diff options
Diffstat (limited to 'kernel/cgroup')
| -rw-r--r-- | kernel/cgroup/Makefile | 8 | ||||
| -rw-r--r-- | kernel/cgroup/cgroup-internal.h | 138 | ||||
| -rw-r--r-- | kernel/cgroup/cgroup-v1.c | 791 | ||||
| -rw-r--r-- | kernel/cgroup/cgroup.c | 4297 | ||||
| -rw-r--r-- | kernel/cgroup/cpuset-internal.h | 308 | ||||
| -rw-r--r-- | kernel/cgroup/cpuset-v1.c | 607 | ||||
| -rw-r--r-- | kernel/cgroup/cpuset.c | 4110 | ||||
| -rw-r--r-- | kernel/cgroup/debug.c | 74 | ||||
| -rw-r--r-- | kernel/cgroup/dmem.c | 830 | ||||
| -rw-r--r-- | kernel/cgroup/freezer.c | 641 | ||||
| -rw-r--r-- | kernel/cgroup/legacy_freezer.c | 481 | ||||
| -rw-r--r-- | kernel/cgroup/misc.c | 478 | ||||
| -rw-r--r-- | kernel/cgroup/namespace.c | 43 | ||||
| -rw-r--r-- | kernel/cgroup/pids.c | 194 | ||||
| -rw-r--r-- | kernel/cgroup/rdma.c | 49 | ||||
| -rw-r--r-- | kernel/cgroup/rstat.c | 759 |
16 files changed, 10746 insertions, 3062 deletions
diff --git a/kernel/cgroup/Makefile b/kernel/cgroup/Makefile index ce693ccb8c58..ede31601a363 100644 --- a/kernel/cgroup/Makefile +++ b/kernel/cgroup/Makefile @@ -1,7 +1,11 @@ -obj-y := cgroup.o namespace.o cgroup-v1.o +# SPDX-License-Identifier: GPL-2.0 +obj-y := cgroup.o rstat.o namespace.o cgroup-v1.o freezer.o -obj-$(CONFIG_CGROUP_FREEZER) += freezer.o +obj-$(CONFIG_CGROUP_FREEZER) += legacy_freezer.o obj-$(CONFIG_CGROUP_PIDS) += pids.o obj-$(CONFIG_CGROUP_RDMA) += rdma.o obj-$(CONFIG_CPUSETS) += cpuset.o +obj-$(CONFIG_CPUSETS_V1) += cpuset-v1.o +obj-$(CONFIG_CGROUP_MISC) += misc.o +obj-$(CONFIG_CGROUP_DMEM) += dmem.o obj-$(CONFIG_CGROUP_DEBUG) += debug.o diff --git a/kernel/cgroup/cgroup-internal.h b/kernel/cgroup/cgroup-internal.h index 8b4c3c2f2509..22051b4f1ccb 100644 --- a/kernel/cgroup/cgroup-internal.h +++ b/kernel/cgroup/cgroup-internal.h @@ -1,3 +1,4 @@ +/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CGROUP_INTERNAL_H #define __CGROUP_INTERNAL_H @@ -6,6 +7,83 @@ #include <linux/workqueue.h> #include <linux/list.h> #include <linux/refcount.h> +#include <linux/fs_parser.h> + +#define TRACE_CGROUP_PATH_LEN 1024 +extern spinlock_t trace_cgroup_path_lock; +extern char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; +extern void __init enable_debug_cgroup(void); + +/* + * cgroup_path() takes a spin lock. It is good practice not to take + * spin locks within trace point handlers, as they are mostly hidden + * from normal view. As cgroup_path() can take the kernfs_rename_lock + * spin lock, it is best to not call that function from the trace event + * handler. + * + * Note: trace_cgroup_##type##_enabled() is a static branch that will only + * be set when the trace event is enabled. + */ +#define TRACE_CGROUP_PATH(type, cgrp, ...) \ + do { \ + if (trace_cgroup_##type##_enabled()) { \ + unsigned long flags; \ + spin_lock_irqsave(&trace_cgroup_path_lock, \ + flags); \ + cgroup_path(cgrp, trace_cgroup_path, \ + TRACE_CGROUP_PATH_LEN); \ + trace_cgroup_##type(cgrp, trace_cgroup_path, \ + ##__VA_ARGS__); \ + spin_unlock_irqrestore(&trace_cgroup_path_lock, \ + flags); \ + } \ + } while (0) + +/* + * The cgroup filesystem superblock creation/mount context. + */ +struct cgroup_fs_context { + struct kernfs_fs_context kfc; + struct cgroup_root *root; + struct cgroup_namespace *ns; + unsigned int flags; /* CGRP_ROOT_* flags */ + + /* cgroup1 bits */ + bool cpuset_clone_children; + bool none; /* User explicitly requested empty subsystem */ + bool all_ss; /* Seen 'all' option */ + u16 subsys_mask; /* Selected subsystems */ + char *name; /* Hierarchy name */ + char *release_agent; /* Path for release notifications */ +}; + +static inline struct cgroup_fs_context *cgroup_fc2context(struct fs_context *fc) +{ + struct kernfs_fs_context *kfc = fc->fs_private; + + return container_of(kfc, struct cgroup_fs_context, kfc); +} + +struct cgroup_pidlist; + +struct cgroup_file_ctx { + struct cgroup_namespace *ns; + + struct { + void *trigger; + } psi; + + struct { + bool started; + struct css_task_iter iter; + } procs; + + struct { + struct cgroup_pidlist *pidlist; + } procs1; + + struct cgroup_of_peak peak; +}; /* * A cgroup can be associated with multiple css_sets as different tasks may @@ -88,25 +166,14 @@ struct cgroup_mgctx { #define DEFINE_CGROUP_MGCTX(name) \ struct cgroup_mgctx name = CGROUP_MGCTX_INIT(name) -struct cgroup_sb_opts { - u16 subsys_mask; - unsigned int flags; - char *release_agent; - bool cpuset_clone_children; - char *name; - /* User explicitly requested empty subsystem */ - bool none; -}; - -extern struct mutex cgroup_mutex; -extern spinlock_t css_set_lock; extern struct cgroup_subsys *cgroup_subsys[]; extern struct list_head cgroup_roots; -extern struct file_system_type cgroup_fs_type; +extern bool cgrp_dfl_visible; /* iterate across the hierarchies */ #define for_each_root(root) \ - list_for_each_entry((root), &cgroup_roots, root_list) + list_for_each_entry_rcu((root), &cgroup_roots, root_list, \ + lockdep_is_held(&cgroup_mutex)) /** * for_each_subsys - iterate all enabled cgroup subsystems @@ -165,15 +232,14 @@ void cgroup_kn_unlock(struct kernfs_node *kn); int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, struct cgroup_namespace *ns); +void cgroup_favor_dynmods(struct cgroup_root *root, bool favor); void cgroup_free_root(struct cgroup_root *root); -void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts); -int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags); +void init_cgroup_root(struct cgroup_fs_context *ctx); +int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask); int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask); -struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, - struct cgroup_root *root, unsigned long magic, - struct cgroup_namespace *ns); +int cgroup_do_get_tree(struct fs_context *fc); -bool cgroup_may_migrate_to(struct cgroup *dst_cgrp); +int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp); void cgroup_migrate_finish(struct cgroup_mgctx *mgctx); void cgroup_migrate_add_src(struct css_set *src_cset, struct cgroup *dst_cgrp, struct cgroup_mgctx *mgctx); @@ -183,10 +249,16 @@ int cgroup_migrate(struct task_struct *leader, bool threadgroup, int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, bool threadgroup); -ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, - size_t nbytes, loff_t off, bool threadgroup); -ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, - loff_t off); +void cgroup_attach_lock(enum cgroup_attach_lock_mode lock_mode, + struct task_struct *tsk); +void cgroup_attach_unlock(enum cgroup_attach_lock_mode lock_mode, + struct task_struct *tsk); +struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, + enum cgroup_attach_lock_mode *lock_mode) + __acquires(&cgroup_threadgroup_rwsem); +void cgroup_procs_write_finish(struct task_struct *task, + enum cgroup_attach_lock_mode lock_mode) + __releases(&cgroup_threadgroup_rwsem); void cgroup_lock_and_drain_offline(struct cgroup *cgrp); @@ -195,9 +267,18 @@ int cgroup_rmdir(struct kernfs_node *kn); int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, struct kernfs_root *kf_root); +int __cgroup_task_count(const struct cgroup *cgrp); int cgroup_task_count(const struct cgroup *cgrp); /* + * rstat.c + */ +int css_rstat_init(struct cgroup_subsys_state *css); +void css_rstat_exit(struct cgroup_subsys_state *css); +int ss_rstat_init(struct cgroup_subsys *ss); +void cgroup_base_stat_cputime_show(struct seq_file *seq); + +/* * namespace.c */ extern const struct proc_ns_operations cgroupns_operations; @@ -206,15 +287,16 @@ extern const struct proc_ns_operations cgroupns_operations; * cgroup-v1.c */ extern struct cftype cgroup1_base_files[]; -extern const struct file_operations proc_cgroupstats_operations; extern struct kernfs_syscall_ops cgroup1_kf_syscall_ops; +extern const struct fs_parameter_spec cgroup1_fs_parameters[]; +int proc_cgroupstats_show(struct seq_file *m, void *v); bool cgroup1_ssid_disabled(int ssid); void cgroup1_pidlist_destroy_all(struct cgroup *cgrp); void cgroup1_release_agent(struct work_struct *work); void cgroup1_check_for_release(struct cgroup *cgrp); -struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags, - void *data, unsigned long magic, - struct cgroup_namespace *ns); +int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param); +int cgroup1_get_tree(struct fs_context *fc); +int cgroup1_reconfigure(struct fs_context *ctx); #endif /* __CGROUP_INTERNAL_H */ diff --git a/kernel/cgroup/cgroup-v1.c b/kernel/cgroup/cgroup-v1.c index 7bf4b1533f34..a9e029b570c8 100644 --- a/kernel/cgroup/cgroup-v1.c +++ b/kernel/cgroup/cgroup-v1.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-only #include "cgroup-internal.h" #include <linux/ctype.h> @@ -9,10 +10,12 @@ #include <linux/sched/task.h> #include <linux/magic.h> #include <linux/slab.h> +#include <linux/string.h> #include <linux/vmalloc.h> #include <linux/delayacct.h> #include <linux/pid_namespace.h> #include <linux/cgroupstats.h> +#include <linux/fs_parser.h> #include <trace/events/cgroup.h> @@ -27,16 +30,19 @@ /* Controllers blocked by the commandline in v1 */ static u16 cgroup_no_v1_mask; +/* disable named v1 mounts */ +static bool cgroup_no_v1_named; + +/* Show unavailable controllers in /proc/cgroups */ +static bool proc_show_all; + /* * pidlist destructions need to be flushed on cgroup destruction. Use a * separate workqueue as flush domain. */ static struct workqueue_struct *cgroup_pidlist_destroy_wq; -/* - * Protects cgroup_subsys->release_agent_path. Modifying it also requires - * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. - */ +/* protects cgroup_subsys->release_agent_path */ static DEFINE_SPINLOCK(release_agent_path_lock); bool cgroup1_ssid_disabled(int ssid) @@ -44,24 +50,29 @@ bool cgroup1_ssid_disabled(int ssid) return cgroup_no_v1_mask & (1 << ssid); } +static bool cgroup1_subsys_absent(struct cgroup_subsys *ss) +{ + /* Check also dfl_cftypes for file-less controllers, i.e. perf_event */ + return ss->legacy_cftypes == NULL && ss->dfl_cftypes; +} + /** * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' * @from: attach to all cgroups of a given task * @tsk: the task to be attached + * + * Return: %0 on success or a negative errno code on failure */ int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) { struct cgroup_root *root; int retval = 0; - mutex_lock(&cgroup_mutex); - percpu_down_write(&cgroup_threadgroup_rwsem); + cgroup_lock(); + cgroup_attach_lock(CGRP_ATTACH_LOCK_GLOBAL, NULL); for_each_root(root) { struct cgroup *from_cgrp; - if (root == &cgrp_dfl_root) - continue; - spin_lock_irq(&css_set_lock); from_cgrp = task_cgroup_from_root(from, root); spin_unlock_irq(&css_set_lock); @@ -70,15 +81,15 @@ int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) if (retval) break; } - percpu_up_write(&cgroup_threadgroup_rwsem); - mutex_unlock(&cgroup_mutex); + cgroup_attach_unlock(CGRP_ATTACH_LOCK_GLOBAL, NULL); + cgroup_unlock(); return retval; } EXPORT_SYMBOL_GPL(cgroup_attach_task_all); /** - * cgroup_trasnsfer_tasks - move tasks from one cgroup to another + * cgroup_transfer_tasks - move tasks from one cgroup to another * @to: cgroup to which the tasks will be moved * @from: cgroup in which the tasks currently reside * @@ -87,6 +98,8 @@ EXPORT_SYMBOL_GPL(cgroup_attach_task_all); * is guaranteed to be either visible in the source cgroup after the * parent's migration is complete or put into the target cgroup. No task * can slip out of migration through forking. + * + * Return: %0 on success or a negative errno code on failure */ int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) { @@ -99,12 +112,13 @@ int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) if (cgroup_on_dfl(to)) return -EINVAL; - if (!cgroup_may_migrate_to(to)) - return -EBUSY; + ret = cgroup_migrate_vet_dst(to); + if (ret) + return ret; - mutex_lock(&cgroup_mutex); + cgroup_lock(); - percpu_down_write(&cgroup_threadgroup_rwsem); + cgroup_attach_lock(CGRP_ATTACH_LOCK_GLOBAL, NULL); /* all tasks in @from are being moved, all csets are source */ spin_lock_irq(&css_set_lock); @@ -121,8 +135,12 @@ int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) * ->can_attach() fails. */ do { - css_task_iter_start(&from->self, &it); - task = css_task_iter_next(&it); + css_task_iter_start(&from->self, 0, &it); + + do { + task = css_task_iter_next(&it); + } while (task && (task->flags & PF_EXITING)); + if (task) get_task_struct(task); css_task_iter_end(&it); @@ -130,14 +148,14 @@ int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) if (task) { ret = cgroup_migrate(task, false, &mgctx); if (!ret) - trace_cgroup_transfer_tasks(to, task, false); + TRACE_CGROUP_PATH(transfer_tasks, to, task, false); put_task_struct(task); } } while (task && !ret); out_err: cgroup_migrate_finish(&mgctx); - percpu_up_write(&cgroup_threadgroup_rwsem); - mutex_unlock(&cgroup_mutex); + cgroup_attach_unlock(CGRP_ATTACH_LOCK_GLOBAL, NULL); + cgroup_unlock(); return ret; } @@ -182,25 +200,6 @@ struct cgroup_pidlist { }; /* - * The following two functions "fix" the issue where there are more pids - * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. - * TODO: replace with a kernel-wide solution to this problem - */ -#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) -static void *pidlist_allocate(int count) -{ - if (PIDLIST_TOO_LARGE(count)) - return vmalloc(count * sizeof(pid_t)); - else - return kmalloc(count * sizeof(pid_t), GFP_KERNEL); -} - -static void pidlist_free(void *p) -{ - kvfree(p); -} - -/* * Used to destroy all pidlists lingering waiting for destroy timer. None * should be left afterwards. */ @@ -232,7 +231,7 @@ static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) */ if (!delayed_work_pending(dwork)) { list_del(&l->links); - pidlist_free(l->list); + kvfree(l->list); put_pid_ns(l->key.ns); tofree = l; } @@ -331,22 +330,6 @@ static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, return