summaryrefslogtreecommitdiff
path: root/kernel/cgroup/cpuset.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/cgroup/cpuset.c')
-rw-r--r--kernel/cgroup/cpuset.c4110
1 files changed, 2958 insertions, 1152 deletions
diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
index 8d5151688504..6e6eb09b8db6 100644
--- a/kernel/cgroup/cpuset.c
+++ b/kernel/cgroup/cpuset.c
@@ -21,250 +21,220 @@
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*/
+#include "cpuset-internal.h"
-#include <linux/cpu.h>
-#include <linux/cpumask.h>
-#include <linux/cpuset.h>
-#include <linux/err.h>
-#include <linux/errno.h>
-#include <linux/file.h>
-#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
-#include <linux/kmod.h>
-#include <linux/list.h>
#include <linux/mempolicy.h>
#include <linux/mm.h>
#include <linux/memory.h>
#include <linux/export.h>
-#include <linux/mount.h>
-#include <linux/namei.h>
-#include <linux/pagemap.h>
-#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
+#include <linux/sched/deadline.h>
#include <linux/sched/mm.h>
#include <linux/sched/task.h>
-#include <linux/seq_file.h>
#include <linux/security.h>
-#include <linux/slab.h>
-#include <linux/spinlock.h>
-#include <linux/stat.h>
-#include <linux/string.h>
-#include <linux/time.h>
-#include <linux/time64.h>
-#include <linux/backing-dev.h>
-#include <linux/sort.h>
-
-#include <linux/uaccess.h>
-#include <linux/atomic.h>
-#include <linux/mutex.h>
-#include <linux/cgroup.h>
+#include <linux/oom.h>
+#include <linux/sched/isolation.h>
#include <linux/wait.h>
+#include <linux/workqueue.h>
+#include <linux/task_work.h>
DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
-/* See "Frequency meter" comments, below. */
-
-struct fmeter {
- int cnt; /* unprocessed events count */
- int val; /* most recent output value */
- time64_t time; /* clock (secs) when val computed */
- spinlock_t lock; /* guards read or write of above */
+/*
+ * There could be abnormal cpuset configurations for cpu or memory
+ * node binding, add this key to provide a quick low-cost judgment
+ * of the situation.
+ */
+DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
+
+static const char * const perr_strings[] = {
+ [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive",
+ [PERR_INVPARENT] = "Parent is an invalid partition root",
+ [PERR_NOTPART] = "Parent is not a partition root",
+ [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive",
+ [PERR_NOCPUS] = "Parent unable to distribute cpu downstream",
+ [PERR_HOTPLUG] = "No cpu available due to hotplug",
+ [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
+ [PERR_HKEEPING] = "partition config conflicts with housekeeping setup",
+ [PERR_ACCESS] = "Enable partition not permitted",
+ [PERR_REMOTE] = "Have remote partition underneath",
};
-struct cpuset {
- struct cgroup_subsys_state css;
-
- unsigned long flags; /* "unsigned long" so bitops work */
-
- /*
- * On default hierarchy:
- *
- * The user-configured masks can only be changed by writing to
- * cpuset.cpus and cpuset.mems, and won't be limited by the
- * parent masks.
- *
- * The effective masks is the real masks that apply to the tasks
- * in the cpuset. They may be changed if the configured masks are
- * changed or hotplug happens.
- *
- * effective_mask == configured_mask & parent's effective_mask,
- * and if it ends up empty, it will inherit the parent's mask.
- *
- *
- * On legacy hierachy:
- *
- * The user-configured masks are always the same with effective masks.
- */
-
- /* user-configured CPUs and Memory Nodes allow to tasks */
- cpumask_var_t cpus_allowed;
- nodemask_t mems_allowed;
+/*
+ * For local partitions, update to subpartitions_cpus & isolated_cpus is done
+ * in update_parent_effective_cpumask(). For remote partitions, it is done in
+ * the remote_partition_*() and remote_cpus_update() helpers.
+ */
+/*
+ * Exclusive CPUs distributed out to local or remote sub-partitions of
+ * top_cpuset
+ */
+static cpumask_var_t subpartitions_cpus;
- /* effective CPUs and Memory Nodes allow to tasks */
- cpumask_var_t effective_cpus;
- nodemask_t effective_mems;
+/*
+ * Exclusive CPUs in isolated partitions
+ */
+static cpumask_var_t isolated_cpus;
- /*
- * This is old Memory Nodes tasks took on.
- *
- * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
- * - A new cpuset's old_mems_allowed is initialized when some
- * task is moved into it.
- * - old_mems_allowed is used in cpuset_migrate_mm() when we change
- * cpuset.mems_allowed and have tasks' nodemask updated, and
- * then old_mems_allowed is updated to mems_allowed.
- */
- nodemask_t old_mems_allowed;
+/*
+ * isolated_cpus updating flag (protected by cpuset_mutex)
+ * Set if isolated_cpus is going to be updated in the current
+ * cpuset_mutex crtical section.
+ */
+static bool isolated_cpus_updating;
- struct fmeter fmeter; /* memory_pressure filter */
+/*
+ * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
+ */
+static cpumask_var_t boot_hk_cpus;
+static bool have_boot_isolcpus;
- /*
- * Tasks are being attached to this cpuset. Used to prevent
- * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
- */
- int attach_in_progress;
+/*
+ * A flag to force sched domain rebuild at the end of an operation.
+ * It can be set in
+ * - update_partition_sd_lb()
+ * - update_cpumasks_hier()
+ * - cpuset_update_flag()
+ * - cpuset_hotplug_update_tasks()
+ * - cpuset_handle_hotplug()
+ *
+ * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
+ *
+ * Note that update_relax_domain_level() in cpuset-v1.c can still call
+ * rebuild_sched_domains_locked() directly without using this flag.
+ */
+static bool force_sd_rebuild;
- /* partition number for rebuild_sched_domains() */
- int pn;
+/*
+ * Partition root states:
+ *
+ * 0 - member (not a partition root)
+ * 1 - partition root
+ * 2 - partition root without load balancing (isolated)
+ * -1 - invalid partition root
+ * -2 - invalid isolated partition root
+ *
+ * There are 2 types of partitions - local or remote. Local partitions are
+ * those whose parents are partition root themselves. Setting of
+ * cpuset.cpus.exclusive are optional in setting up local partitions.
+ * Remote partitions are those whose parents are not partition roots. Passing
+ * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
+ * nodes are mandatory in creating a remote partition.
+ *
+ * For simplicity, a local partition can be created under a local or remote
+ * partition but a remote partition cannot have any partition root in its
+ * ancestor chain except the cgroup root.
+ */
+#define PRS_MEMBER 0
+#define PRS_ROOT 1
+#define PRS_ISOLATED 2
+#define PRS_INVALID_ROOT -1
+#define PRS_INVALID_ISOLATED -2
- /* for custom sched domain */
- int relax_domain_level;
+/*
+ * Temporary cpumasks for working with partitions that are passed among
+ * functions to avoid memory allocation in inner functions.
+ */
+struct tmpmasks {
+ cpumask_var_t addmask, delmask; /* For partition root */
+ cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
};
-static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
+void inc_dl_tasks_cs(struct task_struct *p)
{
- return css ? container_of(css, struct cpuset, css) : NULL;
-}
+ struct cpuset *cs = task_cs(p);
-/* Retrieve the cpuset for a task */
-static inline struct cpuset *task_cs(struct task_struct *task)
-{
- return css_cs(task_css(task, cpuset_cgrp_id));
+ cs->nr_deadline_tasks++;
}
-static inline struct cpuset *parent_cs(struct cpuset *cs)
+void dec_dl_tasks_cs(struct task_struct *p)
{
- return css_cs(cs->css.parent);
-}
+ struct cpuset *cs = task_cs(p);
-#ifdef CONFIG_NUMA
-static inline bool task_has_mempolicy(struct task_struct *task)
-{
- return task->mempolicy;
-}
-#else
-static inline bool task_has_mempolicy(struct task_struct *task)
-{
- return false;
-}
-#endif
-
-
-/* bits in struct cpuset flags field */
-typedef enum {
- CS_ONLINE,
- CS_CPU_EXCLUSIVE,
- CS_MEM_EXCLUSIVE,
- CS_MEM_HARDWALL,
- CS_MEMORY_MIGRATE,
- CS_SCHED_LOAD_BALANCE,
- CS_SPREAD_PAGE,
- CS_SPREAD_SLAB,
-} cpuset_flagbits_t;
-
-/* convenient tests for these bits */
-static inline bool is_cpuset_online(struct cpuset *cs)
-{
- return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
-}
-
-static inline int is_cpu_exclusive(const struct cpuset *cs)
-{
- return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
+ cs->nr_deadline_tasks--;
}
-static inline int is_mem_exclusive(const struct cpuset *cs)
+static inline bool is_partition_valid(const struct cpuset *cs)
{
- return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
+ return cs->partition_root_state > 0;
}
-static inline int is_mem_hardwall(const struct cpuset *cs)
+static inline bool is_partition_invalid(const struct cpuset *cs)
{
- return test_bit(CS_MEM_HARDWALL, &cs->flags);
+ return cs->partition_root_state < 0;
}
-static inline int is_sched_load_balance(const struct cpuset *cs)
+static inline bool cs_is_member(const struct cpuset *cs)
{
- return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
+ return cs->partition_root_state == PRS_MEMBER;
}
-static inline int is_memory_migrate(const struct cpuset *cs)
+/*
+ * Callers should hold callback_lock to modify partition_root_state.
+ */
+static inline void make_partition_invalid(struct cpuset *cs)
{
- return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
+ if (cs->partition_root_state > 0)
+ cs->partition_root_state = -cs->partition_root_state;
}
-static inline int is_spread_page(const struct cpuset *cs)
+/*
+ * Send notification event of whenever partition_root_state changes.
+ */
+static inline void notify_partition_change(struct cpuset *cs, int old_prs)
{
- return test_bit(CS_SPREAD_PAGE, &cs->flags);
-}
+ if (old_prs == cs->partition_root_state)
+ return;
+ cgroup_file_notify(&cs->partition_file);
-static inline int is_spread_slab(const struct cpuset *cs)
-{
- return test_bit(CS_SPREAD_SLAB, &cs->flags);
+ /* Reset prs_err if not invalid */
+ if (is_partition_valid(cs))
+ WRITE_ONCE(cs->prs_err, PERR_NONE);
}
-static struct cpuset top_cpuset = {
- .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
- (1 << CS_MEM_EXCLUSIVE)),
-};
-
-/**
- * cpuset_for_each_child - traverse online children of a cpuset
- * @child_cs: loop cursor pointing to the current child
- * @pos_css: used for iteration
- * @parent_cs: target cpuset to walk children of
- *
- * Walk @child_cs through the online children of @parent_cs. Must be used
- * with RCU read locked.
- */
-#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
- css_for_each_child((pos_css), &(parent_cs)->css) \
- if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
-
-/**
- * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
- * @des_cs: loop cursor pointing to the current descendant
- * @pos_css: used for iteration
- * @root_cs: target cpuset to walk ancestor of
+/*
+ * The top_cpuset is always synchronized to cpu_active_mask and we should avoid
+ * using cpu_online_mask as much as possible. An active CPU is always an online
+ * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ
+ * during hotplug operations. A CPU is marked active at the last stage of CPU
+ * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code
+ * will be called to update the sched domains so that the scheduler can move
+ * a normal task to a newly active CPU or remove tasks away from a newly
+ * inactivated CPU. The online bit is set much earlier in the CPU bringup
+ * process and cleared much later in CPU teardown.
*
- * Walk @des_cs through the online descendants of @root_cs. Must be used
- * with RCU read locked. The caller may modify @pos_css by calling
- * css_rightmost_descendant() to skip subtree. @root_cs is included in the
- * iteration and the first node to be visited.
+ * If cpu_online_mask is used while a hotunplug operation is happening in
+ * parallel, we may leave an offline CPU in cpu_allowed or some other masks.
*/
-#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
- css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
- if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
+static struct cpuset top_cpuset = {
+ .flags = BIT(CS_CPU_EXCLUSIVE) |
+ BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
+ .partition_root_state = PRS_ROOT,
+ .relax_domain_level = -1,
+ .remote_partition = false,
+};
/*
* There are two global locks guarding cpuset structures - cpuset_mutex and
- * callback_lock. We also require taking task_lock() when dereferencing a
- * task's cpuset pointer. See "The task_lock() exception", at the end of this
- * comment.
+ * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
+ * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
+ * structures. Note that cpuset_mutex needs to be a mutex as it is used in
+ * paths that rely on priority inheritance (e.g. scheduler - on RT) for
+ * correctness.
*
* A task must hold both locks to modify cpusets. If a task holds
- * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
- * is the only task able to also acquire callback_lock and be able to
- * modify cpusets. It can perform various checks on the cpuset structure
- * first, knowing nothing will change. It can also allocate memory while
- * just holding cpuset_mutex. While it is performing these checks, various
- * callback routines can briefly acquire callback_lock to query cpusets.
- * Once it is ready to make the changes, it takes callback_lock, blocking
- * everyone else.
+ * cpuset_mutex, it blocks others, ensuring that it is the only task able to
+ * also acquire callback_lock and be able to modify cpusets. It can perform
+ * various checks on the cpuset structure first, knowing nothing will change.
+ * It can also allocate memory while just holding cpuset_mutex. While it is
+ * performing these checks, various callback routines can briefly acquire
+ * callback_lock to query cpusets. Once it is ready to make the changes, it
+ * takes callback_lock, blocking everyone else.
*
* Calls to the kernel memory allocator can not be made while holding
* callback_lock, as that would risk double tripping on callback_lock
@@ -278,80 +248,199 @@ static struct cpuset top_cpuset = {
* by other task, we use alloc_lock in the task_struct fields to protect
* them.
*
- * The cpuset_common_file_read() handlers only hold callback_lock across
+ * The cpuset_common_seq_show() handlers only hold callback_lock across
* small pieces of code, such as when reading out possibly multi-word
* cpumasks and nodemasks.
- *
- * Accessing a task's cpuset should be done in accordance with the
- * guidelines for accessing subsystem state in kernel/cgroup.c
*/
static DEFINE_MUTEX(cpuset_mutex);
+
+/**
+ * cpuset_lock - Acquire the global cpuset mutex
+ *
+ * This locks the global cpuset mutex to prevent modifications to cpuset
+ * hierarchy and configurations. This helper is not enough to make modification.
+ */
+void cpuset_lock(void)
+{
+ mutex_lock(&cpuset_mutex);
+}
+
+void cpuset_unlock(void)
+{
+ mutex_unlock(&cpuset_mutex);
+}
+
+/**
+ * cpuset_full_lock - Acquire full protection for cpuset modification
+ *
+ * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex
+ * to safely modify cpuset data.
+ */
+void cpuset_full_lock(void)
+{
+ cpus_read_lock();
+ mutex_lock(&cpuset_mutex);
+}
+
+void cpuset_full_unlock(void)
+{
+ mutex_unlock(&cpuset_mutex);
+ cpus_read_unlock();
+}
+
static DEFINE_SPINLOCK(callback_lock);
+void cpuset_callback_lock_irq(void)
+{
+ spin_lock_irq(&callback_lock);
+}
+
+void cpuset_callback_unlock_irq(void)
+{
+ spin_unlock_irq(&callback_lock);
+}
+
static struct workqueue_struct *cpuset_migrate_mm_wq;
+static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
+
+static inline void check_insane_mems_config(nodemask_t *nodes)
+{
+ if (!cpusets_insane_config() &&
+ movable_only_nodes(nodes)) {
+ static_branch_enable_cpuslocked(&cpusets_insane_config_key);
+ pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
+ "Cpuset allocations might fail even with a lot of memory available.\n",
+ nodemask_pr_args(nodes));
+ }
+}
+
/*
- * CPU / memory hotplug is handled asynchronously.
+ * decrease cs->attach_in_progress.
+ * wake_up cpuset_attach_wq if cs->attach_in_progress==0.
*/
-static void cpuset_hotplug_workfn(struct work_struct *work);
-static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
+static inline void dec_attach_in_progress_locked(struct cpuset *cs)
+{
+ lockdep_assert_held(&cpuset_mutex);
-static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
+ cs->attach_in_progress--;
+ if (!cs->attach_in_progress)
+ wake_up(&cpuset_attach_wq);
+}
+
+static inline void dec_attach_in_progress(struct cpuset *cs)
+{
+ mutex_lock(&cpuset_mutex);
+ dec_attach_in_progress_locked(cs);
+ mutex_unlock(&cpuset_mutex);
+}
+
+static inline bool cpuset_v2(void)
+{
+ return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
+ cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
+}
/*
- * This is ugly, but preserves the userspace API for existing cpuset
- * users. If someone tries to mount the "cpuset" filesystem, we
- * silently switch it to mount "cgroup" instead
- */
-static struct dentry *cpuset_mount(struct file_system_type *fs_type,
- int flags, const char *unused_dev_name, void *data)
-{
- struct file_system_type *cgroup_fs = get_fs_type("cgroup");
- struct dentry *ret = ERR_PTR(-ENODEV);
- if (cgroup_fs) {
- char mountopts[] =
- "cpuset,noprefix,"
- "release_agent=/sbin/cpuset_release_agent";
- ret = cgroup_fs->mount(cgroup_fs, flags,
- unused_dev_name, mountopts);
- put_filesystem(cgroup_fs);
- }
- return ret;
+ * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
+ * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
+ * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
+ * With v2 behavior, "cpus" and "mems" are always what the users have
+ * requested and won't be changed by hotplug events. Only the effective
+ * cpus or mems will be affected.
+ */
+static inline bool is_in_v2_mode(void)
+{
+ return cpuset_v2() ||
+ (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
}
-static struct file_system_type cpuset_fs_type = {
- .name = "cpuset",
- .mount = cpuset_mount,
-};
+static inline bool cpuset_is_populated(struct cpuset *cs)
+{
+ lockdep_assert_held(&cpuset_mutex);
+
+ /* Cpusets in the process of attaching should be considered as populated */
+ return cgroup_is_populated(cs->css.cgroup) ||
+ cs->attach_in_progress;
+}
+
+/**
+ * partition_is_populated - check if partition has tasks
+ * @cs: partition root to be checked
+ * @excluded_child: a child cpuset to be excluded in task checking
+ * Return: true if there are tasks, false otherwise
+ *
+ * @cs should be a valid partition root or going to become a partition root.
+ * @excluded_child should be non-NULL when this cpuset is going to become a
+ * partition itself.
+ *
+ * Note that a remote partition is not allowed underneath a valid local
+ * or remote partition. So if a non-partition root child is populated,
+ * the whole partition is considered populated.
+ */
+static inline bool partition_is_populated(struct cpuset *cs,
+ struct cpuset *excluded_child)
+{
+ struct cpuset *cp;
+ struct cgroup_subsys_state *pos_css;
+
+ /*
+ * We cannot call cs_is_populated(cs) directly, as
+ * nr_populated_domain_children may include populated
+ * csets from descendants that are partitions.
+ */
+ if (cs->css.cgroup->nr_populated_csets ||
+ cs->attach_in_progress)
+ return true;
+
+ rcu_read_lock();
+ cpuset_for_each_descendant_pre(cp, pos_css, cs) {
+ if (cp == cs || cp == excluded_child)
+ continue;
+
+ if (is_partition_valid(cp)) {
+ pos_css = css_rightmost_descendant(pos_css);
+ continue;
+ }
+
+ if (cpuset_is_populated(cp)) {
+ rcu_read_unlock();
+ return true;
+ }
+ }
+ rcu_read_unlock();
+ return false;
+}
/*
- * Return in pmask the portion of a cpusets's cpus_allowed that
- * are online. If none are online, walk up the cpuset hierarchy
- * until we find one that does have some online cpus.
+ * Return in pmask the portion of a task's cpusets's cpus_allowed that
+ * are online and are capable of running the task. If none are found,
+ * walk up the cpuset hierarchy until we find one that does have some
+ * appropriate cpus.
*
* One way or another, we guarantee to return some non-empty subset
- * of cpu_online_mask.
