +297,19 @@ void __init init_cpu_to_node(void) if (node == NUMA_NO_NODE) continue; + + /* + * Exclude this node from + * bringup_nonboot_cpus + * cpu_up + * __try_online_node + * register_node + * because node_subsys is not initialized yet. + * TODO remove dependency on node_online + */ if (!node_online(node)) - node = find_near_online_node(node); + node_set_online(node); + numa_set_node(cpu, node); } } @@ -691,12 +317,12 @@ void __init init_cpu_to_node(void) #ifndef CONFIG_DEBUG_PER_CPU_MAPS # ifndef CONFIG_NUMA_EMU -void __cpuinit numa_add_cpu(int cpu) +void numa_add_cpu(unsigned int cpu) { cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); } -void __cpuinit numa_remove_cpu(int cpu) +void numa_remove_cpu(unsigned int cpu) { cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); } @@ -734,17 +360,16 @@ int early_cpu_to_node(int cpu) return per_cpu(x86_cpu_to_node_map, cpu); } -void debug_cpumask_set_cpu(int cpu, int node, bool enable) +void debug_cpumask_set_cpu(unsigned int cpu, int node, bool enable) { struct cpumask *mask; - char buf[64]; if (node == NUMA_NO_NODE) { /* early_cpu_to_node() already emits a warning and trace */ return; } mask = node_to_cpumask_map[node]; - if (!mask) { + if (!cpumask_available(mask)) { pr_err("node_to_cpumask_map[%i] NULL\n", node); dump_stack(); return; @@ -755,25 +380,24 @@ void debug_cpumask_set_cpu(int cpu, int node, bool enable) else cpumask_clear_cpu(cpu, mask); - cpulist_scnprintf(buf, sizeof(buf), mask); - printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n", + printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n", enable ? "numa_add_cpu" : "numa_remove_cpu", - cpu, node, buf); + cpu, node, cpumask_pr_args(mask)); return; } # ifndef CONFIG_NUMA_EMU -static void __cpuinit numa_set_cpumask(int cpu, bool enable) +static void numa_set_cpumask(int cpu, bool enable) { debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); } -void __cpuinit numa_add_cpu(int cpu) +void numa_add_cpu(unsigned int cpu) { numa_set_cpumask(cpu, true); } -void __cpuinit numa_remove_cpu(int cpu) +void numa_remove_cpu(unsigned int cpu) { numa_set_cpumask(cpu, false); } @@ -784,14 +408,14 @@ void __cpuinit numa_remove_cpu(int cpu) */ const struct cpumask *cpumask_of_node(int node) { - if (node >= nr_node_ids) { + if ((unsigned)node >= nr_node_ids) { printk(KERN_WARNING - "cpumask_of_node(%d): node > nr_node_ids(%d)\n", + "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n", node, nr_node_ids); dump_stack(); return cpu_none_mask; } - if (node_to_cpumask_map[node] == NULL) { + if (!cpumask_available(node_to_cpumask_map[node])) { printk(KERN_WARNING "cpumask_of_node(%d): no node_to_cpumask_map!\n", node); @@ -804,17 +428,29 @@ EXPORT_SYMBOL(cpumask_of_node); #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ -#ifdef CONFIG_MEMORY_HOTPLUG -int memory_add_physaddr_to_nid(u64 start) +#ifdef CONFIG_NUMA_EMU +void __init numa_emu_update_cpu_to_node(int *emu_nid_to_phys, + unsigned int nr_emu_nids) { - struct numa_meminfo *mi = &numa_meminfo; - int nid = mi->blk[0].nid; - int i; + int i, j; - for (i = 0; i < mi->nr_blks; i++) - if (mi->blk[i].start <= start && mi->blk[i].end > start) - nid = mi->blk[i].nid; - return nid; + /* + * Transform __apicid_to_node table to use emulated nids by + * reverse-mapping phys_nid. The maps should always exist but fall + * back to zero just in case. + */ + for (i = 0; i < ARRAY_SIZE(__apicid_to_node); i++) { + if (__apicid_to_node[i] == NUMA_NO_NODE) + continue; + for (j = 0; j < nr_emu_nids; j++) + if (__apicid_to_node[i] == emu_nid_to_phys[j]) + break; + __apicid_to_node[i] = j < nr_emu_nids ? j : 0; + } } -EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); -#endif + +u64 __init numa_emu_dma_end(void) +{ + return PFN_PHYS(MAX_DMA32_PFN); +} +#endif /* CONFIG_NUMA_EMU */ diff --git a/arch/x86/mm/numa_32.c b/arch/x86/mm/numa_32.c deleted file mode 100644 index 0342d27ca798..000000000000 --- a/arch/x86/mm/numa_32.c +++ /dev/null @@ -1,102 +0,0 @@ -/* - * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation - * August 2002: added remote node KVA remap - Martin J. Bligh - * - * Copyright (C) 2002, IBM Corp. - * - * All rights reserved. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, but - * WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or - * NON INFRINGEMENT. See the GNU General Public License for more - * details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - */ - -#include <linux/bootmem.h> -#include <linux/memblock.h> -#include <linux/module.h> - -#include "numa_internal.h" - -#ifdef CONFIG_DISCONTIGMEM -/* - * 4) physnode_map - the mapping between a pfn and owning node - * physnode_map keeps track of the physical memory layout of a generic - * numa node on a 64Mb break (each element of the array will - * represent 64Mb of memory and will be marked by the node id. so, - * if the first gig is on node 0, and the second gig is on node 1 - * physnode_map will contain: - * - * physnode_map[0-15] = 0; - * physnode_map[16-31] = 1; - * physnode_map[32- ] = -1; - */ -s8 physnode_map[MAX_SECTIONS] __read_mostly = { [0 ... (MAX_SECTIONS - 1)] = -1}; -EXPORT_SYMBOL(physnode_map); - -void memory_present(int nid, unsigned long start, unsigned long end) -{ - unsigned long pfn; - - printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n", - nid, start, end); - printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid); - printk(KERN_DEBUG " "); - for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { - physnode_map[pfn / PAGES_PER_SECTION] = nid; - printk(KERN_CONT "%lx ", pfn); - } - printk(KERN_CONT "\n"); -} - -unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, - unsigned long end_pfn) -{ - unsigned long nr_pages = end_pfn - start_pfn; - - if (!nr_pages) - return 0; - - return (nr_pages + 1) * sizeof(struct page); -} -#endif - -extern unsigned long highend_pfn, highstart_pfn; - -void __init initmem_init(void) -{ - x86_numa_init(); - -#ifdef CONFIG_HIGHMEM - highstart_pfn = highend_pfn = max_pfn; - if (max_pfn > max_low_pfn) - highstart_pfn = max_low_pfn; - printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", - pages_to_mb(highend_pfn - highstart_pfn)); - high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; -#else - high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1; -#endif - printk(KERN_NOTICE "%ldMB LOWMEM available.\n", - pages_to_mb(max_low_pfn)); - printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n", - max_low_pfn, highstart_pfn); - - printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n", - (ulong) pfn_to_kaddr(max_low_pfn)); - - printk(KERN_DEBUG "High memory starts at vaddr %08lx\n", - (ulong) pfn_to_kaddr(highstart_pfn)); - - setup_bootmem_allocator(); -} diff --git a/arch/x86/mm/numa_64.c b/arch/x86/mm/numa_64.c deleted file mode 100644 index 9405ffc91502..000000000000 --- a/arch/x86/mm/numa_64.c +++ /dev/null @@ -1,12 +0,0 @@ -/* - * Generic VM initialization for x86-64 NUMA setups. - * Copyright 2002,2003 Andi Kleen, SuSE Labs. - */ -#include <linux/bootmem.h> - -#include "numa_internal.h" - -void __init initmem_init(void) -{ - x86_numa_init(); -} diff --git a/arch/x86/mm/numa_emulation.c b/arch/x86/mm/numa_emulation.c deleted file mode 100644 index dbbbb47260cc..000000000000 --- a/arch/x86/mm/numa_emulation.c +++ /dev/null @@ -1,502 +0,0 @@ -/* - * NUMA emulation - */ -#include <linux/kernel.h> -#include <linux/errno.h> -#include <linux/topology.h> -#include <linux/memblock.h> -#include <linux/bootmem.h> -#include <asm/dma.h> - -#include "numa_internal.h" - -static int emu_nid_to_phys[MAX_NUMNODES] __cpuinitdata; -static char *emu_cmdline __initdata; - -void __init numa_emu_cmdline(char *str) -{ - emu_cmdline = str; -} - -static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi) -{ - int i; - - for (i = 0; i < mi->nr_blks; i++) - if (mi->blk[i].nid == nid) - return i; - return -ENOENT; -} - -static u64 __init mem_hole_size(u64 start, u64 end) -{ - unsigned long start_pfn = PFN_UP(start); - unsigned long end_pfn = PFN_DOWN(end); - - if (start_pfn < end_pfn) - return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn)); - return 0; -} - -/* - * Sets up nid to range from @start to @end. The return value is -errno if - * something went wrong, 0 otherwise. - */ -static int __init emu_setup_memblk(struct numa_meminfo *ei, - struct numa_meminfo *pi, - int nid, int phys_blk, u64 size) -{ - struct numa_memblk *eb = &ei->blk[ei->nr_blks]; - struct numa_memblk *pb = &pi->blk[phys_blk]; - - if (ei->nr_blks >= NR_NODE_MEMBLKS) { - pr_err("NUMA: Too many emulated memblks, failing emulation\n"); - return -EINVAL; - } - - ei->nr_blks++; - eb->start = pb->start; - eb->end = pb->start + size; - eb->nid = nid; - - if (emu_nid_to_phys[nid] == NUMA_NO_NODE) - emu_nid_to_phys[nid] = nid; - - pb->start += size; - if (pb->start >= pb->end) { - WARN_ON_ONCE(pb->start > pb->end); - numa_remove_memblk_from(phys_blk, pi); - } - - printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n", - nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20); - return 0; -} - -/* - * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr - * to max_addr. The return value is the number of nodes allocated. - */ -static int __init split_nodes_interleave(struct numa_meminfo *ei, - struct numa_meminfo *pi, - u64 addr, u64 max_addr, int nr_nodes) -{ - nodemask_t physnode_mask = NODE_MASK_NONE; - u64 size; - int big; - int nid = 0; - int i, ret; - - if (nr_nodes <= 0) - return -1; - if (nr_nodes > MAX_NUMNODES) { - pr_info("numa=fake=%d too large, reducing to %d\n", - nr_nodes, MAX_NUMNODES); - nr_nodes = MAX_NUMNODES; - } - - /* - * Calculate target node size. x86_32 freaks on __udivdi3() so do - * the division in ulong number of pages and convert back. - */ - size = max_addr - addr - mem_hole_size(addr, max_addr); - size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes); - - /* - * Calculate the number of big nodes that can be allocated as a result - * of consolidating the remainder. - */ - big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) / - FAKE_NODE_MIN_SIZE; - - size &= FAKE_NODE_MIN_HASH_MASK; - if (!size) { - pr_err("Not enough memory for each node. " - "NUMA emulation disabled.\n"); - return -1; - } - - for (i = 0; i < pi->nr_blks; i++) - node_set(pi->blk[i].nid, physnode_mask); - - /* - * Continue to fill physical nodes with fake nodes until there is no - * memory left on any of them. - */ - while (nodes_weight(physnode_mask)) { - for_each_node_mask(i, physnode_mask) { - u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN); - u64 start, limit, end; - int phys_blk; - - phys_blk = emu_find_memblk_by_nid(i, pi); - if (phys_blk < 0) { - node_clear(i, physnode_mask); - continue; - } - start = pi->blk[phys_blk].start; - limit = pi->blk[phys_blk].end; - end = start + size; - - if (nid < big) - end += FAKE_NODE_MIN_SIZE; - - /* - * Continue to add memory to this fake node if its - * non-reserved memory is less than the per-node size. - */ - while (end - start - mem_hole_size(start, end) < size) { - end += FAKE_NODE_MIN_SIZE; - if (end > limit) { - end = limit; - break; - } - } - - /* - * If there won't be at least FAKE_NODE_MIN_SIZE of - * non-reserved memory in ZONE_DMA32 for the next node, - * this one must extend to the boundary. - */ - if (end < dma32_end && dma32_end - end - - mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) - end = dma32_end; - - /* - * If there won't be enough non-reserved memory for the - * next node, this one must extend to the end of the - * physical node. - */ - if (limit - end - mem_hole_size(end, limit) < size) - end = limit; - - ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes, - phys_blk, - min(end, limit) - start); - if (ret < 0) - return ret; - } - } - return 0; -} - -/* - * Returns the end address of a node so that there is at least `size' amount of - * non-reserved memory or `max_addr' is reached. - */ -static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size) -{ - u64 end = start + size; - - while (end - start - mem_hole_size(start, end) < size) { - end += FAKE_NODE_MIN_SIZE; - if (end > max_addr) { - end = max_addr; - break; - } - } - return end; -} - -/* - * Sets up fake nodes of `size' interleaved over physical nodes ranging from - * `addr' to `max_addr'. The return value is the number of nodes allocated. - */ -static int __init split_nodes_size_interleave(struct numa_meminfo *ei, - struct numa_meminfo *pi, - u64 addr, u64 max_addr, u64 size) -{ - nodemask_t physnode_mask = NODE_MASK_NONE; - u64 min_size; - int nid = 0; - int i, ret; - - if (!size) - return -1; - /* - * The limit on emulated nodes is MAX_NUMNODES, so the size per node is - * increased accordingly if the requested size is too small. This - * creates a uniform distribution of node sizes across the entire - * machine (but not necessarily over physical nodes). - */ - min_size = (max_addr - addr - mem_hole_size(addr, max_addr)) / MAX_NUMNODES; - min_size = max(min_size, FAKE_NODE_MIN_SIZE); - if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size) - min_size = (min_size + FAKE_NODE_MIN_SIZE) & - FAKE_NODE_MIN_HASH_MASK; - if (size < min_size) { - pr_err("Fake node size %LuMB too small, increasing to %LuMB\n", - size >> 20, min_size >> 20); - size = min_size; - } - size &= FAKE_NODE_MIN_HASH_MASK; - - for (i = 0; i < pi->nr_blks; i++) - node_set(pi->blk[i].nid, physnode_mask); - - /* - * Fill physical nodes with fake nodes of size until there is no memory - * left on any of them. - */ - while (nodes_weight(physnode_mask)) { - for_each_node_mask(i, physnode_mask) { - u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN); - u64 start, limit, end; - int phys_blk; - - phys_blk = emu_find_memblk_by_nid(i, pi); - if (phys_blk < 0) { - node_clear(i, physnode_mask); - continue; - } - start = pi->blk[phys_blk].start; - limit = pi->blk[phys_blk].end; - - end = find_end_of_node(start, limit, size); - /* - * If there won't be at least FAKE_NODE_MIN_SIZE of - * non-reserved memory in ZONE_DMA32 for the next node, - * this one must extend to the boundary. - */ - if (end < dma32_end && dma32_end - end - - mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) - end = dma32_end; - - /* - * If there won't be enough non-reserved memory for the - * next node, this one must extend to the end of the - * physical node. - */ - if (limit - end - mem_hole_size(end, limit) < size) - end = limit; - - ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES, - phys_blk, - min(end, limit) - start); - if (ret < 0) - return ret; - } - } - return 0; -} - -/** - * numa_emulation - Emulate NUMA nodes - * @numa_meminfo: NUMA configuration to massage - * @numa_dist_cnt: The size of the physical NUMA distance table - * - * Emulate NUMA nodes according to the numa=fake kernel parameter. - * @numa_meminfo contains the physical memory configuration and is modified - * to reflect the emulated configuration on success. @numa_dist_cnt is - * used to determine the size of the physical distance table. - * - * On success, the following modifications are made. - * - * - @numa_meminfo is updated to reflect the emulated nodes. - * - * - __apicid_to_node[] is updated such that APIC IDs are mapped to the - * emulated nodes. - * - * - NUMA distance table is rebuilt to represent distances between emulated - * nodes. The distances are determined considering how emulated nodes - * are mapped to physical nodes and match the actual distances. - * - * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical - * nodes. This is used by numa_add_cpu() and numa_remove_cpu(). - * - * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with - * identity mapping and no other modification is made. - */ -void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt) -{ - static struct numa_meminfo ei __initdata; - static struct numa_meminfo pi __initdata; - const u64 max_addr = PFN_PHYS(max_pfn); - u8 *phys_dist = NULL; - size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]); - int max_emu_nid, dfl_phys_nid; - int i, j, ret; - - if (!emu_cmdline) - goto no_emu; - - memset(&ei, 0, sizeof(ei)); - pi = *numa_meminfo; - - for (i = 0; i < MAX_NUMNODES; i++) - emu_nid_to_phys[i] = NUMA_NO_NODE; - - /* - * If the numa=fake command-line contains a 'M' or 'G', it represents - * the fixed node size. Otherwise, if it is just a single number N, - * split the system RAM into N fake nodes. - */ - if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) { - u64 size; - - size = memparse(emu_cmdline, &emu_cmdline); - ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size); - } else { - unsigned long n; - - n = simple_strtoul(emu_cmdline, &emu_cmdline, 0); - ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n); - } - if (*emu_cmdline == ':') - emu_cmdline++; - - if (ret < 0) - goto no_emu; - - if (numa_cleanup_meminfo(&ei) < 0) { - pr_warning("NUMA: Warning: constructed meminfo invalid, disabling emulation\n"); - goto no_emu; - } - - /* copy the physical distance table */ - if (numa_dist_cnt) { - u64 phys; - - phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), - phys_size, PAGE_SIZE); - if (!phys) { - pr_warning("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n"); - goto no_emu; - } - memblock_reserve(phys, phys_size); - phys_dist = __va(phys); - - for (i = 0; i < numa_dist_cnt; i++) - for (j = 0; j < numa_dist_cnt; j++) - phys_dist[i * numa_dist_cnt + j] = - node_distance(i, j); - } - - /* - * Determine the max emulated nid and the default phys nid to use - * for unmapped nodes. - */ - max_emu_nid = 0; - dfl_phys_nid = NUMA_NO_NODE; - for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) { - if (emu_nid_to_phys[i] != NUMA_NO_NODE) { - max_emu_nid = i; - if (dfl_phys_nid == NUMA_NO_NODE) - dfl_phys_nid = emu_nid_to_phys[i]; - } - } - if (dfl_phys_nid == NUMA_NO_NODE) { - pr_warning("NUMA: Warning: can't determine default physical node, disabling emulation\n"); - goto no_emu; - } - - /* commit */ - *numa_meminfo = ei; - - /* - * Transform __apicid_to_node table to use emulated nids by - * reverse-mapping phys_nid. The maps should always exist but fall - * back to zero just in case. - */ - for (i = 0; i < ARRAY_SIZE(__apicid_to_node); i++) { - if (__apicid_to_node[i] == NUMA_NO_NODE) - continue; - for (j = 0; j < ARRAY_SIZE(emu_nid_to_phys); j++) - if (__apicid_to_node[i] == emu_nid_to_phys[j]) - break; - __apicid_to_node[i] = j < ARRAY_SIZE(emu_nid_to_phys) ? j : 0; - } - - /* make sure all emulated nodes are mapped to a physical node */ - for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) - if (emu_nid_to_phys[i] == NUMA_NO_NODE) - emu_nid_to_phys[i] = dfl_phys_nid; - - /* transform distance table */ - numa_reset_distance(); - for (i = 0; i < max_emu_nid + 1; i++) { - for (j = 0; j < max_emu_nid + 1; j++) { - int physi = emu_nid_to_phys[i]; - int physj = emu_nid_to_phys[j]; - int dist; - - if (get_option(&emu_cmdline, &dist) == 2) - ; - else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt) - dist = physi == physj ? - LOCAL_DISTANCE : REMOTE_DISTANCE; - else - dist = phys_dist[physi * numa_dist_cnt + physj]; - - numa_set_distance(i, j, dist); - } - } - - /* free the copied physical distance table */ - if (phys_dist) - memblock_free(__pa(phys_dist), phys_size); - return; - -no_emu: - /* No emulation. Build identity emu_nid_to_phys[] for numa_add_cpu() */ - for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) - emu_nid_to_phys[i] = i; -} - -#ifndef CONFIG_DEBUG_PER_CPU_MAPS -void __cpuinit numa_add_cpu(int cpu) -{ - int physnid, nid; - - nid = early_cpu_to_node(cpu); - BUG_ON(nid == NUMA_NO_NODE || !node_online(nid)); - - physnid = emu_nid_to_phys[nid]; - - /* - * Map the cpu to each emulated node that is allocated on the physical - * node of the cpu's apic id. - */ - for_each_online_node(nid) - if (emu_nid_to_phys[nid] == physnid) - cpumask_set_cpu(cpu, node_to_cpumask_map[nid]); -} - -void __cpuinit numa_remove_cpu(int cpu) -{ - int i; - - for_each_online_node(i) - cpumask_clear_cpu(cpu, node_to_cpumask_map[i]); -} -#else /* !CONFIG_DEBUG_PER_CPU_MAPS */ -static void __cpuinit numa_set_cpumask(int cpu, bool enable) -{ - int nid, physnid; - - nid = early_cpu_to_node(cpu); - if (nid == NUMA_NO_NODE) { - /* early_cpu_to_node() already emits a warning and trace */ - return; - } - - physnid = emu_nid_to_phys[nid]; - - for_each_online_node(nid) { - if (emu_nid_to_phys[nid] != physnid) - continue; - - debug_cpumask_set_cpu(cpu, nid, enable); - } -} - -void __cpuinit numa_add_cpu(int cpu) -{ - numa_set_cpumask(cpu, true); -} - -void __cpuinit numa_remove_cpu(int cpu) -{ - numa_set_cpumask(cpu, false); -} -#endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ diff --git a/arch/x86/mm/numa_internal.h b/arch/x86/mm/numa_internal.h deleted file mode 100644 index ad86ec91e640..000000000000 --- a/arch/x86/mm/numa_internal.h +++ /dev/null @@ -1,33 +0,0 @@ -#ifndef __X86_MM_NUMA_INTERNAL_H -#define __X86_MM_NUMA_INTERNAL_H - -#include <linux/types.h> -#include <asm/numa.h> - -struct numa_memblk { - u64 start; - u64 end; - int nid; -}; - -struct numa_meminfo { - int nr_blks; - struct numa_memblk blk[NR_NODE_MEMBLKS]; -}; - -void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi); -int __init numa_cleanup_meminfo(struct numa_meminfo *mi); -void __init numa_reset_distance(void); - -void __init x86_numa_init(void); - -#ifdef CONFIG_NUMA_EMU -void __init numa_emulation(struct numa_meminfo *numa_meminfo, - int numa_dist_cnt); -#else -static inline void numa_emulation(struct numa_meminfo *numa_meminfo, - int numa_dist_cnt) -{ } -#endif - -#endif /* __X86_MM_NUMA_INTERNAL_H */ diff --git a/arch/x86/mm/pageattr.c b/arch/x86/mm/pageattr.c deleted file mode 100644 index bb32480c2d71..000000000000 --- a/arch/x86/mm/pageattr.c +++ /dev/null @@ -1,1443 +0,0 @@ -/* - * Copyright 2002 Andi Kleen, SuSE Labs. - * Thanks to Ben LaHaise for precious feedback. - */ -#include <linux/highmem.h> -#include <linux/bootmem.h> -#include <linux/module.h> -#include <linux/sched.h> -#include <linux/mm.h> -#include <linux/interrupt.h> -#include <linux/seq_file.h> -#include <linux/debugfs.h> -#include <linux/pfn.h> -#include <linux/percpu.h> -#include <linux/gfp.h> -#include <linux/pci.h> - -#include <asm/e820.h> -#include <asm/processor.h> -#include <asm/tlbflush.h> -#include <asm/sections.h> -#include <asm/setup.h> -#include <asm/uaccess.h> -#include <asm/pgalloc.h> -#include <asm/proto.h> -#include <asm/pat.h> - -/* - * The current flushing context - we pass it instead of 5 arguments: - */ -struct cpa_data { - unsigned long *vaddr; - pgprot_t mask_set; - pgprot_t mask_clr; - int numpages; - int flags; - unsigned long pfn; - unsigned force_split : 1; - int curpage; - struct page **pages; -}; - -/* - * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) - * using cpa_lock. So that we don't allow any other cpu, with stale large tlb - * entries change the page attribute in parallel to some other cpu - * splitting a large page entry along with changing the attribute. - */ -static DEFINE_SPINLOCK(cpa_lock); - -#define CPA_FLUSHTLB 1 -#define CPA_ARRAY 2 -#define CPA_PAGES_ARRAY 4 - -#ifdef CONFIG_PROC_FS -static unsigned long direct_pages_count[PG_LEVEL_NUM]; - -void update_page_count(int level, unsigned long pages) -{ - /* Protect against CPA */ - spin_lock(&pgd_lock); - direct_pages_count[level] += pages; - spin_unlock(&pgd_lock); -} - -static void split_page_count(int level) -{ - direct_pages_count[level]--; - direct_pages_count[level - 1] += PTRS_PER_PTE; -} - -void arch_report_meminfo(struct seq_file *m) -{ - seq_printf(m, "DirectMap4k: %8lu kB\n", - direct_pages_count[PG_LEVEL_4K] << 2); -#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) - seq_printf(m, "DirectMap2M: %8lu kB\n", - direct_pages_count[PG_LEVEL_2M] << 11); -#else - seq_printf(m, "DirectMap4M: %8lu kB\n", - direct_pages_count[PG_LEVEL_2M] << 12); -#endif -#ifdef CONFIG_X86_64 - if (direct_gbpages) - seq_printf(m, "DirectMap1G: %8lu kB\n", - direct_pages_count[PG_LEVEL_1G] << 20); -#endif -} -#else -static inline void split_page_count(int level) { } -#endif - -#ifdef CONFIG_X86_64 - -static inline unsigned long highmap_start_pfn(void) -{ - return __pa_symbol(_text) >> PAGE_SHIFT; -} - -static inline unsigned long highmap_end_pfn(void) -{ - return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT; -} - -#endif - -#ifdef CONFIG_DEBUG_PAGEALLOC -# define debug_pagealloc 1 -#else -# define debug_pagealloc 0 -#endif - -static inline int -within(unsigned long addr, unsigned long start, unsigned long end) -{ - return addr >= start && addr < end; -} - -/* - * Flushing functions - */ - -/** - * clflush_cache_range - flush a cache range with clflush - * @vaddr: virtual start address - * @size: number of bytes to flush - * - * clflush is an unordered instruction which needs fencing with mfence - * to avoid ordering issues. - */ -void clflush_cache_range(void *vaddr, unsigned int size) -{ - void *vend = vaddr + size - 1; - - mb(); - - for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size) - clflush(vaddr); - /* - * Flush any possible final partial cacheline: - */ - clflush(vend); - - mb(); -} -EXPORT_SYMBOL_GPL(clflush_cache_range); - -static void __cpa_flush_all(void *arg) -{ - unsigned long cache = (unsigned long)arg; - - /* - * Flush all to work around Errata in early athlons regarding - * large page flushing. - */ - __flush_tlb_all(); - - if (cache && boot_cpu_data.x86 >= 4) - wbinvd(); -} - -static void cpa_flush_all(unsigned long cache) -{ - BUG_ON(irqs_disabled()); - - on_each_cpu(__cpa_flush_all, (void *) cache, 1); -} - -static void __cpa_flush_range(void *arg) -{ - /* - * We could optimize that further and do individual per page - * tlb invalidates for a low number of pages. Caveat: we must - * flush the high aliases on 64bit as well. - */ - __flush_tlb_all(); -} - -static void cpa_flush_range(unsigned long start, int numpages, int cache) -{ - unsigned int i, level; - unsigned long addr; - - BUG_ON(irqs_disabled()); - WARN_ON(PAGE_ALIGN(start) != start); - - on_each_cpu(__cpa_flush_range, NULL, 1); - - if (!cache) - return; - - /* - * We only need to flush on one CPU, - * clflush is a MESI-coherent instruction that - * will cause all other CPUs to flush the same - * cachelines: - */ - for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) { - pte_t *pte = lookup_address(addr, &level); - - /* - * Only flush present addresses: - */ - if (pte && (pte_val(*pte) & _PAGE_PRESENT)) - clflush_cache_range((void *) addr, PAGE_SIZE); - } -} - -static void cpa_flush_array(unsigned long *start, int numpages, int cache, - int in_flags, struct page **pages) -{ - unsigned int i, level; - unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */ - - BUG_ON(irqs_disabled()); - - on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1); - - if (!cache || do_wbinvd) - return; - - /* - * We only need to flush on one CPU, - * clflush is a MESI-coherent instruction that - * will cause all other CPUs to flush the same - * cachelines: - */ - for (i = 0; i < numpages; i++) { - unsigned long addr; - pte_t *pte; - - if (in_flags & CPA_PAGES_ARRAY) - addr = (unsigned long)page_address(pages[i]); - else - addr = start[i]; - - pte = lookup_address(addr, &level); - - /* - * Only flush present addresses: - */ - if (pte && (pte_val(*pte) & _PAGE_PRESENT)) - clflush_cache_range((void *)addr, PAGE_SIZE); - } -} - -/* - * Certain areas of memory on x86 require very specific protection flags, - * for example the BIOS area or kernel text. Callers don't always get this - * right (again, ioremap() on BIOS memory is not uncommon) so this function - * checks and fixes these known static required protection bits. - */ -static inline pgprot_t static_protections(pgprot_t prot, unsigned long address, - unsigned long pfn) -{ - pgprot_t forbidden = __pgprot(0); - - /* - * The BIOS area between 640k and 1Mb needs to be executable for - * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support. - */ -#ifdef CONFIG_PCI_BIOS - if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT)) - pgprot_val(forbidden) |= _PAGE_NX; -#endif - - /* - * The kernel text needs to be executable for obvious reasons - * Does not cover __inittext since that is gone later on. On - * 64bit we do not enforce !NX on the low mapping - */ - if (within(address, (unsigned long)_text, (unsigned long)_etext)) - pgprot_val(forbidden) |= _PAGE_NX; - - /* - * The .rodata section needs to be read-only. Using the pfn - * catches all aliases. - */ - if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT, - __pa_symbol(__end_rodata) >> PAGE_SHIFT)) - pgprot_val(forbidden) |= _PAGE_RW; - -#if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA) - /* - * Once the kernel maps the text as RO (kernel_set_to_readonly is set), - * kernel text mappings for the large page aligned text, rodata sections - * will be always read-only. For the kernel identity mappings covering - * the holes caused by this alignment can be anything that user asks. - * - * This will preserve the large page mappings for kernel text/data - * at no extra cost. - */ - if (kernel_set_to_readonly && - within(address, (unsigned long)_text, - (unsigned long)__end_rodata_hpage_align)) { - unsigned int level; - - /* - * Don't enforce the !RW mapping for the kernel text mapping, - * if the current mapping is already using small page mapping. - * No need to work hard to preserve large page mappings in this - * case. - * - * This also fixes the Linux Xen paravirt guest boot failure - * (because of unexpected read-only mappings for kernel identity - * mappings). In this paravirt guest case, the kernel text - * mapping and the kernel identity mapping share the same - * page-table pages. Thus we can't really use different - * protections for the kernel text and identity mappings. Also, - * these shared mappings are made of small page mappings. - * Thus this don't enforce !RW mapping for small page kernel - * text mapping logic will help Linux Xen parvirt guest boot - * as well. - */ - if (lookup_address(address, &level) && (level != PG_LEVEL_4K)) - pgprot_val(forbidden) |= _PAGE_RW; - } -#endif - - prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden)); - - return prot; -} - -/* - * Lookup the page table entry for a virtual address. Return a pointer - * to the entry and the level of the mapping. - * - * Note: We return pud and pmd either when the entry is marked large - * or when the present bit is not set. Otherwise we would return a - * pointer to a nonexisting mapping. - */ -pte_t *lookup_address(unsigned long address, unsigned int *level) -{ - pgd_t *pgd = pgd_offset_k(address); - pud_t *pud; - pmd_t *pmd; - - *level = PG_LEVEL_NONE; - - if (pgd_none(*pgd)) - return NULL; - - pud = pud_offset(pgd, address); - if (pud_none(*pud)) - return NULL; - - *level = PG_LEVEL_1G; - if (pud_large(*pud) || !pud_present(*pud)) - return (pte_t *)pud; - - pmd = pmd_offset(pud, address); - if (pmd_none(*pmd)) - return NULL; - - *level = PG_LEVEL_2M; - if (pmd_large(*pmd) || !pmd_present(*pmd)) - return (pte_t *)pmd; - - *level = PG_LEVEL_4K; - - return pte_offset_kernel(pmd, address); -} -EXPORT_SYMBOL_GPL(lookup_address); - -/* - * This is necessary because __pa() does not work on some - * kinds of memory, like vmalloc() or the alloc_remap() - * areas on 32-bit NUMA systems. The percpu areas can - * end up in this kind of memory, for instance. - * - * This could be optimized, but it is only intended to be - * used at inititalization time, and keeping it - * unoptimized should increase the testing coverage for - * the more obscure platforms. - */ -phys_addr_t slow_virt_to_phys(void *__virt_addr) -{ - unsigned long virt_addr = (unsigned long)__virt_addr; - phys_addr_t phys_addr; - unsigned long offset; - enum pg_level level; - unsigned long psize; - unsigned long pmask; - pte_t *pte; - - pte = lookup_address(virt_addr, &level); - BUG_ON(!pte); - psize = page_level_size(level); - pmask = page_level_mask(level); - offset = virt_addr & ~pmask; - phys_addr = pte_pfn(*pte) << PAGE_SHIFT; - return (phys_addr | offset); -} -EXPORT_SYMBOL_GPL(slow_virt_to_phys); - -/* - * Set the new pmd in all the pgds we know about: - */ -static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) -{ - /* change init_mm */ - set_pte_atomic(kpte, pte); -#ifdef CONFIG_X86_32 - if (!SHARED_KERNEL_PMD) { - struct page *page; - - list_for_each_entry(page, &pgd_list, lru) { - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - - pgd = (pgd_t *)page_address(page) + pgd_index(address); - pud = pud_offset(pgd, address); - pmd = pmd_offset(pud, address); - set_pte_atomic((pte_t *)pmd, pte); - } - } -#endif -} - -static int -try_preserve_large_page(pte_t *kpte, unsigned long address, - struct cpa_data *cpa) -{ - unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn; - pte_t new_pte, old_pte, *tmp; - pgprot_t old_prot, new_prot, req_prot; - int i, do_split = 1; - enum pg_level level; - - if (cpa->force_split) - return 1; - - spin_lock(&pgd_lock); - /* - * Check for races, another CPU might have split this page - * up already: - */ - tmp = lookup_address(address, &level); - if (tmp != kpte) - goto out_unlock; - - switch (level) { - case PG_LEVEL_2M: -#ifdef CONFIG_X86_64 - case PG_LEVEL_1G: -#endif - psize = page_level_size(level); - pmask = page_level_mask(level); - break; - default: - do_split = -EINVAL; - goto out_unlock; - } - - /* - * Calculate the number of pages, which fit into this large - * page starting at address: - */ - nextpage_addr = (address + psize) & pmask; - numpages = (nextpage_addr - address) >> PAGE_SHIFT; - if (numpages < cpa->numpages) - cpa->numpages = numpages; - - /* - * We are safe now. Check whether the new pgprot is the same: - */ - old_pte = *kpte; - old_prot = req_prot = pte_pgprot(old_pte); - - pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); - pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); - - /* - * Set the PSE and GLOBAL flags only if the PRESENT flag is - * set otherwise pmd_present/pmd_huge will return true even on - * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL - * for the ancient hardware that doesn't support it. - */ - if (pgprot_val(req_prot) & _PAGE_PRESENT) - pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL; - else - pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL); - - req_prot = canon_pgprot(req_prot); - - /* - * old_pte points to the large page base address. So we need - * to add the offset of the virtual address: - */ - pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT); - cpa->pfn = pfn; - - new_prot = static_protections(req_prot, address, pfn); - - /* - * We need to check the full range, whether - * static_protection() requires a different pgprot for one of - * the pages in the range we try to preserve: - */ - addr = address & pmask; - pfn = pte_pfn(old_pte); - for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) { - pgprot_t chk_prot = static_protections(req_prot, addr, pfn); - - if (pgprot_val(chk_prot) != pgprot_val(new_prot)) - goto out_unlock; - } - - /* - * If there are no changes, return. maxpages has been updated - * above: - */ - if (pgprot_val(new_prot) == pgprot_val(old_prot)) { - do_split = 0; - goto out_unlock; - } - - /* - * We need to change the attributes. Check, whether we can - * change the large page in one go. We request a split, when - * the address is not aligned and the number of pages is - * smaller than the number of pages in the large page. Note - * that we limited the number of possible pages already to - * the number of pages in the large page. - */ - if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) { - /* - * The address is aligned and the number of pages - * covers the full page. - */ - new_pte = pfn_pte(pte_pfn(old_pte), new_prot); - __set_pmd_pte(kpte, address, new_pte); - cpa->flags |= CPA_FLUSHTLB; - do_split = 0; - } - -out_unlock: - spin_unlock(&pgd_lock); - - return do_split; -} - -static int -__split_large_page(pte_t *kpte, unsigned long address, struct page *base) -{ - pte_t *pbase = (pte_t *)page_address(base); - unsigned long pfn, pfninc = 1; - unsigned int i, level; - pte_t *tmp; - pgprot_t ref_prot; - - spin_lock(&pgd_lock); - /* - * Check for races, another CPU might have split this page - * up for us already: - */ - tmp = lookup_address(address, &level); - if (tmp != kpte) { - spin_unlock(&pgd_lock); - return 1; - } - - paravirt_alloc_pte(&init_mm, page_to_pfn(base)); - ref_prot = pte_pgprot(pte_clrhuge(*kpte)); - /* - * If we ever want to utilize the PAT bit, we need to - * update this function to make sure it's converted from - * bit 12 to bit 7 when we cross from the 2MB level to - * the 4K level: - */ - WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE); - -#ifdef CONFIG_X86_64 - if (level == PG_LEVEL_1G) { - pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT; - /* - * Set the PSE flags only if the PRESENT flag is set - * otherwise pmd_present/pmd_huge will return true - * even on a non present pmd. - */ - if (pgprot_val(ref_prot) & _PAGE_PRESENT) - pgprot_val(ref_prot) |= _PAGE_PSE; - else - pgprot_val(ref_prot) &= ~_PAGE_PSE; - } -#endif - - /* - * Set the GLOBAL flags only if the PRESENT flag is set - * otherwise pmd/pte_present will return true even on a non - * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL - * for the ancient hardware that doesn't support it. - */ - if (pgprot_val(ref_prot) & _PAGE_PRESENT) - pgprot_val(ref_prot) |= _PAGE_GLOBAL; - else - pgprot_val(ref_prot) &= ~_PAGE_GLOBAL; - - /* - * Get the target pfn from the original entry: - */ - pfn = pte_pfn(*kpte); - for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc) - set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot))); - - if (pfn_range_is_mapped(PFN_DOWN(__pa(address)), - PFN_DOWN(__pa(address)) + 1)) - split_page_count(level); - - /* - * Install the new, split up pagetable. - * - * We use the standard kernel pagetable protections for the new - * pagetable protections, the actual ptes set above control the - * primary protection behavior: - */ - __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); - - /* - * Intel Atom errata AAH41 workaround. - * - * The real fix should be in hw or in a microcode update, but - * we also probabilistically try to reduce the window of having - * a large TLB mixed with 4K TLBs while instruction fetches are - * going on. - */ - __flush_tlb_all(); - spin_unlock(&pgd_lock); - - return 0; -} - -static int split_large_page(pte_t *kpte, unsigned long address) -{ - struct page *base; - - if (!debug_pagealloc) - spin_unlock(&cpa_lock); - base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0); - if (!debug_pagealloc) - spin_lock(&cpa_lock); - if (!base) - return -ENOMEM; - - if (__split_large_page(kpte, address, base)) - __free_page(base); - - return 0; -} - -static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, - int primary) -{ - /* - * Ignore all non primary paths. - */ - if (!primary) - return 0; - - /* - * Ignore the NULL PTE for kernel identity mapping, as it is expected - * to have holes. - * Also set numpages to '1' indicating that we processed cpa req for - * one virtual address page and its pfn. TBD: numpages can be set based - * on the initial value and the level returned by lookup_address(). - */ - if (within(vaddr, PAGE_OFFSET, - PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { - cpa->numpages = 1; - cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; - return 0; - } else { - WARN(1, KERN_WARNING "CPA: called for zero pte. " - "vaddr = %lx cpa->vaddr = %lx\n", vaddr, - *cpa->vaddr); - - return -EFAULT; - } -} - -static int __change_page_attr(struct cpa_data *cpa, int primary) -{ - unsigned long address; - int do_split, err; - unsigned int level; - pte_t *kpte, old_pte; - - if (cpa->flags & CPA_PAGES_ARRAY) { - struct page *page = cpa->pages[cpa->curpage]; - if (unlikely(PageHighMem(page))) - return 0; - address = (unsigned long)page_address(page); - } else if (cpa->flags & CPA_ARRAY) - address = cpa->vaddr[cpa->curpage]; - else - address = *cpa->vaddr; -repeat: - kpte = lookup_address(address, &level); - if (!kpte) - return __cpa_process_fault(cpa, address, primary); - - old_pte = *kpte; - if (!pte_val(old_pte)) - return __cpa_process_fault(cpa, address, primary); - - if (level == PG_LEVEL_4K) { - pte_t new_pte; - pgprot_t new_prot = pte_pgprot(old_pte); - unsigned long pfn = pte_pfn(old_pte); - - pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); - pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); - - new_prot = static_protections(new_prot, address, pfn); - - /* - * Set the GLOBAL flags only if the PRESENT flag is - * set otherwise pte_present will return true even on - * a non present pte. The canon_pgprot will clear - * _PAGE_GLOBAL for the ancient hardware that doesn't - * support it. - */ - if (pgprot_val(new_prot) & _PAGE_PRESENT) - pgprot_val(new_prot) |= _PAGE_GLOBAL; - else - pgprot_val(new_prot) &= ~_PAGE_GLOBAL; - - /* - * We need to keep the pfn from the existing PTE, - * after all we're only going to change it's attributes - * not the memory it points to - */ - new_pte = pfn_pte(pfn, canon_pgprot(new_prot)); - cpa->pfn = pfn; - /* - * Do we really change anything ? - */ - if (pte_val(old_pte) != pte_val(new_pte)) { - set_pte_atomic(kpte, new_pte); - cpa->flags |= CPA_FLUSHTLB; - } - cpa->numpages = 1; - return 0; - } - - /* - * Check, whether we can keep the large page intact - * and just change the pte: - */ - do_split = try_preserve_large_page(kpte, address, cpa); - /* - * When the range fits into the existing large page, - * return. cp->numpages and cpa->tlbflush have been updated in - * try_large_page: - */ - if (do_split <= 0) - return do_split; - - /* - * We have to split the large page: - */ - err = split_large_page(kpte, address); - if (!err) { - /* - * Do a global flush tlb after splitting the large page - * and before we do the actual change page attribute in the PTE. - * - * With out this, we violate the TLB application note, that says - * "The TLBs may contain both ordinary and large-page - * translations for a 4-KByte range of linear addresses. This - * may occur if software modifies the paging structures so that - * the page size used for the address range changes. If the two - * translations differ with respect to page frame or attributes - * (e.g., permissions), processor behavior is undefined and may - * be implementation-specific." - * - * We do this global tlb flush inside the cpa_lock, so that we - * don't allow any other cpu, with stale tlb entries change the - * page attribute in parallel, that also falls into the - * just split large page entry. - */ - flush_tlb_all(); - goto repeat; - } - - return err; -} - -static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias); - -static int cpa_process_alias(struct cpa_data *cpa) -{ - struct cpa_data alias_cpa; - unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); - unsigned long vaddr; - int ret; - - if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) - return 0; - - /* - * No need to redo, when the primary call touched the direct - * mapping already: - */ - if (cpa->flags & CPA_PAGES_ARRAY) { - struct page *page = cpa->pages[cpa->curpage]; - if (unlikely(PageHighMem(page))) - return 0; - vaddr = (unsigned long)page_address(page); - } else if (cpa->flags & CPA_ARRAY) - vaddr = cpa->vaddr[cpa->curpage]; - else - vaddr = *cpa->vaddr; - - if (!