l; } -/** - * cgroup_task_count - count the number of tasks in a cgroup. - * @cgrp: the cgroup in question - */ -int cgroup_task_count(const struct cgroup *cgrp) -{ - int count = 0; - struct cgrp_cset_link *link; - - spin_lock_irq(&css_set_lock); - list_for_each_entry(link, &cgrp->cset_links, cset_link) - count += link->cset->nr_tasks; - spin_unlock_irq(&css_set_lock); - return count; -} - /* * Load a cgroup's pidarray with either procs' tgids or tasks' pids */ @@ -369,11 +352,11 @@ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, * show up until sometime later on. */ length = cgroup_task_count(cgrp); - array = pidlist_allocate(length); + array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); if (!array) return -ENOMEM; /* now, populate the array */ - css_task_iter_start(&cgrp->self, &it); + css_task_iter_start(&cgrp->self, 0, &it); while ((tsk = css_task_iter_next(&it))) { if (unlikely(n == length)) break; @@ -387,19 +370,18 @@ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, } css_task_iter_end(&it); length = n; - /* now sort & (if procs) strip out duplicates */ + /* now sort & strip out duplicates (tgids or recycled thread PIDs) */ sort(array, length, sizeof(pid_t), cmppid, NULL); - if (type == CGROUP_FILE_PROCS) - length = pidlist_uniq(array, length); + length = pidlist_uniq(array, length); l = cgroup_pidlist_find_create(cgrp, type); if (!l) { - pidlist_free(array); + kvfree(array); return -ENOMEM; } /* store array, freeing old if necessary */ - pidlist_free(l->list); + kvfree(l->list); l->list = array; l->length = length; *lp = l; @@ -421,6 +403,7 @@ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) * next pid to display, if any */ struct kernfs_open_file *of = s->private; + struct cgroup_file_ctx *ctx = of->priv; struct cgroup *cgrp = seq_css(s)->cgroup; struct cgroup_pidlist *l; enum cgroup_filetype type = seq_cft(s)->private; @@ -430,25 +413,24 @@ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) mutex_lock(&cgrp->pidlist_mutex); /* - * !NULL @of->priv indicates that this isn't the first start() - * after open. If the matching pidlist is around, we can use that. - * Look for it. Note that @of->priv can't be used directly. It - * could already have been destroyed. + * !NULL @ctx->procs1.pidlist indicates that this isn't the first + * start() after open. If the matching pidlist is around, we can use + * that. Look for it. Note that @ctx->procs1.pidlist can't be used + * directly. It could already have been destroyed. */ - if (of->priv) - of->priv = cgroup_pidlist_find(cgrp, type); + if (ctx->procs1.pidlist) + ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type); /* * Either this is the first start() after open or the matching * pidlist has been destroyed inbetween. Create a new one. */ - if (!of->priv) { - ret = pidlist_array_load(cgrp, type, - (struct cgroup_pidlist **)&of->priv); + if (!ctx->procs1.pidlist) { + ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist); if (ret) return ERR_PTR(ret); } - l = of->priv; + l = ctx->procs1.pidlist; if (pid) { int end = l->length; @@ -458,7 +440,7 @@ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) if (l->list[mid] == pid) { index = mid; break; - } else if (l->list[mid] <= pid) + } else if (l->list[mid] < pid) index = mid + 1; else end = mid; @@ -476,7 +458,8 @@ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) static void cgroup_pidlist_stop(struct seq_file *s, void *v) { struct kernfs_open_file *of = s->private; - struct cgroup_pidlist *l = of->priv; + struct cgroup_file_ctx *ctx = of->priv; + struct cgroup_pidlist *l = ctx->procs1.pidlist; if (l) mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, @@ -487,7 +470,8 @@ static void cgroup_pidlist_stop(struct seq_file *s, void *v) static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) { struct kernfs_open_file *of = s->private; - struct cgroup_pidlist *l = of->priv; + struct cgroup_file_ctx *ctx = of->priv; + struct cgroup_pidlist *l = ctx->procs1.pidlist; pid_t *p = v; pid_t *end = l->list + l->length; /* @@ -496,6 +480,7 @@ static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) */ p++; if (p >= end) { + (*pos)++; return NULL; } else { *pos = *p; @@ -510,24 +495,84 @@ static int cgroup_pidlist_show(struct seq_file *s, void *v) return 0; } -static ssize_t cgroup_tasks_write(struct kernfs_open_file *of, - char *buf, size_t nbytes, loff_t off) +static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off, + bool threadgroup) +{ + struct cgroup *cgrp; + struct task_struct *task; + const struct cred *cred, *tcred; + ssize_t ret; + enum cgroup_attach_lock_mode lock_mode; + + cgrp = cgroup_kn_lock_live(of->kn, false); + if (!cgrp) + return -ENODEV; + + task = cgroup_procs_write_start(buf, threadgroup, &lock_mode); + ret = PTR_ERR_OR_ZERO(task); + if (ret) + goto out_unlock; + + /* + * Even if we're attaching all tasks in the thread group, we only need + * to check permissions on one of them. Check permissions using the + * credentials from file open to protect against inherited fd attacks. + */ + cred = of->file->f_cred; + tcred = get_task_cred(task); + if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && + !uid_eq(cred->euid, tcred->uid) && + !uid_eq(cred->euid, tcred->suid)) + ret = -EACCES; + put_cred(tcred); + if (ret) + goto out_finish; + + ret = cgroup_attach_task(cgrp, task, threadgroup); + +out_finish: + cgroup_procs_write_finish(task, lock_mode); +out_unlock: + cgroup_kn_unlock(of->kn); + + return ret ?: nbytes; +} + +static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) { - return __cgroup_procs_write(of, buf, nbytes, off, false); + return __cgroup1_procs_write(of, buf, nbytes, off, true); +} + +static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + return __cgroup1_procs_write(of, buf, nbytes, off, false); } static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup *cgrp; + struct cgroup_file_ctx *ctx; BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); + /* + * Release agent gets called with all capabilities, + * require capabilities to set release agent. + */ + ctx = of->priv; + if ((ctx->ns->user_ns != &init_user_ns) || + !