+ * of cpu_active_mask.
*
* Call with callback_lock or cpuset_mutex held.
*/
-static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
+static void guarantee_active_cpus(struct task_struct *tsk,
+ struct cpumask *pmask)
{
- while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
+ const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
+ struct cpuset *cs;
+
+ if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask)))
+ cpumask_copy(pmask, cpu_active_mask);
+
+ rcu_read_lock();
+ cs = task_cs(tsk);
+
+ while (!cpumask_intersects(cs->effective_cpus, pmask))
cs = parent_cs(cs);
- if (unlikely(!cs)) {
- /*
- * The top cpuset doesn't have any online cpu as a
- * consequence of a race between cpuset_hotplug_work
- * and cpu hotplug notifier. But we know the top
- * cpuset's effective_cpus is on its way to to be
- * identical to cpu_online_mask.
- */
- cpumask_copy(pmask, cpu_online_mask);
- return;
- }
- }
- cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
+
+ cpumask_and(pmask, pmask, cs->effective_cpus);
+ rcu_read_unlock();
}
/*
@@ -372,78 +461,188 @@ static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
}
-/*
- * update task's spread flag if cpuset's page/slab spread flag is set
+/**
+ * alloc_cpumasks - Allocate an array of cpumask variables
+ * @pmasks: Pointer to array of cpumask_var_t pointers
+ * @size: Number of cpumasks to allocate
+ * Return: 0 if successful, -ENOMEM otherwise.
*
- * Call with callback_lock or cpuset_mutex held.
+ * Allocates @size cpumasks and initializes them to empty. Returns 0 on
+ * success, -ENOMEM on allocation failure. On failure, any previously
+ * allocated cpumasks are freed.
*/
-static void cpuset_update_task_spread_flag(struct cpuset *cs,
- struct task_struct *tsk)
+static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size)
{
- if (is_spread_page(cs))
- task_set_spread_page(tsk);
- else
- task_clear_spread_page(tsk);
+ int i;
- if (is_spread_slab(cs))
- task_set_spread_slab(tsk);
- else
- task_clear_spread_slab(tsk);
+ for (i = 0; i < size; i++) {
+ if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) {
+ while (--i >= 0)
+ free_cpumask_var(*pmasks[i]);
+ return -ENOMEM;
+ }
+ }
+ return 0;
}
-/*
- * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
- *
- * One cpuset is a subset of another if all its allowed CPUs and
- * Memory Nodes are a subset of the other, and its exclusive flags
- * are only set if the other's are set. Call holding cpuset_mutex.
+/**
+ * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations.
+ * @tmp: Pointer to tmpmasks structure to populate
+ * Return: 0 on success, -ENOMEM on allocation failure
*/
+static inline int alloc_tmpmasks(struct tmpmasks *tmp)
+{
+ /*
+ * Array of pointers to the three cpumask_var_t fields in tmpmasks.
+ * Note: Array size must match actual number of masks (3)
+ */
+ cpumask_var_t *pmask[3] = {
+ &tmp->new_cpus,
+ &tmp->addmask,
+ &tmp->delmask
+ };
+
+ return alloc_cpumasks(pmask, ARRAY_SIZE(pmask));
+}
-static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
+/**
+ * free_tmpmasks - free cpumasks in a tmpmasks structure
+ * @tmp: the tmpmasks structure pointer
+ */
+static inline void free_tmpmasks(struct tmpmasks *tmp)
{
- return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
- nodes_subset(p->mems_allowed, q->mems_allowed) &&
- is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
- is_mem_exclusive(p) <= is_mem_exclusive(q);
+ if (!tmp)
+ return;
+
+ free_cpumask_var(tmp->new_cpus);
+ free_cpumask_var(tmp->addmask);
+ free_cpumask_var(tmp->delmask);
}
/**
- * alloc_trial_cpuset - allocate a trial cpuset
- * @cs: the cpuset that the trial cpuset duplicates
+ * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset
+ * @cs: Source cpuset to duplicate (NULL for a fresh allocation)
+ *
+ * Creates a new cpuset by either:
+ * 1. Duplicating an existing cpuset (if @cs is non-NULL), or
+ * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL)
+ *
+ * Return: Pointer to newly allocated cpuset on success, NULL on failure
*/
-static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
+static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs)
{
struct cpuset *trial;
- trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
+ /* Allocate base structure */
+ trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) :
+ kzalloc(sizeof(*cs), GFP_KERNEL);
if (!trial)
return NULL;
- if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
- goto free_cs;
- if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
- goto free_cpus;
+ /* Setup cpumask pointer array */
+ cpumask_var_t *pmask[4] = {
+ &trial->cpus_allowed,
+ &trial->effective_cpus,
+ &trial->effective_xcpus,
+ &trial->exclusive_cpus
+ };
+
+ if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) {
+ kfree(trial);
+ return NULL;
+ }
+
+ /* Copy masks if duplicating */
+ if (cs) {
+ cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
+ cpumask_copy(trial->effective_cpus, cs->effective_cpus);
+ cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
+ cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
+ }
- cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
- cpumask_copy(trial->effective_cpus, cs->effective_cpus);
return trial;
+}
+
+/**
+ * free_cpuset - free the cpuset
+ * @cs: the cpuset to be freed
+ */
+static inline void free_cpuset(struct cpuset *cs)
+{
+ free_cpumask_var(cs->cpus_allowed);
+ free_cpumask_var(cs->effective_cpus);
+ free_cpumask_var(cs->effective_xcpus);
+ free_cpumask_var(cs->exclusive_cpus);
+ kfree(cs);
+}
-free_cpus:
- free_cpumask_var(trial->cpus_allowed);
-free_cs:
- kfree(trial);
- return NULL;
+/* Return user specified exclusive CPUs */
+static inline struct cpumask *user_xcpus(struct cpuset *cs)
+{
+ return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
+ : cs->exclusive_cpus;
+}
+
+static inline bool xcpus_empty(struct cpuset *cs)
+{
+ return cpumask_empty(cs->cpus_allowed) &&
+ cpumask_empty(cs->exclusive_cpus);
+}
+
+/*
+ * cpusets_are_exclusive() - check if two cpusets are exclusive
+ *
+ * Return true if exclusive, false if not
+ */
+static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
+{
+ struct cpumask *xcpus1 = user_xcpus(cs1);
+ struct cpumask *xcpus2 = user_xcpus(cs2);
+
+ if (cpumask_intersects(xcpus1, xcpus2))
+ return false;
+ return true;
}
/**
- * free_trial_cpuset - free the trial cpuset
- * @trial: the trial cpuset to be freed
+ * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts
+ * @cs1: first cpuset to check
+ * @cs2: second cpuset to check
+ *
+ * Returns: true if CPU exclusivity conflict exists, false otherwise
+ *
+ * Conflict detection rules:
+ * 1. If either cpuset is CPU exclusive, they must be mutually exclusive
+ * 2. exclusive_cpus masks cannot intersect between cpusets
+ * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs
*/
-static void free_trial_cpuset(struct cpuset *trial)
+static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
{
- free_cpumask_var(trial->effective_cpus);
- free_cpumask_var(trial->cpus_allowed);
- kfree(trial);
+ /* If either cpuset is exclusive, check if they are mutually exclusive */
+ if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2))
+ return !cpusets_are_exclusive(cs1, cs2);
+
+ /* Exclusive_cpus cannot intersect */
+ if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus))
+ return true;
+
+ /* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */
+ if (!cpumask_empty(cs1->cpus_allowed) &&
+ cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus))
+ return true;
+
+ if (!cpumask_empty(cs2->cpus_allowed) &&
+ cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus))
+ return true;
+
+ return false;
+}
+
+static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
+{
+ if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2)))
+ return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
+ return false;
}
/*
@@ -470,51 +669,27 @@ static int validate_change(struct cpuset *cur, struct cpuset *trial)
{
struct cgroup_subsys_state *css;
struct cpuset *c, *par;
- int ret;
+ int ret = 0;
rcu_read_lock();
- /* Each of our child cpusets must be a subset of us */
- ret = -EBUSY;
- cpuset_for_each_child(c, css, cur)
- if (!is_cpuset_subset(c, trial))
- goto out;
+ if (!is_in_v2_mode())
+ ret = cpuset1_validate_change(cur, trial);
+ if (ret)
+ goto out;
/* Remaining checks don't apply to root cpuset */
- ret = 0;
if (cur == &top_cpuset)
goto out;
par = parent_cs(cur);
- /* On legacy hiearchy, we must be a subset of our parent cpuset. */
- ret = -EACCES;
- if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
- !is_cpuset_subset(trial, par))
- goto out;
-
- /*
- * If either I or some sibling (!= me) is exclusive, we can't
- * overlap
- */
- ret = -EINVAL;
- cpuset_for_each_child(c, css, par) {
- if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
- c != cur &&
- cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
- goto out;
- if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
- c != cur &&
- nodes_intersects(trial->mems_allowed, c->mems_allowed))
- goto out;
- }
-
/*
* Cpusets with tasks - existing or newly being attached - can't
* be changed to have empty cpus_allowed or mems_allowed.
*/
ret = -ENOSPC;
- if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
+ if (cpuset_is_populated(cur)) {
if (!cpumask_empty(cur->cpus_allowed) &&
cpumask_empty(trial->cpus_allowed))
goto out;
@@ -525,14 +700,40 @@ static int validate_change(struct cpuset *cur, struct cpuset *trial)
/*
* We can't shrink if we won't have enough room for SCHED_DEADLINE
- * tasks.
+ * tasks. This check is not done when scheduling is disabled as the
+ * users should know what they are doing.
+ *
+ * For v1, effective_cpus == cpus_allowed & user_xcpus() returns
+ * cpus_allowed.
+ *
+ * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only
+ * for non-isolated partition root. At this point, the target
+ * effective_cpus isn't computed yet. user_xcpus() is the best
+ * approximation.
+ *
+ * TBD: May need to precompute the real effective_cpus here in case
+ * incorrect scheduling of SCHED_DEADLINE tasks in a partition
+ * becomes an issue.
*/
ret = -EBUSY;
- if (is_cpu_exclusive(cur) &&
- !cpuset_cpumask_can_shrink(cur->cpus_allowed,
- trial->cpus_allowed))
+ if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) &&
+ !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial)))
goto out;
+ /*
+ * If either I or some sibling (!= me) is exclusive, we can't
+ * overlap. exclusive_cpus cannot overlap with each other if set.
+ */
+ ret = -EINVAL;
+ cpuset_for_each_child(c, css, par) {
+ if (c == cur)
+ continue;
+ if (cpus_excl_conflict(trial, c))
+ goto out;
+ if (mems_excl_conflict(trial, c))
+ goto out;
+ }
+
ret = 0;
out:
rcu_read_unlock();
@@ -577,6 +778,13 @@ static void update_domain_attr_tree(struct sched_domain_attr *dattr,
rcu_read_unlock();
}
+/* Must be called with cpuset_mutex held. */
+static inline int nr_cpusets(void)
+{
+ /* jump label reference count + the top-level cpuset */
+ return static_key_count(&cpusets_enabled_key.key) + 1;
+}
+
/*
* generate_sched_domains()
*
@@ -588,7 +796,7 @@ static void update_domain_attr_tree(struct sched_domain_attr *dattr,
* load balancing domains (sched domains) as specified by that partial
* partition.
*
- * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
+ * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
* for a background explanation of this.
*
* Does not return errors, on the theory that the callers of this
@@ -599,11 +807,10 @@ static void update_domain_attr_tree(struct sched_domain_attr *dattr,
* Must be called with cpuset_mutex held.
*
* The three key local variables below are:
- * q - a linked-list queue of cpuset pointers, used to implement a
- * top-down scan of all cpusets. This scan loads a pointer
- * to each cpuset marked is_sched_load_balance into the
- * array 'csa'. For our purposes, rebuilding the schedulers
- * sched domains, we can ignore !is_sched_load_balance cpusets.
+ * cp - cpuset pointer, used (together with pos_css) to perform a
+ * top-down scan of all cpusets. For our purposes, rebuilding
+ * the schedulers sched domains, we can ignore !is_sched_load_
+ * balance cpusets.
* csa - (for CpuSet Array) Array of pointers to all the cpusets
* that need to be load balanced, for convenient iterative
* access by the subsequent code that finds the best partition,
@@ -618,43 +825,39 @@ static void update_domain_attr_tree(struct sched_domain_attr *dattr,
* were changed (added or removed.)
*
* Finding the best partition (set of domains):
- * The triple nested loops below over i, j, k scan over the
- * load balanced cpusets (using the array of cpuset pointers in
- * csa[]) looking for pairs of cpusets that have overlapping
- * cpus_allowed, but which don't have the same 'pn' partition
- * number and gives them in the same partition number. It keeps
- * looping on the 'restart' label until it can no longer find
- * any such pairs.
- *
- * The union of the cpus_allowed masks from the set of
- * all cpusets having the same 'pn' value then form the one
- * element of the partition (one sched domain) to be passed to
- * partition_sched_domains().
+ * The double nested loops below over i, j scan over the load
+ * balanced cpusets (using the array of cpuset pointers in csa[])
+ * looking for pairs of cpusets that have overlapping cpus_allowed
+ * and merging them using a union-find algorithm.
+ *
+ * The union of the cpus_allowed masks from the set of all cpusets
+ * having the same root then form the one element of the partition
+ * (one sched domain) to be passed to partition_sched_domains().
+ *
*/
static int generate_sched_domains(cpumask_var_t **domains,
struct sched_domain_attr **attributes)
{
- struct cpuset *cp; /* scans q */
+ struct cpuset *cp; /* top-down scan of cpusets */
struct cpuset **csa; /* array of all cpuset ptrs */
int csn; /* how many cpuset ptrs in csa so far */
- int i, j, k; /* indices for partition finding loops */
+ int i, j; /* indices for partition finding loops */
cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
- cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
struct sched_domain_attr *dattr; /* attributes for custom domains */
int ndoms = 0; /* number of sched domains in result */
int nslot; /* next empty doms[] struct cpumask slot */
struct cgroup_subsys_state *pos_css;
+ bool root_load_balance = is_sched_load_balance(&top_cpuset);
+ bool cgrpv2 = cpuset_v2();
+ int nslot_update;
doms = NULL;
dattr = NULL;
csa = NULL;
- if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
- goto done;
- cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
-
/* Special case for the 99% of systems with one, full, sched domain */
- if (is_sched_load_balance(&top_cpuset)) {
+ if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
+single_root_domain:
ndoms = 1;
doms = alloc_sched_domains(ndoms);
if (!doms)
@@ -666,21 +869,28 @@ static int generate_sched_domains(cpumask_var_t **domains,
update_domain_attr_tree(dattr, &top_cpuset);
}
cpumask_and(doms[0], top_cpuset.effective_cpus,
- non_isolated_cpus);
+ housekeeping_cpumask(HK_TYPE_DOMAIN));
goto done;
}
- csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
+ csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
if (!csa)
goto done;
csn = 0;
rcu_read_lock();
+ if (root_load_balance)
+ csa[csn++] = &top_cpuset;
cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
if (cp == &top_cpuset)
continue;
+
+ if (cgrpv2)
+ goto v2;
+
/*
+ * v1:
* Continue traversing beyond @cp iff @cp has some CPUs and
* isn't load balancing. The former is obvious. The
* latter: All child cpusets contain a subset of the
@@ -690,44 +900,66 @@ static int generate_sched_domains(cpumask_var_t **domains,
*/
if (!cpumask_empty(cp->cpus_allowed) &&
!(is_sched_load_balance(cp) &&
- cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
+ cpumask_intersects(cp->cpus_allowed,
+ housekeeping_cpumask(HK_TYPE_DOMAIN))))
continue;
- if (is_sched_load_balance(cp))
+ if (is_sched_load_balance(cp) &&
+ !cpumask_empty(cp->effective_cpus))
csa[csn++] = cp;
/* skip @cp's subtree */
pos_css = css_rightmost_descendant(pos_css);
+ continue;
+
+v2:
+ /*
+ * Only valid partition roots that are not isolated and with
+ * non-empty effective_cpus will be saved into csn[].
+ */
+ if ((cp->partition_root_state == PRS_ROOT) &&
+ !cpumask_empty(cp->effective_cpus))
+ csa[csn++] = cp;
+
+ /*
+ * Skip @cp's subtree if not a partition root and has no
+ * exclusive CPUs to be granted to child cpusets.
+ */
+ if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
+ pos_css = css_rightmost_descendant(pos_css);
}
rcu_read_unlock();
+ /*
+ * If there are only isolated partitions underneath the cgroup root,
+ * we can optimize out unneeded sched domains scanning.
+ */
+ if (root_load_balance && (csn == 1))
+ goto single_root_domain;
+
for (i = 0; i < csn; i++)
- csa[i]->pn = i;
- ndoms = csn;
+ uf_node_init(&csa[i]->node);
-restart:
- /* Find the best partition (set of sched domains) */
+ /* Merge overlapping cpusets */
for (i = 0; i < csn; i++) {
- struct cpuset *a = csa[i];
- int apn = a->pn;
-
- for (j = 0; j < csn; j++) {
- struct cpuset *b = csa[j];
- int bpn = b->pn;
-
- if (apn != bpn && cpusets_overlap(a, b)) {
- for (k = 0; k < csn; k++) {
- struct cpuset *c = csa[k];
-
- if (c->pn == bpn)
- c->pn = apn;
- }
- ndoms--; /* one less element */
- goto restart;
+ for (j = i + 1; j < csn; j++) {
+ if (cpusets_overlap(csa[i], csa[j])) {
+ /*
+ * Cgroup v2 shouldn't pass down overlapping
+ * partition root cpusets.
+ */
+ WARN_ON_ONCE(cgrpv2);
+ uf_union(&csa[i]->node, &csa[j]->node);
}
}
}
+ /* Count the total number of domains */
+ for (i = 0; i < csn; i++) {
+ if (uf_find(&csa[i]->node) == &csa[i]->node)
+ ndoms++;
+ }
+
/*
* Now we know how many domains to create.
* Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
@@ -740,52 +972,55 @@ restart:
* The rest of the code, including the scheduler, can deal with
* dattr==NULL case. No need to abort if alloc fails.
*/
- dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
-
- for (nslot = 0, i = 0; i < csn; i++) {
- struct cpuset *a = csa[i];
- struct cpumask *dp;
- int apn = a->pn;
-
- if (apn < 0) {
- /* Skip completed partitions */
- continue;
- }
-
- dp = doms[nslot];
+ dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
+ GFP_KERNEL);
- if (nslot == ndoms) {
- static int warnings = 10;
- if (warnings) {
- pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
- nslot, ndoms, csn, i, apn);
- warnings--;
- }
- continue;
+ /*
+ * Cgroup v2 doesn't support domain attributes, just set all of them
+ * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
+ * subset of HK_TYPE_DOMAIN housekeeping CPUs.
+ */
+ if (cgrpv2) {
+ for (i = 0; i < ndoms; i++) {
+ /*
+ * The top cpuset may contain some boot time isolated
+ * CPUs that need to be excluded from the sched domain.