(within(vaddr, PAGE_OFFSET, - PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { - - alias_cpa = *cpa; - alias_cpa.vaddr = &laddr; - alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); - - ret = __change_page_attr_set_clr(&alias_cpa, 0); - if (ret) - return ret; - } - -#ifdef CONFIG_X86_64 - /* - * If the primary call didn't touch the high mapping already - * and the physical address is inside the kernel map, we need - * to touch the high mapped kernel as well: - */ - if (!within(vaddr, (unsigned long)_text, _brk_end) && - within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) { - unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + - __START_KERNEL_map - phys_base; - alias_cpa = *cpa; - alias_cpa.vaddr = &temp_cpa_vaddr; - alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); - - /* - * The high mapping range is imprecise, so ignore the - * return value. - */ - __change_page_attr_set_clr(&alias_cpa, 0); - } -#endif - - return 0; -} - -static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias) -{ - int ret, numpages = cpa->numpages; - - while (numpages) { - /* - * Store the remaining nr of pages for the large page - * preservation check. - */ - cpa->numpages = numpages; - /* for array changes, we can't use large page */ - if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) - cpa->numpages = 1; - - if (!debug_pagealloc) - spin_lock(&cpa_lock); - ret = __change_page_attr(cpa, checkalias); - if (!debug_pagealloc) - spin_unlock(&cpa_lock); - if (ret) - return ret; - - if (checkalias) { - ret = cpa_process_alias(cpa); - if (ret) - return ret; - } - - /* - * Adjust the number of pages with the result of the - * CPA operation. Either a large page has been - * preserved or a single page update happened. - */ - BUG_ON(cpa->numpages > numpages); - numpages -= cpa->numpages; - if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) - cpa->curpage++; - else - *cpa->vaddr += cpa->numpages * PAGE_SIZE; - - } - return 0; -} - -static inline int cache_attr(pgprot_t attr) -{ - return pgprot_val(attr) & - (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD); -} - -static int change_page_attr_set_clr(unsigned long *addr, int numpages, - pgprot_t mask_set, pgprot_t mask_clr, - int force_split, int in_flag, - struct page **pages) -{ - struct cpa_data cpa; - int ret, cache, checkalias; - unsigned long baddr = 0; - - /* - * Check, if we are requested to change a not supported - * feature: - */ - mask_set = canon_pgprot(mask_set); - mask_clr = canon_pgprot(mask_clr); - if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) - return 0; - - /* Ensure we are PAGE_SIZE aligned */ - if (in_flag & CPA_ARRAY) { - int i; - for (i = 0; i < numpages; i++) { - if (addr[i] & ~PAGE_MASK) { - addr[i] &= PAGE_MASK; - WARN_ON_ONCE(1); - } - } - } else if (!(in_flag & CPA_PAGES_ARRAY)) { - /* - * in_flag of CPA_PAGES_ARRAY implies it is aligned. - * No need to cehck in that case - */ - if (*addr & ~PAGE_MASK) { - *addr &= PAGE_MASK; - /* - * People should not be passing in unaligned addresses: - */ - WARN_ON_ONCE(1); - } - /* - * Save address for cache flush. *addr is modified in the call - * to __change_page_attr_set_clr() below. - */ - baddr = *addr; - } - - /* Must avoid aliasing mappings in the highmem code */ - kmap_flush_unused(); - - vm_unmap_aliases(); - - cpa.vaddr = addr; - cpa.pages = pages; - cpa.numpages = numpages; - cpa.mask_set = mask_set; - cpa.mask_clr = mask_clr; - cpa.flags = 0; - cpa.curpage = 0; - cpa.force_split = force_split; - - if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY)) - cpa.flags |= in_flag; - - /* No alias checking for _NX bit modifications */ - checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX; - - ret = __change_page_attr_set_clr(&cpa, checkalias); - - /* - * Check whether we really changed something: - */ - if (!(cpa.flags & CPA_FLUSHTLB)) - goto out; - - /* - * No need to flush, when we did not set any of the caching - * attributes: - */ - cache = cache_attr(mask_set); - - /* - * On success we use clflush, when the CPU supports it to - * avoid the wbindv. If the CPU does not support it and in the - * error case we fall back to cpa_flush_all (which uses - * wbindv): - */ - if (!ret && cpu_has_clflush) { - if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) { - cpa_flush_array(addr, numpages, cache, - cpa.flags, pages); - } else - cpa_flush_range(baddr, numpages, cache); - } else - cpa_flush_all(cache); - -out: - return ret; -} - -static inline int change_page_attr_set(unsigned long *addr, int numpages, - pgprot_t mask, int array) -{ - return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, - (array ? CPA_ARRAY : 0), NULL); -} - -static inline int change_page_attr_clear(unsigned long *addr, int numpages, - pgprot_t mask, int array) -{ - return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, - (array ? CPA_ARRAY : 0), NULL); -} - -static inline int cpa_set_pages_array(struct page **pages, int numpages, - pgprot_t mask) -{ - return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, - CPA_PAGES_ARRAY, pages); -} - -static inline int cpa_clear_pages_array(struct page **pages, int numpages, - pgprot_t mask) -{ - return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, - CPA_PAGES_ARRAY, pages); -} - -int _set_memory_uc(unsigned long addr, int numpages) -{ - /* - * for now UC MINUS. see comments in ioremap_nocache() - */ - return change_page_attr_set(&addr, numpages, - __pgprot(_PAGE_CACHE_UC_MINUS), 0); -} - -int set_memory_uc(unsigned long addr, int numpages) -{ - int ret; - - /* - * for now UC MINUS. see comments in ioremap_nocache() - */ - ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, - _PAGE_CACHE_UC_MINUS, NULL); - if (ret) - goto out_err; - - ret = _set_memory_uc(addr, numpages); - if (ret) - goto out_free; - - return 0; - -out_free: - free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); -out_err: - return ret; -} -EXPORT_SYMBOL(set_memory_uc); - -static int _set_memory_array(unsigned long *addr, int addrinarray, - unsigned long new_type) -{ - int i, j; - int ret; - - /* - * for now UC MINUS. see comments in ioremap_nocache() - */ - for (i = 0; i < addrinarray; i++) { - ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE, - new_type, NULL); - if (ret) - goto out_free; - } - - ret = change_page_attr_set(addr, addrinarray, - __pgprot(_PAGE_CACHE_UC_MINUS), 1); - - if (!ret && new_type == _PAGE_CACHE_WC) - ret = change_page_attr_set_clr(addr, addrinarray, - __pgprot(_PAGE_CACHE_WC), - __pgprot(_PAGE_CACHE_MASK), - 0, CPA_ARRAY, NULL); - if (ret) - goto out_free; - - return 0; - -out_free: - for (j = 0; j < i; j++) - free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE); - - return ret; -} - -int set_memory_array_uc(unsigned long *addr, int addrinarray) -{ - return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS); -} -EXPORT_SYMBOL(set_memory_array_uc); - -int set_memory_array_wc(unsigned long *addr, int addrinarray) -{ - return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC); -} -EXPORT_SYMBOL(set_memory_array_wc); - -int _set_memory_wc(unsigned long addr, int numpages) -{ - int ret; - unsigned long addr_copy = addr; - - ret = change_page_attr_set(&addr, numpages, - __pgprot(_PAGE_CACHE_UC_MINUS), 0); - if (!ret) { - ret = change_page_attr_set_clr(&addr_copy, numpages, - __pgprot(_PAGE_CACHE_WC), - __pgprot(_PAGE_CACHE_MASK), - 0, 0, NULL); - } - return ret; -} - -int set_memory_wc(unsigned long addr, int numpages) -{ - int ret; - - if (!pat_enabled) - return set_memory_uc(addr, numpages); - - ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, - _PAGE_CACHE_WC, NULL); - if (ret) - goto out_err; - - ret = _set_memory_wc(addr, numpages); - if (ret) - goto out_free; - - return 0; - -out_free: - free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); -out_err: - return ret; -} -EXPORT_SYMBOL(set_memory_wc); - -int _set_memory_wb(unsigned long addr, int numpages) -{ - return change_page_attr_clear(&addr, numpages, - __pgprot(_PAGE_CACHE_MASK), 0); -} - -int set_memory_wb(unsigned long addr, int numpages) -{ - int ret; - - ret = _set_memory_wb(addr, numpages); - if (ret) - return ret; - - free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); - return 0; -} -EXPORT_SYMBOL(set_memory_wb); - -int set_memory_array_wb(unsigned long *addr, int addrinarray) -{ - int i; - int ret; - - ret = change_page_attr_clear(addr, addrinarray, - __pgprot(_PAGE_CACHE_MASK), 1); - if (ret) - return ret; - - for (i = 0; i < addrinarray; i++) - free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE); - - return 0; -} -EXPORT_SYMBOL(set_memory_array_wb); - -int set_memory_x(unsigned long addr, int numpages) -{ - if (!(__supported_pte_mask & _PAGE_NX)) - return 0; - - return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); -} -EXPORT_SYMBOL(set_memory_x); - -int set_memory_nx(unsigned long addr, int numpages) -{ - if (!(__supported_pte_mask & _PAGE_NX)) - return 0; - - return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); -} -EXPORT_SYMBOL(set_memory_nx); - -int set_memory_ro(unsigned long addr, int numpages) -{ - return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0); -} -EXPORT_SYMBOL_GPL(set_memory_ro); - -int set_memory_rw(unsigned long addr, int numpages) -{ - return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); -} -EXPORT_SYMBOL_GPL(set_memory_rw); - -int set_memory_np(unsigned long addr, int numpages) -{ - return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); -} - -int set_memory_4k(unsigned long addr, int numpages) -{ - return change_page_attr_set_clr(&addr, numpages, __pgprot(0), - __pgprot(0), 1, 0, NULL); -} - -int set_pages_uc(struct page *page, int numpages) -{ - unsigned long addr = (unsigned long)page_address(page); - - return set_memory_uc(addr, numpages); -} -EXPORT_SYMBOL(set_pages_uc); - -static int _set_pages_array(struct page **pages, int addrinarray, - unsigned long new_type) -{ - unsigned long start; - unsigned long end; - int i; - int free_idx; - int ret; - - for (i = 0; i < addrinarray; i++) { - if (PageHighMem(pages[i])) - continue; - start = page_to_pfn(pages[i]) << PAGE_SHIFT; - end = start + PAGE_SIZE; - if (reserve_memtype(start, end, new_type, NULL)) - goto err_out; - } - - ret = cpa_set_pages_array(pages, addrinarray, - __pgprot(_PAGE_CACHE_UC_MINUS)); - if (!ret && new_type == _PAGE_CACHE_WC) - ret = change_page_attr_set_clr(NULL, addrinarray, - __pgprot(_PAGE_CACHE_WC), - __pgprot(_PAGE_CACHE_MASK), - 0, CPA_PAGES_ARRAY, pages); - if (ret) - goto err_out; - return 0; /* Success */ -err_out: - free_idx = i; - for (i = 0; i < free_idx; i++) { - if (PageHighMem(pages[i])) - continue; - start = page_to_pfn(pages[i]) << PAGE_SHIFT; - end = start + PAGE_SIZE; - free_memtype(start, end); - } - return -EINVAL; -} - -int set_pages_array_uc(struct page **pages, int addrinarray) -{ - return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS); -} -EXPORT_SYMBOL(set_pages_array_uc); - -int set_pages_array_wc(struct page **pages, int addrinarray) -{ - return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC); -} -EXPORT_SYMBOL(set_pages_array_wc); - -int set_pages_wb(struct page *page, int numpages) -{ - unsigned long addr = (unsigned long)page_address(page); - - return set_memory_wb(addr, numpages); -} -EXPORT_SYMBOL(set_pages_wb); - -int set_pages_array_wb(struct page **pages, int addrinarray) -{ - int retval; - unsigned long start; - unsigned long end; - int i; - - retval = cpa_clear_pages_array(pages, addrinarray, - __pgprot(_PAGE_CACHE_MASK)); - if (retval) - return retval; - - for (i = 0; i < addrinarray; i++) { - if (PageHighMem(pages[i])) - continue; - start = page_to_pfn(pages[i]) << PAGE_SHIFT; - end = start + PAGE_SIZE; - free_memtype(start, end); - } - - return 0; -} -EXPORT_SYMBOL(set_pages_array_wb); - -int set_pages_x(struct page *page, int numpages) -{ - unsigned long addr = (unsigned long)page_address(page); - - return set_memory_x(addr, numpages); -} -EXPORT_SYMBOL(set_pages_x); - -int set_pages_nx(struct page *page, int numpages) -{ - unsigned long addr = (unsigned long)page_address(page); - - return set_memory_nx(addr, numpages); -} -EXPORT_SYMBOL(set_pages_nx); - -int set_pages_ro(struct page *page, int numpages) -{ - unsigned long addr = (unsigned long)page_address(page); - - return set_memory_ro(addr, numpages); -} - -int set_pages_rw(struct page *page, int numpages) -{ - unsigned long addr = (unsigned long)page_address(page); - - return set_memory_rw(addr, numpages); -} - -#ifdef CONFIG_DEBUG_PAGEALLOC - -static int __set_pages_p(struct page *page, int numpages) -{ - unsigned long tempaddr = (unsigned long) page_address(page); - struct cpa_data cpa = { .vaddr = &tempaddr, - .numpages = numpages, - .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), - .mask_clr = __pgprot(0), - .flags = 0}; - - /* - * No alias checking needed for setting present flag. otherwise, - * we may need to break large pages for 64-bit kernel text - * mappings (this adds to complexity if we want to do this from - * atomic context especially). Let's keep it simple! - */ - return __change_page_attr_set_clr(&cpa, 0); -} - -static int __set_pages_np(struct page *page, int numpages) -{ - unsigned long tempaddr = (unsigned long) page_address(page); - struct cpa_data cpa = { .vaddr = &tempaddr, - .numpages = numpages, - .mask_set = __pgprot(0), - .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), - .flags = 0}; - - /* - * No alias checking needed for setting not present flag. otherwise, - * we may need to break large pages for 64-bit kernel text - * mappings (this adds to complexity if we want to do this from - * atomic context especially). Let's keep it simple! - */ - return __change_page_attr_set_clr(&cpa, 0); -} - -void kernel_map_pages(struct page *page, int numpages, int enable) -{ - if (PageHighMem(page)) - return; - if (!enable) { - debug_check_no_locks_freed(page_address(page), - numpages * PAGE_SIZE); - } - - /* - * The return value is ignored as the calls cannot fail. - * Large pages for identity mappings are not used at boot time - * and hence no memory allocations during large page split. - */ - if (enable) - __set_pages_p(page, numpages); - else - __set_pages_np(page, numpages); - - /* - * We should perform an IPI and flush all tlbs, - * but that can deadlock->flush only current cpu: - */ - __flush_tlb_all(); - - arch_flush_lazy_mmu_mode(); -} - -#ifdef CONFIG_HIBERNATION - -bool kernel_page_present(struct page *page) -{ - unsigned int level; - pte_t *pte; - - if (PageHighMem(page)) - return false; - - pte = lookup_address((unsigned long)page_address(page), &level); - return (pte_val(*pte) & _PAGE_PRESENT); -} - -#endif /* CONFIG_HIBERNATION */ - -#endif /* CONFIG_DEBUG_PAGEALLOC */ - -/* - * The testcases use internal knowledge of the implementation that shouldn't - * be exposed to the rest of the kernel. Include these directly here. - */ -#ifdef CONFIG_CPA_DEBUG -#include "pageattr-test.c" -#endif diff --git a/arch/x86/mm/pat.c b/arch/x86/mm/pat.c deleted file mode 100644 index 657438858e83..000000000000 --- a/arch/x86/mm/pat.c +++ /dev/null @@ -1,884 +0,0 @@ -/* - * Handle caching attributes in page tables (PAT) - * - * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> - * Suresh B Siddha <suresh.b.siddha@intel.com> - * - * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen. - */ - -#include <linux/seq_file.h> -#include <linux/bootmem.h> -#include <linux/debugfs.h> -#include <linux/kernel.h> -#include <linux/module.h> -#include <linux/slab.h> -#include <linux/mm.h> -#include <linux/fs.h> -#include <linux/rbtree.h> - -#include <asm/cacheflush.h> -#include <asm/processor.h> -#include <asm/tlbflush.h> -#include <asm/x86_init.h> -#include <asm/pgtable.h> -#include <asm/fcntl.h> -#include <asm/e820.h> -#include <asm/mtrr.h> -#include <asm/page.h> -#include <asm/msr.h> -#include <asm/pat.h> -#include <asm/io.h> - -#include "pat_internal.h" - -#ifdef CONFIG_X86_PAT -int __read_mostly pat_enabled = 1; - -static inline void pat_disable(const char *reason) -{ - pat_enabled = 0; - printk(KERN_INFO "%s\n", reason); -} - -static int __init nopat(char *str) -{ - pat_disable("PAT support disabled."); - return 0; -} -early_param("nopat", nopat); -#else -static inline void pat_disable(const char *reason) -{ - (void)reason; -} -#endif - - -int pat_debug_enable; - -static int __init pat_debug_setup(char *str) -{ - pat_debug_enable = 1; - return 0; -} -__setup("debugpat", pat_debug_setup); - -static u64 __read_mostly boot_pat_state; - -enum { - PAT_UC = 0, /* uncached */ - PAT_WC = 1, /* Write combining */ - PAT_WT = 4, /* Write Through */ - PAT_WP = 5, /* Write Protected */ - PAT_WB = 6, /* Write Back (default) */ - PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */ -}; - -#define PAT(x, y) ((u64)PAT_ ## y << ((x)*8)) - -void pat_init(void) -{ - u64 pat; - bool boot_cpu = !boot_pat_state; - - if (!pat_enabled) - return; - - if (!cpu_has_pat) { - if (!boot_pat_state) { - pat_disable("PAT not supported by CPU."); - return; - } else { - /* - * If this happens we are on a secondary CPU, but - * switched to PAT on the boot CPU. We have no way to - * undo PAT. - */ - printk(KERN_ERR "PAT enabled, " - "but not supported by secondary CPU\n"); - BUG(); - } - } - - /* Set PWT to Write-Combining. All other bits stay the same */ - /* - * PTE encoding used in Linux: - * PAT - * |PCD - * ||PWT - * ||| - * 000 WB _PAGE_CACHE_WB - * 001 WC _PAGE_CACHE_WC - * 010 UC- _PAGE_CACHE_UC_MINUS - * 011 UC _PAGE_CACHE_UC - * PAT bit unused - */ - pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) | - PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC); - - /* Boot CPU check */ - if (!boot_pat_state) - rdmsrl(MSR_IA32_CR_PAT, boot_pat_state); - - wrmsrl(MSR_IA32_CR_PAT, pat); - - if (boot_cpu) - printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n", - smp_processor_id(), boot_pat_state, pat); -} - -#undef PAT - -static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */ - -/* - * Does intersection of PAT memory type and MTRR memory type and returns - * the resulting memory type as PAT understands it. - * (Type in pat and mtrr will not have same value) - * The intersection is based on "Effective Memory Type" tables in IA-32 - * SDM vol 3a - */ -static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type) -{ - /* - * Look for MTRR hint to get the effective type in case where PAT - * request is for WB. - */ - if (req_type == _PAGE_CACHE_WB) { - u8 mtrr_type; - - mtrr_type = mtrr_type_lookup(start, end); - if (mtrr_type != MTRR_TYPE_WRBACK) - return _PAGE_CACHE_UC_MINUS; - - return _PAGE_CACHE_WB; - } - - return req_type; -} - -struct pagerange_state { - unsigned long cur_pfn; - int ram; - int not_ram; -}; - -static int -pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg) -{ - struct pagerange_state *state = arg; - - state->not_ram |= initial_pfn > state->cur_pfn; - state->ram |= total_nr_pages > 0; - state->cur_pfn = initial_pfn + total_nr_pages; - - return state->ram && state->not_ram; -} - -static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end) -{ - int ret = 0; - unsigned long start_pfn = start >> PAGE_SHIFT; - unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT; - struct pagerange_state state = {start_pfn, 0, 0}; - - /* - * For legacy reasons, physical address range in the legacy ISA - * region is tracked as non-RAM. This will allow users of - * /dev/mem to map portions of legacy ISA region, even when - * some of those portions are listed(or not even listed) with - * different e820 types(RAM/reserved/..) - */ - if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT) - start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT; - - if (start_pfn < end_pfn) { - ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, - &state, pagerange_is_ram_callback); - } - - return (ret > 0) ? -1 : (state.ram ? 1 : 0); -} - -/* - * For RAM pages, we use page flags to mark the pages with appropriate type. - * Here we do two pass: - * - Find the memtype of all the pages in the range, look for any conflicts - * - In case of no conflicts, set the new memtype for pages in the range - */ -static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type, - unsigned long *new_type) -{ - struct page *page; - u64 pfn; - - if (req_type == _PAGE_CACHE_UC) { - /* We do not support strong UC */ - WARN_ON_ONCE(1); - req_type = _PAGE_CACHE_UC_MINUS; - } - - for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { - unsigned long type; - - page = pfn_to_page(pfn); - type = get_page_memtype(page); - if (type != -1) { - printk(KERN_INFO "reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%lx, req 0x%lx\n", - start, end - 1, type, req_type); - if (new_type) - *new_type = type; - - return -EBUSY; - } - } - - if (new_type) - *new_type = req_type; - - for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { - page = pfn_to_page(pfn); - set_page_memtype(page, req_type); - } - return 0; -} - -static int free_ram_pages_type(u64 start, u64 end) -{ - struct page *page; - u64 pfn; - - for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { - page = pfn_to_page(pfn); - set_page_memtype(page, -1); - } - return 0; -} - -/* - * req_type typically has one of the: - * - _PAGE_CACHE_WB - * - _PAGE_CACHE_WC - * - _PAGE_CACHE_UC_MINUS - * - _PAGE_CACHE_UC - * - * If new_type is NULL, function will return an error if it cannot reserve the - * region with req_type. If new_type is non-NULL, function will return - * available type in new_type in case of no error. In case of any error - * it will return a negative return value. - */ -int reserve_memtype(u64 start, u64 end, unsigned long req_type, - unsigned long *new_type) -{ - struct memtype *new; - unsigned long actual_type; - int is_range_ram; - int err = 0; - - BUG_ON(start >= end); /* end is exclusive */ - - if (!pat_enabled) { - /* This is identical to page table setting without PAT */ - if (new_type) { - if (req_type == _PAGE_CACHE_WC) - *new_type = _PAGE_CACHE_UC_MINUS; - else - *new_type = req_type & _PAGE_CACHE_MASK; - } - return 0; - } - - /* Low ISA region is always mapped WB in page table. No need to track */ - if (x86_platform.is_untracked_pat_range(start, end)) { - if (new_type) - *new_type = _PAGE_CACHE_WB; - return 0; - } - - /* - * Call mtrr_lookup to get the type hint. This is an - * optimization for /dev/mem mmap'ers into WB memory (BIOS - * tools and ACPI tools). Use WB request for WB memory and use - * UC_MINUS otherwise. - */ - actual_type = pat_x_mtrr_type(start, end, req_type & _PAGE_CACHE_MASK); - - if (new_type) - *new_type = actual_type; - - is_range_ram = pat_pagerange_is_ram(start, end); - if (is_range_ram == 1) { - - err = reserve_ram_pages_type(start, end, req_type, new_type); - - return err; - } else if (is_range_ram < 0) { - return -EINVAL; - } - - new = kzalloc(sizeof(struct memtype), GFP_KERNEL); - if (!new) - return -ENOMEM; - - new->start = start; - new->end = end; - new->type = actual_type; - - spin_lock(&memtype_lock); - - err = rbt_memtype_check_insert(new, new_type); - if (err) { - printk(KERN_INFO "reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n", - start, end - 1, - cattr_name(new->type), cattr_name(req_type)); - kfree(new); - spin_unlock(&memtype_lock); - - return err; - } - - spin_unlock(&memtype_lock); - - dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n", - start, end - 1, cattr_name(new->type), cattr_name(req_type), - new_type ? cattr_name(*new_type) : "-"); - - return err; -} - -int free_memtype(u64 start, u64 end) -{ - int err = -EINVAL; - int is_range_ram; - struct memtype *entry; - - if (!pat_enabled) - return 0; - - /* Low ISA region is always mapped WB. No need to track */ - if (x86_platform.is_untracked_pat_range(start, end)) - return 0; - - is_range_ram = pat_pagerange_is_ram(start, end); - if (is_range_ram == 1) { - - err = free_ram_pages_type(start, end); - - return err; - } else if (is_range_ram < 0) { - return -EINVAL; - } - - spin_lock(&memtype_lock); - entry = rbt_memtype_erase(start, end); - spin_unlock(&memtype_lock); - - if (!entry) { - printk(KERN_INFO "%s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n", - current->comm, current->pid, start, end - 1); - return -EINVAL; - } - - kfree(entry); - - dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1); - - return 0; -} - - -/** - * lookup_memtype - Looksup the memory type for a physical address - * @paddr: physical address of which memory type needs to be looked up - * - * Only to be called when PAT is enabled - * - * Returns _PAGE_CACHE_WB, _PAGE_CACHE_WC, _PAGE_CACHE_UC_MINUS or - * _PAGE_CACHE_UC - */ -static unsigned long lookup_memtype(u64 paddr) -{ - int rettype = _PAGE_CACHE_WB; - struct memtype *entry; - - if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE)) - return rettype; - - if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) { - struct page *page; - page = pfn_to_page(paddr >> PAGE_SHIFT); - rettype = get_page_memtype(page); - /* - * -1 from get_page_memtype() implies RAM page is in its - * default state and not reserved, and hence of type WB - */ - if (rettype == -1) - rettype = _PAGE_CACHE_WB; - - return rettype; - } - - spin_lock(&memtype_lock); - - entry = rbt_memtype_lookup(paddr); - if (entry != NULL) - rettype = entry->type; - else - rettype = _PAGE_CACHE_UC_MINUS; - - spin_unlock(&memtype_lock); - return rettype; -} - -/** - * io_reserve_memtype - Request a memory type mapping for a region of memory - * @start: start (physical address) of the region - * @end: end (physical address) of the region - * @type: A pointer to memtype, with requested type. On success, requested - * or any other compatible type that was available for the region is returned - * - * On success, returns 0 - * On failure, returns non-zero - */ -int io_reserve_memtype(resource_size_t start, resource_size_t end, - unsigned long *type) -{ - resource_size_t size = end - start; - unsigned long req_type = *type; - unsigned long new_type; - int ret; - - WARN_ON_ONCE(iomem_map_sanity_check(start, size)); - - ret = reserve_memtype(start, end, req_type, &new_type); - if (ret) - goto out_err; - - if (!is_new_memtype_allowed(start, size, req_type, new_type)) - goto out_free; - - if (kernel_map_sync_memtype(start, size, new_type) < 0) - goto out_free; - - *type = new_type; - return 0; - -out_free: - free_memtype(start, end); - ret = -EBUSY; -out_err: - return ret; -} - -/** - * io_free_memtype - Release a memory type mapping for a region of memory - * @start: start (physical address) of the region - * @end: end (physical address) of the region - */ -void io_free_memtype(resource_size_t start, resource_size_t end) -{ - free_memtype(start, end); -} - -pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, - unsigned long size, pgprot_t vma_prot) -{ - return vma_prot; -} - -#ifdef CONFIG_STRICT_DEVMEM -/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/ -static inline int range_is_allowed(unsigned long pfn, unsigned long size) -{ - return 1; -} -#else -/* This check is needed to avoid cache aliasing when PAT is enabled */ -static inline int range_is_allowed(unsigned long pfn, unsigned long size) -{ - u64 from = ((u64)pfn) << PAGE_SHIFT; - u64 to = from + size; - u64 cursor = from; - - if (!pat_enabled) - return 1; - - while (cursor < to) { - if (!devmem_is_allowed(pfn)) { - printk(KERN_INFO "Program %s tried to access /dev/mem between [mem %#010Lx-%#010Lx]\n", - current->comm, from, to - 1); - return 0; - } - cursor += PAGE_SIZE; - pfn++; - } - return 1; -} -#endif /* CONFIG_STRICT_DEVMEM */ - -int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, - unsigned long size, pgprot_t *vma_prot) -{ - unsigned long flags = _PAGE_CACHE_WB; - - if (!range_is_allowed(pfn, size)) - return 0; - - if (file->f_flags & O_DSYNC) - flags = _PAGE_CACHE_UC_MINUS; - -#ifdef CONFIG_X86_32 - /* - * On the PPro and successors, the MTRRs are used to set - * memory types for physical addresses outside main memory, - * so blindly setting UC or PWT on those pages is wrong. - * For Pentiums and earlier, the surround logic should disable - * caching for the high addresses through the KEN pin, but - * we maintain the tradition of paranoia in this code. - */ - if (!pat_enabled && - !(boot_cpu_has(X86_FEATURE_MTRR) || - boot_cpu_has(X86_FEATURE_K6_MTRR) || - boot_cpu_has(X86_FEATURE_CYRIX_ARR) || - boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) && - (pfn << PAGE_SHIFT) >= __pa(high_memory)) { - flags = _PAGE_CACHE_UC; - } -#endif - - *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) | - flags); - return 1; -} - -/* - * Change the memory type for the physial address range in kernel identity - * mapping space if that range is a part of identity map. - */ -int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags) -{ - unsigned long id_sz; - - if (base > __pa(high_memory-1)) - return 0; - - /* - * some areas in the middle of the kernel identity range - * are not mapped, like the PCI space. - */ - if (!page_is_ram(base >> PAGE_SHIFT)) - return 0; - - id_sz = (__pa(high_memory-1) <= base + size) ? - __pa(high_memory) - base : - size; - - if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) { - printk(KERN_INFO "%s:%d ioremap_change_attr failed %s " - "for [mem %#010Lx-%#010Lx]\n", - current->comm, current->pid, - cattr_name(flags), - base, (unsigned long long)(base + size-1)); - return -EINVAL; - } - return 0; -} - -/* - * Internal interface to reserve a range of physical memory with prot. - * Reserved non RAM regions only and after successful reserve_memtype, - * this func also keeps identity mapping (if any) in sync with this new prot. - */ -static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot, - int strict_prot) -{ - int is_ram = 0; - int ret; - unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK); - unsigned long flags = want_flags; - - is_ram = pat_pagerange_is_ram(paddr, paddr + size); - - /* - * reserve_pfn_range() for RAM pages. We do not refcount to keep - * track of number of mappings of RAM pages. We can assert that - * the type requested matches the type of first page in the range. - */ - if (is_ram) { - if (!pat_enabled) - return 0; - - flags = lookup_memtype(paddr); - if (want_flags != flags) { - printk(KERN_WARNING "%s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n", - current->comm, current->pid, - cattr_name(want_flags), - (unsigned long long)paddr, - (unsigned long long)(paddr + size - 1), - cattr_name(flags)); - *vma_prot = __pgprot((pgprot_val(*vma_prot) & - (~_PAGE_CACHE_MASK)) | - flags); - } - return 0; - } - - ret = reserve_memtype(paddr, paddr + size, want_flags, &flags); - if (ret) - return ret; - - if (flags != want_flags) { - if (strict_prot || - !is_new_memtype_allowed(paddr, size, want_flags, flags)) { - free_memtype(paddr, paddr + size); - printk(KERN_ERR "%s:%d map pfn expected mapping type %s" - " for [mem %#010Lx-%#010Lx], got %s\n", - current->comm, current->pid, - cattr_name(want_flags), - (unsigned long long)paddr, - (unsigned long long)(paddr + size - 1), - cattr_name(flags)); - return -EINVAL; - } - /* - * We allow returning different type than the one requested in - * non strict case. - */ - *vma_prot = __pgprot((pgprot_val(*vma_prot) & - (~_PAGE_CACHE_MASK)) | - flags); - } - - if (kernel_map_sync_memtype(paddr, size, flags) < 0) { - free_memtype(paddr, paddr + size); - return -EINVAL; - } - return 0; -} - -/* - * Internal interface to free a range of physical memory. - * Frees non RAM regions only. - */ -static void free_pfn_range(u64 paddr, unsigned long size) -{ - int is_ram; - - is_ram = pat_pagerange_is_ram(paddr, paddr + size); - if (is_ram == 0) - free_memtype(paddr, paddr + size); -} - -/* - * track_pfn_copy is called when vma that is covering the pfnmap gets - * copied through copy_page_range(). - * - * If the vma has a linear pfn mapping for the entire range, we get the prot - * from pte and reserve the entire vma range with single reserve_pfn_range call. - */ -int track_pfn_copy(struct vm_area_struct *vma) -{ - resource_size_t paddr; - unsigned long prot; - unsigned long vma_size = vma->vm_end - vma->vm_start; - pgprot_t pgprot; - - if (vma->vm_flags & VM_PAT) { - /* - * reserve the whole chunk covered by vma. We need the - * starting address and protection from pte. - */ - if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) { - WARN_ON_ONCE(1); - return -EINVAL; - } - pgprot = __pgprot(prot); - return reserve_pfn_range(paddr, vma_size, &pgprot, 1); - } - - return 0; -} - -/* - * prot is passed in as a parameter for the new mapping. If the vma has a - * linear pfn mapping for the entire range reserve the entire vma range with - * single reserve_pfn_range call. - */ -int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, - unsigned long pfn, unsigned long addr, unsigned long size) -{ - resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT; - unsigned long flags; - - /* reserve the whole chunk starting from paddr */ - if (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start)) { - int ret; - - ret = reserve_pfn_range(paddr, size, prot, 0); - if (!ret) - vma->vm_flags |= VM_PAT; - return ret; - } - - if (!pat_enabled) - return 0; - - /* - * For anything smaller than the vma size we set prot based on the - * lookup. - */ - flags = lookup_memtype(paddr); - - /* Check memtype for the remaining pages */ - while (size > PAGE_SIZE) { - size -= PAGE_SIZE; - paddr += PAGE_SIZE; - if (flags != lookup_memtype(paddr)) - return -EINVAL; - } - - *prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) | - flags); - - return 0; -} - -int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, - unsigned long pfn) -{ - unsigned long flags; - - if (!pat_enabled) - return 0; - - /* Set prot based on lookup */ - flags = lookup_memtype((resource_size_t)pfn << PAGE_SHIFT); - *prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) | - flags); - - return 0; -} - -/* - * untrack_pfn is called while unmapping a pfnmap for a region. - * untrack can be called for a specific region indicated by pfn and size or - * can be for the entire vma (in which case pfn, size are zero). - */ -void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, - unsigned long size) -{ - resource_size_t paddr; - unsigned long prot; - - if (!(vma->vm_flags & VM_PAT)) - return; - - /* free the chunk starting from pfn or the whole chunk */ - paddr = (resource_size_t)pfn << PAGE_SHIFT; - if (!paddr && !size) { - if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) { - WARN_ON_ONCE(1); - return; - } - - size = vma->vm_end - vma->vm_start; - } - free_pfn_range(paddr, size); - vma->vm_flags &= ~VM_PAT; -} - -pgprot_t pgprot_writecombine(pgprot_t prot) -{ - if (pat_enabled) - return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC); - else - return pgprot_noncached(prot); -} -EXPORT_SYMBOL_GPL(pgprot_writecombine); - -#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT) - -static struct memtype *memtype_get_idx(loff_t pos) -{ - struct memtype *print_entry; - int ret; - - print_entry = kzalloc(sizeof(struct memtype), GFP_KERNEL); - if (!print_entry) - return NULL; - - spin_lock(&memtype_lock); - ret = rbt_memtype_copy_nth_element(print_entry, pos); - spin_unlock(&memtype_lock); - - if (!ret) { - return print_entry; - } else { - kfree(print_entry); - return NULL; - } -} - -static void *memtype_seq_start(struct seq_file *seq, loff_t *pos) -{ - if (*pos == 0) { - ++*pos; - seq_printf(seq, "PAT memtype list:\n"); - } - - return memtype_get_idx(*pos); -} - -static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos) -{ - ++*pos; - return memtype_get_idx(*pos); -} - -static void memtype_seq_stop(struct seq_file *seq, void *v) -{ -} - -static int memtype_seq_show(struct seq_file *seq, void *v) -{ - struct memtype *print_entry = (struct memtype *)v; - - seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type), - print_entry->start, print_entry->end); - kfree(print_entry); - - return 0; -} - -static const struct seq_operations memtype_seq_ops = { - .start = memtype_seq_start, - .next = memtype_seq_next, - .stop = memtype_seq_stop, - .show = memtype_seq_show, -}; - -static int memtype_seq_open(struct inode *inode, struct file *file) -{ - return seq_open(file, &memtype_seq_ops); -} - -static const struct file_operations memtype_fops = { - .open = memtype_seq_open, - .read = seq_read, - .llseek = seq_lseek, - .release = seq_release, -}; - -static int __init pat_memtype_list_init(void) -{ - if (pat_enabled) { - debugfs_create_file("pat_memtype_list", S_IRUSR, - arch_debugfs_dir, NULL, &memtype_fops); - } - return 0; -} - -late_initcall(pat_memtype_list_init); - -#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */ diff --git a/arch/x86/mm/pat/Makefile b/arch/x86/mm/pat/Makefile new file mode 100644 index 000000000000..ea464c995161 --- /dev/null +++ b/arch/x86/mm/pat/Makefile @@ -0,0 +1,5 @@ +# SPDX-License-Identifier: GPL-2.0 + +obj-y := set_memory.o memtype.o + +obj-$(CONFIG_X86_PAT) += memtype_interval.o diff --git a/arch/x86/mm/pageattr-test.c b/arch/x86/mm/pat/cpa-test.c index d0b1773d9d2e..ad3c1feec990 100644 --- a/arch/x86/mm/pageattr-test.c +++ b/arch/x86/mm/pat/cpa-test.c @@ -1,18 +1,19 @@ +// SPDX-License-Identifier: GPL-2.0 /* * self test for change_page_attr. * * Clears the a test pte bit on random pages in the direct mapping, * then reverts and compares page tables forwards and afterwards. */ -#include <linux/bootmem.h> +#include <linux/memblock.h> #include <linux/kthread.h> #include <linux/random.