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN)) + return -EPERM; + cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENODEV; spin_lock(&release_agent_path_lock); - strlcpy(cgrp->root->release_agent_path, strstrip(buf), + strscpy(cgrp->root->release_agent_path, strstrip(buf), sizeof(cgrp->root->release_agent_path)); spin_unlock(&release_agent_path_lock); cgroup_kn_unlock(of->kn); @@ -592,7 +637,7 @@ struct cftype cgroup1_base_files[] = { .seq_stop = cgroup_pidlist_stop, .seq_show = cgroup_pidlist_show, .private = CGROUP_FILE_PROCS, - .write = cgroup_procs_write, + .write = cgroup1_procs_write, }, { .name = "cgroup.clone_children", @@ -611,7 +656,7 @@ struct cftype cgroup1_base_files[] = { .seq_stop = cgroup_pidlist_stop, .seq_show = cgroup_pidlist_show, .private = CGROUP_FILE_TASKS, - .write = cgroup_tasks_write, + .write = cgroup1_tasks_write, }, { .name = "notify_on_release", @@ -629,40 +674,36 @@ struct cftype cgroup1_base_files[] = { }; /* Display information about each subsystem and each hierarchy */ -static int proc_cgroupstats_show(struct seq_file *m, void *v) +int proc_cgroupstats_show(struct seq_file *m, void *v) { struct cgroup_subsys *ss; + bool cgrp_v1_visible = false; int i; seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); /* - * ideally we don't want subsystems moving around while we do this. - * cgroup_mutex is also necessary to guarantee an atomic snapshot of - * subsys/hierarchy state. + * Grab the subsystems state racily. No need to add avenue to + * cgroup_mutex contention. */ - mutex_lock(&cgroup_mutex); - for_each_subsys(ss, i) + for_each_subsys(ss, i) { + cgrp_v1_visible |= ss->root != &cgrp_dfl_root; + + if (!proc_show_all && cgroup1_subsys_absent(ss)) + continue; + seq_printf(m, "%s\t%d\t%d\t%d\n", ss->legacy_name, ss->root->hierarchy_id, atomic_read(&ss->root->nr_cgrps), cgroup_ssid_enabled(i)); + } - mutex_unlock(&cgroup_mutex); - return 0; -} + if (cgrp_dfl_visible && !cgrp_v1_visible) + pr_info_once("/proc/cgroups lists only v1 controllers, use cgroup.controllers of root cgroup for v2 info\n"); -static int cgroupstats_open(struct inode *inode, struct file *file) -{ - return single_open(file, proc_cgroupstats_show, NULL); -} -const struct file_operations proc_cgroupstats_operations = { - .open = cgroupstats_open, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, -}; + return 0; +} /** * cgroupstats_build - build and fill cgroupstats @@ -672,6 +713,8 @@ const struct file_operations proc_cgroupstats_operations = { * * Build and fill cgroupstats so that taskstats can export it to user * space. + * + * Return: %0 on success or a negative errno code on failure */ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) { @@ -685,8 +728,6 @@ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) kernfs_type(kn) != KERNFS_DIR) return -EINVAL; - mutex_lock(&cgroup_mutex); - /* * We aren't being called from kernfs and there's no guarantee on * @kn->priv's validity. For this and css_tryget_online_from_dir(), @@ -694,16 +735,15 @@ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) */ rcu_read_lock(); cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); - if (!cgrp || cgroup_is_dead(cgrp)) { + if (!cgrp || !cgroup_tryget(cgrp)) { rcu_read_unlock(); - mutex_unlock(&cgroup_mutex); return -ENOENT; } rcu_read_unlock(); - css_task_iter_start(&cgrp->self, &it); + css_task_iter_start(&cgrp->self, 0, &it); while ((tsk = css_task_iter_next(&it))) { - switch (tsk->state) { + switch (READ_ONCE(tsk->__state)) { case TASK_RUNNING: stats->nr_running++; break; @@ -717,14 +757,14 @@ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) stats->nr_stopped++; break; default: - if (delayacct_is_task_waiting_on_io(tsk)) + if (tsk->in_iowait) stats->nr_io_wait++; break; } } css_task_iter_end(&it); - mutex_unlock(&cgroup_mutex); + cgroup_put(cgrp); return 0; } @@ -762,22 +802,29 @@ void cgroup1_release_agent(struct work_struct *work) { struct cgroup *cgrp = container_of(work, struct cgroup, release_agent_work); - char *pathbuf = NULL, *agentbuf = NULL; + char *pathbuf, *agentbuf; char *argv[3], *envp[3]; int ret; - mutex_lock(&cgroup_mutex); + /* snoop agent path and exit early if empty */ + if (!cgrp->root->release_agent_path[0]) + return; + /* prepare argument buffers */ pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); - agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); + agentbuf = kmalloc(PATH_MAX, GFP_KERNEL); if (!pathbuf || !agentbuf) - goto out; + goto out_free; - spin_lock_irq(&css_set_lock); - ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); - spin_unlock_irq(&css_set_lock); - if (ret < 0 || ret >= PATH_MAX) - goto out; + spin_lock(&release_agent_path_lock); + strscpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX); + spin_unlock(&release_agent_path_lock); + if (!agentbuf[0]) + goto out_free; + + ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); + if (ret < 0) + goto out_free; argv[0] = agentbuf; argv[1] = pathbuf; @@ -788,11 +835,7 @@ void cgroup1_release_agent(struct work_struct *work) envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; envp[2] = NULL; - mutex_unlock(&cgroup_mutex); call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); - goto out_free; -out: - mutex_unlock(&cgroup_mutex); out_free: kfree(agentbuf); kfree(pathbuf); @@ -807,9 +850,13 @@ static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent struct cgroup *cgrp = kn->priv; int ret; + /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ + if (strchr(new_name_str, '\n')) + return -EINVAL; + if (kernfs_type(kn) != KERNFS_DIR) return -ENOTDIR; - if (kn->parent != new_parent) + if (rcu_access_pointer(kn->__parent) != new_parent) return -EIO; /* @@ -820,13 +867,13 @@ static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent kernfs_break_active_protection(new_parent); kernfs_break_active_protection(kn); - mutex_lock(&cgroup_mutex); + cgroup_lock(); ret = kernfs_rename(kn, new_parent, new_name_str); if (!ret) - trace_cgroup_rename(cgrp); + TRACE_CGROUP_PATH(rename, cgrp); - mutex_unlock(&cgroup_mutex); + cgroup_unlock(); kernfs_unbreak_active_protection(kn); kernfs_unbreak_active_protection(new_parent); @@ -846,6 +893,10 @@ static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_roo seq_puts(seq, ",noprefix"); if (root->flags & CGRP_ROOT_XATTR) seq_puts(seq, ",xattr"); + if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) + seq_puts(seq, ",cpuset_v2_mode"); + if (root->flags & CGRP_ROOT_FAVOR_DYNMODS) + seq_puts(seq, ",favordynmods"); spin_lock(&release_agent_path_lock); if (strlen(root->release_agent_path)) @@ -860,164 +911,211 @@ static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_roo return 0; } -static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) -{ - char *token, *o = data; - bool all_ss = false, one_ss = false; - u16 mask = U16_MAX; - struct cgroup_subsys *ss; - int nr_opts = 0; - int i; - -#ifdef CONFIG_CPUSETS - mask = ~((u16)1 << cpuset_cgrp_id); -#endif - - memset(opts, 0, sizeof(*opts)); +enum cgroup1_param { + Opt_all, + Opt_clone_children, + Opt_cpuset_v2_mode, + Opt_name, + Opt_none, + Opt_noprefix, + Opt_release_agent, + Opt_xattr, + Opt_favordynmods, + Opt_nofavordynmods, +}; - while ((token = strsep(&o, ",")) != NULL) { - nr_opts++; +const struct fs_parameter_spec cgroup1_fs_parameters[] = { + fsparam_flag ("all", Opt_all), + fsparam_flag ("clone_children", Opt_clone_children), + fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), + fsparam_string("name", Opt_name), + fsparam_flag ("none", Opt_none), + fsparam_flag ("noprefix", Opt_noprefix), + fsparam_string("release_agent", Opt_release_agent), + fsparam_flag ("xattr", Opt_xattr), + fsparam_flag ("favordynmods", Opt_favordynmods), + fsparam_flag ("nofavordynmods", Opt_nofavordynmods), + {} +}; - if (!