+ */
+ if (csa[i] == &top_cpuset)
+ cpumask_and(doms[i], csa[i]->effective_cpus,
+ housekeeping_cpumask(HK_TYPE_DOMAIN));
+ else
+ cpumask_copy(doms[i], csa[i]->effective_cpus);
+ if (dattr)
+ dattr[i] = SD_ATTR_INIT;
}
+ goto done;
+ }
- cpumask_clear(dp);
- if (dattr)
- *(dattr + nslot) = SD_ATTR_INIT;
+ for (nslot = 0, i = 0; i < csn; i++) {
+ nslot_update = 0;
for (j = i; j < csn; j++) {
- struct cpuset *b = csa[j];
-
- if (apn == b->pn) {
- cpumask_or(dp, dp, b->effective_cpus);
- cpumask_and(dp, dp, non_isolated_cpus);
+ if (uf_find(&csa[j]->node) == &csa[i]->node) {
+ struct cpumask *dp = doms[nslot];
+
+ if (i == j) {
+ nslot_update = 1;
+ cpumask_clear(dp);
+ if (dattr)
+ *(dattr + nslot) = SD_ATTR_INIT;
+ }
+ cpumask_or(dp, dp, csa[j]->effective_cpus);
+ cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
if (dattr)
- update_domain_attr_tree(dattr + nslot, b);
-
- /* Done with this partition */
- b->pn = -1;
+ update_domain_attr_tree(dattr + nslot, csa[j]);
}
}
- nslot++;
+ if (nslot_update)
+ nslot++;
}
BUG_ON(nslot != ndoms);
done:
- free_cpumask_var(non_isolated_cpus);
kfree(csa);
/*
@@ -800,6 +1035,61 @@ done:
return ndoms;
}
+static void dl_update_tasks_root_domain(struct cpuset *cs)
+{
+ struct css_task_iter it;
+ struct task_struct *task;
+
+ if (cs->nr_deadline_tasks == 0)
+ return;
+
+ css_task_iter_start(&cs->css, 0, &it);
+
+ while ((task = css_task_iter_next(&it)))
+ dl_add_task_root_domain(task);
+
+ css_task_iter_end(&it);
+}
+
+void dl_rebuild_rd_accounting(void)
+{
+ struct cpuset *cs = NULL;
+ struct cgroup_subsys_state *pos_css;
+ int cpu;
+ u64 cookie = ++dl_cookie;
+
+ lockdep_assert_held(&cpuset_mutex);
+ lockdep_assert_cpus_held();
+ lockdep_assert_held(&sched_domains_mutex);
+
+ rcu_read_lock();
+
+ for_each_possible_cpu(cpu) {
+ if (dl_bw_visited(cpu, cookie))
+ continue;
+
+ dl_clear_root_domain_cpu(cpu);
+ }
+
+ cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
+
+ if (cpumask_empty(cs->effective_cpus)) {
+ pos_css = css_rightmost_descendant(pos_css);
+ continue;
+ }
+
+ css_get(&cs->css);
+
+ rcu_read_unlock();
+
+ dl_update_tasks_root_domain(cs);
+
+ rcu_read_lock();
+ css_put(&cs->css);
+ }
+ rcu_read_unlock();
+}
+
/*
* Rebuild scheduler domains.
*
@@ -809,131 +1099,1454 @@ done:
* 'cpus' is removed, then call this routine to rebuild the
* scheduler's dynamic sched domains.
*
- * Call with cpuset_mutex held. Takes get_online_cpus().
+ * Call with cpuset_mutex held. Takes cpus_read_lock().
*/
-static void rebuild_sched_domains_locked(void)
+void rebuild_sched_domains_locked(void)
{
+ struct cgroup_subsys_state *pos_css;
struct sched_domain_attr *attr;
cpumask_var_t *doms;
+ struct cpuset *cs;
int ndoms;
+ lockdep_assert_cpus_held();
lockdep_assert_held(&cpuset_mutex);
- get_online_cpus();
+ force_sd_rebuild = false;
/*
- * We have raced with CPU hotplug. Don't do anything to avoid
+ * If we have raced with CPU hotplug, return early to avoid
* passing doms with offlined cpu to partition_sched_domains().
- * Anyways, hotplug work item will rebuild sched domains.
+ * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
+ *
+ * With no CPUs in any subpartitions, top_cpuset's effective CPUs
+ * should be the same as the active CPUs, so checking only top_cpuset
+ * is enough to detect racing CPU offlines.
*/
- if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
- goto out;
+ if (cpumask_empty(subpartitions_cpus) &&
+ !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
+ return;
+
+ /*
+ * With subpartition CPUs, however, the effective CPUs of a partition
+ * root should be only a subset of the active CPUs. Since a CPU in any
+ * partition root could be offlined, all must be checked.
+ */
+ if (!cpumask_empty(subpartitions_cpus)) {
+ rcu_read_lock();
+ cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
+ if (!is_partition_valid(cs)) {
+ pos_css = css_rightmost_descendant(pos_css);
+ continue;
+ }
+ if (!cpumask_subset(cs->effective_cpus,
+ cpu_active_mask)) {
+ rcu_read_unlock();
+ return;
+ }
+ }
+ rcu_read_unlock();
+ }
/* Generate domain masks and attrs */
ndoms = generate_sched_domains(&doms, &attr);
/* Have scheduler rebuild the domains */
partition_sched_domains(ndoms, doms, attr);
-out:
- put_online_cpus();
}
#else /* !CONFIG_SMP */
-static void rebuild_sched_domains_locked(void)
+void rebuild_sched_domains_locked(void)
{
}
#endif /* CONFIG_SMP */
-void rebuild_sched_domains(void)
+static void rebuild_sched_domains_cpuslocked(void)
{
mutex_lock(&cpuset_mutex);
rebuild_sched_domains_locked();
mutex_unlock(&cpuset_mutex);
}
+void rebuild_sched_domains(void)
+{
+ cpus_read_lock();
+ rebuild_sched_domains_cpuslocked();
+ cpus_read_unlock();
+}
+
+void cpuset_reset_sched_domains(void)
+{
+ mutex_lock(&cpuset_mutex);
+ partition_sched_domains(1, NULL, NULL);
+ mutex_unlock(&cpuset_mutex);
+}
+
/**
- * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
+ * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
* @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
+ * @new_cpus: the temp variable for the new effective_cpus mask
*
* Iterate through each task of @cs updating its cpus_allowed to the
* effective cpuset's. As this function is called with cpuset_mutex held,
* cpuset membership stays stable.
+ *
+ * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus
+ * to make sure all offline CPUs are also included as hotplug code won't
+ * update cpumasks for tasks in top_cpuset.
+ *
+ * As task_cpu_possible_mask() can be task dependent in arm64, we have to
+ * do cpu masking per task instead of doing it once for all.
*/
-static void update_tasks_cpumask(struct cpuset *cs)
+void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
{
struct css_task_iter it;
struct task_struct *task;
+ bool top_cs = cs == &top_cpuset;
- css_task_iter_start(&cs->css, &it);
- while ((task = css_task_iter_next(&it)))
- set_cpus_allowed_ptr(task, cs->effective_cpus);
+ css_task_iter_start(&cs->css, 0, &it);
+ while ((task = css_task_iter_next(&it))) {
+ const struct cpumask *possible_mask = task_cpu_possible_mask(task);
+
+ if (top_cs) {
+ /*
+ * PF_NO_SETAFFINITY tasks are ignored.
+ * All per cpu kthreads should have PF_NO_SETAFFINITY
+ * flag set, see kthread_set_per_cpu().
+ */
+ if (task->flags & PF_NO_SETAFFINITY)
+ continue;
+ cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
+ } else {
+ cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
+ }
+ set_cpus_allowed_ptr(task, new_cpus);
+ }
css_task_iter_end(&it);
}
+/**
+ * compute_effective_cpumask - Compute the effective cpumask of the cpuset
+ * @new_cpus: the temp variable for the new effective_cpus mask
+ * @cs: the cpuset the need to recompute the new effective_cpus mask
+ * @parent: the parent cpuset
+ *
+ * The result is valid only if the given cpuset isn't a partition root.
+ */
+static void compute_effective_cpumask(struct cpumask *new_cpus,
+ struct cpuset *cs, struct cpuset *parent)
+{
+ cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
+}
+
+/*
+ * Commands for update_parent_effective_cpumask
+ */
+enum partition_cmd {
+ partcmd_enable, /* Enable partition root */
+ partcmd_enablei, /* Enable isolated partition root */
+ partcmd_disable, /* Disable partition root */
+ partcmd_update, /* Update parent's effective_cpus */
+ partcmd_invalidate, /* Make partition invalid */
+};
+
+static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
+ struct tmpmasks *tmp);
+
+/*
+ * Update partition exclusive flag
+ *
+ * Return: 0 if successful, an error code otherwise
+ */
+static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs)
+{
+ bool exclusive = (new_prs > PRS_MEMBER);
+
+ if (exclusive && !is_cpu_exclusive(cs)) {
+ if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
+ return PERR_NOTEXCL;
+ } else if (!exclusive && is_cpu_exclusive(cs)) {
+ /* Turning off CS_CPU_EXCLUSIVE will not return error */
+ cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
+ }
+ return 0;
+}
+
+/*
+ * Update partition load balance flag and/or rebuild sched domain
+ *
+ * Changing load balance flag will automatically call
+ * rebuild_sched_domains_locked().
+ * This function is for cgroup v2 only.
+ */
+static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
+{
+ int new_prs = cs->partition_root_state;
+ bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
+ bool new_lb;
+
+ /*
+ * If cs is not a valid partition root, the load balance state
+ * will follow its parent.
+ */
+ if (new_prs > 0) {
+ new_lb = (new_prs != PRS_ISOLATED);
+ } else {
+ new_lb = is_sched_load_balance(parent_cs(cs));
+ }
+ if (new_lb != !!is_sched_load_balance(cs)) {
+ rebuild_domains = true;
+ if (new_lb)
+ set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
+ else
+ clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
+ }
+
+ if (rebuild_domains)
+ cpuset_force_rebuild();
+}
+
+/*
+ * tasks_nocpu_error - Return true if tasks will have no effective_cpus
+ */
+static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
+ struct cpumask *xcpus)
+{
+ /*
+ * A populated partition (cs or parent) can't have empty effective_cpus
+ */
+ return (cpumask_subset(parent->effective_cpus, xcpus) &&
+ partition_is_populated(parent, cs)) ||
+ (!cpumask_intersects(xcpus, cpu_active_mask) &&
+ partition_is_populated(cs, NULL));
+}
+
+static void reset_partition_data(struct cpuset *cs)
+{
+ struct cpuset *parent = parent_cs(cs);
+
+ if (!cpuset_v2())
+ return;
+
+ lockdep_assert_held(&callback_lock);
+
+ if (cpumask_empty(cs->exclusive_cpus)) {
+ cpumask_clear(cs->effective_xcpus);
+ if (is_cpu_exclusive(cs))
+ clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
+ }
+ if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
+ cpumask_copy(cs->effective_cpus, parent->effective_cpus);
+}
+
+/*
+ * isolated_cpus_update - Update the isolated_cpus mask
+ * @old_prs: old partition_root_state
+ * @new_prs: new partition_root_state
+ * @xcpus: exclusive CPUs with state change
+ */
+static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus)
+{
+ WARN_ON_ONCE(old_prs == new_prs);
+ if (new_prs == PRS_ISOLATED)
+ cpumask_or(isolated_cpus, isolated_cpus, xcpus);
+ else
+ cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
+
+ isolated_cpus_updating = true;
+}
+
+/*
+ * partition_xcpus_add - Add new exclusive CPUs to partition
+ * @new_prs: new partition_root_state
+ * @parent: parent cpuset
+ * @xcpus: exclusive CPUs to be added
+ *
+ * Remote partition if parent == NULL
+ */
+static void partition_xcpus_add(int new_prs, struct cpuset *parent,
+ struct cpumask *xcpus)
+{
+ WARN_ON_ONCE(new_prs < 0);
+ lockdep_assert_held(&callback_lock);
+ if (!parent)
+ parent = &top_cpuset;
+
+
+ if (parent == &top_cpuset)
+ cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
+
+ if (new_prs != parent->partition_root_state)
+ isolated_cpus_update(parent->partition_root_state, new_prs,
+ xcpus);
+
+ cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
+}
+
+/*
+ * partition_xcpus_del - Remove exclusive CPUs from partition
+ * @old_prs: old partition_root_state
+ * @parent: parent cpuset
+ * @xcpus: exclusive CPUs to be removed
+ *
+ * Remote partition if parent == NULL
+ */
+static void partition_xcpus_del(int old_prs, struct cpuset *parent,
+ struct cpumask *xcpus)
+{
+ WARN_ON_ONCE(old_prs < 0);
+ lockdep_assert_held(&callback_lock);
+ if (!parent)
+ parent = &top_cpuset;
+
+ if (parent == &top_cpuset)
+ cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
+
+ if (old_prs != parent->partition_root_state)
+ isolated_cpus_update(old_prs, parent->partition_root_state,
+ xcpus);
+
+ cpumask_and(xcpus, xcpus, cpu_active_mask);
+ cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
+}
+
+/*
+ * isolated_cpus_can_update - check for isolated & nohz_full conflicts
+ * @add_cpus: cpu mask for cpus that are going to be isolated
+ * @del_cpus: cpu mask for cpus that are no longer isolated, can be NULL
+ * Return: false if there is conflict, true otherwise
+ *
+ * If nohz_full is enabled and we have isolated CPUs, their combination must
+ * still leave housekeeping CPUs.
+ *
+ * TBD: Should consider merging this function into
+ * prstate_housekeeping_conflict().
+ */
+static bool isolated_cpus_can_update(struct cpumask *add_cpus,
+ struct cpumask *del_cpus)
+{
+ cpumask_var_t full_hk_cpus;
+ int res = true;
+
+ if (!housekeeping_enabled(HK_TYPE_KERNEL_NOISE))
+ return true;
+
+ if (del_cpus && cpumask_weight_and(del_cpus,
+ housekeeping_cpumask(HK_TYPE_KERNEL_NOISE)))
+ return true;
+
+ if (!alloc_cpumask_var(&full_hk_cpus, GFP_KERNEL))
+ return false;
+
+ cpumask_and(full_hk_cpus, housekeeping_cpumask(HK_TYPE_KERNEL_NOISE),
+ housekeeping_cpumask(HK_TYPE_DOMAIN));
+ cpumask_andnot(full_hk_cpus, full_hk_cpus, isolated_cpus);
+ cpumask_and(full_hk_cpus, full_hk_cpus, cpu_active_mask);
+ if (!cpumask_weight_andnot(full_hk_cpus, add_cpus))
+ res = false;
+
+ free_cpumask_var(full_hk_cpus);
+ return res;
+}
+
+/*
+ * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
+ * @prstate: partition root state to be checked
+ * @new_cpus: cpu mask
+ * Return: true if there is conflict, false otherwise
+ *
+ * CPUs outside of boot_hk_cpus, if defined, can only be used in an
+ * isolated partition.
+ */
+static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
+{
+ if (!have_boot_isolcpus)
+ return false;
+
+ if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
+ return true;
+
+ return false;
+}
+
+/*
+ * update_isolation_cpumasks - Update external isolation related CPU masks
+ *
+ * The following external CPU masks will be updated if necessary:
+ * - workqueue unbound cpumask
+ */
+static void update_isolation_cpumasks(void)
+{
+ int ret;
+
+ if (!isolated_cpus_updating)
+ return;
+
+ lockdep_assert_cpus_held();
+
+ ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
+ WARN_ON_ONCE(ret < 0);
+
+ ret = tmigr_isolated_exclude_cpumask(isolated_cpus);
+ WARN_ON_ONCE(ret < 0);
+
+ isolated_cpus_updating = false;
+}
+
+/**
+ * cpuset_cpu_is_isolated - Check if the given CPU is isolated
+ * @cpu: the CPU number to be checked
+ * Return: true if CPU is used in an isolated partition, false otherwise
+ */
+bool cpuset_cpu_is_isolated(int cpu)
+{
+ return cpumask_test_cpu(cpu, isolated_cpus);
+}
+EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
+
+/**
+ * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets
+ * @parent: Parent cpuset containing all siblings
+ * @cs: Current cpuset (will be skipped)
+ * @excpus: exclusive effective CPU mask to modify
+ *
+ * This function ensures the given @excpus mask doesn't include any CPUs that
+ * are exclusively allocated to sibling cpusets. It walks through all siblings
+ * of @cs under @parent and removes their exclusive CPUs from @excpus.
+ */
+static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs,
+ struct cpumask *excpus)
+{
+ struct cgroup_subsys_state *css;
+ struct cpuset *sibling;
+ int retval = 0;
+
+ if (cpumask_empty(excpus))
+ return retval;
+
+ /*
+ * Exclude exclusive CPUs from siblings
+ */
+ rcu_read_lock();
+ cpuset_for_each_child(sibling, css, parent) {
+ if (sibling == cs)
+ continue;
+
+ if (cpumask_intersects(excpus, sibling->exclusive_cpus)) {
+ cpumask_andnot(excpus, excpus, sibling->exclusive_cpus);
+ retval++;
+ continue;
+ }
+ if (cpumask_intersects(excpus, sibling->effective_xcpus)) {
+ cpumask_andnot(excpus, excpus, sibling->effective_xcpus);
+ retval++;
+ }
+ }
+ rcu_read_unlock();
+
+ return retval;
+}
+
+/*
+ * compute_excpus - compute effective exclusive CPUs
+ * @cs: cpuset
+ * @xcpus: effective exclusive CPUs value to be set
+ * Return: 0 if there is no sibling conflict, > 0 otherwise
+ *
+ * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets
+ * and exclude their exclusive_cpus or effective_xcpus as well.
+ */
+static int compute_excpus(struct cpuset *cs, struct cpumask *excpus)
+{
+ struct cpuset *parent = parent_cs(cs);
+
+ cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus);
+
+ if (!cpumask_empty(cs->exclusive_cpus))
+ return 0;
+
+ return rm_siblings_excl_cpus(parent, cs, excpus);
+}
+
+/*
+ * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset
+ * @trialcs: The trial cpuset containing the proposed new configuration
+ * @cs: The original cpuset that the trial configuration is based on
+ * Return: 0 if successful with no sibling conflict, >0 if a conflict is found
+ *
+ * Computes the effective_xcpus for a trial configuration. @cs is provided to represent
+ * the real cs.
+ */
+static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs)
+{
+ struct cpuset *parent = parent_cs(trialcs);
+ struct cpumask *excpus = trialcs->effective_xcpus;
+
+ /* trialcs is member, cpuset.cpus has no impact to excpus */
+ if (cs_is_member(cs))
+ cpumask_and(excpus, trialcs->exclusive_cpus,
+ parent->effective_xcpus);
+ else
+ cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus);
+
+ return rm_siblings_excl_cpus(parent, cs, excpus);
+}
+
+static inline bool is_remote_partition(struct cpuset *cs)
+{
+ return cs->remote_partition;
+}
+
+static inline bool is_local_partition(struct cpuset *cs)
+{
+ return is_partition_valid(cs) && !is_remote_partition(cs);
+}
+
+/*
+ * remote_partition_enable - Enable current cpuset as a remote partition root
+ * @cs: the cpuset to update
+ * @new_prs: new partition_root_state
+ * @tmp: temporary masks
+ * Return: 0 if successful, errcode if error
+ *
+ * Enable the current cpuset to become a remote partition root taking CPUs
+ * directly from the top cpuset. cpuset_mutex must be held by the caller.
+ */
+static int remote_partition_enable(struct cpuset *cs, int new_prs,
+ struct tmpmasks *tmp)
+{
+ /*
+ * The user must have sysadmin privilege.
+ */
+ if (!capable(CAP_SYS_ADMIN))
+ return PERR_ACCESS;
+
+ /*
+ * The requested exclusive_cpus must not be allocated to other
+ * partitions and it can't use up all the root's effective_cpus.
+ *
+ * The effective_xcpus mask can contain offline CPUs, but there must
+ * be at least one or more online CPUs present before it can be enabled.
+ *
+ * Note that creating a remote partition with any local partition root
+ * above it or remote partition root underneath it is not allowed.
+ */
+ compute_excpus(cs, tmp->new_cpus);
+ WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus));
+ if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) ||
+ cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
+ return PERR_INVCPUS;
+ if (((new_prs == PRS_ISOLATED) &&
+ !isolated_cpus_can_update(tmp->new_cpus, NULL)) ||
+ prstate_housekeeping_conflict(new_prs, tmp->new_cpus))
+ return PERR_HKEEPING;
+
+ spin_lock_irq(&callback_lock);
+ partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
+ cs->remote_partition = true;
+ cpumask_copy(cs->effective_xcpus, tmp->new_cpus);
+ spin_unlock_irq(&callback_lock);
+ update_isolation_cpumasks();
+ cpuset_force_rebuild();
+ cs->prs_err = 0;
+
+ /*
+ * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
+ */
+ cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
+ update_sibling_cpumasks(&top_cpuset, NULL, tmp);
+ return 0;
+}
+
+/*
+ * remote_partition_disable - Remove current cpuset from remote partition list
+ * @cs: the cpuset to update
+ * @tmp: temporary masks
+ *
+ * The effective_cpus is also updated.