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/mm.h> +#include <linux/vmalloc.h> #include <asm/cacheflush.h> -#include <asm/pgtable.h> #include <asm/kdebug.h> /* @@ -21,7 +22,8 @@ static __read_mostly int print = 1; enum { - NTEST = 400, + NTEST = 3 * 100, + NPAGES = 100, #ifdef CONFIG_X86_64 LPS = (1 << PMD_SHIFT), #elif defined(CONFIG_X86_PAE) @@ -36,7 +38,7 @@ enum { static int pte_testbit(pte_t pte) { - return pte_flags(pte) & _PAGE_UNUSED1; + return pte_flags(pte) & _PAGE_SOFTW1; } struct split_state { @@ -108,6 +110,9 @@ static int print_split(struct split_state *s) static unsigned long addr[NTEST]; static unsigned int len[NTEST]; +static struct page *pages[NPAGES]; +static unsigned long addrs[NPAGES]; + /* Change the global bit on random pages in the direct mapping */ static int pageattr_test(void) { @@ -118,7 +123,6 @@ static int pageattr_test(void) unsigned int level; int i, k; int err; - unsigned long test_addr; if (print) printk(KERN_INFO "CPA self-test:\n"); @@ -132,10 +136,10 @@ static int pageattr_test(void) failed += print_split(&sa); for (i = 0; i < NTEST; i++) { - unsigned long pfn = prandom_u32() % max_pfn_mapped; + unsigned long pfn = get_random_u32_below(max_pfn_mapped); addr[i] = (unsigned long)__va(pfn << PAGE_SHIFT); - len[i] = prandom_u32() % 100; + len[i] = get_random_u32_below(NPAGES); len[i] = min_t(unsigned long, len[i], max_pfn_mapped - pfn - 1); if (len[i] == 0) @@ -165,14 +169,29 @@ static int pageattr_test(void) break; } __set_bit(pfn + k, bm); + addrs[k] = addr[i] + k*PAGE_SIZE; + pages[k] = pfn_to_page(pfn + k); } if (!addr[i] || !pte || !k) { addr[i] = 0; continue; } - test_addr = addr[i]; - err = change_page_attr_set(&test_addr, len[i], PAGE_CPA_TEST, 0); + switch (i % 3) { + case 0: + err = change_page_attr_set(&addr[i], len[i], PAGE_CPA_TEST, 0); + break; + + case 1: + err = change_page_attr_set(addrs, len[i], PAGE_CPA_TEST, 1); + break; + + case 2: + err = cpa_set_pages_array(pages, len[i], PAGE_CPA_TEST); + break; + } + + if (err < 0) { printk(KERN_ERR "CPA %d failed %d\n", i, err); failed++; @@ -204,8 +223,7 @@ static int pageattr_test(void) failed++; continue; } - test_addr = addr[i]; - err = change_page_attr_clear(&test_addr, len[i], PAGE_CPA_TEST, 0); + err = change_page_attr_clear(&addr[i], len[i], PAGE_CPA_TEST, 0); if (err < 0) { printk(KERN_ERR "CPA reverting failed: %d\n", err); failed++; @@ -256,5 +274,4 @@ static int start_pageattr_test(void) return 0; } - -module_init(start_pageattr_test); +device_initcall(start_pageattr_test); diff --git a/arch/x86/mm/pat/memtype.c b/arch/x86/mm/pat/memtype.c new file mode 100644 index 000000000000..8a3d9722f602 --- /dev/null +++ b/arch/x86/mm/pat/memtype.c @@ -0,0 +1,1049 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Page Attribute Table (PAT) support: handle memory caching attributes in page tables. + * + * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> + * Suresh B Siddha <suresh.b.siddha@intel.com> + * + * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen. + * + * Basic principles: + * + * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and + * the kernel to set one of a handful of 'caching type' attributes for physical + * memory ranges: uncached, write-combining, write-through, write-protected, + * and the most commonly used and default attribute: write-back caching. + * + * PAT support supersedes and augments MTRR support in a compatible fashion: MTRR is + * a hardware interface to enumerate a limited number of physical memory ranges + * and set their caching attributes explicitly, programmed into the CPU via MSRs. + * Even modern CPUs have MTRRs enabled - but these are typically not touched + * by the kernel or by user-space (such as the X server), we rely on PAT for any + * additional cache attribute logic. + * + * PAT doesn't work via explicit memory ranges, but uses page table entries to add + * cache attribute information to the mapped memory range: there's 3 bits used, + * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the + * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT). + * + * ( There's a metric ton of finer details, such as compatibility with CPU quirks + * that only support 4 types of PAT entries, and interaction with MTRRs, see + * below for details. ) + */ + +#include <linux/seq_file.h> +#include <linux/memblock.h> +#include <linux/debugfs.h> +#include <linux/ioport.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/io.h> +#include <linux/mm.h> +#include <linux/highmem.h> +#include <linux/fs.h> +#include <linux/rbtree.h> +#include <linux/kvm_types.h> + +#include <asm/cpu_device_id.h> +#include <asm/cacheflush.h> +#include <asm/cacheinfo.h> +#include <asm/processor.h> +#include <asm/tlbflush.h> +#include <asm/x86_init.h> +#include <asm/fcntl.h> +#include <asm/e820/api.h> +#include <asm/mtrr.h> +#include <asm/page.h> +#include <asm/msr.h> +#include <asm/memtype.h> +#include <asm/io.h> + +#include "memtype.h" +#include "../mm_internal.h" + +#undef pr_fmt +#define pr_fmt(fmt) "" fmt + +static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT); +static u64 __ro_after_init pat_msr_val; + +/* + * PAT support is enabled by default, but can be disabled for + * various user-requested or hardware-forced reasons: + */ +static void __init pat_disable(const char *msg_reason) +{ + if (pat_disabled) + return; + + pat_disabled = true; + pr_info("x86/PAT: %s\n", msg_reason); + + memory_caching_control &= ~CACHE_PAT; +} + +static int __init nopat(char *str) +{ + pat_disable("PAT support disabled via boot option."); + return 0; +} +early_param("nopat", nopat); + +bool pat_enabled(void) +{ + return !pat_disabled; +} +EXPORT_SYMBOL_GPL(pat_enabled); + +int pat_debug_enable; + +static int __init pat_debug_setup(char *str) +{ + pat_debug_enable = 1; + return 1; +} +__setup("debugpat", pat_debug_setup); + +#ifdef CONFIG_X86_PAT +/* + * X86 PAT uses page flags arch_1 and arch_2 together to keep track of + * memory type of pages that have backing page struct. + * + * X86 PAT supports 4 different memory types: + * - _PAGE_CACHE_MODE_WB + * - _PAGE_CACHE_MODE_WC + * - _PAGE_CACHE_MODE_UC_MINUS + * - _PAGE_CACHE_MODE_WT + * + * _PAGE_CACHE_MODE_WB is the default type. + */ + +#define _PGMT_WB 0 +#define _PGMT_WC (1UL << PG_arch_1) +#define _PGMT_UC_MINUS (1UL << PG_arch_2) +#define _PGMT_WT (1UL << PG_arch_2 | 1UL << PG_arch_1) +#define _PGMT_MASK (1UL << PG_arch_2 | 1UL << PG_arch_1) +#define _PGMT_CLEAR_MASK (~_PGMT_MASK) + +static inline enum page_cache_mode get_page_memtype(struct page *pg) +{ + unsigned long pg_flags = pg->flags.f & _PGMT_MASK; + + if (pg_flags == _PGMT_WB) + return _PAGE_CACHE_MODE_WB; + else if (pg_flags == _PGMT_WC) + return _PAGE_CACHE_MODE_WC; + else if (pg_flags == _PGMT_UC_MINUS) + return _PAGE_CACHE_MODE_UC_MINUS; + else + return _PAGE_CACHE_MODE_WT; +} + +static inline void set_page_memtype(struct page *pg, + enum page_cache_mode memtype) +{ + unsigned long memtype_flags; + unsigned long old_flags; + unsigned long new_flags; + + switch (memtype) { + case _PAGE_CACHE_MODE_WC: + memtype_flags = _PGMT_WC; + break; + case _PAGE_CACHE_MODE_UC_MINUS: + memtype_flags = _PGMT_UC_MINUS; + break; + case _PAGE_CACHE_MODE_WT: + memtype_flags = _PGMT_WT; + break; + case _PAGE_CACHE_MODE_WB: + default: + memtype_flags = _PGMT_WB; + break; + } + + old_flags = READ_ONCE(pg->flags.f); + do { + new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags; + } while (!try_cmpxchg(&pg->flags.f, &old_flags, new_flags)); +} +#else +static inline enum page_cache_mode get_page_memtype(struct page *pg) +{ + return -1; +} +static inline void set_page_memtype(struct page *pg, + enum page_cache_mode memtype) +{ +} +#endif + +#define CM(c) (_PAGE_CACHE_MODE_ ## c) + +static enum page_cache_mode __init pat_get_cache_mode(unsigned int pat_val, + char *msg) +{ + enum page_cache_mode cache; + char *cache_mode; + + switch (pat_val) { + case X86_MEMTYPE_UC: cache = CM(UC); cache_mode = "UC "; break; + case X86_MEMTYPE_WC: cache = CM(WC); cache_mode = "WC "; break; + case X86_MEMTYPE_WT: cache = CM(WT); cache_mode = "WT "; break; + case X86_MEMTYPE_WP: cache = CM(WP); cache_mode = "WP "; break; + case X86_MEMTYPE_WB: cache = CM(WB); cache_mode = "WB "; break; + case X86_MEMTYPE_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break; + default: cache = CM(WB); cache_mode = "WB "; break; + } + + memcpy(msg, cache_mode, 4); + + return cache; +} + +#undef CM + +/* + * Update the cache mode to pgprot translation tables according to PAT + * configuration. + * Using lower indices is preferred, so we start with highest index. + */ +static void __init init_cache_modes(u64 pat) +{ + enum page_cache_mode cache; + char pat_msg[33]; + int i; + + pat_msg[32] = 0; + for (i = 7; i >= 0; i--) { + cache = pat_get_cache_mode((pat >> (i * 8)) & 7, + pat_msg + 4 * i); + update_cache_mode_entry(i, cache); + } + pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg); +} + +void pat_cpu_init(void) +{ + if (!boot_cpu_has(X86_FEATURE_PAT)) { + /* + * If this happens we are on a secondary CPU, but switched to + * PAT on the boot CPU. We have no way to undo PAT. + */ + panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n"); + } + + wrmsrq(MSR_IA32_CR_PAT, pat_msr_val); + + __flush_tlb_all(); +} + +/** + * pat_bp_init - Initialize the PAT MSR value and PAT table + * + * This function initializes PAT MSR value and PAT table with an OS-defined + * value to enable additional cache attributes, WC, WT and WP. + * + * This function prepares the calls of pat_cpu_init() via cache_cpu_init() + * on all CPUs. + */ +void __init pat_bp_init(void) +{ + struct cpuinfo_x86 *c = &boot_cpu_data; + + if (!IS_ENABLED(CONFIG_X86_PAT)) + pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n"); + + if (!cpu_feature_enabled(X86_FEATURE_PAT)) + pat_disable("PAT not supported by the CPU."); + else + rdmsrq(MSR_IA32_CR_PAT, pat_msr_val); + + if (!pat_msr_val) { + pat_disable("PAT support disabled by the firmware."); + + /* + * No PAT. Emulate the PAT table that corresponds to the two + * cache bits, PWT (Write Through) and PCD (Cache Disable). + * This setup is also the same as the BIOS default setup. + * + * PTE encoding: + * + * PCD + * |PWT PAT + * || slot + * 00 0 WB : _PAGE_CACHE_MODE_WB + * 01 1 WT : _PAGE_CACHE_MODE_WT + * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS + * 11 3 UC : _PAGE_CACHE_MODE_UC + * + * NOTE: When WC or WP is used, it is redirected to UC- per + * the default setup in __cachemode2pte_tbl[]. + */ + pat_msr_val = PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC); + } + + /* + * Xen PV doesn't allow to set PAT MSR, but all cache modes are + * supported. + */ + if (pat_disabled || cpu_feature_enabled(X86_FEATURE_XENPV)) { + init_cache_modes(pat_msr_val); + return; + } + + if ((c->x86_vfm >= INTEL_PENTIUM_PRO && c->x86_vfm <= INTEL_PENTIUM_M_DOTHAN) || + (c->x86_vfm >= INTEL_P4_WILLAMETTE && c->x86_vfm <= INTEL_P4_CEDARMILL)) { + /* + * PAT support with the lower four entries. Intel Pentium 2, + * 3, M, and 4 are affected by PAT errata, which makes the + * upper four entries unusable. To be on the safe side, we don't + * use those. + * + * PTE encoding: + * PAT + * |PCD + * ||PWT PAT + * ||| slot + * 000 0 WB : _PAGE_CACHE_MODE_WB + * 001 1 WC : _PAGE_CACHE_MODE_WC + * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS + * 011 3 UC : _PAGE_CACHE_MODE_UC + * PAT bit unused + * + * NOTE: When WT or WP is used, it is redirected to UC- per + * the default setup in __cachemode2pte_tbl[]. + */ + pat_msr_val = PAT_VALUE(WB, WC, UC_MINUS, UC, WB, WC, UC_MINUS, UC); + } else { + /* + * Full PAT support. We put WT in slot 7 to improve + * robustness in the presence of errata that might cause + * the high PAT bit to be ignored. This way, a buggy slot 7 + * access will hit slot 3, and slot 3 is UC, so at worst + * we lose performance without causing a correctness issue. + * Pentium 4 erratum N46 is an example for such an erratum, + * although we try not to use PAT at all on affected CPUs. + * + * PTE encoding: + * PAT + * |PCD + * ||PWT PAT + * ||| slot + * 000 0 WB : _PAGE_CACHE_MODE_WB + * 001 1 WC : _PAGE_CACHE_MODE_WC + * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS + * 011 3 UC : _PAGE_CACHE_MODE_UC + * 100 4 WB : Reserved + * 101 5 WP : _PAGE_CACHE_MODE_WP + * 110 6 UC-: Reserved + * 111 7 WT : _PAGE_CACHE_MODE_WT + * + * The reserved slots are unused, but mapped to their + * corresponding types in the presence of PAT errata. + */ + pat_msr_val = PAT_VALUE(WB, WC, UC_MINUS, UC, WB, WP, UC_MINUS, WT); + } + + memory_caching_control |= CACHE_PAT; + + init_cache_modes(pat_msr_val); +} + +static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */ + +/* + * Does intersection of PAT memory type and MTRR memory type and returns + * the resulting memory type as PAT understands it. + * (Type in pat and mtrr will not have same value) + * The intersection is based on "Effective Memory Type" tables in IA-32 + * SDM vol 3a + */ +static unsigned long pat_x_mtrr_type(u64 start, u64 end, + enum page_cache_mode req_type) +{ + /* + * Look for MTRR hint to get the effective type in case where PAT + * request is for WB. + */ + if (req_type == _PAGE_CACHE_MODE_WB) { + u8 mtrr_type, uniform; + + mtrr_type = mtrr_type_lookup(start, end, &uniform); + if (mtrr_type != MTRR_TYPE_WRBACK) + return _PAGE_CACHE_MODE_UC_MINUS; + + return _PAGE_CACHE_MODE_WB; + } + + return req_type; +} + +struct pagerange_state { + unsigned long cur_pfn; + int ram; + int not_ram; +}; + +static int +pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg) +{ + struct pagerange_state *state = arg; + + state->not_ram |= initial_pfn > state->cur_pfn; + state->ram |= total_nr_pages > 0; + state->cur_pfn = initial_pfn + total_nr_pages; + + return state->ram && state->not_ram; +} + +static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end) +{ + int ret = 0; + unsigned long start_pfn = start >> PAGE_SHIFT; + unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT; + struct pagerange_state state = {start_pfn, 0, 0}; + + /* + * For legacy reasons, physical address range in the legacy ISA + * region is tracked as non-RAM. This will allow users of + * /dev/mem to map portions of legacy ISA region, even when + * some of those portions are listed(or not even listed) with + * different e820 types(RAM/reserved/..) + */ + if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT) + start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT; + + if (start_pfn < end_pfn) { + ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, + &state, pagerange_is_ram_callback); + } + + return (ret > 0) ? -1 : (state.ram ? 1 : 0); +} + +/* + * For RAM pages, we use page flags to mark the pages with appropriate type. + * The page flags are limited to four types, WB (default), WC, WT and UC-. + * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting + * a new memory type is only allowed for a page mapped with the default WB + * type. + * + * Here we do two passes: + * - Find the memtype of all the pages in the range, look for any conflicts. + * - In case of no conflicts, set the new memtype for pages in the range. + */ +static int reserve_ram_pages_type(u64 start, u64 end, + enum page_cache_mode req_type, + enum page_cache_mode *new_type) +{ + struct page *page; + u64 pfn; + + if (req_type == _PAGE_CACHE_MODE_WP) { + if (new_type) + *new_type = _PAGE_CACHE_MODE_UC_MINUS; + return -EINVAL; + } + + if (req_type == _PAGE_CACHE_MODE_UC) { + /* We do not support strong UC */ + WARN_ON_ONCE(1); + req_type = _PAGE_CACHE_MODE_UC_MINUS; + } + + for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { + enum page_cache_mode type; + + page = pfn_to_page(pfn); + type = get_page_memtype(page); + if (type != _PAGE_CACHE_MODE_WB) { + pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n", + start, end - 1, type, req_type); + if (new_type) + *new_type = type; + + return -EBUSY; + } + } + + if (new_type) + *new_type = req_type; + + for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { + page = pfn_to_page(pfn); + set_page_memtype(page, req_type); + } + return 0; +} + +static int free_ram_pages_type(u64 start, u64 end) +{ + struct page *page; + u64 pfn; + + for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { + page = pfn_to_page(pfn); + set_page_memtype(page, _PAGE_CACHE_MODE_WB); + } + return 0; +} + +static u64 sanitize_phys(u64 address) +{ + /* + * When changing the memtype for pages containing poison allow + * for a "decoy" virtual address (bit 63 clear) passed to + * set_memory_X(). __pa() on a "decoy" address results in a + * physical address with bit 63 set. + * + * Decoy addresses are not present for 32-bit builds, see + * set_mce_nospec(). + */ + if (IS_ENABLED(CONFIG_X86_64)) + return address & __PHYSICAL_MASK; + return address; +} + +/* + * req_type typically has one of the: + * - _PAGE_CACHE_MODE_WB + * - _PAGE_CACHE_MODE_WC + * - _PAGE_CACHE_MODE_UC_MINUS + * - _PAGE_CACHE_MODE_UC + * - _PAGE_CACHE_MODE_WT + * + * If new_type is NULL, function will return an error if it cannot reserve the + * region with req_type. If new_type is non-NULL, function will return + * available type in new_type in case of no error. In case of any error + * it will return a negative return value. + */ +int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type, + enum page_cache_mode *new_type) +{ + struct memtype *entry_new; + enum page_cache_mode actual_type; + int is_range_ram; + int err = 0; + + start = sanitize_phys(start); + + /* + * The end address passed into this function is exclusive, but + * sanitize_phys() expects an inclusive address. + */ + end = sanitize_phys(end - 1) + 1; + if (start >= end) { + WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__, + start, end - 1, cattr_name(req_type)); + return -EINVAL; + } + + if (!pat_enabled()) { + /* This is identical to page table setting without PAT */ + if (new_type) + *new_type = req_type; + return 0; + } + + /* Low ISA region is always mapped WB in page table. No need to track */ + if (x86_platform.is_untracked_pat_range(start, end)) { + if (new_type) + *new_type = _PAGE_CACHE_MODE_WB; + return 0; + } + + /* + * Call mtrr_lookup to get the type hint. This is an + * optimization for /dev/mem mmap'ers into WB memory (BIOS + * tools and ACPI tools). Use WB request for WB memory and use + * UC_MINUS otherwise. + */ + actual_type = pat_x_mtrr_type(start, end, req_type); + + if (new_type) + *new_type = actual_type; + + is_range_ram = pat_pagerange_is_ram(start, end); + if (is_range_ram == 1) { + + err = reserve_ram_pages_type(start, end, req_type, new_type); + + return err; + } else if (is_range_ram < 0) { + return -EINVAL; + } + + entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL); + if (!entry_new) + return -ENOMEM; + + entry_new->start = start; + entry_new->end = end; + entry_new->type = actual_type; + + spin_lock(&memtype_lock); + + err = memtype_check_insert(entry_new, new_type); + if (err) { + pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n", + start, end - 1, + cattr_name(entry_new->type), cattr_name(req_type)); + kfree(entry_new); + spin_unlock(&memtype_lock); + + return err; + } + + spin_unlock(&memtype_lock); + + dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n", + start, end - 1, cattr_name(entry_new->type), cattr_name(req_type), + new_type ? cattr_name(*new_type) : "-"); + + return err; +} + +int memtype_free(u64 start, u64 end) +{ + int is_range_ram; + struct memtype *entry_old; + + if (!pat_enabled()) + return 0; + + start = sanitize_phys(start); + end = sanitize_phys(end); + + /* Low ISA region is always mapped WB. No need to track */ + if (x86_platform.is_untracked_pat_range(start, end)) + return 0; + + is_range_ram = pat_pagerange_is_ram(start, end); + if (is_range_ram == 1) + return free_ram_pages_type(start, end); + if (is_range_ram < 0) + return -EINVAL; + + spin_lock(&memtype_lock); + entry_old = memtype_erase(start, end); + spin_unlock(&memtype_lock); + + if (IS_ERR(entry_old)) { + pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n", + current->comm, current->pid, start, end - 1); + return -EINVAL; + } + + kfree(entry_old); + + dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1); + + return 0; +} + + +/** + * lookup_memtype - Looks up the memory type for a physical address + * @paddr: physical address of which memory type needs to be looked up + * + * Only to be called when PAT is enabled + * + * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS + * or _PAGE_CACHE_MODE_WT. + */ +static enum page_cache_mode lookup_memtype(u64 paddr) +{ + enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB; + struct memtype *entry; + + if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE)) + return rettype; + + if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) { + struct page *page; + + page = pfn_to_page(paddr >> PAGE_SHIFT); + return get_page_memtype(page); + } + + spin_lock(&memtype_lock); + + entry = memtype_lookup(paddr); + if (entry != NULL) + rettype = entry->type; + else + rettype = _PAGE_CACHE_MODE_UC_MINUS; + + spin_unlock(&memtype_lock); + + return rettype; +} + +/** + * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type + * of @pfn cannot be overridden by UC MTRR memory type. + * @pfn: The page frame number to check. + * + * Only to be called when PAT is enabled. + * + * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC. + * Returns false in other cases. + */ +bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn) +{ + enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn)); + + return cm == _PAGE_CACHE_MODE_UC || + cm == _PAGE_CACHE_MODE_UC_MINUS || + cm == _PAGE_CACHE_MODE_WC; +} +EXPORT_SYMBOL_FOR_KVM(pat_pfn_immune_to_uc_mtrr); + +/** + * memtype_reserve_io - Request a memory type mapping for a region of memory + * @start: start (physical address) of the region + * @end: end (physical address) of the region + * @type: A pointer to memtype, with requested type. On success, requested + * or any other compatible type that was available for the region is returned + * + * On success, returns 0 + * On failure, returns non-zero + */ +int memtype_reserve_io(resource_size_t start, resource_size_t end, + enum page_cache_mode *type) +{ + resource_size_t size = end - start; + enum page_cache_mode req_type = *type; + enum page_cache_mode new_type; + int ret; + + WARN_ON_ONCE(iomem_map_sanity_check(start, size)); + + ret = memtype_reserve(start, end, req_type, &new_type); + if (ret) + goto out_err; + + if (!is_new_memtype_allowed(start, size, req_type, new_type)) + goto out_free; + + if (memtype_kernel_map_sync(start, size, new_type) < 0) + goto out_free; + + *type = new_type; + return 0; + +out_free: + memtype_free(start, end); + ret = -EBUSY; +out_err: + return ret; +} + +/** + * memtype_free_io - Release a memory type mapping for a region of memory + * @start: start (physical address) of the region + * @end: end (physical address) of the region + */ +void memtype_free_io(resource_size_t start, resource_size_t end) +{ + memtype_free(start, end); +} + +#ifdef CONFIG_X86_PAT +int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size) +{ + enum page_cache_mode type = _PAGE_CACHE_MODE_WC; + + return memtype_reserve_io(start, start + size, &type); +} +EXPORT_SYMBOL(arch_io_reserve_memtype_wc); + +void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size) +{ + memtype_free_io(start, start + size); +} +EXPORT_SYMBOL(arch_io_free_memtype_wc); +#endif + +pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, + unsigned long size, pgprot_t vma_prot) +{ + if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size)) + vma_prot = pgprot_decrypted(vma_prot); + + return vma_prot; +} + +static inline void pgprot_set_cachemode(pgprot_t *prot, enum page_cache_mode pcm) +{ + *prot = __pgprot((pgprot_val(*prot) & ~_PAGE_CACHE_MASK) | + cachemode2protval(pcm)); +} + +int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, + unsigned long size, pgprot_t *vma_prot) +{ + enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB; + + if (!pat_enabled()) + return 1; + + if (!range_is_allowed(pfn, size)) + return 0; + + if (file->f_flags & O_DSYNC) + pcm = _PAGE_CACHE_MODE_UC_MINUS; + + pgprot_set_cachemode(vma_prot, pcm); + return 1; +} + +/* + * Change the memory type for the physical address range in kernel identity + * mapping space if that range is a part of identity map. + */ +int memtype_kernel_map_sync(u64 base, unsigned long size, + enum page_cache_mode pcm) +{ + unsigned long id_sz; + + if (base > __pa(high_memory-1)) + return 0; + + /* + * Some areas in the middle of the kernel identity range + * are not mapped, for example the PCI space. + */ + if (!page_is_ram(base >> PAGE_SHIFT)) + return 0; + + id_sz = (__pa(high_memory-1) <= base + size) ? + __pa(high_memory) - base : size; + + if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) { + pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n", + current->comm, current->pid, + cattr_name(pcm), + base, (unsigned long long)(base + size-1)); + return -EINVAL; + } + return 0; +} + +/* + * Internal interface to reserve a range of physical memory with prot. + * Reserved non RAM regions only and after successful memtype_reserve, + * this func also keeps identity mapping (if any) in sync with this new prot. + */ +static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot) +{ + int is_ram = 0; + int ret; + enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot); + enum page_cache_mode pcm = want_pcm; + + is_ram = pat_pagerange_is_ram(paddr, paddr + size); + + /* + * reserve_pfn_range() for RAM pages. We do not refcount to keep + * track of number of mappings of RAM pages. We can assert that + * the type requested matches the type of first page in the range. + */ + if (is_ram) { + if (!pat_enabled()) + return 0; + + pcm = lookup_memtype(paddr); + if (want_pcm != pcm) { + pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n", + current->comm, current->pid, + cattr_name(want_pcm), + (unsigned long long)paddr, + (unsigned long long)(paddr + size - 1), + cattr_name(pcm)); + pgprot_set_cachemode(vma_prot, pcm); + } + return 0; + } + + ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm); + if (ret) + return ret; + + if (pcm != want_pcm) { + if (!is_new_memtype_allowed(paddr, size, want_pcm, pcm)) { + memtype_free(paddr, paddr + size); + pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n", + current->comm, current->pid, + cattr_name(want_pcm), + (unsigned long long)paddr, + (unsigned long long)(paddr + size - 1), + cattr_name(pcm)); + return -EINVAL; + } + pgprot_set_cachemode(vma_prot, pcm); + } + + if (memtype_kernel_map_sync(paddr, size, pcm) < 0) { + memtype_free(paddr, paddr + size); + return -EINVAL; + } + return 0; +} + +/* + * Internal interface to free a range of physical memory. + * Frees non RAM regions only. + */ +static void free_pfn_range(u64 paddr, unsigned long size) +{ + int is_ram; + + is_ram = pat_pagerange_is_ram(paddr, paddr + size); + if (is_ram == 0) + memtype_free(paddr, paddr + size); +} + +int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size, pgprot_t *prot) +{ + resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT; + enum page_cache_mode pcm; + + if (!pat_enabled()) + return 0; + + pcm = lookup_memtype(paddr); + + /* Check memtype for the remaining pages */ + while (size > PAGE_SIZE) { + size -= PAGE_SIZE; + paddr += PAGE_SIZE; + if (pcm != lookup_memtype(paddr)) + return -EINVAL; + } + + pgprot_set_cachemode(prot, pcm); + return 0; +} + +int pfnmap_track(unsigned long pfn, unsigned long size, pgprot_t *prot) +{ + const resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT; + + return reserve_pfn_range(paddr, size, prot); +} + +void pfnmap_untrack(unsigned long pfn, unsigned long size) +{ + const resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT; + + free_pfn_range(paddr, size); +} + +pgprot_t pgprot_writecombine(pgprot_t prot) +{ + pgprot_set_cachemode(&prot, _PAGE_CACHE_MODE_WC); + return prot; +} +EXPORT_SYMBOL_GPL(pgprot_writecombine); + +pgprot_t pgprot_writethrough(pgprot_t prot) +{ + pgprot_set_cachemode(&prot, _PAGE_CACHE_MODE_WT); + return prot; +} +EXPORT_SYMBOL_GPL(pgprot_writethrough); + +#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT) + +/* + * We are allocating a temporary printout-entry to be passed + * between seq_start()/next() and seq_show(): + */ +static struct memtype *memtype_get_idx(loff_t pos) +{ + struct memtype *entry_print; + int ret; + + entry_print = kzalloc(sizeof(struct memtype), GFP_KERNEL); + if (!entry_print) + return NULL; + + spin_lock(&memtype_lock); + ret = memtype_copy_nth_element(entry_print, pos); + spin_unlock(&memtype_lock); + + /* Free it on error: */ + if (ret) { + kfree(entry_print); + return NULL; + } + + return entry_print; +} + +static void *memtype_seq_start(struct seq_file *seq, loff_t *pos) +{ + if (*pos == 0) { + ++*pos; + seq_puts(seq, "PAT memtype list:\n"); + } + + return memtype_get_idx(*pos); +} + +static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos) +{ + kfree(v); + ++*pos; + return memtype_get_idx(*pos); +} + +static void memtype_seq_stop(struct seq_file *seq, void *v) +{ + kfree(v); +} + +static int memtype_seq_show(struct seq_file *seq, void *v) +{ + struct memtype *entry_print = (struct memtype *)v; + + seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n", + entry_print->start, + entry_print->end, + cattr_name(entry_print->type)); + + return 0; +} + +static const struct seq_operations memtype_seq_ops = { + .start = memtype_seq_start, + .next = memtype_seq_next, + .stop = memtype_seq_stop, + .show = memtype_seq_show, +}; + +static int memtype_seq_open(struct inode *inode, struct file *file) +{ + return seq_open(file, &memtype_seq_ops); +} + +static const struct file_operations memtype_fops = { + .open = memtype_seq_open, + .read = seq_read, + .llseek = seq_lseek, + .release = seq_release, +}; + +static int __init pat_memtype_list_init(void) +{ + if (pat_enabled()) { + debugfs_create_file("pat_memtype_list", S_IRUSR, + arch_debugfs_dir, NULL, &memtype_fops); + } + return 0; +} +late_initcall(pat_memtype_list_init); + +#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */ diff --git a/arch/x86/mm/pat/memtype.h b/arch/x86/mm/pat/memtype.h new file mode 100644 index 000000000000..cacecdbceb55 --- /dev/null +++ b/arch/x86/mm/pat/memtype.h @@ -0,0 +1,49 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __MEMTYPE_H_ +#define __MEMTYPE_H_ + +extern int pat_debug_enable; + +#define dprintk(fmt, arg...) \ + do { if (pat_debug_enable) pr_info("x86/PAT: " fmt, ##arg); } while (0) + +struct memtype { + u64 start; + u64 end; + u64 subtree_max_end; + enum page_cache_mode type; + struct rb_node rb; +}; + +static inline char *cattr_name(enum page_cache_mode pcm) +{ + switch (pcm) { + case _PAGE_CACHE_MODE_UC: return "uncached"; + case _PAGE_CACHE_MODE_UC_MINUS: return "uncached-minus"; + case _PAGE_CACHE_MODE_WB: return "write-back"; + case _PAGE_CACHE_MODE_WC: return "write-combining"; + case _PAGE_CACHE_MODE_WT: return "write-through"; + case _PAGE_CACHE_MODE_WP: return "write-protected"; + default: return "broken"; + } +} + +#ifdef CONFIG_X86_PAT +extern int memtype_check_insert(struct memtype *entry_new, + enum page_cache_mode *new_type); +extern struct memtype *memtype_erase(u64 start, u64 end); +extern struct memtype *memtype_lookup(u64 addr); +extern int memtype_copy_nth_element(struct memtype *entry_out, loff_t pos); +#else +static inline int memtype_check_insert(struct memtype *entry_new, + enum page_cache_mode *new_type) +{ return 0; } +static inline struct memtype *memtype_erase(u64 start, u64 end) +{ return NULL; } +static inline struct memtype *memtype_lookup(u64 addr) +{ return NULL; } +static inline int memtype_copy_nth_element(struct memtype *out, loff_t pos) +{ return 0; } +#endif + +#endif /* __MEMTYPE_H_ */ diff --git a/arch/x86/mm/pat/memtype_interval.c b/arch/x86/mm/pat/memtype_interval.c new file mode 100644 index 000000000000..e5844ed1311e --- /dev/null +++ b/arch/x86/mm/pat/memtype_interval.c @@ -0,0 +1,149 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Handle caching attributes in page tables (PAT) + * + * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> + * Suresh B Siddha <suresh.b.siddha@intel.com> + * + * Interval tree used to store the PAT memory type reservations. + */ + +#include <linux/seq_file.h> +#include <linux/debugfs.h> +#include <linux/kernel.h> +#include <linux/interval_tree_generic.h> +#include <linux/sched.h> +#include <linux/gfp.h> +#include <linux/pgtable.h> + +#include <asm/memtype.h> + +#include "memtype.h" + +/* + * The memtype tree keeps track of memory type for specific + * physical memory areas. Without proper tracking, conflicting memory + * types in different mappings can cause CPU cache corruption. + * + * The tree is an interval tree (augmented rbtree) which tree is ordered + * by the starting address. The tree can contain multiple entries for + * different regions which overlap. All the aliases have the same + * cache attributes of course, as enforced by the PAT logic. + * + * memtype_lock protects the rbtree. + */ + +static inline u64 interval_start(struct memtype *entry) +{ + return entry->start; +} + +static inline u64 interval_end(struct memtype *entry) +{ + return entry->end - 1; +} + +INTERVAL_TREE_DEFINE(struct memtype, rb, u64, subtree_max_end, + interval_start, interval_end, + static, interval) + +static struct rb_root_cached memtype_rbroot = RB_ROOT_CACHED; + +static int memtype_check_conflict(u64 start, u64 end, + enum page_cache_mode reqtype, + enum page_cache_mode *newtype) +{ + struct memtype *entry_match; + enum page_cache_mode found_type = reqtype; + + entry_match = interval_iter_first(&memtype_rbroot, start, end-1); + if (entry_match == NULL) + goto success; + + if (entry_match->type != found_type && newtype == NULL) + goto failure; + + dprintk("Overlap at 0x%Lx-0x%Lx\n", entry_match->start, entry_match->end); + found_type = entry_match->type; + + entry_match = interval_iter_next(entry_match, start, end-1); + while (entry_match) { + if (entry_match->type != found_type) + goto failure; + + entry_match = interval_iter_next(entry_match, start, end-1); + } +success: + if (newtype) + *newtype = found_type; + + return 0; + +failure: + pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n", + current->comm, current->pid, start, end, + cattr_name(found_type), cattr_name(entry_match->type)); + + return -EBUSY; +} + +int memtype_check_insert(struct memtype *entry_new, enum page_cache_mode *ret_type) +{ + int err = 0; + + err = memtype_check_conflict(entry_new->start, entry_new->end, entry_new->type, ret_type); + if (err) + return err; + + if (ret_type) + entry_new->type = *ret_type; + + interval_insert(entry_new, &memtype_rbroot); + return 0; +} + +struct memtype *memtype_erase(u64 start, u64 end) +{ + struct memtype *entry = interval_iter_first(&memtype_rbroot, start, end - 1); + + while (entry && entry->start < end) { + if (entry->start == start && entry->end == end) { + interval_remove(entry, &memtype_rbroot); + return entry; + } + entry = interval_iter_next(entry, start, end - 1); + } + return ERR_PTR(-EINVAL); +} + +struct memtype *memtype_lookup(u64 addr) +{ + return interval_iter_first(&memtype_rbroot, addr, addr + PAGE_SIZE-1); +} + +/* + * Debugging helper, copy the Nth entry of the tree into a + * a copy for printout. This allows us to print out the tree + * via debugfs, without holding the memtype_lock too long: + */ +#ifdef CONFIG_DEBUG_FS +int memtype_copy_nth_element(struct memtype *entry_out, loff_t pos) +{ + struct memtype *entry_match; + int i = 1; + + entry_match = interval_iter_first(&memtype_rbroot, 0, ULONG_MAX); + + while (entry_match && pos != i) { + entry_match = interval_iter_next(entry_match, 0, ULONG_MAX); + i++; + } + + if (entry_match) { /* pos == i */ + *entry_out = *entry_match; + return 0; + } else { + return 1; + } +} +#endif diff --git a/arch/x86/mm/pat/set_memory.c b/arch/x86/mm/pat/set_memory.c new file mode 100644 index 000000000000..6c6eb486f7a6 --- /dev/null +++ b/arch/x86/mm/pat/set_memory.c @@ -0,0 +1,2777 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright 2002 Andi Kleen, SuSE Labs. + * Thanks to Ben LaHaise for precious feedback. + */ +#include <linux/highmem.h> +#include <linux/memblock.h> +#include <linux/sched.h> +#include <linux/mm.h> +#include <linux/interrupt.h> +#include <linux/seq_file.h> +#include <linux/proc_fs.h> +#include <linux/debugfs.h> +#include <linux/pfn.h> +#include <linux/percpu.h> +#include <linux/gfp.h> +#include <linux/pci.h> +#include <linux/vmalloc.h> +#include <linux/libnvdimm.h> +#include <linux/vmstat.h> +#include <linux/kernel.h> +#include <linux/cc_platform.h> +#include <linux/set_memory.h> +#include <linux/memregion.h> + +#include <asm/e820/api.h> +#include <asm/processor.h> +#include <asm/tlbflush.h> +#include <asm/sections.h> +#include <asm/setup.h> +#include <linux/uaccess.h> +#include <asm/pgalloc.h> +#include <asm/proto.h> +#include <asm/memtype.h> + +#include "../mm_internal.h" + +/* + * The current flushing context - we pass it instead of 5 arguments: + */ +struct cpa_data { + unsigned long *vaddr; + pgd_t *pgd; + pgprot_t mask_set; + pgprot_t mask_clr; + unsigned long numpages; + unsigned long curpage; + unsigned long pfn; + unsigned int flags; + unsigned int force_split : 1, + force_static_prot : 1, + force_flush_all : 1; + struct page **pages; +}; + +enum cpa_warn { + CPA_CONFLICT, + CPA_PROTECT, + CPA_DETECT, +}; + +static const int cpa_warn_level = CPA_PROTECT; + +/* + * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) + * using cpa_lock. So that we don't allow any other cpu, with stale large tlb + * entries change the page attribute in parallel to some other cpu + * splitting a large page entry along with changing the attribute. + */ +static DEFINE_SPINLOCK(cpa_lock); + +#define CPA_FLUSHTLB 1 +#define CPA_ARRAY 2 +#define CPA_PAGES_ARRAY 4 +#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */ +#define CPA_COLLAPSE 16 /* try to collapse large pages */ + +static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm) +{ + return __pgprot(cachemode2protval(pcm)); +} + +#ifdef CONFIG_PROC_FS +static unsigned long direct_pages_count[PG_LEVEL_NUM]; + +void update_page_count(int level, unsigned long pages) +{ + /* Protect against CPA */ + spin_lock(&pgd_lock); + direct_pages_count[level] += pages; + spin_unlock(&pgd_lock); +} + +static void split_page_count(int level) +{ + if (direct_pages_count[level] == 0) + return; + + direct_pages_count[level]--; + if (system_state == SYSTEM_RUNNING) { + if (level == PG_LEVEL_2M) + count_vm_event(DIRECT_MAP_LEVEL2_SPLIT); + else if (level == PG_LEVEL_1G) + count_vm_event(DIRECT_MAP_LEVEL3_SPLIT); + } + direct_pages_count[level - 1] += PTRS_PER_PTE; +} + +static void collapse_page_count(int level) +{ + direct_pages_count[level]++; + if (system_state == SYSTEM_RUNNING) { + if (level == PG_LEVEL_2M) + count_vm_event(DIRECT_MAP_LEVEL2_COLLAPSE); + else if (level == PG_LEVEL_1G) + count_vm_event(DIRECT_MAP_LEVEL3_COLLAPSE); + } + direct_pages_count[level - 1] -= PTRS_PER_PTE; +} + +void arch_report_meminfo(struct seq_file *m) +{ + seq_printf(m, "DirectMap4k: %8lu kB\n", + direct_pages_count[PG_LEVEL_4K] << 