*token) - return -EINVAL; - if (!strcmp(token, "none")) { - /* Explicitly have no subsystems */ - opts->none = true; - continue; - } - if (!strcmp(token, "all")) { - /* Mutually exclusive option 'all' + subsystem name */ - if (one_ss) - return -EINVAL; - all_ss = true; - continue; - } - if (!strcmp(token, "noprefix")) { - opts->flags |= CGRP_ROOT_NOPREFIX; - continue; - } - if (!strcmp(token, "clone_children")) { - opts->cpuset_clone_children = true; - continue; - } - if (!strcmp(token, "xattr")) { - opts->flags |= CGRP_ROOT_XATTR; - continue; - } - if (!strncmp(token, "release_agent=", 14)) { - /* Specifying two release agents is forbidden */ - if (opts->release_agent) - return -EINVAL; - opts->release_agent = - kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); - if (!opts->release_agent) - return -ENOMEM; - continue; - } - if (!strncmp(token, "name=", 5)) { - const char *name = token + 5; - /* Can't specify an empty name */ - if (!strlen(name)) - return -EINVAL; - /* Must match [\w.-]+ */ - for (i = 0; i < strlen(name); i++) { - char c = name[i]; - if (isalnum(c)) - continue; - if ((c == '.') || (c == '-') || (c == '_')) - continue; - return -EINVAL; - } - /* Specifying two names is forbidden */ - if (opts->name) - return -EINVAL; - opts->name = kstrndup(name, - MAX_CGROUP_ROOT_NAMELEN - 1, - GFP_KERNEL); - if (!opts->name) - return -ENOMEM; +int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) +{ + struct cgroup_fs_context *ctx = cgroup_fc2context(fc); + struct cgroup_subsys *ss; + struct fs_parse_result result; + int opt, i; - continue; - } + opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); + if (opt == -ENOPARAM) { + int ret; + ret = vfs_parse_fs_param_source(fc, param); + if (ret != -ENOPARAM) + return ret; for_each_subsys(ss, i) { - if (strcmp(token, ss->legacy_name)) + if (strcmp(param->key, ss->legacy_name) || + cgroup1_subsys_absent(ss)) continue; - if (!cgroup_ssid_enabled(i)) + if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i)) + return invalfc(fc, "Disabled controller '%s'", + param->key); + ctx->subsys_mask |= (1 << i); + return 0; + } + return invalfc(fc, "Unknown subsys name '%s'", param->key); + } + if (opt < 0) + return opt; + + switch (opt) { + case Opt_none: + /* Explicitly have no subsystems */ + ctx->none = true; + break; + case Opt_all: + ctx->all_ss = true; + break; + case Opt_noprefix: + ctx->flags |= CGRP_ROOT_NOPREFIX; + break; + case Opt_clone_children: + ctx->cpuset_clone_children = true; + break; + case Opt_cpuset_v2_mode: + ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; + break; + case Opt_xattr: + ctx->flags |= CGRP_ROOT_XATTR; + break; + case Opt_favordynmods: + ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; + break; + case Opt_nofavordynmods: + ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; + break; + case Opt_release_agent: + /* Specifying two release agents is forbidden */ + if (ctx->release_agent) + return invalfc(fc, "release_agent respecified"); + /* + * Release agent gets called with all capabilities, + * require capabilities to set release agent. + */ + if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) + return invalfc(fc, "Setting release_agent not allowed"); + ctx->release_agent = param->string; + param->string = NULL; + break; + case Opt_name: + /* blocked by boot param? */ + if (cgroup_no_v1_named) + return -ENOENT; + /* Can't specify an empty name */ + if (!param->size) + return invalfc(fc, "Empty name"); + if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) + return invalfc(fc, "Name too long"); + /* Must match [\w.-]+ */ + for (i = 0; i < param->size; i++) { + char c = param->string[i]; + if (isalnum(c)) continue; - if (cgroup1_ssid_disabled(i)) + if ((c == '.') || (c == '-') || (c == '_')) continue; - - /* Mutually exclusive option 'all' + subsystem name */ - if (all_ss) - return -EINVAL; - opts->subsys_mask |= (1 << i); - one_ss = true; - - break; + return invalfc(fc, "Invalid name"); } - if (i == CGROUP_SUBSYS_COUNT) - return -ENOENT; + /* Specifying two names is forbidden */ + if (ctx->name) + return invalfc(fc, "name respecified"); + ctx->name = param->string; + param->string = NULL; + break; } + return 0; +} + +static int check_cgroupfs_options(struct fs_context *fc) +{ + struct cgroup_fs_context *ctx = cgroup_fc2context(fc); + u16 mask = U16_MAX; + u16 enabled = 0; + struct cgroup_subsys *ss; + int i; + +#ifdef CONFIG_CPUSETS + mask = ~((u16)1 << cpuset_cgrp_id); +#endif + for_each_subsys(ss, i) + if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i) && + !cgroup1_subsys_absent(ss)) + enabled |= 1 << i; + + ctx->subsys_mask &= enabled; /* - * If the 'all' option was specified select all the subsystems, - * otherwise if 'none', 'name=' and a subsystem name options were - * not specified, let's default to 'all' + * In absence of 'none', 'name=' and subsystem name options, + * let's default to 'all'. */ - if (all_ss || (!one_ss && !opts->none && !opts->name)) - for_each_subsys(ss, i) - if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) - opts->subsys_mask |= (1 << i); + if (!ctx->subsys_mask && !ctx->none && !ctx->name) + ctx->all_ss = true; + + if (ctx->all_ss) { + /* Mutually exclusive option 'all' + subsystem name */ + if (ctx->subsys_mask) + return invalfc(fc, "subsys name conflicts with all"); + /* 'all' => select all the subsystems */ + ctx->subsys_mask = enabled; + } /* * We either have to specify by name or by subsystems. (So all * empty hierarchies must have a name). */ - if (!opts->subsys_mask && !opts->name) - return -EINVAL; + if (!ctx->subsys_mask && !ctx->name) + return invalfc(fc, "Need name or subsystem set"); /* * Option noprefix was introduced just for backward compatibility * with the old cpuset, so we allow noprefix only if mounting just * the cpuset subsystem. */ - if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) - return -EINVAL; + if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) + return invalfc(fc, "noprefix used incorrectly"); /* Can't specify "none" and some subsystems */ - if (opts->subsys_mask && opts->none) - return -EINVAL; + if (ctx->subsys_mask && ctx->none) + return invalfc(fc, "none used incorrectly"); return 0; } -static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data) +int cgroup1_reconfigure(struct fs_context *fc) { - int ret = 0; + struct cgroup_fs_context *ctx = cgroup_fc2context(fc); + struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); struct cgroup_root *root = cgroup_root_from_kf(kf_root); - struct cgroup_sb_opts opts; + int ret = 0; u16 added_mask, removed_mask; cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); /* See what subsystems are wanted */ - ret = parse_cgroupfs_options(data, &opts); + ret = check_cgroupfs_options(fc); if (ret) goto out_unlock; - if (opts.subsys_mask != root->subsys_mask || opts.release_agent) + if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", task_tgid_nr(current), current->comm); - added_mask = opts.subsys_mask & ~root->subsys_mask; - removed_mask = root->subsys_mask & ~opts.subsys_mask; + added_mask = ctx->subsys_mask & ~root->subsys_mask; + removed_mask = root->subsys_mask & ~ctx->subsys_mask; /* Don't allow flags or name to change at remount */ - if ((opts.flags ^ root->flags) || - (opts.name && strcmp(opts.name, root->name))) { - pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n", - opts.flags, opts.name ?: "", root->flags, root->name); + if ((ctx->flags ^ root->flags) || + (ctx->name && strcmp(ctx->name, root->name))) { + errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", + ctx->flags, ctx->name ?: "", root->flags, root->name); ret = -EINVAL; goto out_unlock; } @@ -1034,48 +1132,46 @@ static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data) WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); - if (opts.release_agent) { + if (ctx->release_agent) { spin_lock(&release_agent_path_lock); - strcpy(root->release_agent_path, opts.release_agent); + strscpy(root->release_agent_path, ctx->release_agent); spin_unlock(&release_agent_path_lock); } trace_cgroup_remount(root); out_unlock: - kfree(opts.release_agent); - kfree(opts.name); - mutex_unlock(&cgroup_mutex); + cgroup_unlock(); return ret; } struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { .rename = cgroup1_rename, .show_options = cgroup1_show_options, - .remount_fs = cgroup1_remount, .mkdir = cgroup_mkdir, .rmdir = cgroup_rmdir, .show_path = cgroup_show_path, }; -struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags, - void *data, unsigned long magic, - struct cgroup_namespace *ns) +/* + * The guts of cgroup1 mount - find or create cgroup_root to use. + * Called with cgroup_mutex held; returns 0 on success, -E... on + * error and positive - in case when the candidate is busy dying. + * On success it stashes a reference to cgroup_root into given + * cgroup_fs_context; that reference is *NOT* counting towards the + * cgroup_root refcount. + */ +static int cgroup1_root_to_use(struct fs_context *fc) { - struct super_block *pinned_sb = NULL; - struct cgroup_sb_opts opts; + struct cgroup_fs_context *ctx = cgroup_fc2context(fc); struct cgroup_root *root; struct cgroup_subsys *ss; - struct dentry *dentry; int i, ret; - bool new_root = false; - - cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); /* First find the desired set of subsystems */ - ret = parse_cgroupfs_options(data, &opts); + ret = check_cgroupfs_options(fc); if (ret) - goto out_unlock; + return ret; /* * Destruction of cgroup root is asynchronous, so subsystems may @@ -1085,16 +1181,12 @@ struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags, * starting. Testing ref liveliness is good enough. */ for_each_subsys(ss, i) { - if (!(opts.subsys_mask & (1 << i)) || + if (!(ctx->subsys_mask & (1 << i)) || ss->root == &cgrp_dfl_root) continue; - if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) { - mutex_unlock(&cgroup_mutex); - msleep(10); - ret = restart_syscall(); - goto out_free; - } + if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) + return 1; /* restart */ cgroup_put(&ss->root->cgrp); } @@ -1109,8 +1201,8 @@ struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags, * name matches but sybsys_mask doesn't, we should fail. * Remember whether name matched. */ - if (opts.name) { - if (strcmp(opts.name, root->name)) + if (ctx->name) { + if (strcmp(ctx->name, root->name)) continue; name_match = true; } @@ -1119,42 +1211,18 @@ struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags, * If we asked for subsystems (or explicitly for no * subsystems) then they must match. */ - if ((opts.subsys_mask || opts.none) && - (opts.subsys_mask != root->subsys_mask)) { + if ((ctx->subsys_mask || ctx->none) && + (ctx->subsys_mask != root->subsys_mask)) { if (!name_match) continue; - ret = -EBUSY; - goto out_unlock; + return -EBUSY; } - if (root->flags ^ opts.flags) + if (root->flags ^ ctx->flags) pr_warn("new mount options do not match the existing superblock, will be ignored\n"); - /* - * We want to reuse @root whose lifetime is governed by its - * ->cgrp. Let's check whether @root is alive and keep it - * that way. As cgroup_kill_sb() can happen anytime, we - * want to block it by pinning the sb so that @root doesn't - * get killed before mount is complete. - * - * With the sb pinned, tryget_live can reliably indicate - * whether @root can be reused. If it's being killed, - * drain it. We can use wait_queue for the wait but this - * path is super cold. Let's just sleep a bit and retry. - */ - pinned_sb = kernfs_pin_sb(root->kf_root, NULL); - if (IS_ERR(pinned_sb) || - !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) { - mutex_unlock(&cgroup_mutex); - if (!IS_ERR_OR_NULL(pinned_sb)) - deactivate_super(pinned_sb); - msleep(10); - ret = restart_syscall(); - goto out_free; - } - - ret = 0; - goto out_unlock; + ctx->root = root; + return 0; } /* @@ -1162,62 +1230,93 @@ struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags, * specification is allowed for already existing hierarchies but we * can't create new one without subsys specification. */ - if (!opts.subsys_mask && !opts.none) { - ret = -EINVAL; - goto out_unlock; - } + if (!ctx->subsys_mask && !ctx->none) + return invalfc(fc, "No subsys list or none specified"); /* Hierarchies may only be created in the initial cgroup namespace. */ - if (ns != &init_cgroup_ns) { - ret = -EPERM; - goto out_unlock; - } + if (ctx->ns != &init_cgroup_ns) + return -EPERM; root = kzalloc(sizeof(*root), GFP_KERNEL); - if (!root) { - ret = -ENOMEM; - goto out_unlock; - } - new_root = true; + if (!root) + return -ENOMEM; - init_cgroup_root(root, &opts); + ctx->root = root; + init_cgroup_root(ctx); - ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD); - if (ret) + ret = cgroup_setup_root(root, ctx->subsys_mask); + if (!ret) + cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS); + else cgroup_free_root(root); -out_unlock: - mutex_unlock(&cgroup_mutex); -out_free: - kfree(opts.release_agent); - kfree(opts.name); + return ret; +} - if (ret) - return ERR_PTR(ret); +int cgroup1_get_tree(struct fs_context *fc) +{ + struct cgroup_fs_context *ctx = cgroup_fc2context(fc); + int ret; - dentry = cgroup_do_mount(&cgroup_fs_type, flags, root, - CGROUP_SUPER_MAGIC, ns); + /* Check if the caller has permission to mount. */ + if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) + return -EPERM; - /* - * There's a race window after we release cgroup_mutex and before - * allocating a superblock. Make sure a concurrent process won't - * be able to re-use the root during this window by delaying the - * initialization of root refcnt. - */ - if (new_root) { - mutex_lock(&cgroup_mutex); - percpu_ref_reinit(&root->cgrp.self.refcnt); - mutex_unlock(&cgroup_mutex); + cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); + + ret = cgroup1_root_to_use(fc); + if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) + ret = 1; /* restart */ + + cgroup_unlock(); + + if (!ret) + ret = cgroup_do_get_tree(fc); + + if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { + fc_drop_locked(fc); + ret = 1; } - /* - * If @pinned_sb, we're reusing an existing root and holding an - * extra ref on its sb. Mount is complete. Put the extra ref. - */ - if (pinned_sb) - deactivate_super(pinned_sb); + if (unlikely(ret > 0)) { + msleep(10); + return restart_syscall(); + } + return ret; +} - return dentry; +/** + * task_get_cgroup1 - Acquires the associated cgroup of a task within a + * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its + * hierarchy ID. + * @tsk: The target task + * @hierarchy_id: The ID of a cgroup1 hierarchy + * + * On success, the cgroup is returned. On failure, ERR_PTR is returned. + * We limit it to cgroup1 only. + */ +struct cgroup *task_get_cgroup1(struct task_struct *tsk, int hierarchy_id) +{ + struct cgroup *cgrp = ERR_PTR(-ENOENT); + struct cgroup_root *root; + unsigned long flags; + + rcu_read_lock(); + for_each_root(root) { + /* cgroup1 only*/ + if (root == &cgrp_dfl_root) + continue; + if (root->hierarchy_id != hierarchy_id) + continue; + spin_lock_irqsave(&css_set_lock, flags); + cgrp = task_cgroup_from_root(tsk, root); + if (!cgrp || !cgroup_tryget(cgrp)) + cgrp = ERR_PTR(-ENOENT); + spin_unlock_irqrestore(&css_set_lock, flags); + break; + } + rcu_read_unlock(); + return cgrp; } static int __init cgroup1_wq_init(void) @@ -1227,7 +1326,7 @@ static int __init cgroup1_wq_init(void) * Cap @max_active to 1 too. */ cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", - 0, 1); + WQ_PERCPU, 1); BUG_ON(!cgroup_pidlist_destroy_wq); return 0; } @@ -1245,7 +1344,12 @@ static int __init cgroup_no_v1(char *str) if (!strcmp(token, "all")) { cgroup_no_v1_mask = U16_MAX; - break; + continue; + } + + if (!strcmp(token, "named")) { + cgroup_no_v1_named = true; + continue; } for_each_subsys(ss, i) { @@ -1254,8 +1358,15 @@ static int __init cgroup_no_v1(char *str) continue; cgroup_no_v1_mask |= 1 << i; + break; } } return 1; } __setup("cgroup_no_v1=", cgroup_no_v1); + +static int __init cgroup_v1_proc(char *str) +{ + return (kstrtobool(str, &proc_show_all) == 0); +} +__setup("cgroup_v1_proc=", cgroup_v1_proc); diff --git a/kernel/cgroup/cgroup.c b/kernel/cgroup/cgroup.c index df2e0f14a95d..e717208cfb18 100644 --- a/kernel/cgroup/cgroup.c +++ b/kernel/cgroup/cgroup.c @@ -30,6 +30,7 @@ #include "cgroup-internal.h" +#include <linux/bpf-cgroup.h> #include <linux/cred.h> #include <linux/errno.h> #include <linux/init_task.h> @@ -54,6 +55,12 @@ #include <linux/proc_ns.h> #include <linux/nsproxy.h> #include <linux/file.h> +#include <linux/fs_parser.h> +#include <linux/sched/cputime.h> +#include <linux/sched/deadline.h> +#include <linux/psi.h> +#include <linux/nstree.h> +#include <linux/irq_work.h> #include <net/sock.h> #define CREATE_TRACE_POINTS @@ -61,6 +68,16 @@ #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ MAX_CFTYPE_NAME + 2) +/* let's not notify more than 100 times per second */ +#define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) + +/* + * To avoid confusing the compiler (and generating warnings) with code + * that attempts to access what would be a 0-element array (i.e. sized + * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this + * constant expression can be added. + */ +#define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) /* * cgroup_mutex is the master lock. Any modification to cgroup or its @@ -75,11 +92,18 @@ DEFINE_MUTEX(cgroup_mutex); DEFINE_SPINLOCK(css_set_lock); -#ifdef CONFIG_PROVE_RCU +#if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP) EXPORT_SYMBOL_GPL(cgroup_mutex); EXPORT_SYMBOL_GPL(css_set_lock); #endif +struct blocking_notifier_head cgroup_lifetime_notifier = + BLOCKING_NOTIFIER_INIT(cgroup_lifetime_notifier); + +DEFINE_SPINLOCK(trace_cgroup_path_lock); +char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; +static bool cgroup_debug __read_mostly; + /* * Protects cgroup_idr and css_idr so that IDs can be released without * grabbing cgroup_mutex. @@ -92,7 +116,7 @@ static DEFINE_SPINLOCK(cgroup_idr_lock); */ static DEFINE_SPINLOCK(cgroup_file_kn_lock); -struct percpu_rw_semaphore cgroup_threadgroup_rwsem; +DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); #define cgroup_assert_mutex_or_rcu_locked() \ RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ @@ -102,10 +126,33 @@ struct percpu_rw_semaphore cgroup_threadgroup_rwsem; /* * cgroup destruction makes heavy use of work items and there can be a lot * of concurrent destructions. Use a separate workqueue so that cgroup - * destruction work items don't end up filling up max_active of system_wq + * destruction work items don't end up filling up max_active of system_percpu_wq * which may lead to deadlock. + * + * A cgroup destruction should enqueue work sequentially to: + * cgroup_offline_wq: use for css offline work + * cgroup_release_wq: use for css release work + * cgroup_free_wq: use for free work + * + * Rationale for using separate workqueues: + * The cgroup root free work may depend on completion of other css offline + * operations. If all tasks were enqueued to a single workqueue, this could + * create a deadlock scenario where: + * - Free work waits for other css offline work to complete. + * - But other css offline work is queued after free work in the same queue. + * + * Example deadlock scenario with single workqueue (cgroup_destroy_wq): + * 1. umount net_prio + * 2. net_prio root destruction enqueues work to cgroup_destroy_wq (CPUx) + * 3. perf_event CSS A offline enqueues work to same cgroup_destroy_wq (CPUx) + * 4. net_prio cgroup_destroy_root->cgroup_lock_and_drain_offline. + * 5. net_prio root destruction blocks waiting for perf_event CSS A offline, + * which can never complete as it's behind in the same queue and + * workqueue's max_active is 1. */ -static struct workqueue_struct *cgroup_destroy_wq; +static struct workqueue_struct *cgroup_offline_wq; +static struct workqueue_struct *cgroup_release_wq; +static struct workqueue_struct *cgroup_free_wq; /* generate an array of cgroup subsystem pointers */ #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, @@ -142,19 +189,21 @@ static struct static_key_true *cgroup_subsys_on_dfl_key[] = { }; #undef SUBSYS -/* - * The default hierarchy, reserved for the subsystems that are otherwise - * unattached - it never has more than a single cgroup, and all tasks are - * part of that cgroup. - */ -struct cgroup_root cgrp_dfl_root; +static DEFINE_PER_CPU(struct css_rstat_cpu, root_rstat_cpu); +static DEFINE_PER_CPU(struct cgroup_rstat_base_cpu, root_rstat_base_cpu); + +/* the default hierarchy */ +struct cgroup_root cgrp_dfl_root = { + .cgrp.self.rstat_cpu = &root_rstat_cpu, + .cgrp.rstat_base_cpu = &root_rstat_base_cpu, +}; EXPORT_SYMBOL_GPL(cgrp_dfl_root); /* * The default hierarchy always exists but is hidden until mounted for