+ *
+ * cpuset_mutex must be held by the caller.
+ */
+static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
+{
+ WARN_ON_ONCE(!is_remote_partition(cs));
+ WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
+
+ spin_lock_irq(&callback_lock);
+ cs->remote_partition = false;
+ partition_xcpus_del(cs->partition_root_state, NULL, cs->effective_xcpus);
+ if (cs->prs_err)
+ cs->partition_root_state = -cs->partition_root_state;
+ else
+ cs->partition_root_state = PRS_MEMBER;
+
+ /* effective_xcpus may need to be changed */
+ compute_excpus(cs, cs->effective_xcpus);
+ reset_partition_data(cs);
+ spin_unlock_irq(&callback_lock);
+ update_isolation_cpumasks();
+ cpuset_force_rebuild();
+
+ /*
+ * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
+ */
+ cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
+ update_sibling_cpumasks(&top_cpuset, NULL, tmp);
+}
+
+/*
+ * remote_cpus_update - cpus_exclusive change of remote partition
+ * @cs: the cpuset to be updated
+ * @xcpus: the new exclusive_cpus mask, if non-NULL
+ * @excpus: the new effective_xcpus mask
+ * @tmp: temporary masks
+ *
+ * top_cpuset and subpartitions_cpus will be updated or partition can be
+ * invalidated.
+ */
+static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus,
+ struct cpumask *excpus, struct tmpmasks *tmp)
+{
+ bool adding, deleting;
+ int prs = cs->partition_root_state;
+
+ if (WARN_ON_ONCE(!is_remote_partition(cs)))
+ return;
+
+ WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
+
+ if (cpumask_empty(excpus)) {
+ cs->prs_err = PERR_CPUSEMPTY;
+ goto invalidate;
+ }
+
+ adding = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus);
+ deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus);
+
+ /*
+ * Additions of remote CPUs is only allowed if those CPUs are
+ * not allocated to other partitions and there are effective_cpus
+ * left in the top cpuset.
+ */
+ if (adding) {
+ WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus));
+ if (!capable(CAP_SYS_ADMIN))
+ cs->prs_err = PERR_ACCESS;
+ else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
+ cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))
+ cs->prs_err = PERR_NOCPUS;
+ else if ((prs == PRS_ISOLATED) &&
+ !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
+ cs->prs_err = PERR_HKEEPING;
+ if (cs->prs_err)
+ goto invalidate;
+ }
+
+ spin_lock_irq(&callback_lock);
+ if (adding)
+ partition_xcpus_add(prs, NULL, tmp->addmask);
+ if (deleting)
+ partition_xcpus_del(prs, NULL, tmp->delmask);
+ /*
+ * Need to update effective_xcpus and exclusive_cpus now as
+ * update_sibling_cpumasks() below may iterate back to the same cs.
+ */
+ cpumask_copy(cs->effective_xcpus, excpus);
+ if (xcpus)
+ cpumask_copy(cs->exclusive_cpus, xcpus);
+ spin_unlock_irq(&callback_lock);
+ update_isolation_cpumasks();
+ if (adding || deleting)
+ cpuset_force_rebuild();
+
+ /*
+ * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
+ */
+ cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
+ update_sibling_cpumasks(&top_cpuset, NULL, tmp);
+ return;
+
+invalidate:
+ remote_partition_disable(cs, tmp);
+}
+
+/**
+ * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
+ * @cs: The cpuset that requests change in partition root state
+ * @cmd: Partition root state change command
+ * @newmask: Optional new cpumask for partcmd_update
+ * @tmp: Temporary addmask and delmask
+ * Return: 0 or a partition root state error code
+ *
+ * For partcmd_enable*, the cpuset is being transformed from a non-partition
+ * root to a partition root. The effective_xcpus (cpus_allowed if
+ * effective_xcpus not set) mask of the given cpuset will be taken away from
+ * parent's effective_cpus. The function will return 0 if all the CPUs listed
+ * in effective_xcpus can be granted or an error code will be returned.
+ *
+ * For partcmd_disable, the cpuset is being transformed from a partition
+ * root back to a non-partition root. Any CPUs in effective_xcpus will be
+ * given back to parent's effective_cpus. 0 will always be returned.
+ *
+ * For partcmd_update, if the optional newmask is specified, the cpu list is
+ * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
+ * assumed to remain the same. The cpuset should either be a valid or invalid
+ * partition root. The partition root state may change from valid to invalid
+ * or vice versa. An error code will be returned if transitioning from
+ * invalid to valid violates the exclusivity rule.
+ *
+ * For partcmd_invalidate, the current partition will be made invalid.
+ *
+ * The partcmd_enable* and partcmd_disable commands are used by
+ * update_prstate(). An error code may be returned and the caller will check
+ * for error.
+ *
+ * The partcmd_update command is used by update_cpumasks_hier() with newmask
+ * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
+ * by update_cpumask() with NULL newmask. In both cases, the callers won't
+ * check for error and so partition_root_state and prs_err will be updated
+ * directly.
+ */
+static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
+ struct cpumask *newmask,
+ struct tmpmasks *tmp)
+{
+ struct cpuset *parent = parent_cs(cs);
+ int adding; /* Adding cpus to parent's effective_cpus */
+ int deleting; /* Deleting cpus from parent's effective_cpus */
+ int old_prs, new_prs;
+ int part_error = PERR_NONE; /* Partition error? */
+ struct cpumask *xcpus = user_xcpus(cs);
+ int parent_prs = parent->partition_root_state;
+ bool nocpu;
+
+ lockdep_assert_held(&cpuset_mutex);
+ WARN_ON_ONCE(is_remote_partition(cs)); /* For local partition only */
+
+ /*
+ * new_prs will only be changed for the partcmd_update and
+ * partcmd_invalidate commands.
+ */
+ adding = deleting = false;
+ old_prs = new_prs = cs->partition_root_state;
+
+ if (cmd == partcmd_invalidate) {
+ if (is_partition_invalid(cs))
+ return 0;
+
+ /*
+ * Make the current partition invalid.
+ */
+ if (is_partition_valid(parent))
+ adding = cpumask_and(tmp->addmask,
+ xcpus, parent->effective_xcpus);
+ if (old_prs > 0)
+ new_prs = -old_prs;
+
+ goto write_error;
+ }
+
+ /*
+ * The parent must be a partition root.
+ * The new cpumask, if present, or the current cpus_allowed must
+ * not be empty.
+ */
+ if (!is_partition_valid(parent)) {
+ return is_partition_invalid(parent)
+ ? PERR_INVPARENT : PERR_NOTPART;
+ }
+ if (!newmask && xcpus_empty(cs))
+ return PERR_CPUSEMPTY;
+
+ nocpu = tasks_nocpu_error(parent, cs, xcpus);
+
+ if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
+ /*
+ * Need to call compute_excpus() in case
+ * exclusive_cpus not set. Sibling conflict should only happen
+ * if exclusive_cpus isn't set.
+ */
+ xcpus = tmp->delmask;
+ if (compute_excpus(cs, xcpus))
+ WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus));
+ new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
+
+ /*
+ * Enabling partition root is not allowed if its
+ * effective_xcpus is empty.
+ */
+ if (cpumask_empty(xcpus))
+ return PERR_INVCPUS;
+
+ if (prstate_housekeeping_conflict(new_prs, xcpus))
+ return PERR_HKEEPING;
+
+ if ((new_prs == PRS_ISOLATED) && (new_prs != parent_prs) &&
+ !isolated_cpus_can_update(xcpus, NULL))
+ return PERR_HKEEPING;
+
+ if (tasks_nocpu_error(parent, cs, xcpus))
+ return PERR_NOCPUS;
+
+ /*
+ * This function will only be called when all the preliminary
+ * checks have passed. At this point, the following condition
+ * should hold.
+ *
+ * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus
+ *
+ * Warn if it is not the case.
+ */
+ cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask);
+ WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
+
+ deleting = true;
+ } else if (cmd == partcmd_disable) {
+ /*
+ * May need to add cpus back to parent's effective_cpus
+ * (and maybe removed from subpartitions_cpus/isolated_cpus)
+ * for valid partition root. xcpus may contain CPUs that
+ * shouldn't be removed from the two global cpumasks.
+ */
+ if (is_partition_valid(cs)) {
+ cpumask_copy(tmp->addmask, cs->effective_xcpus);
+ adding = true;
+ }
+ new_prs = PRS_MEMBER;
+ } else if (newmask) {
+ /*
+ * Empty cpumask is not allowed
+ */
+ if (cpumask_empty(newmask)) {
+ part_error = PERR_CPUSEMPTY;
+ goto write_error;
+ }
+
+ /* Check newmask again, whether cpus are available for parent/cs */
+ nocpu |= tasks_nocpu_error(parent, cs, newmask);
+
+ /*
+ * partcmd_update with newmask:
+ *
+ * Compute add/delete mask to/from effective_cpus
+ *
+ * For valid partition:
+ * addmask = exclusive_cpus & ~newmask
+ * & parent->effective_xcpus
+ * delmask = newmask & ~exclusive_cpus
+ * & parent->effective_xcpus
+ *
+ * For invalid partition:
+ * delmask = newmask & parent->effective_xcpus
+ * The partition may become valid soon.
+ */
+ if (is_partition_invalid(cs)) {
+ adding = false;
+ deleting = cpumask_and(tmp->delmask,
+ newmask, parent->effective_xcpus);
+ } else {
+ cpumask_andnot(tmp->addmask, xcpus, newmask);
+ adding = cpumask_and(tmp->addmask, tmp->addmask,
+ parent->effective_xcpus);
+
+ cpumask_andnot(tmp->delmask, newmask, xcpus);
+ deleting = cpumask_and(tmp->delmask, tmp->delmask,
+ parent->effective_xcpus);
+ }
+
+ /*
+ * TBD: Invalidate a currently valid child root partition may
+ * still break isolated_cpus_can_update() rule if parent is an
+ * isolated partition.
+ */
+ if (is_partition_valid(cs) && (old_prs != parent_prs)) {
+ if ((parent_prs == PRS_ROOT) &&
+ /* Adding to parent means removing isolated CPUs */
+ !isolated_cpus_can_update(tmp->delmask, tmp->addmask))
+ part_error = PERR_HKEEPING;
+ if ((parent_prs == PRS_ISOLATED) &&
+ /* Adding to parent means adding isolated CPUs */
+ !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
+ part_error = PERR_HKEEPING;
+ }
+
+ /*
+ * The new CPUs to be removed from parent's effective CPUs
+ * must be present.
+ */
+ if (deleting) {
+ cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask);
+ WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
+ }
+
+ /*
+ * Make partition invalid if parent's effective_cpus could
+ * become empty and there are tasks in the parent.
+ */
+ if (nocpu && (!adding ||
+ !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
+ part_error = PERR_NOCPUS;
+ deleting = false;
+ adding = cpumask_and(tmp->addmask,
+ xcpus, parent->effective_xcpus);
+ }
+ } else {
+ /*
+ * partcmd_update w/o newmask
+ *
+ * delmask = effective_xcpus & parent->effective_cpus
+ *
+ * This can be called from:
+ * 1) update_cpumasks_hier()
+ * 2) cpuset_hotplug_update_tasks()
+ *
+ * Check to see if it can be transitioned from valid to
+ * invalid partition or vice versa.
+ *
+ * A partition error happens when parent has tasks and all
+ * its effective CPUs will have to be distributed out.
+ */
+ if (nocpu) {
+ part_error = PERR_NOCPUS;
+ if (is_partition_valid(cs))
+ adding = cpumask_and(tmp->addmask,
+ xcpus, parent->effective_xcpus);
+ } else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) &&
+ cpumask_subset(xcpus, parent->effective_xcpus)) {
+ struct cgroup_subsys_state *css;
+ struct cpuset *child;
+ bool exclusive = true;
+
+ /*
+ * Convert invalid partition to valid has to
+ * pass the cpu exclusivity test.
+ */
+ rcu_read_lock();
+ cpuset_for_each_child(child, css, parent) {
+ if (child == cs)
+ continue;
+ if (!cpusets_are_exclusive(cs, child)) {
+ exclusive = false;
+ break;
+ }
+ }
+ rcu_read_unlock();
+ if (exclusive)
+ deleting = cpumask_and(tmp->delmask,
+ xcpus, parent->effective_cpus);
+ else
+ part_error = PERR_NOTEXCL;
+ }
+ }
+
+write_error:
+ if (part_error)
+ WRITE_ONCE(cs->prs_err, part_error);
+
+ if (cmd == partcmd_update) {
+ /*
+ * Check for possible transition between valid and invalid
+ * partition root.
+ */
+ switch (cs->partition_root_state) {
+ case PRS_ROOT:
+ case PRS_ISOLATED:
+ if (part_error)
+ new_prs = -old_prs;
+ break;
+ case PRS_INVALID_ROOT:
+ case PRS_INVALID_ISOLATED:
+ if (!part_error)
+ new_prs = -old_prs;
+ break;
+ }
+ }
+
+ if (!adding && !deleting && (new_prs == old_prs))
+ return 0;
+
+ /*
+ * Transitioning between invalid to valid or vice versa may require
+ * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
+ * validate_change() has already been successfully called and
+ * CPU lists in cs haven't been updated yet. So defer it to later.
+ */
+ if ((old_prs != new_prs) && (cmd != partcmd_update)) {
+ int err = update_partition_exclusive_flag(cs, new_prs);
+
+ if (err)
+ return err;
+ }
+
+ /*
+ * Change the parent's effective_cpus & effective_xcpus (top cpuset
+ * only).
+ *
+ * Newly added CPUs will be removed from effective_cpus and
+ * newly deleted ones will be added back to effective_cpus.
+ */
+ spin_lock_irq(&callback_lock);
+ if (old_prs != new_prs)
+ cs->partition_root_state = new_prs;
+
+ /*
+ * Adding to parent's effective_cpus means deletion CPUs from cs
+ * and vice versa.
+ */
+ if (adding)
+ partition_xcpus_del(old_prs, parent, tmp->addmask);
+ if (deleting)
+ partition_xcpus_add(new_prs, parent, tmp->delmask);
+
+ spin_unlock_irq(&callback_lock);
+ update_isolation_cpumasks();
+
+ if ((old_prs != new_prs) && (cmd == partcmd_update))
+ update_partition_exclusive_flag(cs, new_prs);
+
+ if (adding || deleting) {
+ cpuset_update_tasks_cpumask(parent, tmp->addmask);
+ update_sibling_cpumasks(parent, cs, tmp);
+ }
+
+ /*
+ * For partcmd_update without newmask, it is being called from
+ * cpuset_handle_hotplug(). Update the load balance flag and
+ * scheduling domain accordingly.
+ */
+ if ((cmd == partcmd_update) && !newmask)
+ update_partition_sd_lb(cs, old_prs);
+
+ notify_partition_change(cs, old_prs);
+ return 0;
+}
+
+/**
+ * compute_partition_effective_cpumask - compute effective_cpus for partition
+ * @cs: partition root cpuset
+ * @new_ecpus: previously computed effective_cpus to be updated
+ *
+ * Compute the effective_cpus of a partition root by scanning effective_xcpus
+ * of child partition roots and excluding their effective_xcpus.
+ *
+ * This has the side effect of invalidating valid child partition roots,
+ * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
+ * or update_cpumasks_hier() where parent and children are modified
+ * successively, we don't need to call update_parent_effective_cpumask()
+ * and the child's effective_cpus will be updated in later iterations.
+ *
+ * Note that rcu_read_lock() is assumed to be held.
+ */
+static void compute_partition_effective_cpumask(struct cpuset *cs,
+ struct cpumask *new_ecpus)
+{
+ struct cgroup_subsys_state *css;
+ struct cpuset *child;
+ bool populated = partition_is_populated(cs, NULL);
+
+ /*
+ * Check child partition roots to see if they should be
+ * invalidated when
+ * 1) child effective_xcpus not a subset of new
+ * excluisve_cpus
+ * 2) All the effective_cpus will be used up and cp
+ * has tasks
+ */
+ compute_excpus(cs, new_ecpus);
+ cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
+
+ rcu_read_lock();
+ cpuset_for_each_child(child, css, cs) {
+ if (!is_partition_valid(child))
+ continue;
+
+ /*
+ * There shouldn't be a remote partition underneath another
+ * partition root.
+ */
+ WARN_ON_ONCE(is_remote_partition(child));
+ child->prs_err = 0;
+ if (!cpumask_subset(child->effective_xcpus,
+ cs->effective_xcpus))
+ child->prs_err = PERR_INVCPUS;
+ else if (populated &&
+ cpumask_subset(new_ecpus, child->effective_xcpus))
+ child->prs_err = PERR_NOCPUS;
+
+ if (child->prs_err) {
+ int old_prs = child->partition_root_state;
+
+ /*
+ * Invalidate child partition
+ */
+ spin_lock_irq(&callback_lock);
+ make_partition_invalid(child);
+ spin_unlock_irq(&callback_lock);
+ notify_partition_change(child, old_prs);
+ continue;
+ }
+ cpumask_andnot(new_ecpus, new_ecpus,
+ child->effective_xcpus);
+ }
+ rcu_read_unlock();
+}
+
/*
* update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
- * @cs: the cpuset to consider
- * @new_cpus: temp variable for calculating new effective_cpus
+ * @cs: the cpuset to consider
+ * @tmp: temp variables for calculating effective_cpus & partition setup
+ * @force: don't skip any descendant cpusets if set
*
- * When congifured cpumask is changed, the effective cpumasks of this cpuset
+ * When configured cpumask is changed, the effective cpumasks of this cpuset
* and all its descendants need to be updated.
*
- * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
+ * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
*
* Called with cpuset_mutex held
*/
-static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
+static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
+ bool force)
{
struct cpuset *cp;
struct cgroup_subsys_state *pos_css;
- bool need_rebuild_sched_domains = false;
+ int old_prs, new_prs;
rcu_read_lock();
cpuset_for_each_descendant_pre(cp, pos_css, cs) {
struct cpuset *parent = parent_cs(cp);
+ bool remote = is_remote_partition(cp);
+ bool update_parent = false;
- cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
+ old_prs = new_prs = cp->partition_root_state;
+
+ /*
+ * For child remote partition root (!= cs), we need to call
+ * remote_cpus_update() if effective_xcpus will be changed.
+ * Otherwise, we can skip the whole subtree.
+ *
+ * remote_cpus_update() will reuse tmp->new_cpus only after
+ * its value is being processed.
+ */
+ if (remote && (cp != cs)) {
+ compute_excpus(cp, tmp->new_cpus);
+ if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) {
+ pos_css = css_rightmost_descendant(pos_css);
+ continue;
+ }
+ rcu_read_unlock();
+ remote_cpus_update(cp, NULL, tmp->new_cpus, tmp);
+ rcu_read_lock();
+
+ /* Remote partition may be invalidated */
+ new_prs = cp->partition_root_state;
+ remote = (new_prs == old_prs);
+ }
+
+ if (remote || (is_partition_valid(parent) && is_partition_valid(cp)))
+ compute_partition_effective_cpumask(cp, tmp->new_cpus);
+ else
+ compute_effective_cpumask(tmp->new_cpus, cp, parent);
+
+ if (remote)
+ goto get_css; /* Ready to update cpuset data */
+
+ /*
+ * A partition with no effective_cpus is allowed as long as
+ * there is no task associated with it. Call
+ * update_parent_effective_cpumask() to check it.
+ */
+ if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
+ update_parent = true;
+ goto update_parent_effective;
+ }
/*
* If it becomes empty, inherit the effective mask of the
- * parent, which is guaranteed to have some CPUs.
+ * parent, which is guaranteed to have some CPUs unless
+ * it is a partition root that has explicitly distributed
+ * out all its CPUs.