2); +#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) + seq_printf(m, "DirectMap2M: %8lu kB\n", + direct_pages_count[PG_LEVEL_2M] << 11); +#else + seq_printf(m, "DirectMap4M: %8lu kB\n", + direct_pages_count[PG_LEVEL_2M] << 12); +#endif + if (direct_gbpages) + seq_printf(m, "DirectMap1G: %8lu kB\n", + direct_pages_count[PG_LEVEL_1G] << 20); +} +#else +static inline void split_page_count(int level) { } +static inline void collapse_page_count(int level) { } +#endif + +#ifdef CONFIG_X86_CPA_STATISTICS + +static unsigned long cpa_1g_checked; +static unsigned long cpa_1g_sameprot; +static unsigned long cpa_1g_preserved; +static unsigned long cpa_2m_checked; +static unsigned long cpa_2m_sameprot; +static unsigned long cpa_2m_preserved; +static unsigned long cpa_4k_install; + +static inline void cpa_inc_1g_checked(void) +{ + cpa_1g_checked++; +} + +static inline void cpa_inc_2m_checked(void) +{ + cpa_2m_checked++; +} + +static inline void cpa_inc_4k_install(void) +{ + data_race(cpa_4k_install++); +} + +static inline void cpa_inc_lp_sameprot(int level) +{ + if (level == PG_LEVEL_1G) + cpa_1g_sameprot++; + else + cpa_2m_sameprot++; +} + +static inline void cpa_inc_lp_preserved(int level) +{ + if (level == PG_LEVEL_1G) + cpa_1g_preserved++; + else + cpa_2m_preserved++; +} + +static int cpastats_show(struct seq_file *m, void *p) +{ + seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked); + seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot); + seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved); + seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked); + seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot); + seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved); + seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install); + return 0; +} + +static int cpastats_open(struct inode *inode, struct file *file) +{ + return single_open(file, cpastats_show, NULL); +} + +static const struct file_operations cpastats_fops = { + .open = cpastats_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +static int __init cpa_stats_init(void) +{ + debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL, + &cpastats_fops); + return 0; +} +late_initcall(cpa_stats_init); +#else +static inline void cpa_inc_1g_checked(void) { } +static inline void cpa_inc_2m_checked(void) { } +static inline void cpa_inc_4k_install(void) { } +static inline void cpa_inc_lp_sameprot(int level) { } +static inline void cpa_inc_lp_preserved(int level) { } +#endif + + +static inline int +within(unsigned long addr, unsigned long start, unsigned long end) +{ + return addr >= start && addr < end; +} + +#ifdef CONFIG_X86_64 + +static inline int +within_inclusive(unsigned long addr, unsigned long start, unsigned long end) +{ + return addr >= start && addr <= end; +} + +/* + * The kernel image is mapped into two places in the virtual address space + * (addresses without KASLR, of course): + * + * 1. The kernel direct map (0xffff880000000000) + * 2. The "high kernel map" (0xffffffff81000000) + * + * We actually execute out of #2. If we get the address of a kernel symbol, it + * points to #2, but almost all physical-to-virtual translations point to #1. + * + * This is so that we can have both a directmap of all physical memory *and* + * take full advantage of the limited (s32) immediate addressing range (2G) + * of x86_64. + * + * See Documentation/arch/x86/x86_64/mm.rst for more detail. + */ + +static inline unsigned long highmap_start_pfn(void) +{ + return __pa_symbol(_text) >> PAGE_SHIFT; +} + +static inline unsigned long highmap_end_pfn(void) +{ + /* Do not reference physical address outside the kernel. */ + return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; +} + +static bool __cpa_pfn_in_highmap(unsigned long pfn) +{ + /* + * Kernel text has an alias mapping at a high address, known + * here as "highmap". + */ + return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn()); +} + +#else + +static bool __cpa_pfn_in_highmap(unsigned long pfn) +{ + /* There is no highmap on 32-bit */ + return false; +} + +#endif + +/* + * See set_mce_nospec(). + * + * Machine check recovery code needs to change cache mode of poisoned pages to + * UC to avoid speculative access logging another error. But passing the + * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a + * speculative access. So we cheat and flip the top bit of the address. This + * works fine for the code that updates the page tables. But at the end of the + * process we need to flush the TLB and cache and the non-canonical address + * causes a #GP fault when used by the INVLPG and CLFLUSH instructions. + * + * But in the common case we already have a canonical address. This code + * will fix the top bit if needed and is a no-op otherwise. + */ +static inline unsigned long fix_addr(unsigned long addr) +{ +#ifdef CONFIG_X86_64 + return (long)(addr << 1) >> 1; +#else + return addr; +#endif +} + +static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx) +{ + if (cpa->flags & CPA_PAGES_ARRAY) { + struct page *page = cpa->pages[idx]; + + if (unlikely(PageHighMem(page))) + return 0; + + return (unsigned long)page_address(page); + } + + if (cpa->flags & CPA_ARRAY) + return cpa->vaddr[idx]; + + return *cpa->vaddr + idx * PAGE_SIZE; +} + +/* + * Flushing functions + */ + +static void clflush_cache_range_opt(void *vaddr, unsigned int size) +{ + const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; + void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); + void *vend = vaddr + size; + + if (p >= vend) + return; + + for (; p < vend; p += clflush_size) + clflushopt(p); +} + +/** + * clflush_cache_range - flush a cache range with clflush + * @vaddr: virtual start address + * @size: number of bytes to flush + * + * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or + * SFENCE to avoid ordering issues. + */ +void clflush_cache_range(void *vaddr, unsigned int size) +{ + mb(); + clflush_cache_range_opt(vaddr, size); + mb(); +} +EXPORT_SYMBOL_GPL(clflush_cache_range); + +#ifdef CONFIG_ARCH_HAS_PMEM_API +void arch_invalidate_pmem(void *addr, size_t size) +{ + clflush_cache_range(addr, size); +} +EXPORT_SYMBOL_GPL(arch_invalidate_pmem); +#endif + +#ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION +bool cpu_cache_has_invalidate_memregion(void) +{ + return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR); +} +EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, "DEVMEM"); + +int cpu_cache_invalidate_memregion(phys_addr_t start, size_t len) +{ + if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion())) + return -ENXIO; + wbinvd_on_all_cpus(); + return 0; +} +EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, "DEVMEM"); +#endif + +static void __cpa_flush_all(void *arg) +{ + unsigned long cache = (unsigned long)arg; + + /* + * Flush all to work around Errata in early athlons regarding + * large page flushing. + */ + __flush_tlb_all(); + + if (cache && boot_cpu_data.x86 >= 4) + wbinvd(); +} + +static void cpa_flush_all(unsigned long cache) +{ + BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); + + on_each_cpu(__cpa_flush_all, (void *) cache, 1); +} + +static int collapse_large_pages(unsigned long addr, struct list_head *pgtables); + +static void cpa_collapse_large_pages(struct cpa_data *cpa) +{ + unsigned long start, addr, end; + struct ptdesc *ptdesc, *tmp; + LIST_HEAD(pgtables); + int collapsed = 0; + int i; + + if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) { + for (i = 0; i < cpa->numpages; i++) + collapsed += collapse_large_pages(__cpa_addr(cpa, i), + &pgtables); + } else { + addr = __cpa_addr(cpa, 0); + start = addr & PMD_MASK; + end = addr + PAGE_SIZE * cpa->numpages; + + for (addr = start; within(addr, start, end); addr += PMD_SIZE) + collapsed += collapse_large_pages(addr, &pgtables); + } + + if (!collapsed) + return; + + flush_tlb_all(); + + list_for_each_entry_safe(ptdesc, tmp, &pgtables, pt_list) { + list_del(&ptdesc->pt_list); + pagetable_free(ptdesc); + } +} + +static void cpa_flush(struct cpa_data *cpa, int cache) +{ + unsigned long start, end; + unsigned int i; + + BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); + + if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { + cpa_flush_all(cache); + goto collapse_large_pages; + } + + start = fix_addr(__cpa_addr(cpa, 0)); + end = start + cpa->numpages * PAGE_SIZE; + if (cpa->force_flush_all) + end = TLB_FLUSH_ALL; + + flush_tlb_kernel_range(start, end); + + if (!cache) + goto collapse_large_pages; + + mb(); + for (i = 0; i < cpa->numpages; i++) { + unsigned long addr = __cpa_addr(cpa, i); + unsigned int level; + + pte_t *pte = lookup_address(addr, &level); + + /* + * Only flush present addresses: + */ + if (pte && (pte_val(*pte) & _PAGE_PRESENT)) + clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE); + } + mb(); + +collapse_large_pages: + if (cpa->flags & CPA_COLLAPSE) + cpa_collapse_large_pages(cpa); +} + +static bool overlaps(unsigned long r1_start, unsigned long r1_end, + unsigned long r2_start, unsigned long r2_end) +{ + return (r1_start <= r2_end && r1_end >= r2_start) || + (r2_start <= r1_end && r2_end >= r1_start); +} + +#ifdef CONFIG_PCI_BIOS +/* + * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS + * based config access (CONFIG_PCI_GOBIOS) support. + */ +#define BIOS_PFN PFN_DOWN(BIOS_BEGIN) +#define BIOS_PFN_END PFN_DOWN(BIOS_END - 1) + +static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) +{ + if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END)) + return _PAGE_NX; + return 0; +} +#else +static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) +{ + return 0; +} +#endif + +/* + * The .rodata section needs to be read-only. Using the pfn catches all + * aliases. This also includes __ro_after_init, so do not enforce until + * kernel_set_to_readonly is true. + */ +static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn) +{ + unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata)); + + /* + * Note: __end_rodata is at page aligned and not inclusive, so + * subtract 1 to get the last enforced PFN in the rodata area. + */ + epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1; + + if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro)) + return _PAGE_RW; + return 0; +} + +/* + * Protect kernel text against becoming non executable by forbidding + * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext) + * out of which the kernel actually executes. Do not protect the low + * mapping. + * + * This does not cover __inittext since that is gone after boot. + */ +static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end) +{ + unsigned long t_end = (unsigned long)_etext - 1; + unsigned long t_start = (unsigned long)_text; + + if (overlaps(start, end, t_start, t_end)) + return _PAGE_NX; + return 0; +} + +#if defined(CONFIG_X86_64) +/* + * Once the kernel maps the text as RO (kernel_set_to_readonly is set), + * kernel text mappings for the large page aligned text, rodata sections + * will be always read-only. For the kernel identity mappings covering the + * holes caused by this alignment can be anything that user asks. + * + * This will preserve the large page mappings for kernel text/data at no + * extra cost. + */ +static pgprotval_t protect_kernel_text_ro(unsigned long start, + unsigned long end) +{ + unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1; + unsigned long t_start = (unsigned long)_text; + unsigned int level; + + if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end)) + return 0; + /* + * Don't enforce the !RW mapping for the kernel text mapping, if + * the current mapping is already using small page mapping. No + * need to work hard to preserve large page mappings in this case. + * + * This also fixes the Linux Xen paravirt guest boot failure caused + * by unexpected read-only mappings for kernel identity + * mappings. In this paravirt guest case, the kernel text mapping + * and the kernel identity mapping share the same page-table pages, + * so the protections for kernel text and identity mappings have to + * be the same. + */ + if (lookup_address(start, &level) && (level != PG_LEVEL_4K)) + return _PAGE_RW; + return 0; +} +#else +static pgprotval_t protect_kernel_text_ro(unsigned long start, + unsigned long end) +{ + return 0; +} +#endif + +static inline bool conflicts(pgprot_t prot, pgprotval_t val) +{ + return (pgprot_val(prot) & ~val) != pgprot_val(prot); +} + +static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val, + unsigned long start, unsigned long end, + unsigned long pfn, const char *txt) +{ + static const char *lvltxt[] = { + [CPA_CONFLICT] = "conflict", + [CPA_PROTECT] = "protect", + [CPA_DETECT] = "detect", + }; + + if (warnlvl > cpa_warn_level || !conflicts(prot, val)) + return; + + pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n", + lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot), + (unsigned long long)val); +} + +/* + * Certain areas of memory on x86 require very specific protection flags, + * for example the BIOS area or kernel text. Callers don't always get this + * right (again, ioremap() on BIOS memory is not uncommon) so this function + * checks and fixes these known static required protection bits. + */ +static inline pgprot_t static_protections(pgprot_t prot, unsigned long start, + unsigned long pfn, unsigned long npg, + unsigned long lpsize, int warnlvl) +{ + pgprotval_t forbidden, res; + unsigned long end; + + /* + * There is no point in checking RW/NX conflicts when the requested + * mapping is setting the page !PRESENT. + */ + if (!(pgprot_val(prot) & _PAGE_PRESENT)) + return prot; + + /* Operate on the virtual address */ + end = start + npg * PAGE_SIZE - 1; + + res = protect_kernel_text(start, end); + check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX"); + forbidden = res; + + /* + * Special case to preserve a large page. If the change spawns the + * full large page mapping then there is no point to split it + * up. Happens with ftrace and is going to be removed once ftrace + * switched to text_poke(). + */ + if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) { + res = protect_kernel_text_ro(start, end); + check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO"); + forbidden |= res; + } + + /* Check the PFN directly */ + res = protect_pci_bios(pfn, pfn + npg - 1); + check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX"); + forbidden |= res; + + res = protect_rodata(pfn, pfn + npg - 1); + check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO"); + forbidden |= res; + + return __pgprot(pgprot_val(prot) & ~forbidden); +} + +/* + * Validate strict W^X semantics. + */ +static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start, + unsigned long pfn, unsigned long npg, + bool nx, bool rw) +{ + unsigned long end; + + /* + * 32-bit has some unfixable W+X issues, like EFI code + * and writeable data being in the same page. Disable + * detection and enforcement there. + */ + if (IS_ENABLED(CONFIG_X86_32)) + return new; + + /* Only verify when NX is supported: */ + if (!(__supported_pte_mask & _PAGE_NX)) + return new; + + if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX))) + return new; + + if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW) + return new; + + /* Non-leaf translation entries can disable writing or execution. */ + if (!rw || nx) + return new; + + end = start + npg * PAGE_SIZE - 1; + WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n", + (unsigned long long)pgprot_val(old), + (unsigned long long)pgprot_val(new), + start, end, pfn); + + /* + * For now, allow all permission change attempts by returning the + * attempted permissions. This can 'return old' to actively + * refuse the permission change at a later time. + */ + return new; +} + +/* + * Lookup the page table entry for a virtual address in a specific pgd. + * Return a pointer to the entry (or NULL if the entry does not exist), + * the level of the entry, and the effective NX and RW bits of all + * page table levels. + */ +pte_t *lookup_address_in_pgd_attr(pgd_t *pgd, unsigned long address, + unsigned int *level, bool *nx, bool *rw) +{ + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + + *level = PG_LEVEL_256T; + *nx = false; + *rw = true; + + if (pgd_none(*pgd)) + return NULL; + + *level = PG_LEVEL_512G; + *nx |= pgd_flags(*pgd) & _PAGE_NX; + *rw &= pgd_flags(*pgd) & _PAGE_RW; + + p4d = p4d_offset(pgd, address); + if (p4d_none(*p4d)) + return NULL; + + if (p4d_leaf(*p4d) || !p4d_present(*p4d)) + return (pte_t *)p4d; + + *level = PG_LEVEL_1G; + *nx |= p4d_flags(*p4d) & _PAGE_NX; + *rw &= p4d_flags(*p4d) & _PAGE_RW; + + pud = pud_offset(p4d, address); + if (pud_none(*pud)) + return NULL; + + if (pud_leaf(*pud) || !pud_present(*pud)) + return (pte_t *)pud; + + *level = PG_LEVEL_2M; + *nx |= pud_flags(*pud) & _PAGE_NX; + *rw &= pud_flags(*pud) & _PAGE_RW; + + pmd = pmd_offset(pud, address); + if (pmd_none(*pmd)) + return NULL; + + if (pmd_leaf(*pmd) || !pmd_present(*pmd)) + return (pte_t *)pmd; + + *level = PG_LEVEL_4K; + *nx |= pmd_flags(*pmd) & _PAGE_NX; + *rw &= pmd_flags(*pmd) & _PAGE_RW; + + return pte_offset_kernel(pmd, address); +} + +/* + * Lookup the page table entry for a virtual address in a specific pgd. + * Return a pointer to the entry and the level of the mapping. + */ +pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, + unsigned int *level) +{ + bool nx, rw; + + return lookup_address_in_pgd_attr(pgd, address, level, &nx, &rw); +} + +/* + * Lookup the page table entry for a virtual address. Return a pointer + * to the entry and the level of the mapping. + * + * Note: the function returns p4d, pud or pmd either when the entry is marked + * large or when the present bit is not set. Otherwise it returns NULL. + */ +pte_t *lookup_address(unsigned long address, unsigned int *level) +{ + return lookup_address_in_pgd(pgd_offset_k(address), address, level); +} +EXPORT_SYMBOL_GPL(lookup_address); + +static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, + unsigned int *level, bool *nx, bool *rw) +{ + pgd_t *pgd; + + if (!cpa->pgd) + pgd = pgd_offset_k(address); + else + pgd = cpa->pgd + pgd_index(address); + + return lookup_address_in_pgd_attr(pgd, address, level, nx, rw); +} + +/* + * Lookup the PMD entry for a virtual address. Return a pointer to the entry + * or NULL if not present. + */ +pmd_t *lookup_pmd_address(unsigned long address) +{ + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + + pgd = pgd_offset_k(address); + if (pgd_none(*pgd)) + return NULL; + + p4d = p4d_offset(pgd, address); + if (p4d_none(*p4d) || p4d_leaf(*p4d) || !p4d_present(*p4d)) + return NULL; + + pud = pud_offset(p4d, address); + if (pud_none(*pud) || pud_leaf(*pud) || !pud_present(*pud)) + return NULL; + + return pmd_offset(pud, address); +} + +/* + * This is necessary because __pa() does not work on some + * kinds of memory, like vmalloc() or the alloc_remap() + * areas on 32-bit NUMA systems. The percpu areas can + * end up in this kind of memory, for instance. + * + * Note that as long as the PTEs are well-formed with correct PFNs, this + * works without checking the PRESENT bit in the leaf PTE. This is unlike + * the similar vmalloc_to_page() and derivatives. Callers may depend on + * this behavior. + * + * This could be optimized, but it is only used in paths that are not perf + * sensitive, and keeping it unoptimized should increase the testing coverage + * for the more obscure platforms. + */ +phys_addr_t slow_virt_to_phys(void *__virt_addr) +{ + unsigned long virt_addr = (unsigned long)__virt_addr; + phys_addr_t phys_addr; + unsigned long offset; + enum pg_level level; + pte_t *pte; + + pte = lookup_address(virt_addr, &level); + BUG_ON(!pte); + + /* + * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t + * before being left-shifted PAGE_SHIFT bits -- this trick is to + * make 32-PAE kernel work correctly. + */ + switch (level) { + case PG_LEVEL_1G: + phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; + offset = virt_addr & ~PUD_MASK; + break; + case PG_LEVEL_2M: + phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; + offset = virt_addr & ~PMD_MASK; + break; + default: + phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; + offset = virt_addr & ~PAGE_MASK; + } + + return (phys_addr_t)(phys_addr | offset); +} +EXPORT_SYMBOL_GPL(slow_virt_to_phys); + +/* + * Set the new pmd in all the pgds we know about: + */ +static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) +{ + /* change init_mm */ + set_pte_atomic(kpte, pte); +#ifdef CONFIG_X86_32 + { + struct page *page; + + list_for_each_entry(page, &pgd_list, lru) { + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + + pgd = (pgd_t *)page_address(page) + pgd_index(address); + p4d = p4d_offset(pgd, address); + pud = pud_offset(p4d, address); + pmd = pmd_offset(pud, address); + set_pte_atomic((pte_t *)pmd, pte); + } + } +#endif +} + +static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot) +{ + /* + * _PAGE_GLOBAL means "global page" for present PTEs. + * But, it is also used to indicate _PAGE_PROTNONE + * for non-present PTEs. + * + * This ensures that a _PAGE_GLOBAL PTE going from + * present to non-present is not confused as + * _PAGE_PROTNONE. + */ + if (!(pgprot_val(prot) & _PAGE_PRESENT)) + pgprot_val(prot) &= ~_PAGE_GLOBAL; + + return prot; +} + +static int __should_split_large_page(pte_t *kpte, unsigned long address, + struct cpa_data *cpa) +{ + unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn; + pgprot_t old_prot, new_prot, req_prot, chk_prot; + pte_t new_pte, *tmp; + enum pg_level level; + bool nx, rw; + + /* + * Check for races, another CPU might have split this page + * up already: + */ + tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw); + if (tmp != kpte) + return 1; + + switch (level) { + case PG_LEVEL_2M: + old_prot = pmd_pgprot(*(pmd_t *)kpte); + old_pfn = pmd_pfn(*(pmd_t *)kpte); + cpa_inc_2m_checked(); + break; + case PG_LEVEL_1G: + old_prot = pud_pgprot(*(pud_t *)kpte); + old_pfn = pud_pfn(*(pud_t *)kpte); + cpa_inc_1g_checked(); + break; + default: + return -EINVAL; + } + + psize = page_level_size(level); + pmask = page_level_mask(level); + + /* + * Calculate the number of pages, which fit into this large + * page starting at address: + */ + lpaddr = (address + psize) & pmask; + numpages = (lpaddr - address) >> PAGE_SHIFT; + if (numpages < cpa->numpages) + cpa->numpages = numpages; + + /* + * We are safe now. Check whether the new pgprot is the same: + * Convert protection attributes to 4k-format, as cpa->mask* are set + * up accordingly. + */ + + /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */ + req_prot = pgprot_large_2_4k(old_prot); + + pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); + pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); + + /* + * req_prot is in format of 4k pages. It must be converted to large + * page format: the caching mode includes the PAT bit located at + * different bit positions in the two formats. + */ + req_prot = pgprot_4k_2_large(req_prot); + req_prot = pgprot_clear_protnone_bits(req_prot); + if (pgprot_val(req_prot) & _PAGE_PRESENT) + pgprot_val(req_prot) |= _PAGE_PSE; + + /* + * old_pfn points to the large page base pfn. So we need to add the + * offset of the virtual address: + */ + pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); + cpa->pfn = pfn; + + /* + * Calculate the large page base address and the number of 4K pages + * in the large page + */ + lpaddr = address & pmask; + numpages = psize >> PAGE_SHIFT; + + /* + * Sanity check that the existing mapping is correct versus the static + * protections. static_protections() guards against !PRESENT, so no + * extra conditional required here. + */ + chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages, + psize, CPA_CONFLICT); + + if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) { + /* + * Split the large page and tell the split code to + * enforce static protections. + */ + cpa->force_static_prot = 1; + return 1; + } + + /* + * Optimization: If the requested pgprot is the same as the current + * pgprot, then the large page can be preserved and no updates are + * required independent of alignment and length of the requested + * range. The above already established that the current pgprot is + * correct, which in consequence makes the requested pgprot correct + * as well if it is the same. The static protection scan below will + * not come to a different conclusion. + */ + if (pgprot_val(req_prot) == pgprot_val(old_prot)) { + cpa_inc_lp_sameprot(level); + return 0; + } + + /* + * If the requested range does not cover the full page, split it up + */ + if (address != lpaddr || cpa->numpages != numpages) + return 1; + + /* + * Check whether the requested pgprot is conflicting with a static + * protection requirement in the large page. + */ + new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages, + psize, CPA_DETECT); + + new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages, + nx, rw); + + /* + * If there is a conflict, split the large page. + * + * There used to be a 4k wise evaluation trying really hard to + * preserve the large pages, but experimentation has shown, that this + * does not help at all. There might be corner cases which would + * preserve one large page occasionally, but it's really not worth the + * extra code and cycles for the common case. + */ + if (pgprot_val(req_prot) != pgprot_val(new_prot)) + return 1; + + /* All checks passed. Update the large page mapping. */ + new_pte = pfn_pte(old_pfn, new_prot); + __set_pmd_pte(kpte, address, new_pte); + cpa->flags |= CPA_FLUSHTLB; + cpa_inc_lp_preserved(level); + return 0; +} + +static int should_split_large_page(pte_t *kpte, unsigned long address, + struct cpa_data *cpa) +{ + int do_split; + + if (cpa->force_split) + return 1; + + spin_lock(&pgd_lock); + do_split = __should_split_large_page(kpte, address, cpa); + spin_unlock(&pgd_lock); + + return do_split; +} + +static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn, + pgprot_t ref_prot, unsigned long address, + unsigned long size) +{ + unsigned int npg = PFN_DOWN(size); + pgprot_t prot; + + /* + * If should_split_large_page() discovered an inconsistent mapping, + * remove the invalid protection in the split mapping. + */ + if (!cpa->force_static_prot) + goto set; + + /* Hand in lpsize = 0 to enforce the protection mechanism */ + prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT); + + if (pgprot_val(prot) == pgprot_val(ref_prot)) + goto set; + + /* + * If this is splitting a PMD, fix it up. PUD splits cannot be + * fixed trivially as that would require to rescan the newly + * installed PMD mappings after returning from split_large_page() + * so an eventual further split can allocate the necessary PTE + * pages. Warn for now and revisit it in case this actually + * happens. + */ + if (size == PAGE_SIZE) + ref_prot = prot; + else + pr_warn_once("CPA: Cannot fixup static protections for PUD split\n"); +set: + set_pte(pte, pfn_pte(pfn, ref_prot)); +} + +static int +__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, + struct page *base) +{ + unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1; + pte_t *pbase = (pte_t *)page_address(base); + unsigned int i, level; + pgprot_t ref_prot; + bool nx, rw; + pte_t *tmp; + + spin_lock(&pgd_lock); + /* + * Check for races, another CPU might have split this page + * up for us already: + */ + tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw); + if (tmp != kpte) { + spin_unlock(&pgd_lock); + return 1; + } + + paravirt_alloc_pte(&init_mm, page_to_pfn(base)); + + switch (level) { + case PG_LEVEL_2M: + ref_prot = pmd_pgprot(*(pmd_t *)kpte); + /* + * Clear PSE (aka _PAGE_PAT) and move + * PAT bit to correct position. + */ + ref_prot = pgprot_large_2_4k(ref_prot); + ref_pfn = pmd_pfn(*(pmd_t *)kpte); + lpaddr = address & PMD_MASK; + lpinc = PAGE_SIZE; + break; + + case PG_LEVEL_1G: + ref_prot = pud_pgprot(*(pud_t *)kpte); + ref_pfn = pud_pfn(*(pud_t *)kpte); + pfninc = PMD_SIZE >> PAGE_SHIFT; + lpaddr = address & PUD_MASK; + lpinc = PMD_SIZE; + /* + * Clear the PSE flags if the PRESENT flag is not set + * otherwise pmd_present() will return true even on a non + * present pmd. + */ + if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) + pgprot_val(ref_prot) &= ~_PAGE_PSE; + break; + + default: + spin_unlock(&pgd_lock); + return 1; + } + + ref_prot = pgprot_clear_protnone_bits(ref_prot); + + /* + * Get the target pfn from the original entry: + */ + pfn = ref_pfn; + for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc) + split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc); + + if (virt_addr_valid(address)) { + unsigned long pfn = PFN_DOWN(__pa(address)); + + if (pfn_range_is_mapped(pfn, pfn + 1)) + split_page_count(level); + } + + /* + * Install the new, split up pagetable. + * + * We use the standard kernel pagetable protections for the new + * pagetable protections, the actual ptes set above control the + * primary protection behavior: + */ + __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); + + /* + * Do a global flush tlb after splitting the large page + * and before we do the actual change page attribute in the PTE. + * + * Without this, we violate the TLB application note, that says: + * "The TLBs may contain both ordinary and large-page + * translations for a 4-KByte range of linear addresses. This + * may occur if software modifies the paging structures so that + * the page size used for the address range changes. If the two + * translations differ with respect to page frame or attributes + * (e.g., permissions), processor behavior is undefined and may + * be implementation-specific." + * + * We do this global tlb flush inside the cpa_lock, so that we + * don't allow any other cpu, with stale tlb entries change the + * page attribute in parallel, that also falls into the + * just split large page entry. + */ + flush_tlb_all(); + spin_unlock(&pgd_lock); + + return 0; +} + +static int split_large_page(struct cpa_data *cpa, pte_t *kpte, + unsigned long address) +{ + struct page *base; + + if (!debug_pagealloc_enabled()) + spin_unlock(&cpa_lock); + base = alloc_pages(GFP_KERNEL, 0); + if (!debug_pagealloc_enabled()) + spin_lock(&cpa_lock); + if (!base) + return -ENOMEM; + + if (__split_large_page(cpa, kpte, address, base)) + __free_page(base); + + return 0; +} + +static int collapse_pmd_page(pmd_t *pmd, unsigned long addr, + struct list_head *pgtables) +{ + pmd_t _pmd, old_pmd; + pte_t *pte, first; + unsigned long pfn; + pgprot_t pgprot; + int i = 0; + + if (!cpu_feature_enabled(X86_FEATURE_PSE)) + return 0; + + addr &= PMD_MASK; + pte = pte_offset_kernel(pmd, addr); + first = *pte; + pfn = pte_pfn(first); + + /* Make sure alignment is suitable */ + if (PFN_PHYS(pfn) & ~PMD_MASK) + return 0; + + /* The page is 4k intentionally */ + if (pte_flags(first) & _PAGE_KERNEL_4K) + return 0; + + /* Check that the rest of PTEs are compatible with the first one */ + for (i = 1, pte++; i < PTRS_PER_PTE; i++, pte++) { + pte_t entry = *pte; + + if (!pte_present(entry)) + return 0; + if (pte_flags(entry) != pte_flags(first)) + return 0; + if (pte_pfn(entry) != pte_pfn(first) + i) + return 0; + } + + old_pmd = *pmd; + + /* Success: set up a large page */ + pgprot = pgprot_4k_2_large(pte_pgprot(first)); + pgprot_val(pgprot) |= _PAGE_PSE; + _pmd = pfn_pmd(pfn, pgprot); + set_pmd(pmd, _pmd); + + /* Queue the page table to be freed after TLB flush */ + list_add(&page_ptdesc(pmd_page(old_pmd))->pt_list, pgtables); + + if (IS_ENABLED(CONFIG_X86_32)) { + struct page *page; + + /* Update all PGD tables to use the same large page */ + list_for_each_entry(page, &pgd_list, lru) { + pgd_t *pgd = (pgd_t *)page_address(page) + pgd_index(addr); + p4d_t *p4d = p4d_offset(pgd, addr); + pud_t *pud = pud_offset(p4d, addr); + pmd_t *pmd = pmd_offset(pud, addr); + /* Something is wrong if entries doesn't match */ + if (WARN_ON(pmd_val(old_pmd) != pmd_val(*pmd))) + continue; + set_pmd(pmd, _pmd); + } + } + + if (virt_addr_valid(addr) && pfn_range_is_mapped(pfn, pfn + 1)) + collapse_page_count(PG_LEVEL_2M); + + return 1; +} + +static int collapse_pud_page(pud_t *pud, unsigned long addr, + struct list_head *pgtables) +{ + unsigned long pfn; + pmd_t *pmd, first; + int i; + + if (!direct_gbpages) + return 0; + + addr &= PUD_MASK; + pmd = pmd_offset(pud, addr); + first = *pmd; + + /* + * To restore PUD page all PMD entries must be large and + * have suitable alignment + */ + pfn = pmd_pfn(first); + if (!pmd_leaf(first) || (PFN_PHYS(pfn) & ~PUD_MASK)) + return 0; + + /* + * To restore PUD page, all following PMDs must be compatible with the + * first one. + */ + for (i = 1, pmd++; i < PTRS_PER_PMD; i++, pmd++) { + pmd_t entry = *pmd; + + if (!pmd_present(entry) || !pmd_leaf(entry)) + return 0; + if (pmd_flags(entry) != pmd_flags(first)) + return 0; + if (pmd_pfn(entry) != pmd_pfn(first) + i * PTRS_PER_PTE) + return 0; + } + + /* Restore PUD page and queue page table to be freed after TLB flush */ + list_add(&page_ptdesc(pud_page(*pud))->pt_list, pgtables); + set_pud(pud, pfn_pud(pfn, pmd_pgprot(first))); + + if (virt_addr_valid(addr) && pfn_range_is_mapped(pfn, pfn + 1)) + collapse_page_count(PG_LEVEL_1G); + + return 1; +} + +/* + * Collapse PMD and PUD pages in the kernel mapping around the address where + * possible. + * + * Caller must flush TLB and free page tables queued on the list before + * touching the new entries. CPU must not see TLB entries of different size + * with different attributes. + */ +static int collapse_large_pages(unsigned long addr, struct list_head *pgtables) +{ + int collapsed = 0; + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + + addr &= PMD_MASK; + + spin_lock(&pgd_lock); + pgd = pgd_offset_k(addr); + if (pgd_none(*pgd)) + goto out; + p4d = p4d_offset(pgd, addr); + if (p4d_none(*p4d)) + goto out; + pud = pud_offset(p4d, addr); + if (!pud_present(*pud) || pud_leaf(*pud)) + goto out; + pmd = pmd_offset(pud, addr); + if (!pmd_present(*pmd) || pmd_leaf(*pmd)) + goto out; + + collapsed = collapse_pmd_page(pmd, addr, pgtables); + if (collapsed) + collapsed += collapse_pud_page(pud, addr, pgtables); + +out: + spin_unlock(&pgd_lock); + return collapsed; +} + +static bool try_to_free_pte_page(pte_t *pte) +{ + int i; + + for (i = 0; i < PTRS_PER_PTE; i++) + if (!pte_none(pte[i])) + return false; + + free_page((unsigned long)pte); + return true; +} + +static bool try_to_free_pmd_page(pmd_t *pmd) +{ + int i; + + for (i = 0; i < PTRS_PER_PMD; i++) + if (!pmd_none(pmd[i])) + return false; + + free_page((unsigned long)pmd); + return true; +} + +static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) +{ + pte_t *pte = pte_offset_kernel(pmd, start); + + while (start < end) { + set_pte(pte, __pte(0)); + + start += PAGE_SIZE; + pte++; + } + + if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { + pmd_clear(pmd); + return true; + } + return false; +} + +static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, + unsigned long start, unsigned long end) +{ + if (unmap_pte_range(pmd, start, end)) + if (try_to_free_pmd_page(pud_pgtable(*pud))) + pud_clear(pud); +} + +static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) +{ + pmd_t *pmd = pmd_offset(pud, start); + + /* + * Not on a 2MB page boundary? + */ + if (start & (PMD_SIZE - 1)) { + unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; + unsigned long pre_end = min_t(unsigned long, end, next_page); + + __unmap_pmd_range(pud, pmd, start, pre_end); + + start = pre_end; + pmd++; + } + + /* + * Try to unmap in 2M chunks. + */ + while (end - start >= PMD_SIZE) { + if (pmd_leaf(*pmd)) + pmd_clear(pmd); + else + __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); + + start += PMD_SIZE; + pmd++; + } + + /* + * 4K leftovers? + */ + if (start < end) + return __unmap_pmd_range(pud, pmd, start, end); + + /* + * Try again to free the PMD page if haven't succeeded above. + */ + if (!pud_none(*pud)) + if (try_to_free_pmd_page(pud_pgtable(*pud))) + pud_clear(pud); +} + +static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) +{ + pud_t *pud = pud_offset(p4d, start); + + /* + * Not on a GB page boundary? + */ + if (start & (PUD_SIZE - 1)) { + unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; + unsigned long pre_end = min_t(unsigned long, end, next_page); + + unmap_pmd_range(pud, start, pre_end); + + start = pre_end; + pud++; + } + + /* + * Try to unmap in 1G chunks? + */ + while (end - start >= PUD_SIZE) { + + if (pud_leaf(*pud)) + pud_clear(pud); + else + unmap_pmd_range(pud, start, start + PUD_SIZE); + + start += PUD_SIZE; + pud++; + } + + /* + * 2M leftovers? + */ + if (start < end) + unmap_pmd_range(pud, start, end); + + /* + * No need to try to free the PUD page because we'll free it in + * populate_pgd's error path + */ +} + +static int alloc_pte_page(pmd_t *pmd) +{ + pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL); + if (!pte) + return -1; + + set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); + return 0; +} + +static int alloc_pmd_page(pud_t *pud) +{ + pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); + if (!pmd) + return -1; + + set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); + return 0; +} + +static void populate_pte(struct cpa_data *cpa, + unsigned long start, unsigned long end, + unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) +{ + pte_t *pte; + + pte = pte_offset_kernel(pmd, start); + + pgprot = pgprot_clear_protnone_bits(pgprot); + + while (num_pages-- && start < end) { + set_pte(pte, pfn_pte(cpa->pfn, pgprot)); + + start += PAGE_SIZE; + cpa->pfn++; + pte++; + } +} + +static long populate_pmd(struct cpa_data *cpa, + unsigned long start, unsigned long end, + unsigned num_pages, pud_t *pud, pgprot_t pgprot) +{ + long cur_pages = 0; + pmd_t *pmd; + pgprot_t pmd_pgprot; + + /* + * Not on a 2M boundary? + */ + if (start & (PMD_SIZE - 1)) { + unsigned long pre_end = start + (num_pages << PAGE_SHIFT); + unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; + + pre_end = min_t(unsigned long, pre_end, next_page); + cur_pages = (pre_end - start) >> PAGE_SHIFT; + cur_pages = min_t(unsigned int, num_pages, cur_pages); + + /* + * Need a PTE page? + */ + pmd = pmd_offset(pud, start); + if (pmd_none(*pmd)) + if (alloc_pte_page(pmd)) + return -1; + + populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); + + start = pre_end; + } + + /* + * We mapped them all? + */ + if (num_pages == cur_pages) + return cur_pages; + + pmd_pgprot = pgprot_4k_2_large(pgprot); + + while (end - start >= PMD_SIZE) { + + /* + * We cannot use a 1G page so allocate a PMD page if needed. + */ + if (pud_none(*pud)) + if (alloc_pmd_page(pud)) + return -1; + + pmd = pmd_offset(pud, start); + + set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn, + canon_pgprot(pmd_pgprot)))); + + start += PMD_SIZE; + cpa->pfn += PMD_SIZE >> PAGE_SHIFT; + cur_pages += PMD_SIZE >> PAGE_SHIFT; + } + + /* + * Map trailing 4K pages. + */ + if (start < end) { + pmd = pmd_offset(pud, start); + if (pmd_none(*pmd)) + if (alloc_pte_page(pmd)) + return -1; + + populate_pte(cpa, start, end, num_pages - cur_pages, + pmd, pgprot); + } + return num_pages; +} + +static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, + pgprot_t pgprot) +{ + pud_t *pud; + unsigned long end; + long cur_pages = 0; + pgprot_t pud_pgprot; + + end = start + (cpa->numpages << PAGE_SHIFT); + + /* + * Not on a Gb page boundary? => map everything up to it with + * smaller pages. + */ + if (start & (PUD_SIZE - 1)) { + unsigned long pre_end; + unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; + + pre_end = min_t(unsigned long, end, next_page); + cur_pages = (pre_end - start) >> PAGE_SHIFT; + cur_pages = min_t(int, (int)cpa->numpages, cur_pages); + + pud = pud_offset(p4d, start); + + /* + * Need a PMD page? + */ + if (pud_none(*pud)) + if (alloc_pmd_page(pud)) + return -1; + + cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, + pud, pgprot); + if (cur_pages < 0) + return cur_pages; + + start = pre_end; + } + + /* We mapped them all? */ + if (cpa->numpages == cur_pages) + return cur_pages; + + pud = pud_offset(p4d, start); + pud_pgprot = pgprot_4k_2_large(pgprot); + + /* + * Map everything starting from the Gb boundary, possibly with 1G pages + */ + while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { + set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn, + canon_pgprot(pud_pgprot)))); + + start += PUD_SIZE; + cpa->pfn += PUD_SIZE >> PAGE_SHIFT; + cur_pages += PUD_SIZE >> PAGE_SHIFT; + pud++; + } + + /* Map trailing leftover */ + if (start < end) { + long tmp; + + pud = pud_offset(p4d, start); + if (pud_none(*pud)) + if (alloc_pmd_page(pud)) + return -1; + + tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, + pud, pgprot); + if (tmp < 0) + return cur_pages; + + cur_pages += tmp; + } + return cur_pages; +} + +/* + * Restrictions for kernel page table do not necessarily apply when mapping in + * an alternate PGD. + */ +static int populate_pgd(struct cpa_data *cpa, unsigned long addr) +{ + pgprot_t pgprot = __pgprot(_KERNPG_TABLE); + pud_t *pud = NULL; /* shut up gcc */ + p4d_t *p4d; + pgd_t *pgd_entry; + long ret; + + pgd_entry = cpa->pgd + pgd_index(addr); + + if (pgd_none(*pgd_entry)) { + p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); + if (!p4d) + return -1; + + set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); + } + + /* + * Allocate a PUD page and hand it down for mapping. + */ + p4d = p4d_offset(pgd_entry, addr); + if (p4d_none(*p4d)) { + pud = (pud_t *)get_zeroed_page(GFP_KERNEL); + if (!pud) + return -1; + + set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); + } + + pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); + pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); + + ret = populate_pud(cpa, addr, p4d, pgprot); + if (ret < 0) { + /* + * Leave the PUD page in place in case some other CPU or thread + * already found it, but remove any useless entries we just + * added to it. + */ + unmap_pud_range(p4d, addr, + addr + (cpa->numpages << PAGE_SHIFT)); + return ret; + } + + cpa->numpages = ret; + return 0; +} + +static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, + int primary) +{ + if (cpa->pgd) { + /* + * Right now, we only execute this code path when mapping + * the EFI virtual memory map regions, no other users + * provide a ->pgd value. This may change in the future. + */ + return populate_pgd(cpa, vaddr); + } + + /* + * Ignore all non primary paths. + */ + if (!primary) { + cpa->numpages = 1; + return 0; + } + + /* + * Ignore the NULL PTE for kernel identity mapping, as it is expected + * to have holes. + * Also set numpages to '1' indicating that we processed cpa req for + * one virtual address page and its pfn. TBD: numpages can be set based + * on the initial value and the level returned by lookup_address(). + */ + if (within(vaddr, PAGE_OFFSET, + PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { + cpa->numpages = 1; + cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; + return 0; + + } else if (__cpa_pfn_in_highmap(cpa->pfn)) { + /* Faults in the highmap are OK, so do not warn: */ + return -EFAULT; + } else { + WARN(1, KERN_WARNING "CPA: called for zero pte. " + "vaddr = %lx cpa->vaddr = %lx\n", vaddr, + *cpa->vaddr); + + return -EFAULT; + } +} + +static int __change_page_attr(struct cpa_data *cpa, int primary) +{ + unsigned long address; + int do_split, err; + unsigned int level; + pte_t *kpte, old_pte; + bool nx, rw; + + address = __cpa_addr(cpa, cpa->curpage); +repeat: + kpte = _lookup_address_cpa(cpa, address, &level, &nx, &rw); + if (!kpte) + return __cpa_process_fault(cpa, address, primary); + + old_pte = *kpte; + if (pte_none(old_pte)) + return __cpa_process_fault(cpa, address, primary); + + if (level == PG_LEVEL_4K) { + pte_t new_pte; + pgprot_t old_prot = pte_pgprot(old_pte); + pgprot_t new_prot = pte_pgprot(old_pte); + unsigned long pfn = pte_pfn(old_pte); + + pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); + pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); + + cpa_inc_4k_install(); + /* Hand in lpsize = 0 to enforce the protection mechanism */ + new_prot = static_protections(new_prot, address, pfn, 1, 0, + CPA_PROTECT); + + new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1, + nx, rw); + + new_prot = pgprot_clear_protnone_bits(new_prot); + + /* + * We need to keep the pfn from the existing PTE, + * after all we're only going to change its attributes + * not the memory it points to + */ + new_pte = pfn_pte(pfn, new_prot); + cpa->pfn = pfn; + /* + * Do we really change anything ? + */ + if (pte_val(old_pte) != pte_val(new_pte)) { + set_pte_atomic(kpte, new_pte); + cpa->flags |= CPA_FLUSHTLB; + } + cpa->numpages = 1; + return 0; + } + + /* + * Check, whether we can keep the large page intact + * and just change the pte: + */ + do_split = should_split_large_page(kpte, address, cpa); + /* + * When the range fits into the existing large page, + * return. cp->numpages and cpa->tlbflush have been updated in + * try_large_page: + */ + if (do_split <= 0) + return do_split; + + /* + * We have to split the large page: + */ + err = split_large_page(cpa, kpte, address); + if (!err) + goto repeat; + + return err; +} + +static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary); + +/* + * Check the directmap and "high kernel map" 'aliases'. + */ +static int cpa_process_alias(struct cpa_data *cpa) +{ + struct cpa_data alias_cpa; + unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); + unsigned long vaddr; + int ret; + + if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) + return 0; + + /* + * No need to redo, when the primary call touched the direct + * mapping already: + */ + vaddr = __cpa_addr(cpa, cpa->curpage); + if (!