*/
- if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
- cpumask_empty(new_cpus))
- cpumask_copy(new_cpus, parent->effective_cpus);
+ if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
+ cpumask_copy(tmp->new_cpus, parent->effective_cpus);
- /* Skip the whole subtree if the cpumask remains the same. */
- if (cpumask_equal(new_cpus, cp->effective_cpus)) {
+ /*
+ * Skip the whole subtree if
+ * 1) the cpumask remains the same,
+ * 2) has no partition root state,
+ * 3) force flag not set, and
+ * 4) for v2 load balance state same as its parent.
+ */
+ if (!cp->partition_root_state && !force &&
+ cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
+ (!cpuset_v2() ||
+ (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
pos_css = css_rightmost_descendant(pos_css);
continue;
}
+update_parent_effective:
+ /*
+ * update_parent_effective_cpumask() should have been called
+ * for cs already in update_cpumask(). We should also call
+ * cpuset_update_tasks_cpumask() again for tasks in the parent
+ * cpuset if the parent's effective_cpus changes.
+ */
+ if ((cp != cs) && old_prs) {
+ switch (parent->partition_root_state) {
+ case PRS_ROOT:
+ case PRS_ISOLATED:
+ update_parent = true;
+ break;
+
+ default:
+ /*
+ * When parent is not a partition root or is
+ * invalid, child partition roots become
+ * invalid too.
+ */
+ if (is_partition_valid(cp))
+ new_prs = -cp->partition_root_state;
+ WRITE_ONCE(cp->prs_err,
+ is_partition_invalid(parent)
+ ? PERR_INVPARENT : PERR_NOTPART);
+ break;
+ }
+ }
+get_css:
if (!css_tryget_online(&cp->css))
continue;
rcu_read_unlock();
+ if (update_parent) {
+ update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
+ /*
+ * The cpuset partition_root_state may become
+ * invalid. Capture it.
+ */
+ new_prs = cp->partition_root_state;
+ }
+
spin_lock_irq(&callback_lock);
- cpumask_copy(cp->effective_cpus, new_cpus);
+ cpumask_copy(cp->effective_cpus, tmp->new_cpus);
+ cp->partition_root_state = new_prs;
+ if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs))
+ compute_excpus(cp, cp->effective_xcpus);
+
+ /*
+ * Make sure effective_xcpus is properly set for a valid
+ * partition root.
+ */
+ if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
+ cpumask_and(cp->effective_xcpus,
+ cp->cpus_allowed, parent->effective_xcpus);
+ else if (new_prs < 0)
+ reset_partition_data(cp);
spin_unlock_irq(&callback_lock);
- WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
+ notify_partition_change(cp, old_prs);
+
+ WARN_ON(!is_in_v2_mode() &&
!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
- update_tasks_cpumask(cp);
+ cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
/*
- * If the effective cpumask of any non-empty cpuset is changed,
- * we need to rebuild sched domains.
+ * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
+ * from parent if current cpuset isn't a valid partition root
+ * and their load balance states differ.
+ */
+ if (cpuset_v2() && !is_partition_valid(cp) &&
+ (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
+ if (is_sched_load_balance(parent))
+ set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
+ else
+ clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
+ }
+
+ /*
+ * On legacy hierarchy, if the effective cpumask of any non-
+ * empty cpuset is changed, we need to rebuild sched domains.
+ * On default hierarchy, the cpuset needs to be a partition
+ * root as well.
*/
if (!cpumask_empty(cp->cpus_allowed) &&
- is_sched_load_balance(cp))
- need_rebuild_sched_domains = true;
+ is_sched_load_balance(cp) &&
+ (!cpuset_v2() || is_partition_valid(cp)))
+ cpuset_force_rebuild();
rcu_read_lock();
css_put(&cp->css);
}
rcu_read_unlock();
+}
- if (need_rebuild_sched_domains)
- rebuild_sched_domains_locked();
+/**
+ * update_sibling_cpumasks - Update siblings cpumasks
+ * @parent: Parent cpuset
+ * @cs: Current cpuset
+ * @tmp: Temp variables
+ */
+static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
+ struct tmpmasks *tmp)
+{
+ struct cpuset *sibling;
+ struct cgroup_subsys_state *pos_css;
+
+ lockdep_assert_held(&cpuset_mutex);
+
+ /*
+ * Check all its siblings and call update_cpumasks_hier()
+ * if their effective_cpus will need to be changed.
+ *
+ * It is possible a change in parent's effective_cpus
+ * due to a change in a child partition's effective_xcpus will impact
+ * its siblings even if they do not inherit parent's effective_cpus
+ * directly.
+ *
+ * The update_cpumasks_hier() function may sleep. So we have to
+ * release the RCU read lock before calling it.
+ */
+ rcu_read_lock();
+ cpuset_for_each_child(sibling, pos_css, parent) {
+ if (sibling == cs)
+ continue;
+ if (!is_partition_valid(sibling)) {
+ compute_effective_cpumask(tmp->new_cpus, sibling,
+ parent);
+ if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
+ continue;
+ } else if (is_remote_partition(sibling)) {
+ /*
+ * Change in a sibling cpuset won't affect a remote
+ * partition root.
+ */
+ continue;
+ }
+
+ if (!css_tryget_online(&sibling->css))
+ continue;
+
+ rcu_read_unlock();
+ update_cpumasks_hier(sibling, tmp, false);
+ rcu_read_lock();
+ css_put(&sibling->css);
+ }
+ rcu_read_unlock();
+}
+
+static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask)
+{
+ int retval;
+
+ retval = cpulist_parse(buf, out_mask);
+ if (retval < 0)
+ return retval;
+ if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed))
+ return -EINVAL;
+
+ return 0;
+}
+
+/**
+ * validate_partition - Validate a cpuset partition configuration
+ * @cs: The cpuset to validate
+ * @trialcs: The trial cpuset containing proposed configuration changes
+ *
+ * If any validation check fails, the appropriate error code is set in the
+ * cpuset's prs_err field.
+ *
+ * Return: PRS error code (0 if valid, non-zero error code if invalid)
+ */
+static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs)
+{
+ struct cpuset *parent = parent_cs(cs);
+
+ if (cs_is_member(trialcs))
+ return PERR_NONE;
+
+ if (cpumask_empty(trialcs->effective_xcpus))
+ return PERR_INVCPUS;
+
+ if (prstate_housekeeping_conflict(trialcs->partition_root_state,
+ trialcs->effective_xcpus))
+ return PERR_HKEEPING;
+
+ if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus))
+ return PERR_NOCPUS;
+
+ return PERR_NONE;
+}
+
+static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs,
+ struct tmpmasks *tmp)
+{
+ int retval;
+ struct cpuset *parent = parent_cs(cs);
+
+ retval = validate_change(cs, trialcs);
+
+ if ((retval == -EINVAL) && cpuset_v2()) {
+ struct cgroup_subsys_state *css;
+ struct cpuset *cp;
+
+ /*
+ * The -EINVAL error code indicates that partition sibling
+ * CPU exclusivity rule has been violated. We still allow
+ * the cpumask change to proceed while invalidating the
+ * partition. However, any conflicting sibling partitions
+ * have to be marked as invalid too.
+ */
+ trialcs->prs_err = PERR_NOTEXCL;
+ rcu_read_lock();
+ cpuset_for_each_child(cp, css, parent) {
+ struct cpumask *xcpus = user_xcpus(trialcs);
+
+ if (is_partition_valid(cp) &&
+ cpumask_intersects(xcpus, cp->effective_xcpus)) {
+ rcu_read_unlock();
+ update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp);
+ rcu_read_lock();
+ }
+ }
+ rcu_read_unlock();
+ retval = 0;
+ }
+ return retval;
+}
+
+/**
+ * partition_cpus_change - Handle partition state changes due to CPU mask updates
+ * @cs: The target cpuset being modified
+ * @trialcs: The trial cpuset containing proposed configuration changes
+ * @tmp: Temporary masks for intermediate calculations
+ *
+ * This function handles partition state transitions triggered by CPU mask changes.
+ * CPU modifications may cause a partition to be disabled or require state updates.
+ */
+static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs,
+ struct tmpmasks *tmp)
+{
+ enum prs_errcode prs_err;
+
+ if (cs_is_member(cs))
+ return;
+
+ prs_err = validate_partition(cs, trialcs);
+ if (prs_err)
+ trialcs->prs_err = cs->prs_err = prs_err;
+
+ if (is_remote_partition(cs)) {
+ if (trialcs->prs_err)
+ remote_partition_disable(cs, tmp);
+ else
+ remote_cpus_update(cs, trialcs->exclusive_cpus,
+ trialcs->effective_xcpus, tmp);
+ } else {
+ if (trialcs->prs_err)
+ update_parent_effective_cpumask(cs, partcmd_invalidate,
+ NULL, tmp);
+ else
+ update_parent_effective_cpumask(cs, partcmd_update,
+ trialcs->effective_xcpus, tmp);
+ }
}
/**
@@ -946,43 +2559,121 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
const char *buf)
{
int retval;
+ struct tmpmasks tmp;
+ bool force = false;
+ int old_prs = cs->partition_root_state;
- /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
- if (cs == &top_cpuset)
- return -EACCES;
+ retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed);
+ if (retval < 0)
+ return retval;
+
+ /* Nothing to do if the cpus didn't change */
+ if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
+ return 0;
+
+ if (alloc_tmpmasks(&tmp))
+ return -ENOMEM;
+
+ compute_trialcs_excpus(trialcs, cs);
+ trialcs->prs_err = PERR_NONE;
+
+ retval = cpus_allowed_validate_change(cs, trialcs, &tmp);
+ if (retval < 0)
+ goto out_free;
/*
- * An empty cpus_allowed is ok only if the cpuset has no tasks.
- * Since cpulist_parse() fails on an empty mask, we special case
- * that parsing. The validate_change() call ensures that cpusets
- * with tasks have cpus.
+ * Check all the descendants in update_cpumasks_hier() if
+ * effective_xcpus is to be changed.
*/
- if (!*buf) {
- cpumask_clear(trialcs->cpus_allowed);
- } else {
- retval = cpulist_parse(buf, trialcs->cpus_allowed);
- if (retval < 0)
- return retval;
+ force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
- if (!cpumask_subset(trialcs->cpus_allowed,
- top_cpuset.cpus_allowed))
- return -EINVAL;
- }
+ partition_cpus_change(cs, trialcs, &tmp);
- /* Nothing to do if the cpus didn't change */
- if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
+ spin_lock_irq(&callback_lock);
+ cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
+ cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
+ if ((old_prs > 0) && !is_partition_valid(cs))
+ reset_partition_data(cs);
+ spin_unlock_irq(&callback_lock);
+
+ /* effective_cpus/effective_xcpus will be updated here */
+ update_cpumasks_hier(cs, &tmp, force);
+
+ /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
+ if (cs->partition_root_state)
+ update_partition_sd_lb(cs, old_prs);
+out_free:
+ free_tmpmasks(&tmp);
+ return retval;
+}
+
+/**
+ * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
+ * @cs: the cpuset to consider
+ * @trialcs: trial cpuset
+ * @buf: buffer of cpu numbers written to this cpuset
+ *
+ * The tasks' cpumask will be updated if cs is a valid partition root.
+ */
+static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
+ const char *buf)
+{
+ int retval;
+ struct tmpmasks tmp;
+ bool force = false;
+ int old_prs = cs->partition_root_state;
+
+ retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus);
+ if (retval < 0)
+ return retval;
+
+ /* Nothing to do if the CPUs didn't change */
+ if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
return 0;
+ /*
+ * Reject the change if there is exclusive CPUs conflict with
+ * the siblings.
+ */
+ if (compute_trialcs_excpus(trialcs, cs))
+ return -EINVAL;
+
+ /*
+ * Check all the descendants in update_cpumasks_hier() if
+ * effective_xcpus is to be changed.
+ */
+ force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
+
retval = validate_change(cs, trialcs);
- if (retval < 0)
+ if (retval)
return retval;
+ if (alloc_tmpmasks(&tmp))
+ return -ENOMEM;
+
+ trialcs->prs_err = PERR_NONE;
+ partition_cpus_change(cs, trialcs, &tmp);
+
spin_lock_irq(&callback_lock);
- cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
+ cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
+ cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
+ if ((old_prs > 0) && !is_partition_valid(cs))
+ reset_partition_data(cs);
spin_unlock_irq(&callback_lock);
- /* use trialcs->cpus_allowed as a temp variable */
- update_cpumasks_hier(cs, trialcs->cpus_allowed);
+ /*
+ * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
+ * of the subtree when it is a valid partition root or effective_xcpus
+ * is updated.
+ */
+ if (is_partition_valid(cs) || force)
+ update_cpumasks_hier(cs, &tmp, force);
+
+ /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
+ if (cs->partition_root_state)
+ update_partition_sd_lb(cs, old_prs);
+
+ free_tmpmasks(&tmp);
return 0;
}
@@ -1017,6 +2708,11 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
{
struct cpuset_migrate_mm_work *mwork;
+ if (nodes_equal(*from, *to)) {
+ mmput(mm);
+ return;
+ }
+
mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
if (mwork) {
mwork->mm = mm;
@@ -1029,9 +2725,24 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
}
}
-static void cpuset_post_attach(void)
+static void flush_migrate_mm_task_workfn(struct callback_head *head)
{
flush_workqueue(cpuset_migrate_mm_wq);
+ kfree(head);
+}
+
+static void schedule_flush_migrate_mm(void)
+{
+ struct callback_head *flush_cb;
+
+ flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL);
+ if (!flush_cb)
+ return;
+
+ init_task_work(flush_cb, flush_migrate_mm_task_workfn);
+
+ if (task_work_add(current, flush_cb, TWA_RESUME))
+ kfree(flush_cb);
}
/*
@@ -1065,14 +2776,14 @@ static void cpuset_change_task_nodemask(struct task_struct *tsk,
static void *cpuset_being_rebound;
/**
- * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
+ * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
* @cs: the cpuset in which each task's mems_allowed mask needs to be changed
*
* Iterate through each task of @cs updating its mems_allowed to the
* effective cpuset's. As this function is called with cpuset_mutex held,
* cpuset membership stays stable.
*/
-static void update_tasks_nodemask(struct cpuset *cs)
+void cpuset_update_tasks_nodemask(struct cpuset *cs)
{
static nodemask_t newmems; /* protected by cpuset_mutex */
struct css_task_iter it;
@@ -1083,7 +2794,7 @@ static void update_tasks_nodemask(struct cpuset *cs)
guarantee_online_mems(cs, &newmems);
/*
- * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
+ * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
* take while holding tasklist_lock. Forks can happen - the
* mpol_dup() cpuset_being_rebound check will catch such forks,
* and rebind their vma mempolicies too. Because we still hold
@@ -1092,7 +2803,7 @@ static void update_tasks_nodemask(struct cpuset *cs)
* It's ok if we rebind the same mm twice; mpol_rebind_mm()
* is idempotent. Also migrate pages in each mm to new nodes.
*/
- css_task_iter_start(&cs->css, &it);
+ css_task_iter_start(&cs->css, 0, &it);
while ((task = css_task_iter_next(&it))) {
struct mm_struct *mm;
bool migrate;
@@ -1131,7 +2842,7 @@ static void update_tasks_nodemask(struct cpuset *cs)
* When configured nodemask is changed, the effective nodemasks of this cpuset
* and all its descendants need to be updated.
*
- * On legacy hiearchy, effective_mems will be the same with mems_allowed.
+ * On legacy hierarchy, effective_mems will be the same with mems_allowed.
*
* Called with cpuset_mutex held
*/
@@ -1150,8 +2861,7 @@ static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
* If it becomes empty, inherit the effective mask of the
* parent, which is guaranteed to have some MEMs.
*/
- if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
- nodes_empty(*new_mems))
+ if (is_in_v2_mode() && nodes_empty(*new_mems))
*new_mems = parent->effective_mems;
/* Skip the whole subtree if the nodemask remains the same. */
@@ -1168,10 +2878,10 @@ static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
cp->effective_mems = *new_mems;
spin_unlock_irq(&callback_lock);
- WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
+ WARN_ON(!is_in_v2_mode() &&
!nodes_equal(cp->mems_allowed, cp->effective_mems));
- update_tasks_nodemask(cp);
+ cpuset_update_tasks_nodemask(cp);
rcu_read_lock();
css_put(&cp->css);
@@ -1189,7 +2899,7 @@ static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
*
* Call with cpuset_mutex held. May take callback_lock during call.
* Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
- * lock each such tasks mm->mmap_sem, scan its vma's and rebind
+ * lock each such tasks mm->mmap_lock, scan its vma's and rebind
* their mempolicies to the cpusets new mems_allowed.
*/
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
@@ -1198,41 +2908,26 @@ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
int retval;
/*
- * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
- * it's read-only
- */
- if (cs == &top_cpuset) {
- retval = -EACCES;
- goto done;
- }
-
- /*
* An empty mems_allowed is ok iff there are no tasks in the cpuset.
- * Since nodelist_parse() fails on an empty mask, we special case
- * that parsing. The validate_change() call ensures that cpusets
- * with tasks have memory.
+ * The validate_change() call ensures that cpusets with tasks have memory.
*/
- if (!*buf) {
- nodes_clear(trialcs->mems_allowed);
- } else {
- retval = nodelist_parse(buf, trialcs->mems_allowed);
- if (retval < 0)
- goto done;
+ retval = nodelist_parse(buf, trialcs->mems_allowed);
+ if (retval < 0)
+ return retval;
- if (!nodes_subset(trialcs->mems_allowed,
- top_cpuset.mems_allowed)) {
- retval = -EINVAL;
- goto done;
- }
- }
+ if (!nodes_subset(trialcs->mems_allowed,
+ top_cpuset.mems_allowed))
+ return -EINVAL;
+
+ /* No change? nothing to do */
+ if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed))
+ return 0;
- if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
- retval = 0; /* Too easy - nothing to do */
- goto done;
- }
retval = validate_change(cs, trialcs);
if (retval < 0)
- goto done;
+ return retval;
+
+ check_insane_mems_config(&trialcs->mems_allowed);
spin_lock_irq(&callback_lock);
cs->mems_allowed = trialcs->mems_allowed;
@@ -1240,13 +2935,12 @@ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
/* use trialcs->mems_allowed as a temp variable */
update_nodemasks_hier(cs, &trialcs->mems_allowed);
-done:
- return retval;
+ return 0;
}
-int current_cpuset_is_being_rebound(void)
+bool current_cpuset_is_being_rebound(void)
{
- int ret;
+ bool ret;
rcu_read_lock();
ret = task_cs(current) == cpuset_being_rebound;
@@ -1255,44 +2949,8 @@ int current_cpuset_is_being_rebound(void)
return ret;
}
-static int update_relax_domain_level(struct cpuset *cs, s64 val)
-{
-#ifdef CONFIG_SMP
- if (val < -1 || val >= sched_domain_level_max)
- return -EINVAL;
-#endif
-
- if (val != cs->relax_domain_level) {
- cs->relax_domain_level = val;
- if (!cpumask_empty(cs->cpus_allowed) &&
- is_sched_load_balance(cs))
- rebuild_sched_domains_locked();
- }
-
- return 0;
-}
-
-/**
- * update_tasks_flags - update the spread flags of tasks in the cpuset.
- * @cs: the cpuset in which each task's spread flags needs to be changed
- *
- * Iterate through each task of @cs updating its spread flags. As this
- * function is called with cpuset_mutex held, cpuset membership stays
- * stable.
- */
-static void update_tasks_flags(struct cpuset *cs)
-{
- struct css_task_iter it;
- struct task_struct *task;
-
- css_task_iter_start(&cs->css, &it);
- while ((task = css_task_iter_next(&it)))
- cpuset_update_task_spread_flag(cs, task);
- css_task_iter_end(&it);
-}
-
/*
- * update_flag - read a 0 or a 1 in a file and update associated flag
+ * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
* bit: the bit to update (see cpuset_flagbits_t)
* cs: the cpuset to update
* turning_on: whether the flag is being set or cleared
@@ -1300,7 +2958,7 @@ static void update_tasks_flags(struct cpuset *cs)
* Call with cpuset_mutex held.
*/
-static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
+int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
int turning_on)
{
struct cpuset *trialcs;
@@ -1308,7 +2966,7 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
int spread_flag_changed;
int err;
- trialcs = alloc_trial_cpuset(cs);
+ trialcs = dup_or_alloc_cpuset(cs);
if (!trialcs)
return -ENOMEM;
@@ -1331,154 +2989,242 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
cs->flags = trialcs->flags;
spin_unlock_irq(&callback_lock);
- if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
- rebuild_sched_domains_locked();
+ if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
+ if (cpuset_v2())
+ cpuset_force_rebuild();
+ else
+ rebuild_sched_domains_locked();
+ }
if (spread_flag_changed)
- update_tasks_flags(cs);
+ cpuset1_update_tasks_flags(cs);
out:
- free_trial_cpuset(trialcs);
+ free_cpuset(trialcs);
return err;
}
-/*
- * Frequency meter - How fast is some event occurring?
- *
- * These routines manage a digitally filtered, constant time based,
- * event frequency meter. There are four routines:
- * fmeter_init() - initialize a frequency meter.
- * fmeter_markevent() - called each time the event happens.
- * fmeter_getrate() - returns the recent rate of such events.
- * fmeter_update() - internal routine used to update fmeter.
- *
- * A common data structure is passed to each of these routines,
- * which is used to keep track of the state required to manage the
- * frequency meter and its digital filter.
- *
- * The filter works on the number of events marked per unit time.
- * The filter is single-pole low-pass recursive (IIR). The time unit
- * is 1 second. Arithmetic is done using 32-bit integers scaled to
- * simulate 3 decimal digits of precision (multiplied by 1000).
- *
- * With an FM_COEF of 933, and a time base of 1 second, the filter
- * has a half-life of 10 seconds, meaning that if the events quit
- * happening, then the rate returned from the fmeter_getrate()
- * will be cut in half each 10 seconds, until it converges to zero.
- *
- * It is not worth doing a real infinitely recursive filter. If more
- * than FM_MAXTICKS ticks have elapsed since the last filter event,
- * just compute FM_MAXTICKS ticks worth, by which point the level
- * will be stable.
- *
- * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
- * arithmetic overflow in the fmeter_update() routine.
- *
- * Given the simple 32 bit integer arithmetic used, this meter works
- * best for reporting rates between one per millisecond (msec) and
- * one per 32 (approx) seconds. At constant rates faster than one
- * per msec it maxes out at values just under 1,000,000. At constant
- * rates between one per msec, and one per second it will stabilize
- * to a value N*1000, where N is the rate of events per second.
- * At constant rates between one per second and one per 32 seconds,
- * it will be choppy, moving up on the seconds that have an event,
- * and then decaying until the next event. At rates slower than
- * about one in 32 seconds, it decays all the way back to zero between
- * each event.
- */
-
-#define FM_COEF 933 /* coefficient for half-life of 10 secs */
-#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
-#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
-#define FM_SCALE 1000 /* faux fixed point scale */
-
-/* Initialize a frequency meter */
-static void fmeter_init(struct fmeter *fmp)
-{
- fmp->cnt = 0;
- fmp->val = 0;
- fmp->time = 0;
- spin_lock_init(&fmp->lock);
-}
-
-/* Internal meter update - process cnt events and update value */
-static void fmeter_update(struct fmeter *fmp)
-{
- time64_t now;
- u32 ticks;
-
- now = ktime_get_seconds();
- ticks = now - fmp->time;
-
- if (ticks == 0)
- return;
+/**
+ * update_prstate - update partition_root_state
+ * @cs: the cpuset to update
+ * @new_prs: new partition root state
+ * Return: 0 if successful, != 0 if error
+ *
+ * Call with cpuset_mutex held.
+ */
+static int update_prstate(struct cpuset *cs, int new_prs)
+{
+ int err = PERR_NONE, old_prs = cs->partition_root_state;
+ struct cpuset *parent = parent_cs(cs);
+ struct tmpmasks tmpmask;
+ bool isolcpus_updated = false;
+
+ if (old_prs == new_prs)
+ return 0;
+
+ /*
+ * Treat a previously invalid partition root as if it is a "member".
+ */
+ if (new_prs && is_partition_invalid(cs))
+ old_prs = PRS_MEMBER;
- ticks = min(FM_MAXTICKS, ticks);
- while (ticks-- > 0)
- fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
- fmp->time = now;
+ if (alloc_tmpmasks(&tmpmask))
+ return -ENOMEM;
+
+ err = update_partition_exclusive_flag(cs, new_prs);
+ if (err)
+ goto out;
+
+ if (!old_prs) {
+ /*
+ * cpus_allowed and exclusive_cpus cannot be both empty.
+ */
+ if (xcpus_empty(cs)) {
+ err = PERR_CPUSEMPTY;
+ goto out;
+ }
+
+ /*
+ * We don't support the creation of a new local partition with
+ * a remote partition underneath it. This unsupported
+ * setting can happen only if parent is the top_cpuset because
+ * a remote partition cannot be created underneath an existing
+ * local or remote partition.
+ */
+ if ((parent == &top_cpuset) &&
+ cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) {
+ err = PERR_REMOTE;
+ goto out;
+ }
+
+ /*
+ * If parent is valid partition, enable local partiion.
+ * Otherwise, enable a remote partition.
+ */
+ if (is_partition_valid(parent)) {
+ enum partition_cmd cmd = (new_prs == PRS_ROOT)
+ ? partcmd_enable : partcmd_enablei;
+
+ err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
+ } else {
+ err = remote_partition_enable(cs, new_prs, &tmpmask);
+ }
+ } else if (old_prs && new_prs) {
+ /*
+ * A change in load balance state only, no change in cpumasks.
+ * Need to update isolated_cpus.
+ */
+ if (((new_prs == PRS_ISOLATED) &&
+ !isolated_cpus_can_update(cs->effective_xcpus, NULL)) ||
+ prstate_housekeeping_conflict(new_prs, cs->effective_xcpus))
+ err = PERR_HKEEPING;
+ else
+ isolcpus_updated = true;
+ } else {
+ /*
+ * Switching back to member is always allowed even if it
+ * disables child partitions.
+ */
+ if (is_remote_partition(cs))
+ remote_partition_disable(cs, &tmpmask);
+ else
+ update_parent_effective_cpumask(cs, partcmd_disable,
+ NULL, &tmpmask);
+
+ /*
+ * Invalidation of child partitions will be done in
+ * update_cpumasks_hier().
+ */
+ }
+out:
+ /*
+ * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
+ * happens.
+ */
+ if (err) {
+ new_prs = -new_prs;
+ update_partition_exclusive_flag(cs, new_prs);
+ }
- fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
- fmp->cnt = 0;
+ spin_lock_irq(&callback_lock);
+ cs->partition_root_state = new_prs;
+ WRITE_ONCE(cs->prs_err, err);
+ if (!is_partition_valid(cs))
+ reset_partition_data(cs);
+ else if (isolcpus_updated)
+ isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus);
+ spin_unlock_irq(&callback_lock);
+ update_isolation_cpumasks();
+
+ /* Force update if switching back to member & update effective_xcpus */
+ update_cpumasks_hier(cs, &tmpmask, !new_prs);
+
+ /* A newly created partition must have effective_xcpus set */
+ WARN_ON_ONCE(!old_prs && (new_prs > 0)
+ && cpumask_empty(cs->effective_xcpus));
+
+ /* Update sched domains and load balance flag */
+ update_partition_sd_lb(cs, old_prs);
+
+ notify_partition_change(cs, old_prs);
+ if (force_sd_rebuild)
+ rebuild_sched_domains_locked();
+ free_tmpmasks(&tmpmask);
+ return 0;
}
-/* Process any previous ticks, then bump cnt by one (times scale). */
-static void fmeter_markevent(struct fmeter *fmp)
+static struct cpuset *cpuset_attach_old_cs;
+
+/*
+ * Check to see if a cpuset can accept a new task
+ * For v1, cpus_allowed and mems_allowed can't be empty.
+ * For v2, effective_cpus can't be empty.
+ * Note that in v1, effective_cpus = cpus_allowed.
+ */
+static int cpuset_can_attach_check(struct cpuset *cs)
{
- spin_lock(&fmp->lock);
- fmeter_update(fmp);
- fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
- spin_unlock(&fmp->lock);
+ if (cpumask_empty(cs->effective_cpus) ||
+ (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
+ return -ENOSPC;
+ return 0;
}
-/* Process any previous ticks, then return current value. */
-static int fmeter_getrate(struct fmeter *fmp)
+static void reset_migrate_dl_data(struct cpuset *cs)
{
- int val;
-
- spin_lock(&fmp->lock);
- fmeter_update(fmp);
- val = fmp->val;
- spin_unlock(&fmp->lock);
- return val;
+ cs->nr_migrate_dl_tasks = 0;
+ cs->sum_migrate_dl_bw = 0;
}
-static struct cpuset *cpuset_attach_old_cs;
-
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
static int cpuset_can_attach(struct cgroup_taskset *tset)
{
struct cgroup_subsys_state *css;
- struct cpuset *cs;
+ struct cpuset *cs, *oldcs;
struct task_struct *task;
+ bool cpus_updated, mems_updated;
int ret;
/* used later by cpuset_attach() */
cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
+ oldcs = cpuset_attach_old_cs;
cs = css_cs(css);
mutex_lock(&cpuset_mutex);
- /* allow moving tasks into an empty cpuset if on default hierarchy */
- ret = -ENOSPC;
- if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
- (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
+ /* Check to see if task is allowed in the cpuset */
+ ret = cpuset_can_attach_check(cs);
+ if (ret)
goto out_unlock;
+ cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
+ mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
+
cgroup_taskset_for_each(task, css, tset) {
- ret = task_can_attach(task, cs->cpus_allowed);
+ ret = task_can_attach(task);
if (ret)
goto out_unlock;
- ret = security_task_setscheduler(task);
- if (ret)
+
+ /*
+ * Skip rights over task check in v2 when nothing changes,
+ * migration permission derives from hierarchy ownership in
+ * cgroup_procs_write_permission()).
+ */
+ if (!cpuset_v2() || (cpus_updated || mems_updated)) {
+ ret = security_task_setscheduler(task);
+ if (ret)
+ goto out_unlock;
+ }
+
+ if (dl_task(task)) {
+ cs->nr_migrate_dl_tasks++;
+ cs->sum_migrate_dl_bw += task->dl.dl_bw;
+ }
+ }
+
+ if (!cs->nr_migrate_dl_tasks)
+ goto out_success;
+
+ if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
+ int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
+
+ if (unlikely(cpu >= nr_cpu_ids)) {
+ reset_migrate_dl_data(cs);
+ ret = -EINVAL;
goto out_unlock;
+ }
+
+ ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
+ if (ret) {
+ reset_migrate_dl_data(cs);
+ goto out_unlock;
+ }
}
+out_success:
/*
* Mark attach is in progress. This makes validate_change() fail
* changes which zero cpus/mems_allowed.
*/
cs->attach_in_progress++;
- ret = 0;
out_unlock:
mutex_unlock(&cpuset_mutex);
return ret;
@@ -1493,56 +3239,90 @@ static void cpuset_cancel_attach(struct cgroup_taskset *tset)
cs = css_cs(css);
mutex_lock(&cpuset_mutex);
- css_cs(css)->attach_in_progress--;
+ dec_attach_in_progress_locked(cs);
+
+ if (cs->nr_migrate_dl_tasks) {
+ int cpu = cpumask_any(cs->effective_cpus);
+
+ dl_bw_free(cpu, cs->sum_migrate_dl_bw);
+ reset_migrate_dl_data(cs);
+ }
+
mutex_unlock(&cpuset_mutex);
}
/*
- * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
+ * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
* but we can't allocate it dynamically there. Define it global and
* allocate from cpuset_init().
*/
static cpumask_var_t cpus_attach;
+static nodemask_t cpuset_attach_nodemask_to;
+
+static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
+{
+ lockdep_assert_held(&cpuset_mutex);
+
+ if (cs != &top_cpuset)
+ guarantee_active_cpus(task, cpus_attach);
+ else
+ cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
+ subpartitions_cpus);
+ /*
+ * can_attach beforehand should guarantee that this doesn't
+ * fail. TODO: have a better way to handle failure here
+ */
+ WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
+
+ cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
+ cpuset1_update_task_spread_flags(cs, task);
+}
static void cpuset_attach(struct cgroup_taskset *tset)
{
- /* static buf protected by cpuset_mutex */
- static nodemask_t cpuset_attach_nodemask_to;
struct task_struct *task;
struct task_struct *leader;
struct cgroup_subsys_state *css;
struct cpuset *cs;
struct cpuset *oldcs = cpuset_attach_old_cs;
+ bool cpus_updated, mems_updated;
+ bool queue_task_work = false;
cgroup_taskset_first(tset, &css);
cs = css_cs(css);
+ lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
mutex_lock(&cpuset_mutex);
+ cpus_updated = !cpumask_equal(cs->effective_cpus,
+ oldcs->effective_cpus);
+ mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
- /* prepare for attach */
- if (cs == &top_cpuset)
- cpumask_copy(cpus_attach, cpu_possible_mask);
- else
- guarantee_online_cpus(cs, cpus_attach);
+ /*
+ * In the default hierarchy, enabling cpuset in the child cgroups
+ * will trigger a number of cpuset_attach() calls with no change
+ * in effective cpus and mems. In that case, we can optimize out
+ * by skipping the task iteration and update.
+ */
+ if (cpuset_v2() && !cpus_updated && !mems_updated) {
+ cpuset_attach_nodemask_to = cs->effective_mems;
+ goto out;
+ }
guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
- cgroup_taskset_for_each(task, css, tset) {
- /*
- * can_attach beforehand should guarantee that this doesn't
- * fail. TODO: have a better way to handle failure here
- */
- WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
-
- cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
- cpuset_update_task_spread_flag(cs, task);
- }
+ cgroup_taskset_for_each(task, css, tset)
+ cpuset_attach_task(cs, task);
/*
* Change mm for all threadgroup leaders. This is expensive and may
- * sleep and should be moved outside migration path proper.
+ * sleep and should be moved outside migration path proper. Skip it
+ * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
+ * not set.
*/
cpuset_attach_nodemask_to = cs->effective_mems;
+ if (!is_memory_migrate(cs) && !mems_updated)
+ goto out;
+
cgroup_taskset_for_each_leader(leader, css, tset) {
struct mm_struct *mm = get_task_mm(leader);
@@ -1557,153 +3337,51 @@ static void cpuset_attach(struct cgroup_taskset *tset)
* @old_mems_allowed is the right nodesets that we
* migrate mm from.
*/
- if (is_memory_migrate(cs))
+ if (is_memory_migrate(cs)) {
cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
&cpuset_attach_nodemask_to);
- else
+ queue_task_work = true;
+ } else
mmput(mm);
}
}
+out:
+ if (queue_task_work)
+ schedule_flush_migrate_mm();
cs->old_mems_allowed = cpuset_attach_nodemask_to;
- cs->attach_in_progress--;
- if (!cs->attach_in_progress)
- wake_up(&cpuset_attach_wq);
-
- mutex_unlock(&cpuset_mutex);
-}
-
-/* The various types of files and directories in a cpuset file system */
-
-typedef enum {
- FILE_MEMORY_MIGRATE,
- FILE_CPULIST,
- FILE_MEMLIST,
- FILE_EFFECTIVE_CPULIST,
- FILE_EFFECTIVE_MEMLIST,
- FILE_CPU_EXCLUSIVE,
- FILE_MEM_EXCLUSIVE,
- FILE_MEM_HARDWALL,
- FILE_SCHED_LOAD_BALANCE,
- FILE_SCHED_RELAX_DOMAIN_LEVEL,
- FILE_MEMORY_PRESSURE_ENABLED,
- FILE_MEMORY_PRESSURE,
- FILE_SPREAD_PAGE,
- FILE_SPREAD_SLAB,
-} cpuset_filetype_t;
-
-static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
- u64 val)
-{
- struct cpuset *cs = css_cs(css);
- cpuset_filetype_t type = cft->private;
- int retval = 0;
-
- mutex_lock(&cpuset_mutex);
- if (!is_cpuset_online(cs)) {
- retval = -ENODEV;
- goto out_unlock;
- }
-
- switch (type) {
- case FILE_CPU_EXCLUSIVE:
- retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
- break;
- case FILE_MEM_EXCLUSIVE:
- retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
- break;
- case FILE_MEM_HARDWALL:
- retval = update_flag(CS_MEM_HARDWALL, cs, val);
- break;
- case FILE_SCHED_LOAD_BALANCE:
- retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
- break;
- case FILE_MEMORY_MIGRATE:
- retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
- break;
- case FILE_MEMORY_PRESSURE_ENABLED:
- cpuset_memory_pressure_enabled = !!val;
- break;
- case FILE_SPREAD_PAGE:
- retval = update_flag(CS_SPREAD_PAGE, cs, val);
- break;
- case FILE_SPREAD_SLAB:
- retval = update_flag(CS_SPREAD_SLAB, cs, val);
- break;
- default:
- retval = -EINVAL;
- break;
+ if (cs->nr_migrate_dl_tasks) {
+ cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
+ oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
+ reset_migrate_dl_data(cs);
}
-out_unlock:
- mutex_unlock(&cpuset_mutex);
- return retval;
-}
-static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
- s64 val)
-{
- struct cpuset *cs = css_cs(css);
- cpuset_filetype_t type = cft->private;
- int retval = -ENODEV;
-
- mutex_lock(&cpuset_mutex);
- if (!is_cpuset_online(cs))
- goto out_unlock;
+ dec_attach_in_progress_locked(cs);
- switch (type) {
- case FILE_SCHED_RELAX_DOMAIN_LEVEL:
- retval = update_relax_domain_level(cs, val);
- break;
- default:
- retval = -EINVAL;
- break;
- }
-out_unlock:
mutex_unlock(&cpuset_mutex);
- return retval;
}
/*
* Common handling for a write to a "cpus" or "mems" file.
*/
-static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
+ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct cpuset *cs = css_cs(of_css(of));
struct cpuset *trialcs;
int retval = -ENODEV;
- buf = strstrip(buf);
-
- /*
- * CPU or memory hotunplug may leave @cs w/o any execution
- * resources, in which case the hotplug code asynchronously updates
- * configuration and transfers all tasks to the nearest ancestor
- * which can execute.
- *
- * As writes to "cpus" or "mems" may restore @cs's execution
- * resources, wait for the previously scheduled operations before
- * proceeding, so that we don't end up keep removing tasks added
- * after execution capability is restored.
- *
- * cpuset_hotplug_work calls back into cgroup core via
- * cgroup_transfer_tasks() and waiting for it from a cgroupfs
- * operation like this one can lead to a deadlock through kernfs
- * active_ref protection. Let's break the protection. Losing the
- * protection is okay as we check whether @cs is online after
- * grabbing cpuset_mutex anyway. This only happens on the legacy
- * hierarchies.
- */
- css_get(&cs->css);
- kernfs_break_active_protection(of->kn);
- flush_work(&cpuset_hotplug_work);
+ /* root is read-only */
+ if (cs == &top_cpuset)
+ return -EACCES;
- mutex_lock(&cpuset_mutex);
+ buf = strstrip(buf);
+ cpuset_full_lock();
if (!is_cpuset_online(cs))
goto out_unlock;
- trialcs = alloc_trial_cpuset(cs);
+ trialcs = dup_or_alloc_cpuset(cs);
if (!trialcs) {
retval = -ENOMEM;
goto out_unlock;
@@ -1713,6 +3391,9 @@ static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
case FILE_CPULIST:
retval = update_cpumask(cs, trialcs, buf);
break;
+ case FILE_EXCLUSIVE_CPULIST:
+ retval = update_exclusive_cpumask(cs, trialcs, buf);
+ break;
case FILE_MEMLIST:
retval = update_nodemask(cs, trialcs, buf);
break;
@@ -1721,12 +3402,13 @@ static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
break;
}
- free_trial_cpuset(trialcs);
+ free_cpuset(trialcs);
+ if (force_sd_rebuild)
+ rebuild_sched_domains_locked();
out_unlock:
- mutex_unlock(&cpuset_mutex);
- kernfs_unbreak_active_protection(of->kn);
- css_put(&cs->css);
- flush_workqueue(cpuset_migrate_mm_wq);
+ cpuset_full_unlock();
+ if (of_cft(of)->private == FILE_MEMLIST)
+ schedule_flush_migrate_mm();
return retval ?: nbytes;
}
@@ -1738,7 +3420,7 @@ out_unlock:
* and since these maps can change value dynamically, one could read
* gibberish by doing partial reads while a list was changing.