(within(vaddr, PAGE_OFFSET, + PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { + + alias_cpa = *cpa; + alias_cpa.vaddr = &laddr; + alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); + alias_cpa.curpage = 0; + + /* Directmap always has NX set, do not modify. */ + if (__supported_pte_mask & _PAGE_NX) { + alias_cpa.mask_clr.pgprot &= ~_PAGE_NX; + alias_cpa.mask_set.pgprot &= ~_PAGE_NX; + } + + cpa->force_flush_all = 1; + + ret = __change_page_attr_set_clr(&alias_cpa, 0); + if (ret) + return ret; + } + +#ifdef CONFIG_X86_64 + /* + * If the primary call didn't touch the high mapping already + * and the physical address is inside the kernel map, we need + * to touch the high mapped kernel as well: + */ + if (!within(vaddr, (unsigned long)_text, _brk_end) && + __cpa_pfn_in_highmap(cpa->pfn)) { + unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + + __START_KERNEL_map - phys_base; + alias_cpa = *cpa; + alias_cpa.vaddr = &temp_cpa_vaddr; + alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); + alias_cpa.curpage = 0; + + /* + * [_text, _brk_end) also covers data, do not modify NX except + * in cases where the highmap is the primary target. + */ + if (__supported_pte_mask & _PAGE_NX) { + alias_cpa.mask_clr.pgprot &= ~_PAGE_NX; + alias_cpa.mask_set.pgprot &= ~_PAGE_NX; + } + + cpa->force_flush_all = 1; + /* + * The high mapping range is imprecise, so ignore the + * return value. + */ + __change_page_attr_set_clr(&alias_cpa, 0); + } +#endif + + return 0; +} + +static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary) +{ + unsigned long numpages = cpa->numpages; + unsigned long rempages = numpages; + int ret = 0; + + /* + * No changes, easy! + */ + if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) && + !cpa->force_split) + return ret; + + while (rempages) { + /* + * Store the remaining nr of pages for the large page + * preservation check. + */ + cpa->numpages = rempages; + /* for array changes, we can't use large page */ + if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) + cpa->numpages = 1; + + if (!debug_pagealloc_enabled()) + spin_lock(&cpa_lock); + ret = __change_page_attr(cpa, primary); + if (!debug_pagealloc_enabled()) + spin_unlock(&cpa_lock); + if (ret) + goto out; + + if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) { + ret = cpa_process_alias(cpa); + if (ret) + goto out; + } + + /* + * Adjust the number of pages with the result of the + * CPA operation. Either a large page has been + * preserved or a single page update happened. + */ + BUG_ON(cpa->numpages > rempages || !cpa->numpages); + rempages -= cpa->numpages; + cpa->curpage += cpa->numpages; + } + +out: + /* Restore the original numpages */ + cpa->numpages = numpages; + return ret; +} + +static int change_page_attr_set_clr(unsigned long *addr, int numpages, + pgprot_t mask_set, pgprot_t mask_clr, + int force_split, int in_flag, + struct page **pages) +{ + struct cpa_data cpa; + int ret, cache; + + memset(&cpa, 0, sizeof(cpa)); + + /* + * Check, if we are requested to set a not supported + * feature. Clearing non-supported features is OK. + */ + mask_set = canon_pgprot(mask_set); + + if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) + return 0; + + /* Ensure we are PAGE_SIZE aligned */ + if (in_flag & CPA_ARRAY) { + int i; + for (i = 0; i < numpages; i++) { + if (addr[i] & ~PAGE_MASK) { + addr[i] &= PAGE_MASK; + WARN_ON_ONCE(1); + } + } + } else if (!(in_flag & CPA_PAGES_ARRAY)) { + /* + * in_flag of CPA_PAGES_ARRAY implies it is aligned. + * No need to check in that case + */ + if (*addr & ~PAGE_MASK) { + *addr &= PAGE_MASK; + /* + * People should not be passing in unaligned addresses: + */ + WARN_ON_ONCE(1); + } + } + + /* Must avoid aliasing mappings in the highmem code */ + kmap_flush_unused(); + + vm_unmap_aliases(); + + cpa.vaddr = addr; + cpa.pages = pages; + cpa.numpages = numpages; + cpa.mask_set = mask_set; + cpa.mask_clr = mask_clr; + cpa.flags = in_flag; + cpa.curpage = 0; + cpa.force_split = force_split; + + ret = __change_page_attr_set_clr(&cpa, 1); + + /* + * Check whether we really changed something: + */ + if (!(cpa.flags & CPA_FLUSHTLB)) + goto out; + + /* + * No need to flush, when we did not set any of the caching + * attributes: + */ + cache = !!pgprot2cachemode(mask_set); + + /* + * On error; flush everything to be sure. + */ + if (ret) { + cpa_flush_all(cache); + goto out; + } + + cpa_flush(&cpa, cache); +out: + return ret; +} + +static inline int change_page_attr_set(unsigned long *addr, int numpages, + pgprot_t mask, int array) +{ + return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, + (array ? CPA_ARRAY : 0), NULL); +} + +static inline int change_page_attr_clear(unsigned long *addr, int numpages, + pgprot_t mask, int array) +{ + return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, + (array ? CPA_ARRAY : 0), NULL); +} + +static inline int cpa_set_pages_array(struct page **pages, int numpages, + pgprot_t mask) +{ + return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, + CPA_PAGES_ARRAY, pages); +} + +static inline int cpa_clear_pages_array(struct page **pages, int numpages, + pgprot_t mask) +{ + return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, + CPA_PAGES_ARRAY, pages); +} + +/* + * __set_memory_prot is an internal helper for callers that have been passed + * a pgprot_t value from upper layers and a reservation has already been taken. + * If you want to set the pgprot to a specific page protocol, use the + * set_memory_xx() functions. + */ +int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot) +{ + return change_page_attr_set_clr(&addr, numpages, prot, + __pgprot(~pgprot_val(prot)), 0, 0, + NULL); +} + +int _set_memory_uc(unsigned long addr, int numpages) +{ + /* + * for now UC MINUS. see comments in ioremap() + * If you really need strong UC use ioremap_uc(), but note + * that you cannot override IO areas with set_memory_*() as + * these helpers cannot work with IO memory. + */ + return change_page_attr_set(&addr, numpages, + cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), + 0); +} + +int set_memory_uc(unsigned long addr, int numpages) +{ + int ret; + + /* + * for now UC MINUS. see comments in ioremap() + */ + ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, + _PAGE_CACHE_MODE_UC_MINUS, NULL); + if (ret) + goto out_err; + + ret = _set_memory_uc(addr, numpages); + if (ret) + goto out_free; + + return 0; + +out_free: + memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); +out_err: + return ret; +} +EXPORT_SYMBOL(set_memory_uc); + +int _set_memory_wc(unsigned long addr, int numpages) +{ + int ret; + + ret = change_page_attr_set(&addr, numpages, + cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), + 0); + if (!ret) { + ret = change_page_attr_set_clr(&addr, numpages, + cachemode2pgprot(_PAGE_CACHE_MODE_WC), + __pgprot(_PAGE_CACHE_MASK), + 0, 0, NULL); + } + return ret; +} + +int set_memory_wc(unsigned long addr, int numpages) +{ + int ret; + + ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, + _PAGE_CACHE_MODE_WC, NULL); + if (ret) + return ret; + + ret = _set_memory_wc(addr, numpages); + if (ret) + memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); + + return ret; +} +EXPORT_SYMBOL(set_memory_wc); + +int _set_memory_wt(unsigned long addr, int numpages) +{ + return change_page_attr_set(&addr, numpages, + cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); +} + +int _set_memory_wb(unsigned long addr, int numpages) +{ + /* WB cache mode is hard wired to all cache attribute bits being 0 */ + return change_page_attr_clear(&addr, numpages, + __pgprot(_PAGE_CACHE_MASK), 0); +} + +int set_memory_wb(unsigned long addr, int numpages) +{ + int ret; + + ret = _set_memory_wb(addr, numpages); + if (ret) + return ret; + + memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); + return 0; +} +EXPORT_SYMBOL(set_memory_wb); + +/* Prevent speculative access to a page by marking it not-present */ +#ifdef CONFIG_X86_64 +int set_mce_nospec(unsigned long pfn) +{ + unsigned long decoy_addr; + int rc; + + /* SGX pages are not in the 1:1 map */ + if (arch_is_platform_page(pfn << PAGE_SHIFT)) + return 0; + /* + * We would like to just call: + * set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1); + * but doing that would radically increase the odds of a + * speculative access to the poison page because we'd have + * the virtual address of the kernel 1:1 mapping sitting + * around in registers. + * Instead we get tricky. We create a non-canonical address + * that looks just like the one we want, but has bit 63 flipped. + * This relies on set_memory_XX() properly sanitizing any __pa() + * results with __PHYSICAL_MASK or PTE_PFN_MASK. + */ + decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63)); + + rc = set_memory_np(decoy_addr, 1); + if (rc) + pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn); + return rc; +} +EXPORT_SYMBOL_GPL(set_mce_nospec); + +/* Restore full speculative operation to the pfn. */ +int clear_mce_nospec(unsigned long pfn) +{ + unsigned long addr = (unsigned long) pfn_to_kaddr(pfn); + + return set_memory_p(addr, 1); +} +EXPORT_SYMBOL_GPL(clear_mce_nospec); +#endif /* CONFIG_X86_64 */ + +int set_memory_x(unsigned long addr, int numpages) +{ + if (!(__supported_pte_mask & _PAGE_NX)) + return 0; + + return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); +} + +int set_memory_nx(unsigned long addr, int numpages) +{ + if (!(__supported_pte_mask & _PAGE_NX)) + return 0; + + return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); +} + +int set_memory_ro(unsigned long addr, int numpages) +{ + return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0); +} + +int set_memory_rox(unsigned long addr, int numpages) +{ + pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY); + + if (__supported_pte_mask & _PAGE_NX) + clr.pgprot |= _PAGE_NX; + + return change_page_attr_set_clr(&addr, numpages, __pgprot(0), clr, 0, + CPA_COLLAPSE, NULL); +} + +int set_memory_rw(unsigned long addr, int numpages) +{ + return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); +} + +int set_memory_np(unsigned long addr, int numpages) +{ + return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); +} + +int set_memory_np_noalias(unsigned long addr, int numpages) +{ + return change_page_attr_set_clr(&addr, numpages, __pgprot(0), + __pgprot(_PAGE_PRESENT), 0, + CPA_NO_CHECK_ALIAS, NULL); +} + +int set_memory_p(unsigned long addr, int numpages) +{ + return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); +} + +int set_memory_4k(unsigned long addr, int numpages) +{ + return change_page_attr_set_clr(&addr, numpages, + __pgprot(_PAGE_KERNEL_4K), + __pgprot(0), 1, 0, NULL); +} + +int set_memory_nonglobal(unsigned long addr, int numpages) +{ + return change_page_attr_clear(&addr, numpages, + __pgprot(_PAGE_GLOBAL), 0); +} + +int set_memory_global(unsigned long addr, int numpages) +{ + return change_page_attr_set(&addr, numpages, + __pgprot(_PAGE_GLOBAL), 0); +} + +/* + * __set_memory_enc_pgtable() is used for the hypervisors that get + * informed about "encryption" status via page tables. + */ +static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc) +{ + pgprot_t empty = __pgprot(0); + struct cpa_data cpa; + int ret; + + /* Should not be working on unaligned addresses */ + if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) + addr &= PAGE_MASK; + + memset(&cpa, 0, sizeof(cpa)); + cpa.vaddr = &addr; + cpa.numpages = numpages; + cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty); + cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty); + cpa.pgd = init_mm.pgd; + + /* Must avoid aliasing mappings in the highmem code */ + kmap_flush_unused(); + vm_unmap_aliases(); + + /* Flush the caches as needed before changing the encryption attribute. */ + if (x86_platform.guest.enc_tlb_flush_required(enc)) + cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required()); + + /* Notify hypervisor that we are about to set/clr encryption attribute. */ + ret = x86_platform.guest.enc_status_change_prepare(addr, numpages, enc); + if (ret) + goto vmm_fail; + + ret = __change_page_attr_set_clr(&cpa, 1); + + /* + * After changing the encryption attribute, we need to flush TLBs again + * in case any speculative TLB caching occurred (but no need to flush + * caches again). We could just use cpa_flush_all(), but in case TLB + * flushing gets optimized in the cpa_flush() path use the same logic + * as above. + */ + cpa_flush(&cpa, 0); + + if (ret) + return ret; + + /* Notify hypervisor that we have successfully set/clr encryption attribute. */ + ret = x86_platform.guest.enc_status_change_finish(addr, numpages, enc); + if (ret) + goto vmm_fail; + + return 0; + +vmm_fail: + WARN_ONCE(1, "CPA VMM failure to convert memory (addr=%p, numpages=%d) to %s: %d\n", + (void *)addr, numpages, enc ? "private" : "shared", ret); + + return ret; +} + +/* + * The lock serializes conversions between private and shared memory. + * + * It is taken for read on conversion. A write lock guarantees that no + * concurrent conversions are in progress. + */ +static DECLARE_RWSEM(mem_enc_lock); + +/* + * Stop new private<->shared conversions. + * + * Taking the exclusive mem_enc_lock waits for in-flight conversions to complete. + * The lock is not released to prevent new conversions from being started. + */ +bool set_memory_enc_stop_conversion(void) +{ + /* + * In a crash scenario, sleep is not allowed. Try to take the lock. + * Failure indicates that there is a race with the conversion. + */ + if (oops_in_progress) + return down_write_trylock(&mem_enc_lock); + + down_write(&mem_enc_lock); + + return true; +} + +static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) +{ + int ret = 0; + + if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { + if (!down_read_trylock(&mem_enc_lock)) + return -EBUSY; + + ret = __set_memory_enc_pgtable(addr, numpages, enc); + + up_read(&mem_enc_lock); + } + + return ret; +} + +int set_memory_encrypted(unsigned long addr, int numpages) +{ + return __set_memory_enc_dec(addr, numpages, true); +} +EXPORT_SYMBOL_GPL(set_memory_encrypted); + +int set_memory_decrypted(unsigned long addr, int numpages) +{ + return __set_memory_enc_dec(addr, numpages, false); +} +EXPORT_SYMBOL_GPL(set_memory_decrypted); + +int set_pages_uc(struct page *page, int numpages) +{ + unsigned long addr = (unsigned long)page_address(page); + + return set_memory_uc(addr, numpages); +} +EXPORT_SYMBOL(set_pages_uc); + +static int _set_pages_array(struct page **pages, int numpages, + enum page_cache_mode new_type) +{ + unsigned long start; + unsigned long end; + enum page_cache_mode set_type; + int i; + int free_idx; + int ret; + + for (i = 0; i < numpages; i++) { + if (PageHighMem(pages[i])) + continue; + start = page_to_pfn(pages[i]) << PAGE_SHIFT; + end = start + PAGE_SIZE; + if (memtype_reserve(start, end, new_type, NULL)) + goto err_out; + } + + /* If WC, set to UC- first and then WC */ + set_type = (new_type == _PAGE_CACHE_MODE_WC) ? + _PAGE_CACHE_MODE_UC_MINUS : new_type; + + ret = cpa_set_pages_array(pages, numpages, + cachemode2pgprot(set_type)); + if (!ret && new_type == _PAGE_CACHE_MODE_WC) + ret = change_page_attr_set_clr(NULL, numpages, + cachemode2pgprot( + _PAGE_CACHE_MODE_WC), + __pgprot(_PAGE_CACHE_MASK), + 0, CPA_PAGES_ARRAY, pages); + if (ret) + goto err_out; + return 0; /* Success */ +err_out: + free_idx = i; + for (i = 0; i < free_idx; i++) { + if (PageHighMem(pages[i])) + continue; + start = page_to_pfn(pages[i]) << PAGE_SHIFT; + end = start + PAGE_SIZE; + memtype_free(start, end); + } + return -EINVAL; +} + +int set_pages_array_uc(struct page **pages, int numpages) +{ + return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS); +} +EXPORT_SYMBOL(set_pages_array_uc); + +int set_pages_array_wc(struct page **pages, int numpages) +{ + return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC); +} +EXPORT_SYMBOL(set_pages_array_wc); + +int set_pages_wb(struct page *page, int numpages) +{ + unsigned long addr = (unsigned long)page_address(page); + + return set_memory_wb(addr, numpages); +} +EXPORT_SYMBOL(set_pages_wb); + +int set_pages_array_wb(struct page **pages, int numpages) +{ + int retval; + unsigned long start; + unsigned long end; + int i; + + /* WB cache mode is hard wired to all cache attribute bits being 0 */ + retval = cpa_clear_pages_array(pages, numpages, + __pgprot(_PAGE_CACHE_MASK)); + if (retval) + return retval; + + for (i = 0; i < numpages; i++) { + if (PageHighMem(pages[i])) + continue; + start = page_to_pfn(pages[i]) << PAGE_SHIFT; + end = start + PAGE_SIZE; + memtype_free(start, end); + } + + return 0; +} +EXPORT_SYMBOL(set_pages_array_wb); + +int set_pages_ro(struct page *page, int numpages) +{ + unsigned long addr = (unsigned long)page_address(page); + + return set_memory_ro(addr, numpages); +} + +int set_pages_rw(struct page *page, int numpages) +{ + unsigned long addr = (unsigned long)page_address(page); + + return set_memory_rw(addr, numpages); +} + +static int __set_pages_p(struct page *page, int numpages) +{ + unsigned long tempaddr = (unsigned long) page_address(page); + struct cpa_data cpa = { .vaddr = &tempaddr, + .pgd = NULL, + .numpages = numpages, + .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), + .mask_clr = __pgprot(0), + .flags = CPA_NO_CHECK_ALIAS }; + + /* + * No alias checking needed for setting present flag. otherwise, + * we may need to break large pages for 64-bit kernel text + * mappings (this adds to complexity if we want to do this from + * atomic context especially). Let's keep it simple! + */ + return __change_page_attr_set_clr(&cpa, 1); +} + +static int __set_pages_np(struct page *page, int numpages) +{ + unsigned long tempaddr = (unsigned long) page_address(page); + struct cpa_data cpa = { .vaddr = &tempaddr, + .pgd = NULL, + .numpages = numpages, + .mask_set = __pgprot(0), + .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY), + .flags = CPA_NO_CHECK_ALIAS }; + + /* + * No alias checking needed for setting not present flag. otherwise, + * we may need to break large pages for 64-bit kernel text + * mappings (this adds to complexity if we want to do this from + * atomic context especially). Let's keep it simple! + */ + return __change_page_attr_set_clr(&cpa, 1); +} + +int set_direct_map_invalid_noflush(struct page *page) +{ + return __set_pages_np(page, 1); +} + +int set_direct_map_default_noflush(struct page *page) +{ + return __set_pages_p(page, 1); +} + +int set_direct_map_valid_noflush(struct page *page, unsigned nr, bool valid) +{ + if (valid) + return __set_pages_p(page, nr); + + return __set_pages_np(page, nr); +} + +#ifdef CONFIG_DEBUG_PAGEALLOC +void __kernel_map_pages(struct page *page, int numpages, int enable) +{ + if (PageHighMem(page)) + return; + if (!enable) { + debug_check_no_locks_freed(page_address(page), + numpages * PAGE_SIZE); + } + + /* + * The return value is ignored as the calls cannot fail. + * Large pages for identity mappings are not used at boot time + * and hence no memory allocations during large page split. + */ + if (enable) + __set_pages_p(page, numpages); + else + __set_pages_np(page, numpages); + + /* + * We should perform an IPI and flush all tlbs, + * but that can deadlock->flush only current cpu. + * Preemption needs to be disabled around __flush_tlb_all() due to + * CR3 reload in __native_flush_tlb(). + */ + preempt_disable(); + __flush_tlb_all(); + preempt_enable(); + + arch_flush_lazy_mmu_mode(); +} +#endif /* CONFIG_DEBUG_PAGEALLOC */ + +bool kernel_page_present(struct page *page) +{ + unsigned int level; + pte_t *pte; + + if (PageHighMem(page)) + return false; + + pte = lookup_address((unsigned long)page_address(page), &level); + return (pte_val(*pte) & _PAGE_PRESENT); +} + +int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, + unsigned numpages, unsigned long page_flags) +{ + int retval = -EINVAL; + + struct cpa_data cpa = { + .vaddr = &address, + .pfn = pfn, + .pgd = pgd, + .numpages = numpages, + .mask_set = __pgprot(0), + .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW|_PAGE_DIRTY)), + .flags = CPA_NO_CHECK_ALIAS, + }; + + WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); + + if (!(__supported_pte_mask & _PAGE_NX)) + goto out; + + if (!(page_flags & _PAGE_ENC)) + cpa.mask_clr = pgprot_encrypted(cpa.mask_clr); + + cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); + + retval = __change_page_attr_set_clr(&cpa, 1); + __flush_tlb_all(); + +out: + return retval; +} + +/* + * __flush_tlb_all() flushes mappings only on current CPU and hence this + * function shouldn't be used in an SMP environment. Presently, it's used only + * during boot (way before smp_init()) by EFI subsystem and hence is ok. + */ +int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, + unsigned long numpages) +{ + int retval; + + /* + * The typical sequence for unmapping is to find a pte through + * lookup_address_in_pgd() (ideally, it should never return NULL because + * the address is already mapped) and change its protections. As pfn is + * the *target* of a mapping, it's not useful while unmapping. + */ + struct cpa_data cpa = { + .vaddr = &address, + .pfn = 0, + .pgd = pgd, + .numpages = numpages, + .mask_set = __pgprot(0), + .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY), + .flags = CPA_NO_CHECK_ALIAS, + }; + + WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); + + retval = __change_page_attr_set_clr(&cpa, 1); + __flush_tlb_all(); + + return retval; +} + +/* + * The testcases use internal knowledge of the implementation that shouldn't + * be exposed to the rest of the kernel. Include these directly here. + */ +#ifdef CONFIG_CPA_DEBUG +#include "cpa-test.c" +#endif diff --git a/arch/x86/mm/pat_internal.h b/arch/x86/mm/pat_internal.h deleted file mode 100644 index 77e5ba153fac..000000000000 --- a/arch/x86/mm/pat_internal.h +++ /dev/null @@ -1,46 +0,0 @@ -#ifndef __PAT_INTERNAL_H_ -#define __PAT_INTERNAL_H_ - -extern int pat_debug_enable; - -#define dprintk(fmt, arg...) \ - do { if (pat_debug_enable) printk(KERN_INFO fmt, ##arg); } while (0) - -struct memtype { - u64 start; - u64 end; - u64 subtree_max_end; - unsigned long type; - struct rb_node rb; -}; - -static inline char *cattr_name(unsigned long flags) -{ - switch (flags & _PAGE_CACHE_MASK) { - case _PAGE_CACHE_UC: return "uncached"; - case _PAGE_CACHE_UC_MINUS: return "uncached-minus"; - case _PAGE_CACHE_WB: return "write-back"; - case _PAGE_CACHE_WC: return "write-combining"; - default: return "broken"; - } -} - -#ifdef CONFIG_X86_PAT -extern int rbt_memtype_check_insert(struct memtype *new, - unsigned long *new_type); -extern struct memtype *rbt_memtype_erase(u64 start, u64 end); -extern struct memtype *rbt_memtype_lookup(u64 addr); -extern int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos); -#else -static inline int rbt_memtype_check_insert(struct memtype *new, - unsigned long *new_type) -{ return 0; } -static inline struct memtype *rbt_memtype_erase(u64 start, u64 end) -{ return NULL; } -static inline struct memtype *rbt_memtype_lookup(u64 addr) -{ return NULL; } -static inline int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos) -{ return 0; } -#endif - -#endif /* __PAT_INTERNAL_H_ */ diff --git a/arch/x86/mm/pat_rbtree.c b/arch/x86/mm/pat_rbtree.c deleted file mode 100644 index 415f6c4ced36..000000000000 --- a/arch/x86/mm/pat_rbtree.c +++ /dev/null @@ -1,247 +0,0 @@ -/* - * Handle caching attributes in page tables (PAT) - * - * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> - * Suresh B Siddha <suresh.b.siddha@intel.com> - * - * Interval tree (augmented rbtree) used to store the PAT memory type - * reservations. - */ - -#include <linux/seq_file.h> -#include <linux/debugfs.h> -#include <linux/kernel.h> -#include <linux/module.h> -#include <linux/rbtree_augmented.h> -#include <linux/sched.h> -#include <linux/gfp.h> - -#include <asm/pgtable.h> -#include <asm/pat.h> - -#include "pat_internal.h" - -/* - * The memtype tree keeps track of memory type for specific - * physical memory areas. Without proper tracking, conflicting memory - * types in different mappings can cause CPU cache corruption. - * - * The tree is an interval tree (augmented rbtree) with tree ordered - * on starting address. Tree can contain multiple entries for - * different regions which overlap. All the aliases have the same - * cache attributes of course. - * - * memtype_lock protects the rbtree. - */ - -static struct rb_root memtype_rbroot = RB_ROOT; - -static int is_node_overlap(struct memtype *node, u64 start, u64 end) -{ - if (node->start >= end || node->end <= start) - return 0; - - return 1; -} - -static u64 get_subtree_max_end(struct rb_node *node) -{ - u64 ret = 0; - if (node) { - struct memtype *data = container_of(node, struct memtype, rb); - ret = data->subtree_max_end; - } - return ret; -} - -static u64 compute_subtree_max_end(struct memtype *data) -{ - u64 max_end = data->end, child_max_end; - - child_max_end = get_subtree_max_end(data->rb.rb_right); - if (child_max_end > max_end) - max_end = child_max_end; - - child_max_end = get_subtree_max_end(data->rb.rb_left); - if (child_max_end > max_end) - max_end = child_max_end; - - return max_end; -} - -RB_DECLARE_CALLBACKS(static, memtype_rb_augment_cb, struct memtype, rb, - u64, subtree_max_end, compute_subtree_max_end) - -/* Find the first (lowest start addr) overlapping range from rb tree */ -static struct memtype *memtype_rb_lowest_match(struct rb_root *root, - u64 start, u64 end) -{ - struct rb_node *node = root->rb_node; - struct memtype *last_lower = NULL; - - while (node) { - struct memtype *data = container_of(node, struct memtype, rb); - - if (get_subtree_max_end(node->rb_left) > start) { - /* Lowest overlap if any must be on left side */ - node = node->rb_left; - } else if (is_node_overlap(data, start, end)) { - last_lower = data; - break; - } else if (start >= data->start) { - /* Lowest overlap if any must be on right side */ - node = node->rb_right; - } else { - break; - } - } - return last_lower; /* Returns NULL if there is no overlap */ -} - -static struct memtype *memtype_rb_exact_match(struct rb_root *root, - u64 start, u64 end) -{ - struct memtype *match; - - match = memtype_rb_lowest_match(root, start, end); - while (match != NULL && match->start < end) { - struct rb_node *node; - - if (match->start == start && match->end == end) - return match; - - node = rb_next(&match->rb); - if (node) - match = container_of(node, struct memtype, rb); - else - match = NULL; - } - - return NULL; /* Returns NULL if there is no exact match */ -} - -static int memtype_rb_check_conflict(struct rb_root *root, - u64 start, u64 end, - unsigned long reqtype, unsigned long *newtype) -{ - struct rb_node *node; - struct memtype *match; - int found_type = reqtype; - - match = memtype_rb_lowest_match(&memtype_rbroot, start, end); - if (match == NULL) - goto success; - - if (match->type != found_type && newtype == NULL) - goto failure; - - dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end); - found_type = match->type; - - node = rb_next(&match->rb); - while (node) { - match = container_of(node, struct memtype, rb); - - if (match->start >= end) /* Checked all possible matches */ - goto success; - - if (is_node_overlap(match, start, end) && - match->type != found_type) { - goto failure; - } - - node = rb_next(&match->rb); - } -success: - if (newtype) - *newtype = found_type; - - return 0; - -failure: - printk(KERN_INFO "%s:%d conflicting memory types " - "%Lx-%Lx %s<->%s\n", current->comm, current->pid, start, - end, cattr_name(found_type), cattr_name(match->type)); - return -EBUSY; -} - -static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata) -{ - struct rb_node **node = &(root->rb_node); - struct rb_node *parent = NULL; - - while (*node) { - struct memtype *data = container_of(*node, struct memtype, rb); - - parent = *node; - if (data->subtree_max_end < newdata->end) - data->subtree_max_end = newdata->end; - if (newdata->start <= data->start) - node = &((*node)->rb_left); - else if (newdata->start > data->start) - node = &((*node)->rb_right); - } - - newdata->subtree_max_end = newdata->end; - rb_link_node(&newdata->rb, parent, node); - rb_insert_augmented(&newdata->rb, root, &memtype_rb_augment_cb); -} - -int rbt_memtype_check_insert(struct memtype *new, unsigned long *ret_type) -{ - int err = 0; - - err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end, - new->type, ret_type); - - if (!err) { - if (ret_type) - new->type = *ret_type; - - new->subtree_max_end = new->end; - memtype_rb_insert(&memtype_rbroot, new); - } - return err; -} - -struct memtype *rbt_memtype_erase(u64 start, u64 end) -{ - struct memtype *data; - - data = memtype_rb_exact_match(&memtype_rbroot, start, end); - if (!data) - goto out; - - rb_erase_augmented(&data->rb, &memtype_rbroot, &memtype_rb_augment_cb); -out: - return data; -} - -struct memtype *rbt_memtype_lookup(u64 addr) -{ - struct memtype *data; - data = memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE); - return data; -} - -#if defined(CONFIG_DEBUG_FS) -int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos) -{ - struct rb_node *node; - int i = 1; - - node = rb_first(&memtype_rbroot); - while (node && pos != i) { - node = rb_next(node); - i++; - } - - if (node) { /* pos == i */ - struct memtype *this = container_of(node, struct memtype, rb); - *out = *this; - return 0; - } else { - return 1; - } -} -#endif diff --git a/arch/x86/mm/pf_in.c b/arch/x86/mm/pf_in.c index 9f0614daea85..3f83e31b3a93 100644 --- a/arch/x86/mm/pf_in.c +++ b/arch/x86/mm/pf_in.c @@ -1,22 +1,7 @@ +// SPDX-License-Identifier: GPL-2.0-or-later /* * Fault Injection Test harness (FI) * Copyright (C) Intel Crop. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version 2 - * of the License, or (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, - * USA. - * */ /* Id: pf_in.c,v 1.1.1.1 2002/11/12 05:56:32 brlock Exp @@ -26,7 +11,6 @@ * Bjorn Steinbrink (B.Steinbrink@gmx.de), 2007 */ -#include <linux/module.h> #include <linux/ptrace.h> /* struct pt_regs */ #include "pf_in.h" diff --git a/arch/x86/mm/pf_in.h b/arch/x86/mm/pf_in.h index e05341a51a27..e2a13dce0e13 100644 --- a/arch/x86/mm/pf_in.h +++ b/arch/x86/mm/pf_in.h @@ -1,22 +1,7 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Fault Injection Test harness (FI) * Copyright (C) Intel Crop. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version 2 - * of the License, or (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, - * USA. - * */ #ifndef __PF_H_ diff --git a/arch/x86/mm/pgprot.c b/arch/x86/mm/pgprot.c new file mode 100644 index 000000000000..dc1afd5c839d --- /dev/null +++ b/arch/x86/mm/pgprot.c @@ -0,0 +1,63 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include <linux/export.h> +#include <linux/mm.h> +#include <asm/pgtable.h> +#include <asm/mem_encrypt.h> + +static pgprot_t protection_map[16] __ro_after_init = { + [VM_NONE] = PAGE_NONE, + [VM_READ] = PAGE_READONLY, + [VM_WRITE] = PAGE_COPY, + [VM_WRITE | VM_READ] = PAGE_COPY, + [VM_EXEC] = PAGE_READONLY_EXEC, + [VM_EXEC | VM_READ] = PAGE_READONLY_EXEC, + [VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC, + [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC, + [VM_SHARED] = PAGE_NONE, + [VM_SHARED | VM_READ] = PAGE_READONLY, + [VM_SHARED | VM_WRITE] = PAGE_SHARED, + [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED, + [VM_SHARED | VM_EXEC] = PAGE_READONLY_EXEC, + [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READONLY_EXEC, + [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC, + [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC +}; + +void add_encrypt_protection_map(void) +{ + unsigned int i; + + for (i = 0; i < ARRAY_SIZE(protection_map); i++) + protection_map[i] = pgprot_encrypted(protection_map[i]); +} + +pgprot_t vm_get_page_prot(vm_flags_t vm_flags) +{ + unsigned long val = pgprot_val(protection_map[vm_flags & + (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]); + +#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS + /* + * Take the 4 protection key bits out of the vma->vm_flags value and + * turn them in to the bits that we can put in to a pte. + * + * Only override these if Protection Keys are available (which is only + * on 64-bit). + */ + if (vm_flags & VM_PKEY_BIT0) + val |= _PAGE_PKEY_BIT0; + if (vm_flags & VM_PKEY_BIT1) + val |= _PAGE_PKEY_BIT1; + if (vm_flags & VM_PKEY_BIT2) + val |= _PAGE_PKEY_BIT2; + if (vm_flags & VM_PKEY_BIT3) + val |= _PAGE_PKEY_BIT3; +#endif + + val = __sme_set(val); + if (val & _PAGE_PRESENT) + val &= __supported_pte_mask; + return __pgprot(val); +} +EXPORT_SYMBOL(vm_get_page_prot); diff --git a/arch/x86/mm/pgtable.c b/arch/x86/mm/pgtable.c index dfa537a03be1..2e5ecfdce73c 100644 --- a/arch/x86/mm/pgtable.c +++ b/arch/x86/mm/pgtable.c @@ -1,60 +1,30 @@ +// SPDX-License-Identifier: GPL-2.0 #include <linux/mm.h> #include <linux/gfp.h> +#include <linux/hugetlb.h> #include <asm/pgalloc.h> -#include <asm/pgtable.h> #include <asm/tlb.h> #include <asm/fixmap.h> +#include <asm/mtrr.h> -#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO - -#ifdef CONFIG_HIGHPTE -#define PGALLOC_USER_GFP __GFP_HIGHMEM -#else -#define PGALLOC_USER_GFP 0 +#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK +phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1; +EXPORT_SYMBOL(physical_mask); +SYM_PIC_ALIAS(physical_mask); #endif -gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP; - -pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) -{ - return (pte_t *)__get_free_page(PGALLOC_GFP); -} - -pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) +pgtable_t pte_alloc_one(struct mm_struct *mm) { - struct page *pte; - - pte = alloc_pages(__userpte_alloc_gfp, 0); - if (pte) - pgtable_page_ctor(pte); - return pte; + return __pte_alloc_one(mm, GFP_PGTABLE_USER); } -static int __init setup_userpte(char *arg) -{ - if (!arg) - return -EINVAL; - - /* - * "userpte=nohigh" disables allocation of user pagetables in - * high memory. - */ - if (strcmp(arg, "nohigh") == 0) - __userpte_alloc_gfp &= ~__GFP_HIGHMEM; - else - return -EINVAL; - return 0; -} -early_param("userpte", setup_userpte); - void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) { - pgtable_page_dtor(pte); paravirt_release_pte(page_to_pfn(pte)); - tlb_remove_page(tlb, pte); + tlb_remove_ptdesc(tlb, page_ptdesc(pte)); } -#if PAGETABLE_LEVELS > 2 +#if CONFIG_PGTABLE_LEVELS > 2 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) { paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); @@ -65,72 +35,65 @@ void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) #ifdef CONFIG_X86_PAE tlb->need_flush_all = 1; #endif - tlb_remove_page(tlb, virt_to_page(pmd)); + tlb_remove_ptdesc(tlb, virt_to_ptdesc(pmd)); } -#if PAGETABLE_LEVELS > 3 +#if CONFIG_PGTABLE_LEVELS > 3 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) { paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); - tlb_remove_page(tlb, virt_to_page(pud)); + tlb_remove_ptdesc(tlb, virt_to_ptdesc(pud)); +} + +#if CONFIG_PGTABLE_LEVELS > 4 +void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d) +{ + paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT); + tlb_remove_ptdesc(tlb, virt_to_ptdesc(p4d)); } -#endif /* PAGETABLE_LEVELS > 3 */ -#endif /* PAGETABLE_LEVELS > 2 */ +#endif /* CONFIG_PGTABLE_LEVELS > 4 */ +#endif /* CONFIG_PGTABLE_LEVELS > 3 */ +#endif /* CONFIG_PGTABLE_LEVELS > 2 */ static inline void pgd_list_add(pgd_t *pgd) { - struct page *page = virt_to_page(pgd); + struct ptdesc *ptdesc = virt_to_ptdesc(pgd); - list_add(&page->lru, &pgd_list); + list_add(&ptdesc->pt_list, &pgd_list); } static inline void pgd_list_del(pgd_t *pgd) { - struct page *page = virt_to_page(pgd); + struct ptdesc *ptdesc = virt_to_ptdesc(pgd); - list_del(&page->lru); + list_del(&ptdesc->pt_list); } -#define UNSHARED_PTRS_PER_PGD \ - (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) - - static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm) { - BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm)); - virt_to_page(pgd)->index = (pgoff_t)mm; + virt_to_ptdesc(pgd)->pt_mm = mm; } struct mm_struct *pgd_page_get_mm(struct page *page) { - return (struct mm_struct *)page->index; + return page_ptdesc(page)->pt_mm; } static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd) { - /* If the pgd points to a shared pagetable level (either the - ptes in non-PAE, or shared PMD in PAE), then just copy the - references from swapper_pg_dir. */ - if (PAGETABLE_LEVELS == 2 || - (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || - PAGETABLE_LEVELS == 4) { + /* PAE preallocates all its PMDs. No cloning needed. */ + if (!IS_ENABLED(CONFIG_X86_PAE)) clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, swapper_pg_dir + KERNEL_PGD_BOUNDARY, KERNEL_PGD_PTRS); - } - /* list required to sync kernel mapping updates */ - if (!SHARED_KERNEL_PMD) { - pgd_set_mm(pgd, mm); - pgd_list_add(pgd); - } + /* List used to sync kernel mapping updates */ + pgd_set_mm(pgd, mm); + pgd_list_add(pgd); } static void pgd_dtor(pgd_t *pgd) { - if (SHARED_KERNEL_PMD) - return; - spin_lock(&pgd_lock); pgd_list_del(pgd); spin_unlock(&pgd_lock); @@ -154,12 +117,22 @@ static void pgd_dtor(pgd_t *pgd) * processor notices the update. Since this is expensive, and * all 4 top-level entries are used almost immediately in a * new process's life, we just pre-populate them here. + */ +#define PREALLOCATED_PMDS PTRS_PER_PGD + +/* + * "USER_PMDS" are the PMDs for the user copy of the page tables when + * PTI is enabled. They do not exist when PTI is disabled. Note that + * this is distinct from the user _portion_ of the kernel page tables + * which always exists. * - * Also, if we're in a paravirt environment where the kernel pmd is - * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate - * and initialize the kernel pmds here. + * We allocate separate PMDs for the kernel part of the user page-table + * when PTI is enabled. We need them to map the per-process LDT into the + * user-space page-table. */ -#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD +#define PREALLOCATED_USER_PMDS (boot_cpu_has(X86_FEATURE_PTI) ? \ + KERNEL_PGD_PTRS : 0) +#define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) { @@ -181,32 +154,56 @@ void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) /* No need to prepopulate any pagetable entries in non-PAE modes. */ #define PREALLOCATED_PMDS 0 - +#define PREALLOCATED_USER_PMDS 0 +#define MAX_PREALLOCATED_USER_PMDS 0 #endif /* CONFIG_X86_PAE */ -static void free_pmds(pmd_t *pmds[]) +static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count) { int i; + struct ptdesc *ptdesc; - for(i = 0; i < PREALLOCATED_PMDS; i++) - if (pmds[i]) - free_page((unsigned long)pmds[i]); + for (i = 0; i < count; i++) + if (pmds[i]) { + ptdesc = virt_to_ptdesc(pmds[i]); + + pagetable_dtor(ptdesc); + pagetable_free(ptdesc); + mm_dec_nr_pmds(mm); + } } -static int preallocate_pmds(pmd_t *pmds[]) +static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count) { int i; bool failed = false; + gfp_t gfp = GFP_PGTABLE_USER; + + if (mm == &init_mm) + gfp &= ~__GFP_ACCOUNT; + gfp &= ~__GFP_HIGHMEM; - for(i = 0; i < PREALLOCATED_PMDS; i++) { - pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP); - if (pmd == NULL) + for (i = 0; i < count; i++) { + pmd_t *pmd = NULL; + struct ptdesc *ptdesc = pagetable_alloc(gfp, 0); + + if (!ptdesc) + failed = true; + if (ptdesc && !pagetable_pmd_ctor(mm, ptdesc)) { + pagetable_free(ptdesc); + ptdesc = NULL; failed = true; + } + if (ptdesc) { + mm_inc_nr_pmds(mm); + pmd = ptdesc_address(ptdesc); + } + pmds[i] = pmd; } if (failed) { - free_pmds(pmds); + free_pmds(mm, pmds, count); return -ENOMEM; } @@ -219,33 +216,48 @@ static int preallocate_pmds(pmd_t *pmds[]) * preallocate which never got a corresponding vma will need to be * freed manually. */ +static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp) +{ + pgd_t pgd = *pgdp; + + if (pgd_val(pgd) != 0) { + pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); + + pgd_clear(pgdp); + + paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); + pmd_free(mm, pmd); + mm_dec_nr_pmds(mm); + } +} + static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) { int i; - for(i = 0; i < PREALLOCATED_PMDS; i++) { - pgd_t pgd = pgdp[i]; + for (i = 0; i < PREALLOCATED_PMDS; i++) + mop_up_one_pmd(mm, &pgdp[i]); - if (pgd_val(pgd) != 0) { - pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); +#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION - pgdp[i] = native_make_pgd(0); + if (!boot_cpu_has(X86_FEATURE_PTI)) + return; - paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); - pmd_free(mm, pmd); - } - } + pgdp = kernel_to_user_pgdp(pgdp); + + for (i = 0; i < PREALLOCATED_USER_PMDS; i++) + mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]); +#endif } static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) { + p4d_t *p4d; pud_t *pud; int i; - if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ - return; - - pud = pud_offset(pgd, 0); + p4d = p4d_offset(pgd, 0); + pud = pud_offset(p4d, 0); for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) { pmd_t *pmd = pmds[i]; @@ -258,24 +270,79 @@ static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) } } +#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION +static void pgd_prepopulate_user_pmd(struct mm_struct *mm, + pgd_t *k_pgd, pmd_t *pmds[]) +{ + pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir); + pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); + p4d_t *u_p4d; + pud_t *u_pud; + int i; + + u_p4d = p4d_offset(u_pgd, 0); + u_pud = pud_offset(u_p4d, 0); + + s_pgd += KERNEL_PGD_BOUNDARY; + u_pud += KERNEL_PGD_BOUNDARY; + + for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) { + pmd_t *pmd = pmds[i]; + + memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd), + sizeof(pmd_t) * PTRS_PER_PMD); + + pud_populate(mm, u_pud, pmd); + } + +} +#else +static void pgd_prepopulate_user_pmd(struct mm_struct *mm, + pgd_t *k_pgd, pmd_t *pmds[]) +{ +} +#endif + +static inline pgd_t *_pgd_alloc(struct mm_struct *mm) +{ + /* + * PTI and Xen need a whole page for the PAE PGD + * even though the hardware only needs 32 bytes. + * + * For simplicity, allocate a page for all users. + */ + return __pgd_alloc(mm, pgd_allocation_order()); +} + +static inline void _pgd_free(struct mm_struct *mm, pgd_t *pgd) +{ + __pgd_free(mm, pgd); +} + pgd_t *pgd_alloc(struct mm_struct *mm) { pgd_t *pgd; + pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS]; pmd_t *pmds[PREALLOCATED_PMDS]; - pgd = (pgd_t *)__get_free_page(PGALLOC_GFP); + pgd = _pgd_alloc(mm); if (pgd == NULL) goto out; mm->pgd = pgd; - if (preallocate_pmds(pmds) != 0) + if (sizeof(pmds) != 0 && + preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0) goto out_free_pgd; - if (paravirt_pgd_alloc(mm) != 0) + if (sizeof(u_pmds) != 0 && + preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0) goto out_free_pmds; + if (paravirt_pgd_alloc(mm) != 0) + goto out_free_user_pmds; + /* * Make sure that pre-populating the pmds is atomic with * respect to anything walking the pgd_list, so that they @@ -284,16 +351,24 @@ pgd_t *pgd_alloc(struct mm_struct *mm) spin_lock(&pgd_lock); pgd_ctor(mm, pgd); - pgd_prepopulate_pmd(mm, pgd, pmds); + if (sizeof(pmds) != 0) + pgd_prepopulate_pmd(mm, pgd, pmds); + + if (sizeof(u_pmds) != 0) + pgd_prepopulate_user_pmd(mm, pgd, u_pmds); spin_unlock(&pgd_lock); return pgd; +out_free_user_pmds: + if (sizeof(u_pmds) != 0) + free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS); out_free_pmds: - free_pmds(pmds); + if (sizeof(pmds) != 0) + free_pmds(mm, pmds, PREALLOCATED_PMDS); out_free_pgd: - free_page((unsigned long)pgd); + _pgd_free(mm, pgd); out: return NULL; } @@ -303,7 +378,7 @@ void pgd_free(struct mm_struct *mm, pgd_t *pgd) pgd_mop_up_pmds(mm, pgd); pgd_dtor(pgd); paravirt_pgd_free(mm, pgd); - free_page((unsigned long)pgd); + _pgd_free(mm, pgd); } /* @@ -319,10 +394,8 @@ int ptep_set_access_flags(struct vm_area_struct *vma, { int changed = !pte_same(*ptep, entry); - if (changed && dirty) { - *ptep = entry; - pte_update_defer(vma->vm_mm, address, ptep); - } + if (changed && dirty) + set_pte(ptep, entry); return changed; } @@ -337,8 +410,7 @@ int pmdp_set_access_flags(struct vm_area_struct *vma, VM_BUG_ON(address & ~HPAGE_PMD_MASK); if (changed && dirty) { - *pmdp = entry; - pmd_update_defer(vma->vm_mm, address, pmdp); + set_pmd(pmdp, entry); /* * We had a write-protection fault here and changed the pmd * to to more permissive. No need to flush the TLB for that, @@ -349,6 +421,26 @@ int pmdp_set_access_flags(struct vm_area_struct *vma, return changed; } + +int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, + pud_t *pudp, pud_t entry, int dirty) +{ + int changed = !pud_same(*pudp, entry); + + VM_BUG_ON(address & ~HPAGE_PUD_MASK); + + if (changed && dirty) { + set_pud(pudp, entry); + /* + * We had a write-protection fault here and changed the pud + * to to more permissive. No need to flush the TLB for that, + * #PF is architecturally guaranteed to do that and in the + * worst-case we'll generate a spurious fault. + */ + } + + return changed; +} #endif int ptep_test_and_clear_young(struct vm_area_struct *vma, @@ -360,13 +452,10 @@ int ptep_test_and_clear_young(struct vm_area_struct *vma, ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, (unsigned long *) &ptep->pte); - if (ret) - pte_update(vma->vm_mm, addr, ptep); - return ret; } -#ifdef CONFIG_TRANSPARENT_HUGEPAGE +#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp) { @@ -376,8 +465,19 @@ int pmdp_test_and_clear_young(struct vm_area_struct *vma, ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, (unsigned long *)pmdp); - if (ret) - pmd_update(vma->vm_mm, addr, pmdp); + return ret; +} +#endif + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +int pudp_test_and_clear_young(struct vm_area_struct *vma, + unsigned long addr, pud_t *pudp) +{ + int ret = 0; + + if (pud_young(*pudp)) + ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, + (unsigned long *)pudp); return ret; } @@ -386,13 +486,20 @@ int pmdp_test_and_clear_young(struct vm_area_struct *vma, int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { - int young; - - young = ptep_test_and_clear_young(vma, address, ptep); - if (young) - flush_tlb_page(vma, address); - - return young; + /* + * On x86 CPUs, clearing the accessed bit without a TLB flush + * doesn't cause data corruption. [ It could cause incorrect + * page aging and the (mistaken) reclaim of hot pages, but the + * chance of that should be relatively low. ] + * + * So as a performance optimization don't flush the TLB when + * clearing the accessed bit, it will eventually be flushed by + * a context switch or a VM operation anyway. [ In the rare + * event of it not getting flushed for a long time the delay + * shouldn't really matter because there's no real memory + * pressure for swapout to react to. ] + */ + return ptep_test_and_clear_young(vma, address, ptep); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE @@ -410,35 +517,45 @@ int pmdp_clear_flush_young(struct vm_area_struct *vma, return young; } -void pmdp_splitting_flush(struct vm_area_struct *vma, - unsigned long address, pmd_t *pmdp) +pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address, + pmd_t *pmdp) { - int set; - VM_BUG_ON(address & ~HPAGE_PMD_MASK); - set = !test_and_set_bit(_PAGE_BIT_SPLITTING, - (unsigned long *)pmdp); - if (set) { - pmd_update(vma->vm_mm, address, pmdp); - /* need tlb flush only to serialize against gup-fast */ - flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); - } + VM_WARN_ON_ONCE(!pmd_present(*pmdp)); + + /* + * No flush is necessary. Once an invalid PTE is established, the PTE's + * access and dirty bits cannot be updated. + */ + return pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp)); +} +#endif + +#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ + defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) +pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address, + pud_t *pudp) +{ + VM_WARN_ON_ONCE(!pud_present(*pudp)); + pud_t old = pudp_establish(vma, address, pudp, pud_mkinvalid(*pudp)); + flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE); + return old; } #endif /** - * reserve_top_address - reserves a hole in the top of kernel address space - * @reserve - size of hole to reserve + * reserve_top_address - Reserve a hole in the top of the kernel address space + * @reserve: Size of hole to reserve * * Can be used to relocate the fixmap area and poke a hole in the top - * of kernel address space to make room for a hypervisor. + * of the kernel address space to make room for a hypervisor. */ void __init reserve_top_address(unsigned long reserve) { #ifdef CONFIG_X86_32 BUG_ON(fixmaps_set > 0); - printk(KERN_INFO "Reserving virtual address space above 0x%08x\n", - (int)-reserve); - __FIXADDR_TOP = -reserve - PAGE_SIZE; + __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE; + printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n", + -reserve, __FIXADDR_TOP + PAGE_SIZE); #endif } @@ -448,6 +565,15 @@ void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) { unsigned long address = __fix_to_virt(idx); +#ifdef CONFIG_X86_64 + /* + * Ensure that the static initial page tables are covering the + * fixmap completely. + */ + BUILD_BUG_ON(__end_of_permanent_fixed_addresses > + (FIXMAP_PMD_NUM * PTRS_PER_PTE)); +#endif + if (idx >= __end_of_fixed_addresses) { BUG(); return; @@ -456,8 +582,265 @@ void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) fixmaps_set++; } -void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys, - pgprot_t flags) +void native_set_fixmap(unsigned /* enum fixed_addresses */ idx, + phys_addr_t phys, pgprot_t flags) { + /* Sanitize 'prot' against any unsupported bits: */ + pgprot_val(flags) &= __default_kernel_pte_mask; + __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); } + +#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP +#if CONFIG_PGTABLE_LEVELS > 4 +/** + * p4d_set_huge - Set up kernel P4D mapping + * @p4d: Pointer to the P4D entry + * @addr: Virtual address associated with the P4D entry + * @prot: Protection bits to use + * + * No 512GB pages yet -- always return 0 + */ +int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) +{ + return 0; +} + +/** + * p4d_clear_huge - Clear kernel P4D mapping when it is set + * @p4d: Pointer to the P4D entry to clear + * + * No 512GB pages yet -- do nothing + */ +void p4d_clear_huge(p4d_t *p4d) +{ +} +#endif + +/** + * pud_set_huge - Set up kernel PUD mapping + * @pud: Pointer to the PUD entry + * @addr: Virtual address associated with the PUD entry + * @prot: Protection bits to use + * + * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this + * function sets up a huge page only if the complete range has the same MTRR + * caching mode. + * + * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger + * page mapping attempt fails. + * + * Returns 1 on success and 0 on failure. + */ +int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) +{ + u8 uniform; + + mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform); + if (!uniform) + return 0; + + /* Bail out if we are we on a populated non-leaf entry: */ + if (pud_present(*pud) && !pud_leaf(*pud)) + return 0; + + set_pte((pte_t *)pud, pfn_pte( + (u64)addr >> PAGE_SHIFT, + __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE))); + + return 1; +} + +/** + * pmd_set_huge - Set up kernel PMD mapping + * @pmd: Pointer to the PMD entry + * @addr: Virtual address associated with the PMD entry + * @prot: Protection bits to use + * + * See text over pud_set_huge() above. + * + * Returns 1 on success and 0 on failure. + */ +int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) +{ + u8 uniform; + + mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform); + if (!uniform) { + pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n", + __func__, addr, addr + PMD_SIZE); + return 0; + } + + /* Bail out if we are we on a populated non-leaf entry: */ + if (pmd_present(*pmd) && !pmd_leaf(*pmd)) + return 0; + + set_pte((pte_t *)pmd, pfn_pte( + (u64)addr >> PAGE_SHIFT, + __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE))); + + return 1; +} + +/** + * pud_clear_huge - Clear kernel PUD mapping when it is set + * @pud: Pointer to the PUD entry to clear. + * + * Returns 1 on success and 0 on failure (no PUD map is found). + */ +int pud_clear_huge(pud_t *pud) +{ + if (pud_leaf(*pud)) { + pud_clear(pud); + return 1; + } + + return 0; +} + +/** + * pmd_clear_huge - Clear kernel PMD mapping when it is set + * @pmd: Pointer to the PMD entry to clear. + * + * Returns 1 on success and 0 on failure (no PMD map is found). + */ +int pmd_clear_huge(pmd_t *pmd) +{ + if (pmd_leaf(*pmd)) { + pmd_clear(pmd); + return 1; + } + + return 0; +} + +#ifdef CONFIG_X86_64 +/** + * pud_free_pmd_page - Clear PUD entry and free PMD page + * @pud: Pointer to a PUD + * @addr: Virtual address associated with PUD + * + * Context: The PUD range has been unmapped and TLB purged. + * Return: 1 if clearing the entry succeeded. 0 otherwise. + * + * NOTE: Callers must allow a single page allocation. + */ +int pud_free_pmd_page(pud_t *pud, unsigned long addr) +{ + pmd_t *pmd, *pmd_sv; + struct ptdesc *pt; + int i; + + pmd = pud_pgtable(*pud); + pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL); + if (!pmd_sv) + return 0; + + for (i = 0; i < PTRS_PER_PMD; i++) { + pmd_sv[i] = pmd[i]; + if (!pmd_none(pmd[i])) + pmd_clear(&pmd[i]); + } + + pud_clear(pud); + + /* INVLPG to clear all paging-structure caches */ + flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); + + for (i = 0; i < PTRS_PER_PMD; i++) { + if (!pmd_none(pmd_sv[i])) { + pt = page_ptdesc(pmd_page(pmd_sv[i])); + pagetable_dtor_free(pt); + } + } + + free_page((unsigned long)pmd_sv); + + pmd_free(&init_mm, pmd); + + return 1; +} + +/** + * pmd_free_pte_page - Clear PMD entry and free PTE page. + * @pmd: Pointer to the PMD + * @addr: Virtual address associated with PMD + * + * Context: The PMD range has been unmapped and TLB purged. + * Return: 1 if clearing the entry succeeded. 0 otherwise. + */ +int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) +{ + struct ptdesc *pt; + + pt = page_ptdesc(pmd_page(*pmd)); + pmd_clear(pmd); + + /* INVLPG to clear all paging-structure caches */ + flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); + + pagetable_dtor_free(pt); + + return 1; +} + +#else /* !CONFIG_X86_64 */ + +/* + * Disable free page handling on x86-PAE. This assures that ioremap() + * does not update sync'd PMD entries. See vmalloc_sync_one(). + */ +int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) +{ + return pmd_none(*pmd); +} + +#endif /* CONFIG_X86_64 */ +#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ + +pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma) +{ + if (vma->vm_flags & VM_SHADOW_STACK) + return pte_mkwrite_shstk(pte); + + pte = pte_mkwrite_novma(pte); + + return pte_clear_saveddirty(pte); +} + +pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) +{ + if (vma->vm_flags & VM_SHADOW_STACK) + return pmd_mkwrite_shstk(pmd); + + pmd = pmd_mkwrite_novma(pmd); + + return pmd_clear_saveddirty(pmd); +} + +void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte) +{ + /* + * Hardware before shadow stack can (rarely) set Dirty=1 + * on a Write=0 PTE. So the below condition + * only indicates a software bug when shadow stack is + * supported by the HW. This checking is covered in + * pte_shstk(). + */ + VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) && + pte_shstk(pte)); +} + +void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd) +{ + /* See note in arch_check_zapped_pte() */ + VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) && + pmd_shstk(pmd)); +} + +void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud) +{ + /* See note in arch_check_zapped_pte() */ + VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) && pud_shstk(pud)); +} diff --git a/arch/x86/mm/pgtable_32.c b/arch/x86/mm/pgtable_32.c index a69bcb8c7621..c234634e26ba 100644 --- a/arch/x86/mm/pgtable_32.c +++ b/arch/x86/mm/pgtable_32.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0 #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> @@ -8,15 +9,14 @@ #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/spinlock.h> -#include <linux/module.h> -#include <asm/pgtable.h> -#include <asm/pgalloc.h> +#include <asm/cpu_entry_area.h> #include <asm/fixmap.h> -#include <asm/e820.h> +#include <asm/e820/api.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #include <asm/io.h> +#include <linux/vmalloc.h> unsigned int __VMALLOC_RESERVE = 128 << 20; @@ -27,6 +27,7 @@ unsigned int __VMALLOC_RESERVE = 128 << 20; void set_pte_vaddr(unsigned long vaddr, pte_t pteval) { pgd_t *pgd; + p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; @@ -36,7 +37,12 @@ void set_pte_vaddr(unsigned long vaddr, pte_t pteval) BUG(); return; } - pud = pud_offset(pgd, vaddr); + p4d = p4d_offset(pgd, vaddr); + if (p4d_none(*p4d)) { + BUG(); + return; + } + pud = pud_offset(p4d, vaddr); if (pud_none(*pud)) { BUG(); return; @@ -47,7 +53,7 @@ void set_pte_vaddr(unsigned long vaddr, pte_t pteval) return; } pte = pte_offset_kernel(pmd, vaddr); - if (pte_val(pteval)) + if (!pte_none(pteval)) set_pte_at(&init_mm, vaddr, pte, pteval); else pte_clear(&init_mm, vaddr, pte); @@ -56,42 +62,7 @@ void set_pte_vaddr(unsigned long vaddr, pte_t pteval) * It's enough to flush this one mapping. * (PGE mappings get flushed as well) */ - __flush_tlb_one(vaddr); -} - -/* - * Associate a large virtual page frame with a given physical page frame - * and protection flags for that frame. pfn is for the base of the page, - * vaddr is what the page gets mapped to - both must be properly aligned. - * The pmd must already be instantiated. Assumes PAE mode. - */ -void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) -{ - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - - if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */ - printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n"); - return; /* BUG(); */ - } - if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */ - printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n"); - return; /* BUG(); */ - } - pgd = swapper_pg_dir + pgd_index(vaddr); - if (pgd_none(*pgd)) { - printk(KERN_WARNING "set_pmd_pfn: pgd_none\n"); - return; /* BUG(); */ - } - pud = pud_offset(pgd, vaddr); - pmd = pmd_offset(pud, vaddr); - set_pmd(pmd, pfn_pmd(pfn, flags)); - /* - * It's enough to flush this one mapping. - * (PGE mappings get flushed as well) - */ - __flush_tlb_one(vaddr); + flush_tlb_one_kernel(vaddr); } unsigned long __FIXADDR_TOP = 0xfffff000; @@ -127,7 +98,7 @@ static int __init parse_reservetop(char *arg) address = memparse(arg, &arg); reserve_top_address(address); - fixup_early_ioremap(); + early_ioremap_init(); return 0; } early_param("reservetop", parse_reservetop); diff --git a/arch/x86/mm/physaddr.c b/arch/x86/mm/physaddr.c index e666cbbb9261..8d31c6b9e184 100644 --- a/arch/x86/mm/physaddr.c +++ b/arch/x86/mm/physaddr.c @@ -1,9 +1,11 @@ -#include <linux/bootmem.h> +// SPDX-License-Identifier: GPL-2.0 +#include <linux/memblock.h> #include <linux/mmdebug.h> -#include <linux/module.h> +#include <linux/export.h> #include <linux/mm.h> #include <asm/page.h> +#include <linux/vmalloc.h> #include "physaddr.h" @@ -29,17 +31,6 @@ unsigned long __phys_addr(unsigned long x) return x; } EXPORT_SYMBOL(__phys_addr); - -unsigned long __phys_addr_symbol(unsigned long x) -{ - unsigned long y = x - __START_KERNEL_map; - - /* only check upper bounds since lower bounds will trigger carry */ - VIRTUAL_BUG_ON(y >= KERNEL_IMAGE_SIZE); - - return y + phys_base; -} -EXPORT_SYMBOL(__phys_addr_symbol); #endif bool __virt_addr_valid(unsigned long x) diff --git a/arch/x86/mm/physaddr.h b/arch/x86/mm/physaddr.h index a3cd5a0c97b3..9f6419cafc32 100644 --- a/arch/x86/mm/physaddr.h +++ b/arch/x86/mm/physaddr.h @@ -1,3 +1,4 @@ +/* SPDX-License-Identifier: GPL-2.0 */ #include <asm/processor.h> static inline int phys_addr_valid(resource_size_t addr) diff --git a/arch/x86/mm/pkeys.c b/arch/x86/mm/pkeys.c new file mode 100644 index 000000000000..7418c367e328 --- /dev/null +++ b/arch/x86/mm/pkeys.c @@ -0,0 +1,197 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Intel Memory Protection Keys management + * Copyright (c) 2015, Intel Corporation. + */ +#include <linux/debugfs.h> /* debugfs_create_u32() */ +#include <linux/mm_types.h> /* mm_struct, vma, etc... */ +#include <linux/pkeys.h> /* PKEY_* */ +#include <uapi/asm-generic/mman-common.h> + +#include <asm/cpufeature.h> /* boot_cpu_has, ... */ +#include <asm/mmu_context.h> /* vma_pkey() */ + +int __execute_only_pkey(struct mm_struct *mm) +{ + bool need_to_set_mm_pkey = false; + int execute_only_pkey = mm->context.execute_only_pkey; + int ret; + + /* Do we need to assign a pkey for mm's execute-only maps? */ + if (execute_only_pkey == -1) { + /* Go allocate one to use, which might fail */ + execute_only_pkey = mm_pkey_alloc(mm); + if (execute_only_pkey < 0) + return -1; + need_to_set_mm_pkey = true; + } + + /* + * We do not want to go through the relatively costly + * dance to set PKRU if we do not need to. Check it + * first and assume that if the execute-only pkey is + * write-disabled that we do not have to set it + * ourselves. + */ + if (!need_to_set_mm_pkey && + !__pkru_allows_read(read_pkru(), execute_only_pkey)) { + return execute_only_pkey; + } + + /* + * Set up PKRU so that it denies access for everything + * other than execution. + */ + ret = arch_set_user_pkey_access(current, execute_only_pkey, + PKEY_DISABLE_ACCESS); + /* + * If the PKRU-set operation failed somehow, just return + * 0 and effectively disable execute-only support. + */ + if (ret) { + mm_set_pkey_free(mm, execute_only_pkey); + return -1; + } + + /* We got one, store it and use it from here on out */ + if (need_to_set_mm_pkey) + mm->context.execute_only_pkey = execute_only_pkey; + return execute_only_pkey; +} + +static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma) +{ + /* Do this check first since the vm_flags should be hot */ + if ((vma->vm_flags & VM_ACCESS_FLAGS) != VM_EXEC) + return false; + if (vma_pkey(vma) != vma->vm_mm->context.execute_only_pkey) + return false; + + return true; +} + +/* + * This is only called for *plain* mprotect calls. + */ +int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot, int pkey) +{ + /* + * Is this an mprotect_pkey() call? If so, never + * override the value that came from the user. + */ + if (pkey != -1) + return pkey; + + /* + * The mapping is execute-only. Go try to get the + * execute-only protection key. If we fail to do that, + * fall through as if we do not have execute-only + * support in this mm. + */ + if (prot == PROT_EXEC) { + pkey = execute_only_pkey(vma->vm_mm); + if (pkey > 0) + return pkey; + } else if (vma_is_pkey_exec_only(vma)) { + /* + * Protections are *not* PROT_EXEC, but the mapping + * is using the exec-only pkey. This mapping was + * PROT_EXEC and will no longer be. Move back to + * the default pkey. + */ + return ARCH_DEFAULT_PKEY; + } + + /* + * This is a vanilla, non-pkey mprotect (or we failed to + * setup execute-only), inherit the pkey from the VMA we + * are working on. + */ + return vma_pkey(vma); +} + +#define PKRU_AD_MASK(pkey) (PKRU_AD_BIT << ((pkey) * PKRU_BITS_PER_PKEY)) + +/* + * Make the default PKRU value (at execve() time) as restrictive + * as possible. This ensures that any threads clone()'d early + * in the process's lifetime will not accidentally get access + * to data which is pkey-protected later on. + */ +u32 init_pkru_value = PKRU_AD_MASK( 1) | PKRU_AD_MASK( 2) | + PKRU_AD_MASK( 3) | PKRU_AD_MASK( 4) | + PKRU_AD_MASK( 5) | PKRU_AD_MASK( 6) | + PKRU_AD_MASK( 7) | PKRU_AD_MASK( 8) | + PKRU_AD_MASK( 9) | PKRU_AD_MASK(10) | + PKRU_AD_MASK(11) | PKRU_AD_MASK(12) | + PKRU_AD_MASK(13) | PKRU_AD_MASK(14) | + PKRU_AD_MASK(15); + +static ssize_t init_pkru_read_file(struct file *file, char __user *user_buf, + size_t count, loff_t *ppos) +{ + char buf[32]; + unsigned int len; + + len = sprintf(buf, "0x%x\n", init_pkru_value); + return simple_read_from_buffer(user_buf, count, ppos, buf, len); +} + +static ssize_t init_pkru_write_file(struct file *file, + const char __user *user_buf, size_t count, loff_t *ppos) +{ + char buf[32]; + ssize_t len; + u32 new_init_pkru; + + len = min(count, sizeof(buf) - 1); + if (copy_from_user(buf, user_buf, len)) + return -EFAULT; + + /* Make the buffer a valid string that we can not overrun */ + buf[len] = '\0'; + if (kstrtouint(buf, 0, &new_init_pkru)) + return -EINVAL; + + /* + * Don't allow insane settings that will blow the system + * up immediately if someone attempts to disable access + * or writes to pkey 0. + */ + if (new_init_pkru & (PKRU_AD_BIT|PKRU_WD_BIT)) + return -EINVAL; + + WRITE_ONCE(init_pkru_value, new_init_pkru); + return count; +} + +static const struct file_operations fops_init_pkru = { + .read = init_pkru_read_file, + .write = init_pkru_write_file, + .llseek = default_llseek, +}; + +static int __init create_init_pkru_value(void) +{ + /* Do not expose the file if pkeys are not supported. */ + if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) + return 0; + + debugfs_create_file("init_pkru", S_IRUSR | S_IWUSR, + arch_debugfs_dir, NULL, &fops_init_pkru); + return 0; +} +late_initcall(create_init_pkru_value); + +static __init int setup_init_pkru(char *opt) +{ + u32 new_init_pkru; + + if (kstrtouint(opt, 0, &new_init_pkru)) + return 1; + + WRITE_ONCE(init_pkru_value, new_init_pkru); + + return 1; +} +__setup("init_pkru=", setup_init_pkru); diff --git a/arch/x86/mm/pti.c b/arch/x86/mm/pti.c new file mode 100644 index 000000000000..b10d4d131dce --- /dev/null +++ b/arch/x86/mm/pti.c @@ -0,0 +1,686 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright(c) 2017 Intel Corporation. All rights reserved. + * + * This code is based in part on work published here: + * + * https://github.com/IAIK/KAISER + * + * The original work was written by and signed off by for the Linux + * kernel by: + * + * Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> + * Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> + * Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> + * Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> + * + * Major changes to the original code by: Dave Hansen <dave.hansen@intel.com> + * Mostly rewritten by Thomas Gleixner <tglx@linutronix.de> and + * Andy Lutomirsky <luto@amacapital.net> + */ +#include <linux/kernel.h> +#include <linux/errno.h> +#include <linux/string.h> +#include <linux/types.h> +#include <linux/bug.h> +#include <linux/init.h> +#include <linux/spinlock.h> +#include <linux/mm.h> +#include <linux/uaccess.h> +#include <linux/cpu.h> + +#include <asm/cpufeature.h> +#include <asm/hypervisor.h> +#include <asm/vsyscall.h> +#include <asm/cmdline.h> +#include <asm/pti.h> +#include <asm/tlbflush.h> +#include <asm/desc.h> +#include <asm/sections.h> +#include <asm/set_memory.h> +#include <asm/bugs.h> + +#undef pr_fmt +#define pr_fmt(fmt) "Kernel/User page tables isolation: " fmt + +/* Backporting helper */ +#ifndef __GFP_NOTRACK +#define __GFP_NOTRACK 0 +#endif + +/* + * Define the page-table levels we clone for user-space on 32 + * and 64 bit. + */ +#ifdef CONFIG_X86_64 +#define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PMD +#else +#define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PTE +#endif + +static void __init pti_print_if_insecure(const char *reason) +{ + if (boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) + pr_info("%s\n", reason); +} + +static void __init pti_print_if_secure(const char *reason) +{ + if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) + pr_info("%s\n", reason); +} + +/* Assume mode is auto unless overridden via cmdline below. */ +static enum pti_mode { + PTI_AUTO = 0, + PTI_FORCE_OFF, + PTI_FORCE_ON +} pti_mode; + +void __init pti_check_boottime_disable(void) +{ + if (hypervisor_is_type(X86_HYPER_XEN_PV)) { + pti_mode = PTI_FORCE_OFF; + pti_print_if_insecure("disabled on XEN PV."); + return; + } + + if (pti_mode == PTI_AUTO && + !cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL)) + pti_mode = PTI_FORCE_OFF; + if (pti_mode == PTI_FORCE_OFF) { + pti_print_if_insecure("disabled on command line."); + return; + } + + if (pti_mode == PTI_FORCE_ON) + pti_print_if_secure("force enabled on command line."); + + if (pti_mode == PTI_AUTO && !boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) + return; + + setup_force_cpu_cap(X86_FEATURE_PTI); + + if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) { + pr_debug("PTI enabled, disabling INVLPGB\n"); + setup_clear_cpu_cap(X86_FEATURE_INVLPGB); + } +} + +static int __init pti_parse_cmdline(char *arg) +{ + if (!strcmp(arg, "off")) + pti_mode = PTI_FORCE_OFF; + else if (!strcmp(arg, "on")) + pti_mode = PTI_FORCE_ON; + else if (!strcmp(arg, "auto")) + pti_mode = PTI_AUTO; + else + return -EINVAL; + return 0; +} +early_param("pti", pti_parse_cmdline); + +static int __init pti_parse_cmdline_nopti(char *arg) +{ + pti_mode = PTI_FORCE_OFF; + return 0; +} +early_param("nopti", pti_parse_cmdline_nopti); + +pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) +{ + /* + * Changes to the high (kernel) portion of the kernelmode page + * tables are not automatically propagated to the usermode tables. + * + * Users should keep in mind that, unlike the kernelmode tables, + * there is no vmalloc_fault equivalent for the usermode tables. + * Top-level entries added to init_mm's usermode pgd after boot + * will not be automatically propagated to other mms. + */ + if (!pgdp_maps_userspace(pgdp) || (pgd.pgd & _PAGE_NOPTISHADOW)) + return pgd; + + /* + * The user page tables get the full PGD, accessible from + * userspace: + */ + kernel_to_user_pgdp(pgdp)->pgd = pgd.pgd; + + /* + * If this is normal user memory, make it NX in the kernel + * pagetables so that, if we somehow screw up and return to + * usermode with the kernel CR3 loaded, we'll get a page fault + * instead of allowing user code to execute with the wrong CR3. + * + * As exceptions, we don't set NX if: + * - _PAGE_USER is not set. This could be an executable + * EFI runtime mapping or something similar, and the kernel + * may execute from it + * - we don't have NX support + * - we're clearing the PGD (i.e. the new pgd is not present). + */ + if ((pgd.pgd & (_PAGE_USER|_PAGE_PRESENT)) == (_PAGE_USER|_PAGE_PRESENT) && + (__supported_pte_mask & _PAGE_NX)) + pgd.pgd |= _PAGE_NX; + + /* return the copy of the PGD we want the kernel to use: */ + return pgd; +} + +/* + * Walk the user copy of the page tables (optionally) trying to allocate + * page table pages on the way down. + * + * Returns a pointer to a P4D on success, or NULL on failure. + */ +static p4d_t *pti_user_pagetable_walk_p4d(unsigned long address) +{ + pgd_t *pgd = kernel_to_user_pgdp(pgd_offset_k(address)); + gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); + + if (address < PAGE_OFFSET) { + WARN_ONCE(1, "attempt to walk user address\n"); + return NULL; + } + + if (pgd_none(*pgd)) { + unsigned long new_p4d_page = __get_free_page(gfp); + if (WARN_ON_ONCE(!new_p4d_page)) + return NULL; + + set_pgd(pgd, __pgd(_KERNPG_TABLE | __pa(new_p4d_page))); + } + BUILD_BUG_ON(pgd_leaf(*pgd)); + + return p4d_offset(pgd, address); +} + +/* + * Walk the user copy of the page tables (optionally) trying to allocate + * page table pages on the way down. + * + * Returns a pointer to a PMD on success, or NULL on failure. + */ +static pmd_t *pti_user_pagetable_walk_pmd(unsigned long address) +{ + gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); + p4d_t *p4d; + pud_t *pud; + + p4d = pti_user_pagetable_walk_p4d(address); + if (!p4d) + return NULL; + + BUILD_BUG_ON(p4d_leaf(*p4d)); + if (p4d_none(*p4d)) { + unsigned long new_pud_page = __get_free_page(gfp); + if (WARN_ON_ONCE(!new_pud_page)) + return NULL; + + set_p4d(p4d, __p4d(_KERNPG_TABLE | __pa(new_pud_page))); + } + + pud = pud_offset(p4d, address); + /* The user page tables do not use large mappings: */ + if (pud_leaf(*pud)) { + WARN_ON(1); + return NULL; + } + if (pud_none(*pud)) { + unsigned long new_pmd_page = __get_free_page(gfp); + if (WARN_ON_ONCE(!new_pmd_page)) + return NULL; + + set_pud(pud, __pud(_KERNPG_TABLE | __pa(new_pmd_page))); + } + + return pmd_offset(pud, address); +} + +/* + * Walk the shadow copy of the page tables (optionally) trying to allocate + * page table pages on the way down. Does not support large pages. + * + * Note: this is only used when mapping *new* kernel data into the + * user/shadow page tables. It is never used for userspace data. + * + * Returns a pointer to a PTE on success, or NULL on failure. + */ +static pte_t *pti_user_pagetable_walk_pte(unsigned long address, bool late_text) +{ + gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); + pmd_t *pmd; + pte_t *pte; + + pmd = pti_user_pagetable_walk_pmd(address); + if (!pmd) + return NULL; + + /* Large PMD mapping found */ + if (pmd_leaf(*pmd)) { + /* Clear the PMD if we hit a large mapping from the first round */ + if (late_text) { + set_pmd(pmd, __pmd(0)); + } else { + WARN_ON_ONCE(1); + return NULL; + } + } + + if (pmd_none(*pmd)) { + unsigned long new_pte_page = __get_free_page(gfp); + if (!new_pte_page) + return NULL; + + set_pmd(pmd, __pmd(_KERNPG_TABLE | __pa(new_pte_page))); + } + + pte = pte_offset_kernel(pmd, address); + if (pte_flags(*pte) & _PAGE_USER) { + WARN_ONCE(1, "attempt to walk to user pte\n"); + return NULL; + } + return pte; +} + +#ifdef CONFIG_X86_VSYSCALL_EMULATION +static void __init pti_setup_vsyscall(void) +{ + pte_t *pte, *target_pte; + unsigned int level; + + pte = lookup_address(VSYSCALL_ADDR, &level); + if (!pte || WARN_ON(level != PG_LEVEL_4K) || pte_none(*pte)) + return; + + target_pte = pti_user_pagetable_walk_pte(VSYSCALL_ADDR, false); + if (WARN_ON(!target_pte)) + return; + + *target_pte = *pte; + set_vsyscall_pgtable_user_bits(kernel_to_user_pgdp(swapper_pg_dir)); +} +#else +static void __init pti_setup_vsyscall(void) { } +#endif + +enum pti_clone_level { + PTI_CLONE_PMD, + PTI_CLONE_PTE, +}; + +static void +pti_clone_pgtable(unsigned long start, unsigned long end, + enum pti_clone_level level, bool late_text) +{ + unsigned long addr; + + /* + * Clone the populated PMDs which cover start to end. These PMD areas + * can have holes. + */ + for (addr = start; addr < end;) { + pte_t *pte, *target_pte; + pmd_t *pmd, *target_pmd; + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + + /* Overflow check */ + if (addr < start) + break; + + pgd = pgd_offset_k(addr); + if (WARN_ON(pgd_none(*pgd))) + return; + p4d = p4d_offset(pgd, addr); + if (WARN_ON(p4d_none(*p4d))) + return; + + pud = pud_offset(p4d, addr); + if (pud_none(*pud)) { + WARN_ON_ONCE(addr & ~PUD_MASK); + addr = round_up(addr + 1, PUD_SIZE); + continue; + } + + pmd = pmd_offset(pud, addr); + if (pmd_none(*pmd)) { + WARN_ON_ONCE(addr & ~PMD_MASK); + addr = round_up(addr + 1, PMD_SIZE); + continue; + } + + if (pmd_leaf(*pmd) || level == PTI_CLONE_PMD) { + target_pmd = pti_user_pagetable_walk_pmd(addr); + if (WARN_ON(!target_pmd)) + return; + + /* + * Only clone present PMDs. This ensures only setting + * _PAGE_GLOBAL on present PMDs. This should only be + * called on well-known addresses anyway, so a non- + * present PMD would be a surprise. + */ + if (WARN_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT))) + return; + + /* + * Setting 'target_pmd' below creates a mapping in both + * the user and kernel page tables. It is effectively + * global, so set it as global in both copies. Note: + * the X86_FEATURE_PGE check is not _required_ because + * the CPU ignores _PAGE_GLOBAL when PGE is not + * supported. The check keeps consistency with + * code that only set this bit when supported. + */ + if (boot_cpu_has(X86_FEATURE_PGE)) + *pmd = pmd_set_flags(*pmd, _PAGE_GLOBAL); + + /* + * Copy the PMD. That is, the kernelmode and usermode + * tables will share the last-level page tables of this + * address range + */ + *target_pmd = *pmd; + + addr = round_up(addr + 1, PMD_SIZE); + + } else if (level == PTI_CLONE_PTE) { + + /* Walk the page-table down to the pte level */ + pte = pte_offset_kernel(pmd, addr); + if (pte_none(*pte)) { + addr = round_up(addr + 1, PAGE_SIZE); + continue; + } + + /* Only clone present PTEs */ + if (WARN_ON(!