*/
-static int cpuset_common_seq_show(struct seq_file *sf, void *v)
+int cpuset_common_seq_show(struct seq_file *sf, void *v)
{
struct cpuset *cs = css_cs(seq_css(sf));
cpuset_filetype_t type = seq_cft(sf)->private;
@@ -1759,6 +3441,18 @@ static int cpuset_common_seq_show(struct seq_file *sf, void *v)
case FILE_EFFECTIVE_MEMLIST:
seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
break;
+ case FILE_EXCLUSIVE_CPULIST:
+ seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
+ break;
+ case FILE_EFFECTIVE_XCPULIST:
+ seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
+ break;
+ case FILE_SUBPARTS_CPULIST:
+ seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
+ break;
+ case FILE_ISOLATED_CPULIST:
+ seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
+ break;
default:
ret = -EINVAL;
}
@@ -1767,64 +3461,74 @@ static int cpuset_common_seq_show(struct seq_file *sf, void *v)
return ret;
}
-static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
+static int cpuset_partition_show(struct seq_file *seq, void *v)
{
- struct cpuset *cs = css_cs(css);
- cpuset_filetype_t type = cft->private;
- switch (type) {
- case FILE_CPU_EXCLUSIVE:
- return is_cpu_exclusive(cs);
- case FILE_MEM_EXCLUSIVE:
- return is_mem_exclusive(cs);
- case FILE_MEM_HARDWALL:
- return is_mem_hardwall(cs);
- case FILE_SCHED_LOAD_BALANCE:
- return is_sched_load_balance(cs);
- case FILE_MEMORY_MIGRATE:
- return is_memory_migrate(cs);
- case FILE_MEMORY_PRESSURE_ENABLED:
- return cpuset_memory_pressure_enabled;
- case FILE_MEMORY_PRESSURE:
- return fmeter_getrate(&cs->fmeter);
- case FILE_SPREAD_PAGE:
- return is_spread_page(cs);
- case FILE_SPREAD_SLAB:
- return is_spread_slab(cs);
- default:
- BUG();
- }
+ struct cpuset *cs = css_cs(seq_css(seq));
+ const char *err, *type = NULL;
- /* Unreachable but makes gcc happy */
+ switch (cs->partition_root_state) {
+ case PRS_ROOT:
+ seq_puts(seq, "root\n");
+ break;
+ case PRS_ISOLATED:
+ seq_puts(seq, "isolated\n");
+ break;
+ case PRS_MEMBER:
+ seq_puts(seq, "member\n");
+ break;
+ case PRS_INVALID_ROOT:
+ type = "root";
+ fallthrough;
+ case PRS_INVALID_ISOLATED:
+ if (!type)
+ type = "isolated";
+ err = perr_strings[READ_ONCE(cs->prs_err)];
+ if (err)
+ seq_printf(seq, "%s invalid (%s)\n", type, err);
+ else
+ seq_printf(seq, "%s invalid\n", type);
+ break;
+ }
return 0;
}
-static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
+static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
{
- struct cpuset *cs = css_cs(css);
- cpuset_filetype_t type = cft->private;
- switch (type) {
- case FILE_SCHED_RELAX_DOMAIN_LEVEL:
- return cs->relax_domain_level;
- default:
- BUG();
- }
+ struct cpuset *cs = css_cs(of_css(of));
+ int val;
+ int retval = -ENODEV;
- /* Unrechable but makes gcc happy */
- return 0;
-}
+ buf = strstrip(buf);
+
+ if (!strcmp(buf, "root"))
+ val = PRS_ROOT;
+ else if (!strcmp(buf, "member"))
+ val = PRS_MEMBER;
+ else if (!strcmp(buf, "isolated"))
+ val = PRS_ISOLATED;
+ else
+ return -EINVAL;
+ cpuset_full_lock();
+ if (is_cpuset_online(cs))
+ retval = update_prstate(cs, val);
+ cpuset_full_unlock();
+ return retval ?: nbytes;
+}
/*
- * for the common functions, 'private' gives the type of file
+ * This is currently a minimal set for the default hierarchy. It can be
+ * expanded later on by migrating more features and control files from v1.
*/
-
-static struct cftype files[] = {
+static struct cftype dfl_files[] = {
{
.name = "cpus",
.seq_show = cpuset_common_seq_show,
.write = cpuset_write_resmask,
.max_write_len = (100U + 6 * NR_CPUS),
.private = FILE_CPULIST,
+ .flags = CFTYPE_NOT_ON_ROOT,
},
{
@@ -1833,97 +3537,73 @@ static struct cftype files[] = {
.write = cpuset_write_resmask,
.max_write_len = (100U + 6 * MAX_NUMNODES),
.private = FILE_MEMLIST,
+ .flags = CFTYPE_NOT_ON_ROOT,
},
{
- .name = "effective_cpus",
+ .name = "cpus.effective",
.seq_show = cpuset_common_seq_show,
.private = FILE_EFFECTIVE_CPULIST,
},
{
- .name = "effective_mems",
+ .name = "mems.effective",
.seq_show = cpuset_common_seq_show,
.private = FILE_EFFECTIVE_MEMLIST,
},
{
- .name = "cpu_exclusive",
- .read_u64 = cpuset_read_u64,
- .write_u64 = cpuset_write_u64,
- .private = FILE_CPU_EXCLUSIVE,
- },
-
- {
- .name = "mem_exclusive",
- .read_u64 = cpuset_read_u64,
- .write_u64 = cpuset_write_u64,
- .private = FILE_MEM_EXCLUSIVE,
+ .name = "cpus.partition",
+ .seq_show = cpuset_partition_show,
+ .write = cpuset_partition_write,
+ .private = FILE_PARTITION_ROOT,
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .file_offset = offsetof(struct cpuset, partition_file),
},
{
- .name = "mem_hardwall",
- .read_u64 = cpuset_read_u64,
- .write_u64 = cpuset_write_u64,
- .private = FILE_MEM_HARDWALL,
- },
-
- {
- .name = "sched_load_balance",
- .read_u64 = cpuset_read_u64,
- .write_u64 = cpuset_write_u64,
- .private = FILE_SCHED_LOAD_BALANCE,
- },
-
- {
- .name = "sched_relax_domain_level",
- .read_s64 = cpuset_read_s64,
- .write_s64 = cpuset_write_s64,
- .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
- },
-
- {
- .name = "memory_migrate",
- .read_u64 = cpuset_read_u64,
- .write_u64 = cpuset_write_u64,
- .private = FILE_MEMORY_MIGRATE,
- },
-
- {
- .name = "memory_pressure",
- .read_u64 = cpuset_read_u64,
+ .name = "cpus.exclusive",
+ .seq_show = cpuset_common_seq_show,
+ .write = cpuset_write_resmask,
+ .max_write_len = (100U + 6 * NR_CPUS),
+ .private = FILE_EXCLUSIVE_CPULIST,
+ .flags = CFTYPE_NOT_ON_ROOT,
},
{
- .name = "memory_spread_page",
- .read_u64 = cpuset_read_u64,
- .write_u64 = cpuset_write_u64,
- .private = FILE_SPREAD_PAGE,
+ .name = "cpus.exclusive.effective",
+ .seq_show = cpuset_common_seq_show,
+ .private = FILE_EFFECTIVE_XCPULIST,
+ .flags = CFTYPE_NOT_ON_ROOT,
},
{
- .name = "memory_spread_slab",
- .read_u64 = cpuset_read_u64,
- .write_u64 = cpuset_write_u64,
- .private = FILE_SPREAD_SLAB,
+ .name = "cpus.subpartitions",
+ .seq_show = cpuset_common_seq_show,
+ .private = FILE_SUBPARTS_CPULIST,
+ .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
},
{
- .name = "memory_pressure_enabled",
+ .name = "cpus.isolated",
+ .seq_show = cpuset_common_seq_show,
+ .private = FILE_ISOLATED_CPULIST,
.flags = CFTYPE_ONLY_ON_ROOT,
- .read_u64 = cpuset_read_u64,
- .write_u64 = cpuset_write_u64,
- .private = FILE_MEMORY_PRESSURE_ENABLED,
},
{ } /* terminate */
};
-/*
- * cpuset_css_alloc - allocate a cpuset css
- * cgrp: control group that the new cpuset will be part of
- */
+/**
+ * cpuset_css_alloc - Allocate a cpuset css
+ * @parent_css: Parent css of the control group that the new cpuset will be
+ * part of
+ * Return: cpuset css on success, -ENOMEM on failure.
+ *
+ * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
+ * top cpuset css otherwise.
+ */
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
{
@@ -1932,29 +3612,19 @@ cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
if (!parent_css)
return &top_cpuset.css;
- cs = kzalloc(sizeof(*cs), GFP_KERNEL);
+ cs = dup_or_alloc_cpuset(NULL);
if (!cs)
return ERR_PTR(-ENOMEM);
- if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
- goto free_cs;
- if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
- goto free_cpus;
-
- set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
- cpumask_clear(cs->cpus_allowed);
- nodes_clear(cs->mems_allowed);
- cpumask_clear(cs->effective_cpus);
- nodes_clear(cs->effective_mems);
+
+ __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
fmeter_init(&cs->fmeter);
cs->relax_domain_level = -1;
- return &cs->css;
+ /* Set CS_MEMORY_MIGRATE for default hierarchy */
+ if (cpuset_v2())
+ __set_bit(CS_MEMORY_MIGRATE, &cs->flags);
-free_cpus:
- free_cpumask_var(cs->cpus_allowed);
-free_cs:
- kfree(cs);
- return ERR_PTR(-ENOMEM);
+ return &cs->css;
}
static int cpuset_css_online(struct cgroup_subsys_state *css)
@@ -1967,18 +3637,21 @@ static int cpuset_css_online(struct cgroup_subsys_state *css)
if (!parent)
return 0;
- mutex_lock(&cpuset_mutex);
-
- set_bit(CS_ONLINE, &cs->flags);
+ cpuset_full_lock();
if (is_spread_page(parent))
set_bit(CS_SPREAD_PAGE, &cs->flags);
if (is_spread_slab(parent))
set_bit(CS_SPREAD_SLAB, &cs->flags);
+ /*
+ * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
+ */
+ if (cpuset_v2() && !is_sched_load_balance(parent))
+ clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
cpuset_inc();
spin_lock_irq(&callback_lock);
- if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
+ if (is_in_v2_mode()) {
cpumask_copy(cs->effective_cpus, parent->effective_cpus);
cs->effective_mems = parent->effective_mems;
}
@@ -1990,7 +3663,7 @@ static int cpuset_css_online(struct cgroup_subsys_state *css)
/*
* Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
* set. This flag handling is implemented in cgroup core for
- * histrical reasons - the flag may be specified during mount.
+ * historical reasons - the flag may be specified during mount.
*
* Currently, if any sibling cpusets have exclusive cpus or mem, we
* refuse to clone the configuration - thereby refusing the task to
@@ -2016,38 +3689,50 @@ static int cpuset_css_online(struct cgroup_subsys_state *css)
cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
spin_unlock_irq(&callback_lock);
out_unlock:
- mutex_unlock(&cpuset_mutex);
+ cpuset_full_unlock();
return 0;
}
/*
* If the cpuset being removed has its flag 'sched_load_balance'
* enabled, then simulate turning sched_load_balance off, which
- * will call rebuild_sched_domains_locked().
+ * will call rebuild_sched_domains_locked(). That is not needed
+ * in the default hierarchy where only changes in partition
+ * will cause repartitioning.
*/
-
static void cpuset_css_offline(struct cgroup_subsys_state *css)
{
struct cpuset *cs = css_cs(css);
- mutex_lock(&cpuset_mutex);
-
- if (is_sched_load_balance(cs))
- update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
+ cpuset_full_lock();
+ if (!cpuset_v2() && is_sched_load_balance(cs))
+ cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
cpuset_dec();
- clear_bit(CS_ONLINE, &cs->flags);
+ cpuset_full_unlock();
+}
- mutex_unlock(&cpuset_mutex);
+/*
+ * If a dying cpuset has the 'cpus.partition' enabled, turn it off by
+ * changing it back to member to free its exclusive CPUs back to the pool to
+ * be used by other online cpusets.
+ */
+static void cpuset_css_killed(struct cgroup_subsys_state *css)
+{
+ struct cpuset *cs = css_cs(css);
+
+ cpuset_full_lock();
+ /* Reset valid partition back to member */
+ if (is_partition_valid(cs))
+ update_prstate(cs, PRS_MEMBER);
+ cpuset_full_unlock();
}
static void cpuset_css_free(struct cgroup_subsys_state *css)
{
struct cpuset *cs = css_cs(css);
- free_cpumask_var(cs->effective_cpus);
- free_cpumask_var(cs->cpus_allowed);
- kfree(cs);
+ free_cpuset(cs);
}
static void cpuset_bind(struct cgroup_subsys_state *root_css)
@@ -2055,8 +3740,9 @@ static void cpuset_bind(struct cgroup_subsys_state *root_css)
mutex_lock(&cpuset_mutex);
spin_lock_irq(&callback_lock);
- if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
+ if (is_in_v2_mode()) {
cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
+ cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
top_cpuset.mems_allowed = node_possible_map;
} else {
cpumask_copy(top_cpuset.cpus_allowed,
@@ -2069,129 +3755,151 @@ static void cpuset_bind(struct cgroup_subsys_state *root_css)
}
/*
+ * In case the child is cloned into a cpuset different from its parent,
+ * additional checks are done to see if the move is allowed.
+ */
+static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
+{
+ struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
+ bool same_cs;
+ int ret;
+
+ rcu_read_lock();
+ same_cs = (cs == task_cs(current));
+ rcu_read_unlock();
+
+ if (same_cs)
+ return 0;
+
+ lockdep_assert_held(&cgroup_mutex);
+ mutex_lock(&cpuset_mutex);
+
+ /* Check to see if task is allowed in the cpuset */
+ ret = cpuset_can_attach_check(cs);
+ if (ret)
+ goto out_unlock;
+
+ ret = task_can_attach(task);
+ if (ret)
+ goto out_unlock;
+
+ ret = security_task_setscheduler(task);
+ if (ret)
+ goto out_unlock;
+
+ /*
+ * Mark attach is in progress. This makes validate_change() fail
+ * changes which zero cpus/mems_allowed.
+ */
+ cs->attach_in_progress++;
+out_unlock:
+ mutex_unlock(&cpuset_mutex);
+ return ret;
+}
+
+static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
+{
+ struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
+ bool same_cs;
+
+ rcu_read_lock();
+ same_cs = (cs == task_cs(current));
+ rcu_read_unlock();
+
+ if (same_cs)
+ return;
+
+ dec_attach_in_progress(cs);
+}
+
+/*
* Make sure the new task conform to the current state of its parent,
* which could have been changed by cpuset just after it inherits the
* state from the parent and before it sits on the cgroup's task list.
*/
static void cpuset_fork(struct task_struct *task)
{
- if (task_css_is_root(task, cpuset_cgrp_id))
+ struct cpuset *cs;
+ bool same_cs;
+
+ rcu_read_lock();
+ cs = task_cs(task);
+ same_cs = (cs == task_cs(current));
+ rcu_read_unlock();
+
+ if (same_cs) {
+ if (cs == &top_cpuset)
+ return;
+
+ set_cpus_allowed_ptr(task, current->cpus_ptr);
+ task->mems_allowed = current->mems_allowed;
return;
+ }
- set_cpus_allowed_ptr(task, &current->cpus_allowed);
- task->mems_allowed = current->mems_allowed;
+ /* CLONE_INTO_CGROUP */
+ mutex_lock(&cpuset_mutex);
+ guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
+ cpuset_attach_task(cs, task);
+
+ dec_attach_in_progress_locked(cs);
+ mutex_unlock(&cpuset_mutex);
}
struct cgroup_subsys cpuset_cgrp_subsys = {
.css_alloc = cpuset_css_alloc,
.css_online = cpuset_css_online,
.css_offline = cpuset_css_offline,
+ .css_killed = cpuset_css_killed,
.css_free = cpuset_css_free,
.can_attach = cpuset_can_attach,
.cancel_attach = cpuset_cancel_attach,
.attach = cpuset_attach,
- .post_attach = cpuset_post_attach,
.bind = cpuset_bind,
+ .can_fork = cpuset_can_fork,
+ .cancel_fork = cpuset_cancel_fork,
.fork = cpuset_fork,
- .legacy_cftypes = files,
+#ifdef CONFIG_CPUSETS_V1
+ .legacy_cftypes = cpuset1_files,
+#endif
+ .dfl_cftypes = dfl_files,
.early_init = true,
+ .threaded = true,
};
/**
* cpuset_init - initialize cpusets at system boot
*
- * Description: Initialize top_cpuset and the cpuset internal file system,
+ * Description: Initialize top_cpuset
**/
int __init cpuset_init(void)
{
- int err = 0;
-
BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
+ BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
+ BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
+ BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
+ BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
cpumask_setall(top_cpuset.cpus_allowed);
nodes_setall(top_cpuset.mems_allowed);
cpumask_setall(top_cpuset.effective_cpus);
+ cpumask_setall(top_cpuset.effective_xcpus);
+ cpumask_setall(top_cpuset.exclusive_cpus);
nodes_setall(top_cpuset.effective_mems);
fmeter_init(&top_cpuset.fmeter);
- set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
- top_cpuset.relax_domain_level = -1;
-
- err = register_filesystem(&cpuset_fs_type);
- if (err < 0)
- return err;
BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
- return 0;
-}
-
-/*
- * If CPU and/or memory hotplug handlers, below, unplug any CPUs
- * or memory nodes, we need to walk over the cpuset hierarchy,
- * removing that CPU or node from all cpusets. If this removes the
- * last CPU or node from a cpuset, then move the tasks in the empty
- * cpuset to its next-highest non-empty parent.
- */
-static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
-{
- struct cpuset *parent;
-
- /*
- * Find its next-highest non-empty parent, (top cpuset
- * has online cpus, so can't be empty).
- */
- parent = parent_cs(cs);
- while (cpumask_empty(parent->cpus_allowed) ||
- nodes_empty(parent->mems_allowed))
- parent = parent_cs(parent);
-
- if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
- pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
- pr_cont_cgroup_name(cs->css.cgroup);
- pr_cont("\n");
+ have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
+ if (have_boot_isolcpus) {
+ BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
+ cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
+ cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
}
-}
-
-static void
-hotplug_update_tasks_legacy(struct cpuset *cs,
- struct cpumask *new_cpus, nodemask_t *new_mems,
- bool cpus_updated, bool mems_updated)
-{
- bool is_empty;
- spin_lock_irq(&callback_lock);
- cpumask_copy(cs->cpus_allowed, new_cpus);
- cpumask_copy(cs->effective_cpus, new_cpus);
- cs->mems_allowed = *new_mems;
- cs->effective_mems = *new_mems;
- spin_unlock_irq(&callback_lock);
-
- /*
- * Don't call update_tasks_cpumask() if the cpuset becomes empty,
- * as the tasks will be migratecd to an ancestor.
- */
- if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
- update_tasks_cpumask(cs);
- if (mems_updated && !nodes_empty(cs->mems_allowed))
- update_tasks_nodemask(cs);
-
- is_empty = cpumask_empty(cs->cpus_allowed) ||
- nodes_empty(cs->mems_allowed);
-
- mutex_unlock(&cpuset_mutex);
-
- /*
- * Move tasks to the nearest ancestor with execution resources,
- * This is full cgroup operation which will also call back into
- * cpuset. Should be done outside any lock.
- */
- if (is_empty)
- remove_tasks_in_empty_cpuset(cs);
-
- mutex_lock(&cpuset_mutex);
+ return 0;
}
static void
@@ -2199,7 +3907,8 @@ hotplug_update_tasks(struct cpuset *cs,
struct cpumask *new_cpus, nodemask_t *new_mems,
bool cpus_updated, bool mems_updated)
{
- if (cpumask_empty(new_cpus))
+ /* A partition root is allowed to have empty effective cpus */
+ if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
if (nodes_empty(*new_mems))
*new_mems = parent_cs(cs)->effective_mems;
@@ -2210,25 +3919,34 @@ hotplug_update_tasks(struct cpuset *cs,
spin_unlock_irq(&callback_lock);
if (cpus_updated)
- update_tasks_cpumask(cs);
+ cpuset_update_tasks_cpumask(cs, new_cpus);
if (mems_updated)
- update_tasks_nodemask(cs);
+ cpuset_update_tasks_nodemask(cs);
+}
+
+void cpuset_force_rebuild(void)
+{
+ force_sd_rebuild = true;
}
/**
* cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
* @cs: cpuset in interest
+ * @tmp: the tmpmasks structure pointer
*
* Compare @cs's cpu and mem masks against top_cpuset and if some have gone
* offline, update @cs accordingly. If @cs ends up with no CPU or memory,
* all its tasks are moved to the nearest ancestor with both resources.
*/
-static void cpuset_hotplug_update_tasks(struct cpuset *cs)
+static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
{
static cpumask_t new_cpus;
static nodemask_t new_mems;
bool cpus_updated;
bool mems_updated;
+ bool remote;
+ int partcmd = -1;
+ struct cpuset *parent;
retry:
wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
@@ -2243,24 +3961,77 @@ retry:
goto retry;
}
- cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
- nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
+ parent = parent_cs(cs);
+ compute_effective_cpumask(&new_cpus, cs, parent);
+ nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
+
+ if (!tmp || !cs->partition_root_state)
+ goto update_tasks;
+ /*
+ * Compute effective_cpus for valid partition root, may invalidate
+ * child partition roots if necessary.
+ */
+ remote = is_remote_partition(cs);
+ if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
+ compute_partition_effective_cpumask(cs, &new_cpus);
+
+ if (remote && cpumask_empty(&new_cpus) &&
+ partition_is_populated(cs, NULL)) {
+ cs->prs_err = PERR_HOTPLUG;
+ remote_partition_disable(cs, tmp);
+ compute_effective_cpumask(&new_cpus, cs, parent);
+ remote = false;
+ }
+
+ /*
+ * Force the partition to become invalid if either one of
+ * the following conditions hold:
+ * 1) empty effective cpus but not valid empty partition.
+ * 2) parent is invalid or doesn't grant any cpus to child
+ * partitions.
+ */
+ if (is_local_partition(cs) && (!is_partition_valid(parent) ||
+ tasks_nocpu_error(parent, cs, &new_cpus)))
+ partcmd = partcmd_invalidate;
+ /*
+ * On the other hand, an invalid partition root may be transitioned
+ * back to a regular one with a non-empty effective xcpus.
+ */
+ else if (is_partition_valid(parent) && is_partition_invalid(cs) &&
+ !cpumask_empty(cs->effective_xcpus))
+ partcmd = partcmd_update;
+
+ if (partcmd >= 0) {
+ update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
+ if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
+ compute_partition_effective_cpumask(cs, &new_cpus);
+ cpuset_force_rebuild();
+ }
+ }
+
+update_tasks:
cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
mems_updated = !nodes_equal(new_mems, cs->effective_mems);
+ if (!cpus_updated && !mems_updated)
+ goto unlock; /* Hotplug doesn't affect this cpuset */
+
+ if (mems_updated)
+ check_insane_mems_config(&new_mems);
- if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
+ if (is_in_v2_mode())
hotplug_update_tasks(cs, &new_cpus, &new_mems,
cpus_updated, mems_updated);
else
- hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
+ cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
cpus_updated, mems_updated);
+unlock:
mutex_unlock(&cpuset_mutex);
}
/**
- * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
+ * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
*
* This function is called after either CPU or memory configuration has
* changed and updates cpuset accordingly. The top_cpuset is always
@@ -2274,28 +4045,56 @@ retry:
*
* Note that CPU offlining during suspend is ignored. We don't modify
* cpusets across suspend/resume cycles at all.
+ *
+ * CPU / memory hotplug is handled synchronously.
*/
-static void cpuset_hotplug_workfn(struct work_struct *work)
+static void cpuset_handle_hotplug(void)
{
static cpumask_t new_cpus;
static nodemask_t new_mems;
bool cpus_updated, mems_updated;
- bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
+ bool on_dfl = is_in_v2_mode();
+ struct tmpmasks tmp, *ptmp = NULL;
+
+ if (on_dfl && !alloc_tmpmasks(&tmp))
+ ptmp = &tmp;
+ lockdep_assert_cpus_held();
mutex_lock(&cpuset_mutex);
/* fetch the available cpus/mems and find out which changed how */
cpumask_copy(&new_cpus, cpu_active_mask);
new_mems = node_states[N_MEMORY];
- cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
+ /*
+ * If subpartitions_cpus is populated, it is likely that the check
+ * below will produce a false positive on cpus_updated when the cpu
+ * list isn't changed. It is extra work, but it is better to be safe.
+ */
+ cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
+ !cpumask_empty(subpartitions_cpus);
mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
- /* synchronize cpus_allowed to cpu_active_mask */
+ /* For v1, synchronize cpus_allowed to cpu_active_mask */
if (cpus_updated) {
+ cpuset_force_rebuild();
spin_lock_irq(&callback_lock);
if (!on_dfl)
cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
+ /*
+ * Make sure that CPUs allocated to child partitions
+ * do not show up in effective_cpus. If no CPU is left,
+ * we clear the subpartitions_cpus & let the child partitions
+ * fight for the CPUs again.
+ */
+ if (!cpumask_empty(subpartitions_cpus)) {
+ if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
+ cpumask_clear(subpartitions_cpus);
+ } else {
+ cpumask_andnot(&new_cpus, &new_cpus,
+ subpartitions_cpus);
+ }
+ }
cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
spin_unlock_irq(&callback_lock);
/* we don't mess with cpumasks of tasks in top_cpuset */
@@ -2308,7 +4107,7 @@ static void cpuset_hotplug_workfn(struct work_struct *work)
top_cpuset.mems_allowed = new_mems;
top_cpuset.effective_mems = new_mems;
spin_unlock_irq(&callback_lock);
- update_tasks_nodemask(&top_cpuset);
+ cpuset_update_tasks_nodemask(&top_cpuset);
}
mutex_unlock(&cpuset_mutex);
@@ -2324,7 +4123,7 @@ static void cpuset_hotplug_workfn(struct work_struct *work)
continue;
rcu_read_unlock();
- cpuset_hotplug_update_tasks(cs);
+ cpuset_hotplug_update_tasks(cs, ptmp);
rcu_read_lock();
css_put(&cs->css);
@@ -2332,9 +4131,11 @@ static void cpuset_hotplug_workfn(struct work_struct *work)
rcu_read_unlock();
}
- /* rebuild sched domains if cpus_allowed has changed */
- if (cpus_updated)
- rebuild_sched_domains();
+ /* rebuild sched domains if necessary */
+ if (force_sd_rebuild)
+ rebuild_sched_domains_cpuslocked();
+
+ free_tmpmasks(ptmp);
}
void cpuset_update_active_cpus(void)
@@ -2343,14 +4144,8 @@ void cpuset_update_active_cpus(void)
* We're inside cpu hotplug critical region which usually nests
* inside cgroup synchronization. Bounce actual hotplug processing
* to a work item to avoid reverse locking order.
- *
- * We still need to do partition_sched_domains() synchronously;
- * otherwise, the scheduler will get confused and put tasks to the
- * dead CPU. Fall back to the default single domain.
- * cpuset_hotplug_workfn() will rebuild it as necessary.
*/
- partition_sched_domains(1, NULL, NULL);
- schedule_work(&cpuset_hotplug_work);
+ cpuset_handle_hotplug();
}
/*
@@ -2361,15 +4156,10 @@ void cpuset_update_active_cpus(void)
static int cpuset_track_online_nodes(struct notifier_block *self,
unsigned long action, void *arg)
{
- schedule_work(&cpuset_hotplug_work);
+ cpuset_handle_hotplug();
return NOTIFY_OK;
}
-static struct notifier_block cpuset_track_online_nodes_nb = {
- .notifier_call = cpuset_track_online_nodes,
- .priority = 10, /* ??! */
-};
-
/**
* cpuset_init_smp - initialize cpus_allowed
*
@@ -2377,28 +4167,73 @@ static struct notifier_block cpuset_track_online_nodes_nb = {
*/
void __init cpuset_init_smp(void)
{
- cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
- top_cpuset.mems_allowed = node_states[N_MEMORY];
+ /*
+ * cpus_allowd/mems_allowed set to v2 values in the initial
+ * cpuset_bind() call will be reset to v1 values in another
+ * cpuset_bind() call when v1 cpuset is mounted.
+ */
top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
top_cpuset.effective_mems = node_states[N_MEMORY];
- register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
+ hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
BUG_ON(!cpuset_migrate_mm_wq);
}
+/*
+ * Return cpus_allowed mask from a task's cpuset.
+ */
+static void __cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
+{
+ struct cpuset *cs;
+
+ cs = task_cs(tsk);
+ if (cs != &top_cpuset)
+ guarantee_active_cpus(tsk, pmask);
+ /*
+ * Tasks in the top cpuset won't get update to their cpumasks
+ * when a hotplug online/offline event happens. So we include all
+ * offline cpus in the allowed cpu list.
+ */
+ if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
+ const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
+
+ /*
+ * We first exclude cpus allocated to partitions. If there is no
+ * allowable online cpu left, we fall back to all possible cpus.
+ */
+ cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
+ if (!cpumask_intersects(pmask, cpu_active_mask))
+ cpumask_copy(pmask, possible_mask);
+ }
+}
+
/**
- * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
+ * cpuset_cpus_allowed_locked - return cpus_allowed mask from a task's cpuset.
+ * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
+ * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
+ *
+ * Similir to cpuset_cpus_allowed() except that the caller must have acquired
+ * cpuset_mutex.
+ */
+void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
+{
+ lockdep_assert_held(&cpuset_mutex);
+ __cpuset_cpus_allowed_locked(tsk, pmask);
+}
+
+/**
+ * cpuset_cpus_allowed - return cpus_allowed mask from a task's cpuset.
* @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
* @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
*
* Description: Returns the cpumask_var_t cpus_allowed of the cpuset
* attached to the specified @tsk. Guaranteed to return some non-empty
- * subset of cpu_online_mask, even if this means going outside the
- * tasks cpuset.
+ * subset of cpu_active_mask, even if this means going outside the
+ * tasks cpuset, except when the task is in the top cpuset.
**/
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
@@ -2406,16 +4241,36 @@ void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
unsigned long flags;
spin_lock_irqsave(&callback_lock, flags);
- rcu_read_lock();
- guarantee_online_cpus(task_cs(tsk), pmask);
- rcu_read_unlock();
+ __cpuset_cpus_allowed_locked(tsk, pmask);
spin_unlock_irqrestore(&callback_lock, flags);
}
-void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
+/**
+ * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
+ * @tsk: pointer to task_struct with which the scheduler is struggling
+ *
+ * Description: In the case that the scheduler cannot find an allowed cpu in
+ * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
+ * mode however, this value is the same as task_cs(tsk)->effective_cpus,
+ * which will not contain a sane cpumask during cases such as cpu hotplugging.
+ * This is the absolute last resort for the scheduler and it is only used if
+ * _every_ other avenue has been traveled.
+ *
+ * Returns true if the affinity of @tsk was changed, false otherwise.
+ **/
+
+bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
{
+ const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
+ const struct cpumask *cs_mask;
+ bool changed = false;
+
rcu_read_lock();
- do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
+ cs_mask = task_cs(tsk)->cpus_allowed;
+ if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
+ set_cpus_allowed_force(tsk, cs_mask);
+ changed = true;
+ }
rcu_read_unlock();
/*
@@ -2435,6 +4290,7 @@ void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
* select_fallback_rq() will fix things ups and set cpu_possible_mask
* if required.
*/
+ return changed;
}
void __init cpuset_init_current_mems_allowed(void)
@@ -2458,16 +4314,14 @@ nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
unsigned long flags;
spin_lock_irqsave(&callback_lock, flags);
- rcu_read_lock();
guarantee_online_mems(task_cs(tsk), &mask);
- rcu_read_unlock();
spin_unlock_irqrestore(&callback_lock, flags);
return mask;
}
/**
- * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
+ * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
* @nodemask: the nodemask to be checked
*
* Are any of the nodes in the nodemask allowed in current->mems_allowed?
@@ -2490,20 +4344,20 @@ static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
return cs;
}
-/**
- * cpuset_node_allowed - Can we allocate on a memory node?
+/*
+ * cpuset_current_node_allowed - Can current task allocate on a memory node?
* @node: is this an allowed node?
* @gfp_mask: memory allocation flags
*
* If we're in interrupt, yes, we can always allocate. If @node is set in
* current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
* node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
- * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
+ * yes. If current has access to memory reserves as an oom victim, yes.
* Otherwise, no.
*
* GFP_USER allocations are marked with the __GFP_HARDWALL bit,
* and do not allow allocations outside the current tasks cpuset
- * unless the task has been OOM killed as is marked TIF_MEMDIE.
+ * unless the task has been OOM killed.
* GFP_KERNEL allocations are not so marked, so can escape to the
* nearest enclosing hardwalled ancestor cpuset.
*
@@ -2526,14 +4380,14 @@ static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
* affect that:
* in_interrupt - any node ok (current task context irrelevant)
* GFP_ATOMIC - any node ok
- * TIF_MEMDIE - any node ok
+ * tsk_is_oom_victim - any node ok
* GFP_KERNEL - any node in enclosing hardwalled cpuset ok
* GFP_USER - only nodes in current tasks mems allowed ok.
*/
-bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
+bool cpuset_current_node_allowed(int node, gfp_t gfp_mask)
{
struct cpuset *cs; /* current cpuset ancestors */
- int allowed; /* is allocation in zone z allowed? */
+ bool allowed; /* is allocation in zone z allowed? */
unsigned long flags;
if (in_interrupt())
@@ -2544,7 +4398,7 @@ bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
* Allow tasks that have access to memory reserves because they have
* been OOM killed to get memory anywhere.
*/
- if (unlikely(test_thread_flag(TIF_MEMDIE)))
+ if (unlikely(tsk_is_oom_victim(current)))
return true;
if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
return false;
@@ -2555,18 +4409,52 @@ bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
/* Not hardwall and node outside mems_allowed: scan up cpusets */
spin_lock_irqsave(&callback_lock, flags);
- rcu_read_lock();
cs = nearest_hardwall_ancestor(task_cs(current));
allowed = node_isset(node, cs->mems_allowed);
- rcu_read_unlock();
spin_unlock_irqrestore(&callback_lock, flags);
return allowed;
}
+bool cpuset_node_allowed(struct cgroup *cgroup, int nid)
+{
+ struct cgroup_subsys_state *css;
+ struct cpuset *cs;
+ bool allowed;
+
+ /*
+ * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy
+ * and mems_allowed is likely to be empty even if we could get to it,
+ * so return true to avoid taking a global lock on the empty check.
+ */
+ if (!cpuset_v2())
+ return true;
+
+ css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys);
+ if (!css)
+ return true;
+
+ /*
+ * Normally, accessing effective_mems would require the cpuset_mutex
+ * or callback_lock - but node_isset is atomic and the reference
+ * taken via cgroup_get_e_css is sufficient to protect css.
+ *
+ * Since this interface is intended for use by migration paths, we
+ * relax locking here to avoid taking global locks - while accepting
+ * there may be rare scenarios where the result may be innaccurate.
+ *
+ * Reclaim and migration are subject to these same race conditions, and
+ * cannot make strong isolation guarantees, so this is acceptable.
+ */
+ cs = container_of(css, struct cpuset, css);
+ allowed = node_isset(nid, cs->effective_mems);
+ css_put(css);
+ return allowed;
+}
+
/**
- * cpuset_mem_spread_node() - On which node to begin search for a file page
- * cpuset_slab_spread_node() - On which node to begin search for a slab page
+ * cpuset_spread_node() - On which node to begin search for a page
+ * @rotor: round robin rotor
*
* If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
* tasks in a cpuset with is_spread_page or is_spread_slab set),
@@ -2590,12 +4478,14 @@ bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
* is passed an offline node, it will fall back to the local node.
* See kmem_cache_alloc_node().
*/
-
static int cpuset_spread_node(int *rotor)
{
return *rotor = next_node_in(*rotor, current->mems_allowed);
}
+/**
+ * cpuset_mem_spread_node() - On which node to begin search for a file page
+ */
int cpuset_mem_spread_node(void)
{
if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
@@ -2605,17 +4495,6 @@ int cpuset_mem_spread_node(void)
return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}
-int cpuset_slab_spread_node(void)
-{
- if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
- current->cpuset_slab_spread_rotor =
- node_random(&current->mems_allowed);
-
- return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
-}
-
-EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
-
/**
* cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
* @tsk1: pointer to task_struct of some task.
@@ -2646,87 +4525,14 @@ void cpuset_print_current_mems_allowed(void)
rcu_read_lock();
cgrp = task_cs(current)->css.cgroup;
- pr_info("%s cpuset=", current->comm);
+ pr_cont(",cpuset=");
pr_cont_cgroup_name(cgrp);
- pr_cont(" mems_allowed=%*pbl\n",
+ pr_cont(",mems_allowed=%*pbl",
nodemask_pr_args(&current->mems_allowed));
rcu_read_unlock();
}
-/*
- * Collection of memory_pressure is suppressed unless
- * this flag is enabled by writing "1" to the special
- * cpuset file 'memory_pressure_enabled' in the root cpuset.
- */
-
-int cpuset_memory_pressure_enabled __read_mostly;
-
-/**
- * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
- *
- * Keep a running average of the rate of synchronous (direct)
- * page reclaim efforts initiated by tasks in each cpuset.
- *
- * This represents the rate at which some task in the cpuset
- * ran low on memory on all nodes it was allowed to use, and
- * had to enter the kernels page reclaim code in an effort to
- * create more free memory by tossing clean pages or swapping
- * or writing dirty pages.
- *
- * Display to user space in the per-cpuset read-only file
- * "memory_pressure". Value displayed is an integer
- * representing the recent rate of entry into the synchronous
- * (direct) page reclaim by any task attached to the cpuset.
- **/
-
-void __cpuset_memory_pressure_bump(void)
-{
- rcu_read_lock();
- fmeter_markevent(&task_cs(current)->fmeter);
- rcu_read_unlock();
-}
-
-#ifdef CONFIG_PROC_PID_CPUSET
-/*
- * proc_cpuset_show()
- * - Print tasks cpuset path into seq_file.
- * - Used for /proc/<pid>/cpuset.
- * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
- * doesn't really matter if tsk->cpuset changes after we read it,
- * and we take cpuset_mutex, keeping cpuset_attach() from changing it
- * anyway.
- */
-int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
- struct pid *pid, struct task_struct *tsk)
-{
- char *buf;
- struct cgroup_subsys_state *css;
- int retval;
-
- retval = -ENOMEM;
- buf = kmalloc(PATH_MAX, GFP_KERNEL);
- if (!buf)
- goto out;
-
- css = task_get_css(tsk, cpuset_cgrp_id);
- retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
- current->nsproxy->cgroup_ns);
- css_put(css);
- if (retval >= PATH_MAX)
- retval = -ENAMETOOLONG;
- if (retval < 0)
- goto out_free;
- seq_puts(m, buf);
- seq_putc(m, '\n');
- retval = 0;
-out_free:
- kfree(buf);
-out:
- return retval;
-}
-#endif /* CONFIG_PROC_PID_CPUSET */
-
/* Display task mems_allowed in /proc/<pid>/status file. */
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{