(pte_flags(*pte) & _PAGE_PRESENT))) + return; + + /* Allocate PTE in the user page-table */ + target_pte = pti_user_pagetable_walk_pte(addr, late_text); + if (WARN_ON(!target_pte)) + return; + + /* Set GLOBAL bit in both PTEs */ + if (boot_cpu_has(X86_FEATURE_PGE)) + *pte = pte_set_flags(*pte, _PAGE_GLOBAL); + + /* Clone the PTE */ + *target_pte = *pte; + + addr = round_up(addr + 1, PAGE_SIZE); + + } else { + BUG(); + } + } +} + +#ifdef CONFIG_X86_64 +/* + * Clone a single p4d (i.e. a top-level entry on 4-level systems and a + * next-level entry on 5-level systems. + */ +static void __init pti_clone_p4d(unsigned long addr) +{ + p4d_t *kernel_p4d, *user_p4d; + pgd_t *kernel_pgd; + + user_p4d = pti_user_pagetable_walk_p4d(addr); + if (!user_p4d) + return; + + kernel_pgd = pgd_offset_k(addr); + kernel_p4d = p4d_offset(kernel_pgd, addr); + *user_p4d = *kernel_p4d; +} + +/* + * Clone the CPU_ENTRY_AREA and associated data into the user space visible + * page table. + */ +static void __init pti_clone_user_shared(void) +{ + unsigned int cpu; + + pti_clone_p4d(CPU_ENTRY_AREA_BASE); + + for_each_possible_cpu(cpu) { + /* + * The SYSCALL64 entry code needs one word of scratch space + * in which to spill a register. It lives in the sp2 slot + * of the CPU's TSS. + * + * This is done for all possible CPUs during boot to ensure + * that it's propagated to all mms. + */ + + unsigned long va = (unsigned long)&per_cpu(cpu_tss_rw, cpu); + phys_addr_t pa = per_cpu_ptr_to_phys((void *)va); + pte_t *target_pte; + + target_pte = pti_user_pagetable_walk_pte(va, false); + if (WARN_ON(!target_pte)) + return; + + *target_pte = pfn_pte(pa >> PAGE_SHIFT, PAGE_KERNEL); + } +} + +#else /* CONFIG_X86_64 */ + +/* + * On 32 bit PAE systems with 1GB of Kernel address space there is only + * one pgd/p4d for the whole kernel. Cloning that would map the whole + * address space into the user page-tables, making PTI useless. So clone + * the page-table on the PMD level to prevent that. + */ +static void __init pti_clone_user_shared(void) +{ + unsigned long start, end; + + start = CPU_ENTRY_AREA_BASE; + end = start + (PAGE_SIZE * CPU_ENTRY_AREA_PAGES); + + pti_clone_pgtable(start, end, PTI_CLONE_PMD, false); +} +#endif /* CONFIG_X86_64 */ + +/* + * Clone the ESPFIX P4D into the user space visible page table + */ +static void __init pti_setup_espfix64(void) +{ +#ifdef CONFIG_X86_ESPFIX64 + pti_clone_p4d(ESPFIX_BASE_ADDR); +#endif +} + +/* + * Clone the populated PMDs of the entry text and force it RO. + */ +static void pti_clone_entry_text(bool late) +{ + pti_clone_pgtable((unsigned long) __entry_text_start, + (unsigned long) __entry_text_end, + PTI_LEVEL_KERNEL_IMAGE, late); +} + +/* + * Global pages and PCIDs are both ways to make kernel TLB entries + * live longer, reduce TLB misses and improve kernel performance. + * But, leaving all kernel text Global makes it potentially accessible + * to Meltdown-style attacks which make it trivial to find gadgets or + * defeat KASLR. + * + * Only use global pages when it is really worth it. + */ +static inline bool pti_kernel_image_global_ok(void) +{ + /* + * Systems with PCIDs get little benefit from global + * kernel text and are not worth the downsides. + */ + if (cpu_feature_enabled(X86_FEATURE_PCID)) + return false; + + /* + * Only do global kernel image for pti=auto. Do the most + * secure thing (not global) if pti=on specified. + */ + if (pti_mode != PTI_AUTO) + return false; + + /* + * K8 may not tolerate the cleared _PAGE_RW on the userspace + * global kernel image pages. Do the safe thing (disable + * global kernel image). This is unlikely to ever be + * noticed because PTI is disabled by default on AMD CPUs. + */ + if (boot_cpu_has(X86_FEATURE_K8)) + return false; + + /* + * RANDSTRUCT derives its hardening benefits from the + * attacker's lack of knowledge about the layout of kernel + * data structures. Keep the kernel image non-global in + * cases where RANDSTRUCT is in use to help keep the layout a + * secret. + */ + if (IS_ENABLED(CONFIG_RANDSTRUCT)) + return false; + + return true; +} + +/* + * For some configurations, map all of kernel text into the user page + * tables. This reduces TLB misses, especially on non-PCID systems. + */ +static void pti_clone_kernel_text(void) +{ + /* + * rodata is part of the kernel image and is normally + * readable on the filesystem or on the web. But, do not + * clone the areas past rodata, they might contain secrets. + */ + unsigned long start = PFN_ALIGN(_text); + unsigned long end_clone = (unsigned long)__end_rodata_aligned; + unsigned long end_global = PFN_ALIGN((unsigned long)_etext); + + if (!pti_kernel_image_global_ok()) + return; + + pr_debug("mapping partial kernel image into user address space\n"); + + /* + * Note that this will undo _some_ of the work that + * pti_set_kernel_image_nonglobal() did to clear the + * global bit. + */ + pti_clone_pgtable(start, end_clone, PTI_LEVEL_KERNEL_IMAGE, false); + + /* + * pti_clone_pgtable() will set the global bit in any PMDs + * that it clones, but we also need to get any PTEs in + * the last level for areas that are not huge-page-aligned. + */ + + /* Set the global bit for normal non-__init kernel text: */ + set_memory_global(start, (end_global - start) >> PAGE_SHIFT); +} + +static void pti_set_kernel_image_nonglobal(void) +{ + /* + * The identity map is created with PMDs, regardless of the + * actual length of the kernel. We need to clear + * _PAGE_GLOBAL up to a PMD boundary, not just to the end + * of the image. + */ + unsigned long start = PFN_ALIGN(_text); + unsigned long end = ALIGN((unsigned long)_end, PMD_SIZE); + + /* + * This clears _PAGE_GLOBAL from the entire kernel image. + * pti_clone_kernel_text() map put _PAGE_GLOBAL back for + * areas that are mapped to userspace. + */ + set_memory_nonglobal(start, (end - start) >> PAGE_SHIFT); +} + +/* + * Initialize kernel page table isolation + */ +void __init pti_init(void) +{ + if (!boot_cpu_has(X86_FEATURE_PTI)) + return; + + pr_info("enabled\n"); + +#ifdef CONFIG_X86_32 + /* + * We check for X86_FEATURE_PCID here. But the init-code will + * clear the feature flag on 32 bit because the feature is not + * supported on 32 bit anyway. To print the warning we need to + * check with cpuid directly again. + */ + if (cpuid_ecx(0x1) & BIT(17)) { + /* Use printk to work around pr_fmt() */ + printk(KERN_WARNING "\n"); + printk(KERN_WARNING "************************************************************\n"); + printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n"); + printk(KERN_WARNING "** **\n"); + printk(KERN_WARNING "** You are using 32-bit PTI on a 64-bit PCID-capable CPU. **\n"); + printk(KERN_WARNING "** Your performance will increase dramatically if you **\n"); + printk(KERN_WARNING "** switch to a 64-bit kernel! **\n"); + printk(KERN_WARNING "** **\n"); + printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n"); + printk(KERN_WARNING "************************************************************\n"); + } +#endif + + pti_clone_user_shared(); + + /* Undo all global bits from the init pagetables in head_64.S: */ + pti_set_kernel_image_nonglobal(); + + /* Replace some of the global bits just for shared entry text: */ + /* + * This is very early in boot. Device and Late initcalls can do + * modprobe before free_initmem() and mark_readonly(). This + * pti_clone_entry_text() allows those user-mode-helpers to function, + * but notably the text is still RW. + */ + pti_clone_entry_text(false); + pti_setup_espfix64(); + pti_setup_vsyscall(); +} + +/* + * Finalize the kernel mappings in the userspace page-table. Some of the + * mappings for the kernel image might have changed since pti_init() + * cloned them. This is because parts of the kernel image have been + * mapped RO and/or NX. These changes need to be cloned again to the + * userspace page-table. + */ +void pti_finalize(void) +{ + if (!boot_cpu_has(X86_FEATURE_PTI)) + return; + /* + * This is after free_initmem() (all initcalls are done) and we've done + * mark_readonly(). Text is now NX which might've split some PMDs + * relative to the early clone. + */ + pti_clone_entry_text(true); + pti_clone_kernel_text(); + + debug_checkwx_user(); +} diff --git a/arch/x86/mm/setup_nx.c b/arch/x86/mm/setup_nx.c deleted file mode 100644 index 410531d3c292..000000000000 --- a/arch/x86/mm/setup_nx.c +++ /dev/null @@ -1,60 +0,0 @@ -#include <linux/spinlock.h> -#include <linux/errno.h> -#include <linux/init.h> - -#include <asm/pgtable.h> -#include <asm/proto.h> - -static int disable_nx __cpuinitdata; - -/* - * noexec = on|off - * - * Control non-executable mappings for processes. - * - * on Enable - * off Disable - */ -static int __init noexec_setup(char *str) -{ - if (!str) - return -EINVAL; - if (!strncmp(str, "on", 2)) { - disable_nx = 0; - } else if (!strncmp(str, "off", 3)) { - disable_nx = 1; - } - x86_configure_nx(); - return 0; -} -early_param("noexec", noexec_setup); - -void __cpuinit x86_configure_nx(void) -{ - if (cpu_has_nx && !disable_nx) - __supported_pte_mask |= _PAGE_NX; - else - __supported_pte_mask &= ~_PAGE_NX; -} - -void __init x86_report_nx(void) -{ - if (!cpu_has_nx) { - printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " - "missing in CPU!\n"); - } else { -#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) - if (disable_nx) { - printk(KERN_INFO "NX (Execute Disable) protection: " - "disabled by kernel command line option\n"); - } else { - printk(KERN_INFO "NX (Execute Disable) protection: " - "active\n"); - } -#else - /* 32bit non-PAE kernel, NX cannot be used */ - printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " - "cannot be enabled: non-PAE kernel!\n"); -#endif - } -} diff --git a/arch/x86/mm/srat.c b/arch/x86/mm/srat.c index cdd0da9dd530..6f8e0f21c710 100644 --- a/arch/x86/mm/srat.c +++ b/arch/x86/mm/srat.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0 /* * ACPI 3.0 based NUMA setup * Copyright 2004 Andi Kleen, SuSE Labs. @@ -13,46 +14,15 @@ #include <linux/acpi.h> #include <linux/mmzone.h> #include <linux/bitmap.h> -#include <linux/module.h> +#include <linux/init.h> #include <linux/topology.h> -#include <linux/bootmem.h> -#include <linux/memblock.h> #include <linux/mm.h> #include <asm/proto.h> #include <asm/numa.h> -#include <asm/e820.h> +#include <asm/e820/api.h> #include <asm/apic.h> #include <asm/uv/uv.h> -int acpi_numa __initdata; - -static __init int setup_node(int pxm) -{ - return acpi_map_pxm_to_node(pxm); -} - -static __init void bad_srat(void) -{ - printk(KERN_ERR "SRAT: SRAT not used.\n"); - acpi_numa = -1; -} - -static __init inline int srat_disabled(void) -{ - return acpi_numa < 0; -} - -/* Callback for SLIT parsing */ -void __init acpi_numa_slit_init(struct acpi_table_slit *slit) -{ - int i, j; - - for (i = 0; i < slit->locality_count; i++) - for (j = 0; j < slit->locality_count; j++) - numa_set_distance(pxm_to_node(i), pxm_to_node(j), - slit->entry[slit->locality_count * i + j]); -} - /* Callback for Proximity Domain -> x2APIC mapping */ void __init acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa) @@ -70,12 +40,11 @@ acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa) return; pxm = pa->proximity_domain; apic_id = pa->apic_id; - if (!apic->apic_id_valid(apic_id)) { - printk(KERN_INFO "SRAT: PXM %u -> X2APIC 0x%04x ignored\n", - pxm, apic_id); + if (!apic_id_valid(apic_id)) { + pr_info("SRAT: PXM %u -> X2APIC 0x%04x ignored\n", pxm, apic_id); return; } - node = setup_node(pxm); + node = acpi_map_pxm_to_node(pxm); if (node < 0) { printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm); bad_srat(); @@ -88,9 +57,7 @@ acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa) } set_apicid_to_node(apic_id, node); node_set(node, numa_nodes_parsed); - acpi_numa = 1; - printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%04x -> Node %u\n", - pxm, apic_id, node); + pr_debug("SRAT: PXM %u -> APIC 0x%04x -> Node %u\n", pxm, apic_id, node); } /* Callback for Proximity Domain -> LAPIC mapping */ @@ -111,7 +78,7 @@ acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *pa) pxm = pa->proximity_domain_lo; if (acpi_srat_revision >= 2) pxm |= *((unsigned int*)pa->proximity_domain_hi) << 8; - node = setup_node(pxm); + node = acpi_map_pxm_to_node(pxm); if (node < 0) { printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm); bad_srat(); @@ -130,63 +97,9 @@ acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *pa) set_apicid_to_node(apic_id, node); node_set(node, numa_nodes_parsed); - acpi_numa = 1; - printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%02x -> Node %u\n", - pxm, apic_id, node); -} - -#ifdef CONFIG_MEMORY_HOTPLUG -static inline int save_add_info(void) {return 1;} -#else -static inline int save_add_info(void) {return 0;} -#endif - -/* Callback for parsing of the Proximity Domain <-> Memory Area mappings */ -int __init -acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *ma) -{ - u64 start, end; - int node, pxm; - - if (srat_disabled()) - goto out_err; - if (ma->header.length != sizeof(struct acpi_srat_mem_affinity)) - goto out_err_bad_srat; - if ((ma->flags & ACPI_SRAT_MEM_ENABLED) == 0) - goto out_err; - if ((ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && !save_add_info()) - goto out_err; - - start = ma->base_address; - end = start + ma->length; - pxm = ma->proximity_domain; - if (acpi_srat_revision <= 1) - pxm &= 0xff; - - node = setup_node(pxm); - if (node < 0) { - printk(KERN_ERR "SRAT: Too many proximity domains.\n"); - goto out_err_bad_srat; - } - - if (numa_add_memblk(node, start, end) < 0) - goto out_err_bad_srat; - - node_set(node, numa_nodes_parsed); - - printk(KERN_INFO "SRAT: Node %u PXM %u [mem %#010Lx-%#010Lx]\n", - node, pxm, - (unsigned long long) start, (unsigned long long) end - 1); - - return 0; -out_err_bad_srat: - bad_srat(); -out_err: - return -1; + pr_debug("SRAT: PXM %u -> APIC 0x%02x -> Node %u\n", pxm, apic_id, node); } -void __init acpi_numa_arch_fixup(void) {} - int __init x86_acpi_numa_init(void) { int ret; diff --git a/arch/x86/mm/testmmiotrace.c b/arch/x86/mm/testmmiotrace.c index 38868adf07ea..ae295659ca14 100644 --- a/arch/x86/mm/testmmiotrace.c +++ b/arch/x86/mm/testmmiotrace.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * Written by Pekka Paalanen, 2008-2009 <pq@iki.fi> */ @@ -7,9 +8,10 @@ #include <linux/module.h> #include <linux/io.h> #include <linux/mmiotrace.h> +#include <linux/security.h> static unsigned long mmio_address; -module_param(mmio_address, ulong, 0); +module_param_hw(mmio_address, ulong, iomem, 0); MODULE_PARM_DESC(mmio_address, " Start address of the mapping of 16 kB " "(or 8 MB if read_far is non-zero)."); @@ -77,7 +79,7 @@ static void do_read_far_test(void __iomem *p) static void do_test(unsigned long size) { - void __iomem *p = ioremap_nocache(mmio_address, size); + void __iomem *p = ioremap(mmio_address, size); if (!p) { pr_err("could not ioremap, aborting.\n"); return; @@ -102,7 +104,7 @@ static void do_test_bulk_ioremapping(void) int i; for (i = 0; i < 10; ++i) { - p = ioremap_nocache(mmio_address, PAGE_SIZE); + p = ioremap(mmio_address, PAGE_SIZE); if (p) iounmap(p); } @@ -114,6 +116,10 @@ static void do_test_bulk_ioremapping(void) static int __init init(void) { unsigned long size = (read_far) ? (8 << 20) : (16 << 10); + int ret = security_locked_down(LOCKDOWN_MMIOTRACE); + + if (ret) + return ret; if (mmio_address == 0) { pr_err("you have to use the module argument mmio_address.\n"); @@ -121,9 +127,9 @@ static int __init init(void) return -ENXIO; } - pr_warning("WARNING: mapping %lu kB @ 0x%08lx in PCI address space, " - "and writing 16 kB of rubbish in there.\n", - size >> 10, mmio_address); + pr_warn("WARNING: mapping %lu kB @ 0x%08lx in PCI address space, " + "and writing 16 kB of rubbish in there.\n", + size >> 10, mmio_address); do_test(size); do_test_bulk_ioremapping(); pr_info("All done.\n"); @@ -138,3 +144,4 @@ static void __exit cleanup(void) module_init(init); module_exit(cleanup); MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Test module for mmiotrace"); diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c index 282375f13c7e..f5b93e01e347 100644 --- a/arch/x86/mm/tlb.c +++ b/arch/x86/mm/tlb.c @@ -1,24 +1,43 @@ +// SPDX-License-Identifier: GPL-2.0-only #include <linux/init.h> #include <linux/mm.h> #include <linux/spinlock.h> #include <linux/smp.h> #include <linux/interrupt.h> -#include <linux/module.h> +#include <linux/export.h> #include <linux/cpu.h> +#include <linux/debugfs.h> +#include <linux/sched/smt.h> +#include <linux/task_work.h> +#include <linux/mmu_notifier.h> +#include <linux/mmu_context.h> +#include <linux/kvm_types.h> #include <asm/tlbflush.h> #include <asm/mmu_context.h> +#include <asm/nospec-branch.h> #include <asm/cache.h> +#include <asm/cacheflush.h> #include <asm/apic.h> -#include <asm/uv/uv.h> -#include <linux/debugfs.h> +#include <asm/msr.h> +#include <asm/perf_event.h> +#include <asm/tlb.h> -DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) - = { &init_mm, 0, }; +#include "mm_internal.h" + +#ifdef CONFIG_PARAVIRT +# define STATIC_NOPV +#else +# define STATIC_NOPV static +# define __flush_tlb_local native_flush_tlb_local +# define __flush_tlb_global native_flush_tlb_global +# define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) +# define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info) +#endif /* - * Smarter SMP flushing macros. + * TLB flushing, formerly SMP-only * c/o Linus Torvalds. * * These mean you can really definitely utterly forget about @@ -31,239 +50,1474 @@ DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi */ -struct flush_tlb_info { - struct mm_struct *flush_mm; - unsigned long flush_start; - unsigned long flush_end; -}; +/* + * Bits to mangle the TIF_SPEC_* state into the mm pointer which is + * stored in cpu_tlb_state.last_user_mm_spec. + */ +#define LAST_USER_MM_IBPB 0x1UL +#define LAST_USER_MM_L1D_FLUSH 0x2UL +#define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH) + +/* Bits to set when tlbstate and flush is (re)initialized */ +#define LAST_USER_MM_INIT LAST_USER_MM_IBPB /* - * We cannot call mmdrop() because we are in interrupt context, - * instead update mm->cpu_vm_mask. + * The x86 feature is called PCID (Process Context IDentifier). It is similar + * to what is traditionally called ASID on the RISC processors. + * + * We don't use the traditional ASID implementation, where each process/mm gets + * its own ASID and flush/restart when we run out of ASID space. + * + * Instead we have a small per-cpu array of ASIDs and cache the last few mm's + * that came by on this CPU, allowing cheaper switch_mm between processes on + * this CPU. + * + * We end up with different spaces for different things. To avoid confusion we + * use different names for each of them: + * + * ASID - [0, TLB_NR_DYN_ASIDS-1] + * the canonical identifier for an mm, dynamically allocated on each CPU + * [TLB_NR_DYN_ASIDS, MAX_ASID_AVAILABLE-1] + * the canonical, global identifier for an mm, identical across all CPUs + * + * kPCID - [1, MAX_ASID_AVAILABLE] + * the value we write into the PCID part of CR3; corresponds to the + * ASID+1, because PCID 0 is special. + * + * uPCID - [2048 + 1, 2048 + MAX_ASID_AVAILABLE] + * for KPTI each mm has two address spaces and thus needs two + * PCID values, but we can still do with a single ASID denomination + * for each mm. Corresponds to kPCID + 2048. + * */ -void leave_mm(int cpu) + +/* + * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for + * user/kernel switches + */ +#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION +# define PTI_CONSUMED_PCID_BITS 1 +#else +# define PTI_CONSUMED_PCID_BITS 0 +#endif + +#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) + +/* + * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account + * for them being zero-based. Another -1 is because PCID 0 is reserved for + * use by non-PCID-aware users. + */ +#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) + +/* + * Given @asid, compute kPCID + */ +static inline u16 kern_pcid(u16 asid) { - struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm); - if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) - BUG(); - if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) { - cpumask_clear_cpu(cpu, mm_cpumask(active_mm)); - load_cr3(swapper_pg_dir); + VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); + +#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION + /* + * Make sure that the dynamic ASID space does not conflict with the + * bit we are using to switch between user and kernel ASIDs. + */ + BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); + + /* + * The ASID being passed in here should have respected the + * MAX_ASID_AVAILABLE and thus never have the switch bit set. + */ + VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); +#endif + /* + * The dynamically-assigned ASIDs that get passed in are small + * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, + * so do not bother to clear it. + * + * If PCID is on, ASID-aware code paths put the ASID+1 into the + * PCID bits. This serves two purposes. It prevents a nasty + * situation in which PCID-unaware code saves CR3, loads some other + * value (with PCID == 0), and then restores CR3, thus corrupting + * the TLB for ASID 0 if the saved ASID was nonzero. It also means + * that any bugs involving loading a PCID-enabled CR3 with + * CR4.PCIDE off will trigger deterministically. + */ + return asid + 1; +} + +/* + * Given @asid, compute uPCID + */ +static inline u16 user_pcid(u16 asid) +{ + u16 ret = kern_pcid(asid); +#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION + ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; +#endif + return ret; +} + +static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam) +{ + unsigned long cr3 = __sme_pa(pgd) | lam; + + if (static_cpu_has(X86_FEATURE_PCID)) { + cr3 |= kern_pcid(asid); + } else { + VM_WARN_ON_ONCE(asid != 0); } + + return cr3; +} + +static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid, + unsigned long lam) +{ + /* + * Use boot_cpu_has() instead of this_cpu_has() as this function + * might be called during early boot. This should work even after + * boot because all CPU's the have same capabilities: + */ + VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); + return build_cr3(pgd, asid, lam) | CR3_NOFLUSH; +} + +/* + * We get here when we do something requiring a TLB invalidation + * but could not go invalidate all of the contexts. We do the + * necessary invalidation by clearing out the 'ctx_id' which + * forces a TLB flush when the context is loaded. + */ +static void clear_asid_other(void) +{ + u16 asid; + + /* + * This is only expected to be set if we have disabled + * kernel _PAGE_GLOBAL pages. + */ + if (!static_cpu_has(X86_FEATURE_PTI)) { + WARN_ON_ONCE(1); + return; + } + + for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { + /* Do not need to flush the current asid */ + if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) + continue; + /* + * Make sure the next time we go to switch to + * this asid, we do a flush: + */ + this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); + } + this_cpu_write(cpu_tlbstate.invalidate_other, false); +} + +atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); + +struct new_asid { + unsigned int asid : 16; + unsigned int need_flush : 1; +}; + +static struct new_asid choose_new_asid(struct mm_struct *next, u64 next_tlb_gen) +{ + struct new_asid ns; + u16 asid; + + if (!static_cpu_has(X86_FEATURE_PCID)) { + ns.asid = 0; + ns.need_flush = 1; + return ns; + } + + /* + * TLB consistency for global ASIDs is maintained with hardware assisted + * remote TLB flushing. Global ASIDs are always up to date. + */ + if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) { + u16 global_asid = mm_global_asid(next); + + if (global_asid) { + ns.asid = global_asid; + ns.need_flush = 0; + return ns; + } + } + + if (this_cpu_read(cpu_tlbstate.invalidate_other)) + clear_asid_other(); + + for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { + if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != + next->context.ctx_id) + continue; + + ns.asid = asid; + ns.need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < next_tlb_gen); + return ns; + } + + /* + * We don't currently own an ASID slot on this CPU. + * Allocate a slot. + */ + ns.asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; + if (ns.asid >= TLB_NR_DYN_ASIDS) { + ns.asid = 0; + this_cpu_write(cpu_tlbstate.next_asid, 1); + } + ns.need_flush = true; + + return ns; } -EXPORT_SYMBOL_GPL(leave_mm); /* - * The flush IPI assumes that a thread switch happens in this order: - * [cpu0: the cpu that switches] - * 1) switch_mm() either 1a) or 1b) - * 1a) thread switch to a different mm - * 1a1) set cpu_tlbstate to TLBSTATE_OK - * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm - * if cpu0 was in lazy tlb mode. - * 1a2) update cpu active_mm - * Now cpu0 accepts tlb flushes for the new mm. - * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask); - * Now the other cpus will send tlb flush ipis. - * 1a4) change cr3. - * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask); - * Stop ipi delivery for the old mm. This is not synchronized with - * the other cpus, but flush_tlb_func ignore flush ipis for the wrong - * mm, and in the worst case we perform a superfluous tlb flush. - * 1b) thread switch without mm change - * cpu active_mm is correct, cpu0 already handles flush ipis. - * 1b1) set cpu_tlbstate to TLBSTATE_OK - * 1b2) test_and_set the cpu bit in cpu_vm_mask. - * Atomically set the bit [other cpus will start sending flush ipis], - * and test the bit. - * 1b3) if the bit was 0: leave_mm was called, flush the tlb. - * 2) switch %%esp, ie current + * Global ASIDs are allocated for multi-threaded processes that are + * active on multiple CPUs simultaneously, giving each of those + * processes the same PCID on every CPU, for use with hardware-assisted + * TLB shootdown on remote CPUs, like AMD INVLPGB or Intel RAR. * - * The interrupt must handle 2 special cases: - * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. - * - the cpu performs speculative tlb reads, i.e. even if the cpu only - * runs in kernel space, the cpu could load tlb entries for user space - * pages. + * These global ASIDs are held for the lifetime of the process. + */ +static DEFINE_RAW_SPINLOCK(global_asid_lock); +static u16 last_global_asid = MAX_ASID_AVAILABLE; +static DECLARE_BITMAP(global_asid_used, MAX_ASID_AVAILABLE); +static DECLARE_BITMAP(global_asid_freed, MAX_ASID_AVAILABLE); +static int global_asid_available = MAX_ASID_AVAILABLE - TLB_NR_DYN_ASIDS - 1; + +/* + * When the search for a free ASID in the global ASID space reaches + * MAX_ASID_AVAILABLE, a global TLB flush guarantees that previously + * freed global ASIDs are safe to re-use. * - * The good news is that cpu_tlbstate is local to each cpu, no - * write/read ordering problems. + * This way the global flush only needs to happen at ASID rollover + * time, and not at ASID allocation time. */ +static void reset_global_asid_space(void) +{ + lockdep_assert_held(&global_asid_lock); + + invlpgb_flush_all_nonglobals(); + + /* + * The TLB flush above makes it safe to re-use the previously + * freed global ASIDs. + */ + bitmap_andnot(global_asid_used, global_asid_used, + global_asid_freed, MAX_ASID_AVAILABLE); + bitmap_clear(global_asid_freed, 0, MAX_ASID_AVAILABLE); + + /* Restart the search from the start of global ASID space. */ + last_global_asid = TLB_NR_DYN_ASIDS; +} + +static u16 allocate_global_asid(void) +{ + u16 asid; + + lockdep_assert_held(&global_asid_lock); + + /* The previous allocation hit the edge of available address space */ + if (last_global_asid >= MAX_ASID_AVAILABLE - 1) + reset_global_asid_space(); + + asid = find_next_zero_bit(global_asid_used, MAX_ASID_AVAILABLE, last_global_asid); + + if (asid >= MAX_ASID_AVAILABLE && !global_asid_available) { + /* This should never happen. */ + VM_WARN_ONCE(1, "Unable to allocate global ASID despite %d available\n", + global_asid_available); + return 0; + } + + /* Claim this global ASID. */ + __set_bit(asid, global_asid_used); + last_global_asid = asid; + global_asid_available--; + return asid; +} /* - * TLB flush funcation: - * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. - * 2) Leave the mm if we are in the lazy tlb mode. + * Check whether a process is currently active on more than @threshold CPUs. + * This is a cheap estimation on whether or not it may make sense to assign + * a global ASID to this process, and use broadcast TLB invalidation. */ -static void flush_tlb_func(void *info) +static bool mm_active_cpus_exceeds(struct mm_struct *mm, int threshold) { - struct flush_tlb_info *f = info; + int count = 0; + int cpu; + + /* This quick check should eliminate most single threaded programs. */ + if (cpumask_weight(mm_cpumask(mm)) <= threshold) + return false; + + /* Slower check to make sure. */ + for_each_cpu(cpu, mm_cpumask(mm)) { + /* Skip the CPUs that aren't really running this process. */ + if (per_cpu(cpu_tlbstate.loaded_mm, cpu) != mm) + continue; + + if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu)) + continue; + + if (++count > threshold) + return true; + } + return false; +} + +/* + * Assign a global ASID to the current process, protecting against + * races between multiple threads in the process. + */ +static void use_global_asid(struct mm_struct *mm) +{ + u16 asid; + + guard(raw_spinlock_irqsave)(&global_asid_lock); + + /* This process is already using broadcast TLB invalidation. */ + if (mm_global_asid(mm)) + return; + + /* + * The last global ASID was consumed while waiting for the lock. + * + * If this fires, a more aggressive ASID reuse scheme might be + * needed. + */ + if (!global_asid_available) { + VM_WARN_ONCE(1, "Ran out of global ASIDs\n"); + return; + } + + asid = allocate_global_asid(); + if (!asid) + return; + + mm_assign_global_asid(mm, asid); +} + +void mm_free_global_asid(struct mm_struct *mm) +{ + if (!cpu_feature_enabled(X86_FEATURE_INVLPGB)) + return; + + if (!mm_global_asid(mm)) + return; + + guard(raw_spinlock_irqsave)(&global_asid_lock); + + /* The global ASID can be re-used only after flush at wrap-around. */ +#ifdef CONFIG_BROADCAST_TLB_FLUSH + __set_bit(mm->context.global_asid, global_asid_freed); + + mm->context.global_asid = 0; + global_asid_available++; +#endif +} - inc_irq_stat(irq_tlb_count); +/* + * Is the mm transitioning from a CPU-local ASID to a global ASID? + */ +static bool mm_needs_global_asid(struct mm_struct *mm, u16 asid) +{ + u16 global_asid = mm_global_asid(mm); + + if (!cpu_feature_enabled(X86_FEATURE_INVLPGB)) + return false; + + /* Process is transitioning to a global ASID */ + if (global_asid && asid != global_asid) + return true; + + return false; +} - if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm)) +/* + * x86 has 4k ASIDs (2k when compiled with KPTI), but the largest x86 + * systems have over 8k CPUs. Because of this potential ASID shortage, + * global ASIDs are handed out to processes that have frequent TLB + * flushes and are active on 4 or more CPUs simultaneously. + */ +static void consider_global_asid(struct mm_struct *mm) +{ + if (!cpu_feature_enabled(X86_FEATURE_INVLPGB)) + return; + + /* Check every once in a while. */ + if ((current->pid & 0x1f) != (jiffies & 0x1f)) + return; + + /* + * Assign a global ASID if the process is active on + * 4 or more CPUs simultaneously. + */ + if (mm_active_cpus_exceeds(mm, 3)) + use_global_asid(mm); +} + +static void finish_asid_transition(struct flush_tlb_info *info) +{ + struct mm_struct *mm = info->mm; + int bc_asid = mm_global_asid(mm); + int cpu; + + if (!mm_in_asid_transition(mm)) return; - if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) { - if (f->flush_end == TLB_FLUSH_ALL) - local_flush_tlb(); - else if (!f->flush_end) - __flush_tlb_single(f->flush_start); - else { - unsigned long addr; - addr = f->flush_start; - while (addr < f->flush_end) { - __flush_tlb_single(addr); - addr += PAGE_SIZE; - } + for_each_cpu(cpu, mm_cpumask(mm)) { + /* + * The remote CPU is context switching. Wait for that to + * finish, to catch the unlikely case of it switching to + * the target mm with an out of date ASID. + */ + while (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) == LOADED_MM_SWITCHING) + cpu_relax(); + + if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) != mm) + continue; + + /* + * If at least one CPU is not using the global ASID yet, + * send a TLB flush IPI. The IPI should cause stragglers + * to transition soon. + * + * This can race with the CPU switching to another task; + * that results in a (harmless) extra IPI. + */ + if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm_asid, cpu)) != bc_asid) { + flush_tlb_multi(mm_cpumask(info->mm), info); + return; } - } else - leave_mm(smp_processor_id()); + } + + /* All the CPUs running this process are using the global ASID. */ + mm_clear_asid_transition(mm); +} + +static void broadcast_tlb_flush(struct flush_tlb_info *info) +{ + bool pmd = info->stride_shift == PMD_SHIFT; + unsigned long asid = mm_global_asid(info->mm); + unsigned long addr = info->start; + + /* + * TLB flushes with INVLPGB are kicked off asynchronously. + * The inc_mm_tlb_gen() guarantees page table updates are done + * before these TLB flushes happen. + */ + if (info->end == TLB_FLUSH_ALL) { + invlpgb_flush_single_pcid_nosync(kern_pcid(asid)); + /* Do any CPUs supporting INVLPGB need PTI? */ + if (cpu_feature_enabled(X86_FEATURE_PTI)) + invlpgb_flush_single_pcid_nosync(user_pcid(asid)); + } else do { + unsigned long nr = 1; + + if (info->stride_shift <= PMD_SHIFT) { + nr = (info->end - addr) >> info->stride_shift; + nr = clamp_val(nr, 1, invlpgb_count_max); + } + + invlpgb_flush_user_nr_nosync(kern_pcid(asid), addr, nr, pmd); + if (cpu_feature_enabled(X86_FEATURE_PTI)) + invlpgb_flush_user_nr_nosync(user_pcid(asid), addr, nr, pmd); + + addr += nr << info->stride_shift; + } while (addr < info->end); + + finish_asid_transition(info); + /* Wait for the INVLPGBs kicked off above to finish. */ + __tlbsync(); } -void native_flush_tlb_others(const struct cpumask *cpumask, - struct mm_struct *mm, unsigned long start, - unsigned long end) +/* + * Given an ASID, flush the corresponding user ASID. We can delay this + * until the next time we switch to it. + * + * See SWITCH_TO_USER_CR3. + */ +static inline void invalidate_user_asid(u16 asid) { - struct flush_tlb_info info; - info.flush_mm = mm; - info.flush_start = start; - info.flush_end = end; + /* There is no user ASID if address space separation is off */ + if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION)) + return; - if (is_uv_system()) { - unsigned int cpu; + /* + * We only have a single ASID if PCID is off and the CR3 + * write will have flushed it. + */ + if (!cpu_feature_enabled(X86_FEATURE_PCID)) + return; - cpu = smp_processor_id(); - cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu); - if (cpumask) - smp_call_function_many(cpumask, flush_tlb_func, - &info, 1); + if (!static_cpu_has(X86_FEATURE_PTI)) return; + + __set_bit(kern_pcid(asid), + (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); +} + +static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam, + bool need_flush) +{ + unsigned long new_mm_cr3; + + if (need_flush) { + invalidate_user_asid(new_asid); + new_mm_cr3 = build_cr3(pgdir, new_asid, lam); + } else { + new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam); } - smp_call_function_many(cpumask, flush_tlb_func, &info, 1); + + /* + * Caution: many callers of this function expect + * that load_cr3() is serializing and orders TLB + * fills with respect to the mm_cpumask writes. + */ + write_cr3(new_mm_cr3); } -void flush_tlb_current_task(void) +void leave_mm(void) { - struct mm_struct *mm = current->mm; + struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); + + /* + * It's plausible that we're in lazy TLB mode while our mm is init_mm. + * If so, our callers still expect us to flush the TLB, but there + * aren't any user TLB entries in init_mm to worry about. + * + * This needs to happen before any other sanity checks due to + * intel_idle's shenanigans. + */ + if (loaded_mm == &init_mm) + return; + + /* Warn if we're not lazy. */ + WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy)); + + switch_mm(NULL, &init_mm, NULL); +} +EXPORT_SYMBOL_GPL(leave_mm); - preempt_disable(); +void switch_mm(struct mm_struct *prev, struct mm_struct *next, + struct task_struct *tsk) +{ + unsigned long flags; - local_flush_tlb(); - if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) - flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL); - preempt_enable(); + local_irq_save(flags); + switch_mm_irqs_off(NULL, next, tsk); + local_irq_restore(flags); } /* - * It can find out the THP large page, or - * HUGETLB page in tlb_flush when THP disabled + * Invoked from return to user/guest by a task that opted-in to L1D + * flushing but ended up running on an SMT enabled core due to wrong + * affinity settings or CPU hotplug. This is part of the paranoid L1D flush + * contract which this task requested. */ -static inline unsigned long has_large_page(struct mm_struct *mm, - unsigned long start, unsigned long end) -{ - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - unsigned long addr = ALIGN(start, HPAGE_SIZE); - for (; addr < end; addr += HPAGE_SIZE) { - pgd = pgd_offset(mm, addr); - if (likely(!pgd_none(*pgd))) { - pud = pud_offset(pgd, addr); - if (likely(!pud_none(*pud))) { - pmd = pmd_offset(pud, addr); - if (likely(!pmd_none(*pmd))) - if (pmd_large(*pmd)) - return addr; - } - } +static void l1d_flush_force_sigbus(struct callback_head *ch) +{ + force_sig(SIGBUS); +} + +static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm, + struct task_struct *next) +{ + /* Flush L1D if the outgoing task requests it */ + if (prev_mm & LAST_USER_MM_L1D_FLUSH) + wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH); + + /* Check whether the incoming task opted in for L1D flush */ + if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH))) + return; + + /* + * Validate that it is not running on an SMT sibling as this would + * make the exercise pointless because the siblings share L1D. If + * it runs on a SMT sibling, notify it with SIGBUS on return to + * user/guest + */ + if (this_cpu_read(cpu_info.smt_active)) { + clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH); + next->l1d_flush_kill.func = l1d_flush_force_sigbus; + task_work_add(next, &next->l1d_flush_kill, TWA_RESUME); } - return 0; } -void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, - unsigned long end, unsigned long vmflag) +static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next) { - unsigned long addr; - unsigned act_entries, tlb_entries = 0; + unsigned long next_tif = read_task_thread_flags(next); + unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK; - preempt_disable(); - if (current->active_mm != mm) - goto flush_all; + /* + * Ensure that the bit shift above works as expected and the two flags + * end up in bit 0 and 1. + */ + BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1); - if (!current->mm) { - leave_mm(smp_processor_id()); - goto flush_all; + return (unsigned long)next->mm | spec_bits; +} + +static void cond_mitigation(struct task_struct *next) +{ + unsigned long prev_mm, next_mm; + + if (!next || !next->mm) + return; + + next_mm = mm_mangle_tif_spec_bits(next); + prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec); + + /* + * Avoid user->user BTB/RSB poisoning by flushing them when switching + * between processes. This stops one process from doing Spectre-v2 + * attacks on another. + * + * Both, the conditional and the always IBPB mode use the mm + * pointer to avoid the IBPB when switching between tasks of the + * same process. Using the mm pointer instead of mm->context.ctx_id + * opens a hypothetical hole vs. mm_struct reuse, which is more or + * less impossible to control by an attacker. Aside of that it + * would only affect the first schedule so the theoretically + * exposed data is not really interesting. + */ + if (static_branch_likely(&switch_mm_cond_ibpb)) { + /* + * This is a bit more complex than the always mode because + * it has to handle two cases: + * + * 1) Switch from a user space task (potential attacker) + * which has TIF_SPEC_IB set to a user space task + * (potential victim) which has TIF_SPEC_IB not set. + * + * 2) Switch from a user space task (potential attacker) + * which has TIF_SPEC_IB not set to a user space task + * (potential victim) which has TIF_SPEC_IB set. + * + * This could be done by unconditionally issuing IBPB when + * a task which has TIF_SPEC_IB set is either scheduled in + * or out. Though that results in two flushes when: + * + * - the same user space task is scheduled out and later + * scheduled in again and only a kernel thread ran in + * between. + * + * - a user space task belonging to the same process is + * scheduled in after a kernel thread ran in between + * + * - a user space task belonging to the same process is + * scheduled in immediately. + * + * Optimize this with reasonably small overhead for the + * above cases. Mangle the TIF_SPEC_IB bit into the mm + * pointer of the incoming task which is stored in + * cpu_tlbstate.last_user_mm_spec for comparison. + * + * Issue IBPB only if the mm's are different and one or + * both have the IBPB bit set. + */ + if (next_mm != prev_mm && + (next_mm | prev_mm) & LAST_USER_MM_IBPB) + indirect_branch_prediction_barrier(); } - if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1 - || vmflag & VM_HUGETLB) { - local_flush_tlb(); - goto flush_all; + if (static_branch_unlikely(&switch_mm_always_ibpb)) { + /* + * Only flush when switching to a user space task with a + * different context than the user space task which ran + * last on this CPU. + */ + if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != (unsigned long)next->mm) + indirect_branch_prediction_barrier(); } - /* In modern CPU, last level tlb used for both data/ins */ - if (vmflag & VM_EXEC) - tlb_entries = tlb_lli_4k[ENTRIES]; - else - tlb_entries = tlb_lld_4k[ENTRIES]; - /* Assume all of TLB entries was occupied by this task */ - act_entries = mm->total_vm > tlb_entries ? tlb_entries : mm->total_vm; - - /* tlb_flushall_shift is on balance point, details in commit log */ - if ((end - start) >> PAGE_SHIFT > act_entries >> tlb_flushall_shift) - local_flush_tlb(); - else { - if (has_large_page(mm, start, end)) { - local_flush_tlb(); - goto flush_all; + if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) { + /* + * Flush L1D when the outgoing task requested it and/or + * check whether the incoming task requested L1D flushing + * and ended up on an SMT sibling. + */ + if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH)) + l1d_flush_evaluate(prev_mm, next_mm, next); + } + + this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm); +} + +#ifdef CONFIG_PERF_EVENTS +static inline void cr4_update_pce_mm(struct mm_struct *mm) +{ + if (static_branch_unlikely(&rdpmc_always_available_key) || + (!static_branch_unlikely(&rdpmc_never_available_key) && + atomic_read(&mm->context.perf_rdpmc_allowed))) { + /* + * Clear the existing dirty counters to + * prevent the leak for an RDPMC task. + */ + perf_clear_dirty_counters(); + cr4_set_bits_irqsoff(X86_CR4_PCE); + } else + cr4_clear_bits_irqsoff(X86_CR4_PCE); +} + +void cr4_update_pce(void *ignored) +{ + cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); +} + +#else +static inline void cr4_update_pce_mm(struct mm_struct *mm) { } +#endif + +/* + * This optimizes when not actually switching mm's. Some architectures use the + * 'unused' argument for this optimization, but x86 must use + * 'cpu_tlbstate.loaded_mm' instead because it does not always keep + * 'current->active_mm' up to date. + */ +void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next, + struct task_struct *tsk) +{ + struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm); + u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); + bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy); + unsigned cpu = smp_processor_id(); + unsigned long new_lam; + struct new_asid ns; + u64 next_tlb_gen; + + + /* We don't want flush_tlb_func() to run concurrently with us. */ + if (IS_ENABLED(CONFIG_PROVE_LOCKING)) + WARN_ON_ONCE(!irqs_disabled()); + + /* + * Verify that CR3 is what we think it is. This will catch + * hypothetical buggy code that directly switches to swapper_pg_dir + * without going through leave_mm() / switch_mm_irqs_off() or that + * does something like write_cr3(read_cr3_pa()). + * + * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() + * isn't free. + */ +#ifdef CONFIG_DEBUG_VM + if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid, + tlbstate_lam_cr3_mask()))) { + /* + * If we were to BUG here, we'd be very likely to kill + * the system so hard that we don't see the call trace. + * Try to recover instead by ignoring the error and doing + * a global flush to minimize the chance of corruption. + * + * (This is far from being a fully correct recovery. + * Architecturally, the CPU could prefetch something + * back into an incorrect ASID slot and leave it there + * to cause trouble down the road. It's better than + * nothing, though.) + */ + __flush_tlb_all(); + } +#endif + if (was_lazy) + this_cpu_write(cpu_tlbstate_shared.is_lazy, false); + + /* + * The membarrier system call requires a full memory barrier and + * core serialization before returning to user-space, after + * storing to rq->curr, when changing mm. This is because + * membarrier() sends IPIs to all CPUs that are in the target mm + * to make them issue memory barriers. However, if another CPU + * switches to/from the target mm concurrently with + * membarrier(), it can cause that CPU not to receive an IPI + * when it really should issue a memory barrier. Writing to CR3 + * provides that full memory barrier and core serializing + * instruction. + */ + if (prev == next) { + /* Not actually switching mm's */ + VM_WARN_ON(is_dyn_asid(prev_asid) && + this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != + next->context.ctx_id); + + /* + * If this races with another thread that enables lam, 'new_lam' + * might not match tlbstate_lam_cr3_mask(). + */ + + /* + * Even in lazy TLB mode, the CPU should stay set in the + * mm_cpumask. The TLB shootdown code can figure out from + * cpu_tlbstate_shared.is_lazy whether or not to send an IPI. + */ + if (IS_ENABLED(CONFIG_DEBUG_VM) && + WARN_ON_ONCE(prev != &init_mm && !is_notrack_mm(prev) && + !cpumask_test_cpu(cpu, mm_cpumask(next)))) + cpumask_set_cpu(cpu, mm_cpumask(next)); + + /* Check if the current mm is transitioning to a global ASID */ + if (mm_needs_global_asid(next, prev_asid)) { + next_tlb_gen = atomic64_read(&next->context.tlb_gen); + ns = choose_new_asid(next, next_tlb_gen); + goto reload_tlb; } - /* flush range by one by one 'invlpg' */ - for (addr = start; addr < end; addr += PAGE_SIZE) - __flush_tlb_single(addr); - - if (cpumask_any_but(mm_cpumask(mm), - smp_processor_id()) < nr_cpu_ids) - flush_tlb_others(mm_cpumask(mm), mm, start, end); - preempt_enable(); + + /* + * Broadcast TLB invalidation keeps this ASID up to date + * all the time. + */ + if (is_global_asid(prev_asid)) + return; + + /* + * If the CPU is not in lazy TLB mode, we are just switching + * from one thread in a process to another thread in the same + * process. No TLB flush required. + */ + if (!was_lazy) + return; + + /* + * Read the tlb_gen to check whether a flush is needed. + * If the TLB is up to date, just use it. + * The barrier synchronizes with the tlb_gen increment in + * the TLB shootdown code. + */ + smp_mb(); + next_tlb_gen = atomic64_read(&next->context.tlb_gen); + if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == + next_tlb_gen) + return; + + /* + * TLB contents went out of date while we were in lazy + * mode. Fall through to the TLB switching code below. + */ + ns.asid = prev_asid; + ns.need_flush = true; + } else { + /* + * Apply process to process speculation vulnerability + * mitigations if applicable. + */ + cond_mitigation(tsk); + + /* + * Indicate that CR3 is about to change. nmi_uaccess_okay() + * and others are sensitive to the window where mm_cpumask(), + * CR3 and cpu_tlbstate.loaded_mm are not all in sync. + */ + this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); + + /* + * Make sure this CPU is set in mm_cpumask() such that we'll + * receive invalidation IPIs. + * + * Rely on the smp_mb() implied by cpumask_set_cpu()'s atomic + * operation, or explicitly provide one. Such that: + * + * switch_mm_irqs_off() flush_tlb_mm_range() + * smp_store_release(loaded_mm, SWITCHING); atomic64_inc_return(tlb_gen) + * smp_mb(); // here // smp_mb() implied + * atomic64_read(tlb_gen); this_cpu_read(loaded_mm); + * + * we properly order against flush_tlb_mm_range(), where the + * loaded_mm load can happen in mative_flush_tlb_multi() -> + * should_flush_tlb(). + * + * This way switch_mm() must see the new tlb_gen or + * flush_tlb_mm_range() must see the new loaded_mm, or both. + */ + if (next != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(next))) + cpumask_set_cpu(cpu, mm_cpumask(next)); + else + smp_mb(); + + next_tlb_gen = atomic64_read(&next->context.tlb_gen); + + ns = choose_new_asid(next, next_tlb_gen); + } + +reload_tlb: + new_lam = mm_lam_cr3_mask(next); + if (ns.need_flush) { + VM_WARN_ON_ONCE(is_global_asid(ns.asid)); + this_cpu_write(cpu_tlbstate.ctxs[ns.asid].ctx_id, next->context.ctx_id); + this_cpu_write(cpu_tlbstate.ctxs[ns.asid].tlb_gen, next_tlb_gen); + load_new_mm_cr3(next->pgd, ns.asid, new_lam, true); + + trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); + } else { + /* The new ASID is already up to date. */ + load_new_mm_cr3(next->pgd, ns.asid, new_lam, false); + + trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); + } + + /* Make sure we write CR3 before loaded_mm. */ + barrier(); + + this_cpu_write(cpu_tlbstate.loaded_mm, next); + this_cpu_write(cpu_tlbstate.loaded_mm_asid, ns.asid); + cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next)); + + if (next != prev) { + cr4_update_pce_mm(next); + switch_ldt(prev, next); + } +} + +/* + * Please ignore the name of this function. It should be called + * switch_to_kernel_thread(). + * + * enter_lazy_tlb() is a hint from the scheduler that we are entering a + * kernel thread or other context without an mm. Acceptable implementations + * include doing nothing whatsoever, switching to init_mm, or various clever + * lazy tricks to try to minimize TLB flushes. + * + * The scheduler reserves the right to call enter_lazy_tlb() several times + * in a row. It will notify us that we're going back to a real mm by + * calling switch_mm_irqs_off(). + */ +void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) +{ + if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) + return; + + this_cpu_write(cpu_tlbstate_shared.is_lazy, true); +} + +/* + * Using a temporary mm allows to set temporary mappings that are not accessible + * by other CPUs. Such mappings are needed to perform sensitive memory writes + * that override the kernel memory protections (e.g., W^X), without exposing the + * temporary page-table mappings that are required for these write operations to + * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the + * mapping is torn down. Temporary mms can also be used for EFI runtime service + * calls or similar functionality. + * + * It is illegal to schedule while using a temporary mm -- the context switch + * code is unaware of the temporary mm and does not know how to context switch. + * Use a real (non-temporary) mm in a kernel thread if you need to sleep. + * + * Note: For sensitive memory writes, the temporary mm needs to be used + * exclusively by a single core, and IRQs should be disabled while the + * temporary mm is loaded, thereby preventing interrupt handler bugs from + * overriding the kernel memory protection. + */ +struct mm_struct *use_temporary_mm(struct mm_struct *temp_mm) +{ + struct mm_struct *prev_mm; + + lockdep_assert_preemption_disabled(); + guard(irqsave)(); + + /* + * Make sure not to be in TLB lazy mode, as otherwise we'll end up + * with a stale address space WITHOUT being in lazy mode after + * restoring the previous mm. + */ + if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) + leave_mm(); + + prev_mm = this_cpu_read(cpu_tlbstate.loaded_mm); + switch_mm_irqs_off(NULL, temp_mm, current); + + /* + * If breakpoints are enabled, disable them while the temporary mm is + * used. Userspace might set up watchpoints on addresses that are used + * in the temporary mm, which would lead to wrong signals being sent or + * crashes. + * + * Note that breakpoints are not disabled selectively, which also causes + * kernel breakpoints (e.g., perf's) to be disabled. This might be + * undesirable, but still seems reasonable as the code that runs in the + * temporary mm should be short. + */ + if (hw_breakpoint_active()) + hw_breakpoint_disable(); + + return prev_mm; +} + +void unuse_temporary_mm(struct mm_struct *prev_mm) +{ + lockdep_assert_preemption_disabled(); + guard(irqsave)(); + + /* Clear the cpumask, to indicate no TLB flushing is needed anywhere */ + cpumask_clear_cpu(smp_processor_id(), mm_cpumask(this_cpu_read(cpu_tlbstate.loaded_mm))); + + switch_mm_irqs_off(NULL, prev_mm, current); + + /* + * Restore the breakpoints if they were disabled before the temporary mm + * was loaded. + */ + if (hw_breakpoint_active()) + hw_breakpoint_restore(); +} + +/* + * Call this when reinitializing a CPU. It fixes the following potential + * problems: + * + * - The ASID changed from what cpu_tlbstate thinks it is (most likely + * because the CPU was taken down and came back up with CR3's PCID + * bits clear. CPU hotplug can do this. + * + * - The TLB contains junk in slots corresponding to inactive ASIDs. + * + * - The CPU went so far out to lunch that it may have missed a TLB + * flush. + */ +void initialize_tlbstate_and_flush(void) +{ + int i; + struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); + u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); + unsigned long lam = mm_lam_cr3_mask(mm); + unsigned long cr3 = __read_cr3(); + + /* Assert that CR3 already references the right mm. */ + WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); + + /* LAM expected to be disabled */ + WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57)); + WARN_ON(lam); + + /* + * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization + * doesn't work like other CR4 bits because it can only be set from + * long mode.) + */ + WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && + !(cr4_read_shadow() & X86_CR4_PCIDE)); + + /* Disable LAM, force ASID 0 and force a TLB flush. */ + write_cr3(build_cr3(mm->pgd, 0, 0)); + + /* Reinitialize tlbstate. */ + this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT); + this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); + this_cpu_write(cpu_tlbstate.next_asid, 1); + this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); + this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); + cpu_tlbstate_update_lam(lam, mm_untag_mask(mm)); + + for (i = 1; i < TLB_NR_DYN_ASIDS; i++) + this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); +} + +/* + * flush_tlb_func()'s memory ordering requirement is that any + * TLB fills that happen after we flush the TLB are ordered after we + * read active_mm's tlb_gen. We don't need any explicit barriers + * because all x86 flush operations are serializing and the + * atomic64_read operation won't be reordered by the compiler. + */ +static void flush_tlb_func(void *info) +{ + /* + * We have three different tlb_gen values in here. They are: + * + * - mm_tlb_gen: the latest generation. + * - local_tlb_gen: the generation that this CPU has already caught + * up to. + * - f->new_tlb_gen: the generation that the requester of the flush + * wants us to catch up to. + */ + const struct flush_tlb_info *f = info; + struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); + u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); + u64 local_tlb_gen; + bool local = smp_processor_id() == f->initiating_cpu; + unsigned long nr_invalidate = 0; + u64 mm_tlb_gen; + + /* This code cannot presently handle being reentered. */ + VM_WARN_ON(!irqs_disabled()); + + if (!local) { + inc_irq_stat(irq_tlb_count); + count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); + } + + /* The CPU was left in the mm_cpumask of the target mm. Clear it. */ + if (f->mm && f->mm != loaded_mm) { + cpumask_clear_cpu(raw_smp_processor_id(), mm_cpumask(f->mm)); + trace_tlb_flush(TLB_REMOTE_WRONG_CPU, 0); return; } -flush_all: - if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) - flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL); - preempt_enable(); + if (unlikely(loaded_mm == &init_mm)) + return; + + /* Reload the ASID if transitioning into or out of a global ASID */ + if (mm_needs_global_asid(loaded_mm, loaded_mm_asid)) { + switch_mm_irqs_off(NULL, loaded_mm, NULL); + loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); + } + + /* Broadcast ASIDs are always kept up to date with INVLPGB. */ + if (is_global_asid(loaded_mm_asid)) + return; + + VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != + loaded_mm->context.ctx_id); + + if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) { + /* + * We're in lazy mode. We need to at least flush our + * paging-structure cache to avoid speculatively reading + * garbage into our TLB. Since switching to init_mm is barely + * slower than a minimal flush, just switch to init_mm. + * + * This should be rare, with native_flush_tlb_multi() skipping + * IPIs to lazy TLB mode CPUs. + */ + switch_mm_irqs_off(NULL, &init_mm, NULL); + return; + } + + local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); + + if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID && + f->new_tlb_gen <= local_tlb_gen)) { + /* + * The TLB is already up to date in respect to f->new_tlb_gen. + * While the core might be still behind mm_tlb_gen, checking + * mm_tlb_gen unnecessarily would have negative caching effects + * so avoid it. + */ + return; + } + + /* + * Defer mm_tlb_gen reading as long as possible to avoid cache + * contention. + */ + mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); + + if (unlikely(local_tlb_gen == mm_tlb_gen)) { + /* + * There's nothing to do: we're already up to date. This can + * happen if two concurrent flushes happen -- the first flush to + * be handled can catch us all the way up, leaving no work for + * the second flush. + */ + goto done; + } + + WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); + WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); + + /* + * If we get to this point, we know that our TLB is out of date. + * This does not strictly imply that we need to flush (it's + * possible that f->new_tlb_gen <= local_tlb_gen), but we're + * going to need to flush in the very near future, so we might + * as well get it over with. + * + * The only question is whether to do a full or partial flush. + * + * We do a partial flush if requested and two extra conditions + * are met: + * + * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that + * we've always done all needed flushes to catch up to + * local_tlb_gen. If, for example, local_tlb_gen == 2 and + * f->new_tlb_gen == 3, then we know that the flush needed to bring + * us up to date for tlb_gen 3 is the partial flush we're + * processing. + * + * As an example of why this check is needed, suppose that there + * are two concurrent flushes. The first is a full flush that + * changes context.tlb_gen from 1 to 2. The second is a partial + * flush that changes context.tlb_gen from 2 to 3. If they get + * processed on this CPU in reverse order, we'll see + * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. + * If we were to use __flush_tlb_one_user() and set local_tlb_gen to + * 3, we'd be break the invariant: we'd update local_tlb_gen above + * 1 without the full flush that's needed for tlb_gen 2. + * + * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization. + * Partial TLB flushes are not all that much cheaper than full TLB + * flushes, so it seems unlikely that it would be a performance win + * to do a partial flush if that won't bring our TLB fully up to + * date. By doing a full flush instead, we can increase + * local_tlb_gen all the way to mm_tlb_gen and we can probably + * avoid another flush in the very near future. + */ + if (f->end != TLB_FLUSH_ALL && + f->new_tlb_gen == local_tlb_gen + 1 && + f->new_tlb_gen == mm_tlb_gen) { + /* Partial flush */ + unsigned long addr = f->start; + + /* Partial flush cannot have invalid generations */ + VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID); + + /* Partial flush must have valid mm */ + VM_WARN_ON(f->mm == NULL); + + nr_invalidate = (f->end - f->start) >> f->stride_shift; + + while (addr < f->end) { + flush_tlb_one_user(addr); + addr += 1UL << f->stride_shift; + } + if (local) + count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); + } else { + /* Full flush. */ + nr_invalidate = TLB_FLUSH_ALL; + + flush_tlb_local(); + if (local) + count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); + } + + /* Both paths above update our state to mm_tlb_gen. */ + this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); + + /* Tracing is done in a unified manner to reduce the code size */ +done: + trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN : + (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN : + TLB_LOCAL_MM_SHOOTDOWN, + nr_invalidate); } -void flush_tlb_page(struct vm_area_struct *vma, unsigned long start) +static bool should_flush_tlb(int cpu, void *data) { - struct mm_struct *mm = vma->vm_mm; + struct mm_struct *loaded_mm = per_cpu(cpu_tlbstate.loaded_mm, cpu); + struct flush_tlb_info *info = data; - preempt_disable(); + /* + * Order the 'loaded_mm' and 'is_lazy' against their + * write ordering in switch_mm_irqs_off(). Ensure + * 'is_lazy' is at least as new as 'loaded_mm'. + */ + smp_rmb(); - if (current->active_mm == mm) { - if (current->mm) - __flush_tlb_one(start); - else - leave_mm(smp_processor_id()); + /* Lazy TLB will get flushed at the next context switch. */ + if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu)) + return false; + + /* No mm means kernel memory flush. */ + if (!info->mm) + return true; + + /* + * While switching, the remote CPU could have state from + * either the prev or next mm. Assume the worst and flush. + */ + if (loaded_mm == LOADED_MM_SWITCHING) + return true; + + /* The target mm is loaded, and the CPU is not lazy. */ + if (loaded_mm == info->mm) + return true; + + /* In cpumask, but not the loaded mm? Periodically remove by flushing. */ + if (info->trim_cpumask) + return true; + + return false; +} + +static bool should_trim_cpumask(struct mm_struct *mm) +{ + if (time_after(jiffies, READ_ONCE(mm->context.next_trim_cpumask))) { + WRITE_ONCE(mm->context.next_trim_cpumask, jiffies + HZ); + return true; + } + return false; +} + +DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared); +EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared); + +STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask, + const struct flush_tlb_info *info) +{ + /* + * Do accounting and tracing. Note that there are (and have always been) + * cases in which a remote TLB flush will be traced, but eventually + * would not happen. + */ + count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); + if (info->end == TLB_FLUSH_ALL) + trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); + else + trace_tlb_flush(TLB_REMOTE_SEND_IPI, + (info->end - info->start) >> PAGE_SHIFT); + + /* + * If no page tables were freed, we can skip sending IPIs to + * CPUs in lazy TLB mode. They will flush the CPU themselves + * at the next context switch. + * + * However, if page tables are getting freed, we need to send the + * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping + * up on the new contents of what used to be page tables, while + * doing a speculative memory access. + */ + if (info->freed_tables || mm_in_asid_transition(info->mm)) + on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true); + else + on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func, + (void *)info, 1, cpumask); +} + +void flush_tlb_multi(const struct cpumask *cpumask, + const struct flush_tlb_info *info) +{ + __flush_tlb_multi(cpumask, info); +} + +/* + * See Documentation/arch/x86/tlb.rst for details. We choose 33 + * because it is large enough to cover the vast majority (at + * least 95%) of allocations, and is small enough that we are + * confident it will not cause too much overhead. Each single + * flush is about 100 ns, so this caps the maximum overhead at + * _about_ 3,000 ns. + * + * This is in units of pages. + */ +unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; + +static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); + +#ifdef CONFIG_DEBUG_VM +static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); +#endif + +static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, + unsigned long start, unsigned long end, + unsigned int stride_shift, bool freed_tables, + u64 new_tlb_gen) +{ + struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); + +#ifdef CONFIG_DEBUG_VM + /* + * Ensure that the following code is non-reentrant and flush_tlb_info + * is not overwritten. This means no TLB flushing is initiated by + * interrupt handlers and machine-check exception handlers. + */ + BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); +#endif + + /* + * If the number of flushes is so large that a full flush + * would be faster, do a full flush. + */ + if ((end - start) >> stride_shift > tlb_single_page_flush_ceiling) { + start = 0; + end = TLB_FLUSH_ALL; } - if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) - flush_tlb_others(mm_cpumask(mm), mm, start, 0UL); + info->start = start; + info->end = end; + info->mm = mm; + info->stride_shift = stride_shift; + info->freed_tables = freed_tables; + info->new_tlb_gen = new_tlb_gen; + info->initiating_cpu = smp_processor_id(); + info->trim_cpumask = 0; + + return info; +} - preempt_enable(); +static void put_flush_tlb_info(void) +{ +#ifdef CONFIG_DEBUG_VM + /* Complete reentrancy prevention checks */ + barrier(); + this_cpu_dec(flush_tlb_info_idx); +#endif +} + +void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, + unsigned long end, unsigned int stride_shift, + bool freed_tables) +{ + struct flush_tlb_info *info; + int cpu = get_cpu(); + u64 new_tlb_gen; + + /* This is also a barrier that synchronizes with switch_mm(). */ + new_tlb_gen = inc_mm_tlb_gen(mm); + + info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, + new_tlb_gen); + + /* + * flush_tlb_multi() is not optimized for the common case in which only + * a local TLB flush is needed. Optimize this use-case by calling + * flush_tlb_func_local() directly in this case. + */ + if (mm_global_asid(mm)) { + broadcast_tlb_flush(info); + } else if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) { + info->trim_cpumask = should_trim_cpumask(mm); + flush_tlb_multi(mm_cpumask(mm), info); + consider_global_asid(mm); + } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { + lockdep_assert_irqs_enabled(); + local_irq_disable(); + flush_tlb_func(info); + local_irq_enable(); + } + + put_flush_tlb_info(); + put_cpu(); + mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end); } static void do_flush_tlb_all(void *info) { + count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); __flush_tlb_all(); - if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY) - leave_mm(smp_processor_id()); } void flush_tlb_all(void) { - on_each_cpu(do_flush_tlb_all, NULL, 1); + count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); + + /* First try (faster) hardware-assisted TLB invalidation. */ + if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) + invlpgb_flush_all(); + else + /* Fall back to the IPI-based invalidation. */ + on_each_cpu(do_flush_tlb_all, NULL, 1); +} + +/* Flush an arbitrarily large range of memory with INVLPGB. */ +static void invlpgb_kernel_range_flush(struct flush_tlb_info *info) +{ + unsigned long addr, nr; + + for (addr = info->start; addr < info->end; addr += nr << PAGE_SHIFT) { + nr = (info->end - addr) >> PAGE_SHIFT; + + /* + * INVLPGB has a limit on the size of ranges it can + * flush. Break up large flushes. + */ + nr = clamp_val(nr, 1, invlpgb_count_max); + + invlpgb_flush_addr_nosync(addr, nr); + } + __tlbsync(); } static void do_kernel_range_flush(void *info) @@ -272,38 +1526,276 @@ static void do_kernel_range_flush(void *info) unsigned long addr; /* flush range by one by one 'invlpg' */ - for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE) - __flush_tlb_single(addr); + for (addr = f->start; addr < f->end; addr += PAGE_SIZE) + flush_tlb_one_kernel(addr); +} + +static void kernel_tlb_flush_all(struct flush_tlb_info *info) +{ + if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) + invlpgb_flush_all(); + else + on_each_cpu(do_flush_tlb_all, NULL, 1); +} + +static void kernel_tlb_flush_range(struct flush_tlb_info *info) +{ + if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) + invlpgb_kernel_range_flush(info); + else + on_each_cpu(do_kernel_range_flush, info, 1); } void flush_tlb_kernel_range(unsigned long start, unsigned long end) { - unsigned act_entries; - struct flush_tlb_info info; + struct flush_tlb_info *info; - /* In modern CPU, last level tlb used for both data/ins */ - act_entries = tlb_lld_4k[ENTRIES]; + guard(preempt)(); - /* Balance as user space task's flush, a bit conservative */ - if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1 || - (end - start) >> PAGE_SHIFT > act_entries >> tlb_flushall_shift) + info = get_flush_tlb_info(NULL, start, end, PAGE_SHIFT, false, + TLB_GENERATION_INVALID); - on_each_cpu(do_flush_tlb_all, NULL, 1); - else { - info.flush_start = start; - info.flush_end = end; - on_each_cpu(do_kernel_range_flush, &info, 1); + if (info->end == TLB_FLUSH_ALL) + kernel_tlb_flush_all(info); + else + kernel_tlb_flush_range(info); + + put_flush_tlb_info(); +} + +/* + * This can be used from process context to figure out what the value of + * CR3 is without needing to do a (slow) __read_cr3(). + * + * It's intended to be used for code like KVM that sneakily changes CR3 + * and needs to restore it. It needs to be used very carefully. + */ +unsigned long __get_current_cr3_fast(void) +{ + unsigned long cr3 = + build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, + this_cpu_read(cpu_tlbstate.loaded_mm_asid), + tlbstate_lam_cr3_mask()); + + /* For now, be very restrictive about when this can be called. */ + VM_WARN_ON(in_nmi() || preemptible()); + + VM_BUG_ON(cr3 != __read_cr3()); + return cr3; +} +EXPORT_SYMBOL_FOR_KVM(__get_current_cr3_fast); + +/* + * Flush one page in the kernel mapping + */ +void flush_tlb_one_kernel(unsigned long addr) +{ + count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); + + /* + * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its + * paravirt equivalent. Even with PCID, this is sufficient: we only + * use PCID if we also use global PTEs for the kernel mapping, and + * INVLPG flushes global translations across all address spaces. + * + * If PTI is on, then the kernel is mapped with non-global PTEs, and + * __flush_tlb_one_user() will flush the given address for the current + * kernel address space and for its usermode counterpart, but it does + * not flush it for other address spaces. + */ + flush_tlb_one_user(addr); + + if (!static_cpu_has(X86_FEATURE_PTI)) + return; + + /* + * See above. We need to propagate the flush to all other address + * spaces. In principle, we only need to propagate it to kernelmode + * address spaces, but the extra bookkeeping we would need is not + * worth it. + */ + this_cpu_write(cpu_tlbstate.invalidate_other, true); +} + +/* + * Flush one page in the user mapping + */ +STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) +{ + u32 loaded_mm_asid; + bool cpu_pcide; + + /* Flush 'addr' from the kernel PCID: */ + invlpg(addr); + + /* If PTI is off there is no user PCID and nothing to flush. */ + if (!static_cpu_has(X86_FEATURE_PTI)) + return; + + loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); + cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE; + + /* + * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check + * 'cpu_pcide' to ensure that *this* CPU will not trigger those + * #GP's even if called before CR4.PCIDE has been initialized. + */ + if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide) + invpcid_flush_one(user_pcid(loaded_mm_asid), addr); + else + invalidate_user_asid(loaded_mm_asid); +} + +void flush_tlb_one_user(unsigned long addr) +{ + __flush_tlb_one_user(addr); +} + +/* + * Flush everything + */ +STATIC_NOPV void native_flush_tlb_global(void) +{ + unsigned long flags; + + if (static_cpu_has(X86_FEATURE_INVPCID)) { + /* + * Using INVPCID is considerably faster than a pair of writes + * to CR4 sandwiched inside an IRQ flag save/restore. + * + * Note, this works with CR4.PCIDE=0 or 1. + */ + invpcid_flush_all(); + return; } + + /* + * Read-modify-write to CR4 - protect it from preemption and + * from interrupts. (Use the raw variant because this code can + * be called from deep inside debugging code.) + */ + raw_local_irq_save(flags); + + __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4)); + + raw_local_irq_restore(flags); +} + +/* + * Flush the entire current user mapping + */ +STATIC_NOPV void native_flush_tlb_local(void) +{ + /* + * Preemption or interrupts must be disabled to protect the access + * to the per CPU variable and to prevent being preempted between + * read_cr3() and write_cr3(). + */ + WARN_ON_ONCE(preemptible()); + + invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); + + /* If current->mm == NULL then the read_cr3() "borrows" an mm */ + native_write_cr3(__native_read_cr3()); +} + +void flush_tlb_local(void) +{ + __flush_tlb_local(); +} + +/* + * Flush everything + */ +void __flush_tlb_all(void) +{ + /* + * This is to catch users with enabled preemption and the PGE feature + * and don't trigger the warning in __native_flush_tlb(). + */ + VM_WARN_ON_ONCE(preemptible()); + + if (cpu_feature_enabled(X86_FEATURE_PGE)) { + __flush_tlb_global(); + } else { + /* + * !PGE -> !PCID (setup_pcid()), thus every flush is total. + */ + flush_tlb_local(); + } +} +EXPORT_SYMBOL_FOR_KVM(__flush_tlb_all); + +void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) +{ + struct flush_tlb_info *info; + + int cpu = get_cpu(); + + info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, + TLB_GENERATION_INVALID); + /* + * flush_tlb_multi() is not optimized for the common case in which only + * a local TLB flush is needed. Optimize this use-case by calling + * flush_tlb_func_local() directly in this case. + */ + if (cpu_feature_enabled(X86_FEATURE_INVLPGB) && batch->unmapped_pages) { + invlpgb_flush_all_nonglobals(); + batch->unmapped_pages = false; + } else if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) { + flush_tlb_multi(&batch->cpumask, info); + } else if (cpumask_test_cpu(cpu, &batch->cpumask)) { + lockdep_assert_irqs_enabled(); + local_irq_disable(); + flush_tlb_func(info); + local_irq_enable(); + } + + cpumask_clear(&batch->cpumask); + + put_flush_tlb_info(); + put_cpu(); +} + +/* + * Blindly accessing user memory from NMI context can be dangerous + * if we're in the middle of switching the current user task or + * switching the loaded mm. It can also be dangerous if we + * interrupted some kernel code that was temporarily using a + * different mm. + */ +bool nmi_uaccess_okay(void) +{ + struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); + struct mm_struct *current_mm = current->mm; + + VM_WARN_ON_ONCE(!loaded_mm); + + /* + * The condition we want to check is + * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, + * if we're running in a VM with shadow paging, and nmi_uaccess_okay() + * is supposed to be reasonably fast. + * + * Instead, we check the almost equivalent but somewhat conservative + * condition below, and we rely on the fact that switch_mm_irqs_off() + * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. + */ + if (loaded_mm != current_mm) + return false; + + VM_WARN_ON_ONCE(__pa(current_mm->pgd) != read_cr3_pa()); + + return true; } -#ifdef CONFIG_DEBUG_TLBFLUSH static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; unsigned int len; - len = sprintf(buf, "%hd\n", tlb_flushall_shift); + len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); return simple_read_from_buffer(user_buf, count, ppos, buf, len); } @@ -312,20 +1804,20 @@ static ssize_t tlbflush_write_file(struct file *file, { char buf[32]; ssize_t len; - s8 shift; + int ceiling; len = min(count, sizeof(buf) - 1); if (copy_from_user(buf, user_buf, len)) return -EFAULT; buf[len] = '\0'; - if (kstrtos8(buf, 0, &shift)) + if (kstrtoint(buf, 0, &ceiling)) return -EINVAL; - if (shift < -1 || shift >= BITS_PER_LONG) + if (ceiling < 0) return -EINVAL; - tlb_flushall_shift = shift; + tlb_single_page_flush_ceiling = ceiling; return count; } @@ -335,11 +1827,10 @@ static const struct file_operations fops_tlbflush = { .llseek = default_llseek, }; -static int __init create_tlb_flushall_shift(void) +static int __init create_tlb_single_page_flush_ceiling(void) { - debugfs_create_file("tlb_flushall_shift", S_IRUSR | S_IWUSR, + debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, arch_debugfs_dir, NULL, &fops_tlbflush); return 0; } -late_initcall(create_tlb_flushall_shift); -#endif +late_initcall(create_tlb_single_page_flush_ceiling); |