the * first time. This is for backward compatibility. */ -static bool cgrp_dfl_visible; +bool cgrp_dfl_visible; /* some controllers are not supported in the default hierarchy */ static u16 cgrp_dfl_inhibit_ss_mask; @@ -162,6 +211,9 @@ static u16 cgrp_dfl_inhibit_ss_mask; /* some controllers are implicitly enabled on the default hierarchy */ static u16 cgrp_dfl_implicit_ss_mask; +/* some controllers can be threaded on the default hierarchy */ +static u16 cgrp_dfl_threaded_ss_mask; + /* The list of hierarchy roots */ LIST_HEAD(cgroup_roots); static int cgroup_root_count; @@ -184,24 +236,50 @@ static u64 css_serial_nr_next = 1; */ static u16 have_fork_callback __read_mostly; static u16 have_exit_callback __read_mostly; -static u16 have_free_callback __read_mostly; +static u16 have_release_callback __read_mostly; static u16 have_canfork_callback __read_mostly; +static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS); + +/* + * Write protected by cgroup_mutex and write-lock of cgroup_threadgroup_rwsem, + * read protected by either. + * + * Can only be turned on, but not turned off. + */ +bool cgroup_enable_per_threadgroup_rwsem __read_mostly; + /* cgroup namespace for init task */ struct cgroup_namespace init_cgroup_ns = { - .count = REFCOUNT_INIT(2), + .ns = NS_COMMON_INIT(init_cgroup_ns), .user_ns = &init_user_ns, - .ns.ops = &cgroupns_operations, - .ns.inum = PROC_CGROUP_INIT_INO, .root_cset = &init_css_set, }; static struct file_system_type cgroup2_fs_type; static struct cftype cgroup_base_files[]; +static struct cftype cgroup_psi_files[]; + +/* cgroup optional features */ +enum cgroup_opt_features { +#ifdef CONFIG_PSI + OPT_FEATURE_PRESSURE, +#endif + OPT_FEATURE_COUNT +}; + +static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { +#ifdef CONFIG_PSI + "pressure", +#endif +}; + +static u16 cgroup_feature_disable_mask __read_mostly; static int cgroup_apply_control(struct cgroup *cgrp); static void cgroup_finalize_control(struct cgroup *cgrp, int ret); -static void css_task_iter_advance(struct css_task_iter *it); +static void css_task_iter_skip(struct css_task_iter *it, + struct task_struct *task); static int cgroup_destroy_locked(struct cgroup *cgrp); static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, struct cgroup_subsys *ss); @@ -210,6 +288,13 @@ static void kill_css(struct cgroup_subsys_state *css); static int cgroup_addrm_files(struct cgroup_subsys_state *css, struct cgroup *cgrp, struct cftype cfts[], bool is_add); +static void cgroup_rt_init(void); + +#ifdef CONFIG_DEBUG_CGROUP_REF +#define CGROUP_REF_FN_ATTRS noinline +#define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); +#include <linux/cgroup_refcnt.h> +#endif /** * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID @@ -221,7 +306,7 @@ static int cgroup_addrm_files(struct cgroup_subsys_state *css, */ bool cgroup_ssid_enabled(int ssid) { - if (CGROUP_SUBSYS_COUNT == 0) + if (!CGROUP_HAS_SUBSYS_CONFIG) return false; return static_key_enabled(cgroup_subsys_enabled_key[ssid]); @@ -233,12 +318,9 @@ bool cgroup_ssid_enabled(int ssid) * * The default hierarchy is the v2 interface of cgroup and this function * can be used to test whether a cgroup is on the default hierarchy for - * cases where a subsystem should behave differnetly depending on the + * cases where a subsystem should behave differently depending on the * interface version. * - * The set of behaviors which change on the default hierarchy are still - * being determined and the mount option is prefixed with __DEVEL__. - * * List of changed behaviors: * * - Mount options "noprefix", "xattr", "clone_children", "release_agent" @@ -246,15 +328,13 @@ bool cgroup_ssid_enabled(int ssid) * * - When mounting an existing superblock, mount options should match. * - * - Remount is disallowed. - * * - rename(2) is disallowed. * * - "tasks" is removed. Everything should be at process granularity. Use * "cgroup.procs" instead. * * - "cgroup.procs" is not sorted. pids will be unique unless they got - * recycled inbetween reads. + * recycled in-between reads. * * - "release_agent" and "notify_on_release" are removed. Replacement * notification mechanism will be implemented. @@ -273,12 +353,7 @@ bool cgroup_ssid_enabled(int ssid) * - cpuset: a task can be moved into an empty cpuset, and again it takes * masks of ancestors. * - * - memcg: use_hierarchy is on by default and the cgroup file for the flag - * is not created. - * * - blkcg: blk-throttle becomes properly hierarchical. - * - * - debug: disallowed on the default hierarchy. */ bool cgroup_on_dfl(const struct cgroup *cgrp) { @@ -316,13 +391,87 @@ static void cgroup_idr_remove(struct idr *idr, int id) spin_unlock_bh(&cgroup_idr_lock); } -static struct cgroup *cgroup_parent(struct cgroup *cgrp) +static bool cgroup_has_tasks(struct cgroup *cgrp) { - struct cgroup_subsys_state *parent_css = cgrp->self.parent; + return cgrp->nr_populated_csets; +} - if (parent_css) - return container_of(parent_css, struct cgroup, self); - return NULL; +static bool cgroup_is_threaded(struct cgroup *cgrp) +{ + return cgrp->dom_cgrp != cgrp; +} + +/* can @cgrp host both domain and threaded children? */ +static bool cgroup_is_mixable(struct cgroup *cgrp) +{ + /* + * Root isn't under domain level resource control exempting it from + * the no-internal-process constraint, so it can serve as a thread + * root and a parent of resource domains at the same time. + */ + return !cgroup_parent(cgrp); +} + +/* can @cgrp become a thread root? Should always be true for a thread root */ +static bool cgroup_can_be_thread_root(struct cgroup *cgrp) +{ + /* mixables don't care */ + if (cgroup_is_mixable(cgrp)) + return true; + + /* domain roots can't be nested under threaded */ + if (cgroup_is_threaded(cgrp)) + return false; + + /* can only have either domain or threaded children */ + if (cgrp->nr_populated_domain_children) + return false; + + /* and no domain controllers can be enabled */ + if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) + return false; + + return true; +} + +/* is @cgrp root of a threaded subtree? */ +static bool cgroup_is_thread_root(struct cgroup *cgrp) +{ + /* thread root should be a domain */ + if (cgroup_is_threaded(cgrp)) + return false; + + /* a domain w/ threaded children is a thread root */ + if (cgrp->nr_threaded_children) + return true; + + /* + * A domain which has tasks and explicit threaded controllers + * enabled is a thread root. + */ + if (cgroup_has_tasks(cgrp) && + (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) + return true; + + return false; +} + +/* a domain which isn't connected to the root w/o brekage can't be used */ +static bool cgroup_is_valid_domain(struct cgroup *cgrp) +{ + /* the cgroup itself can be a thread root */ + if (cgroup_is_threaded(cgrp)) + return false; + + /* but the ancestors can't be unless mixable */ + while ((cgrp = cgroup_parent(cgrp))) { + if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) + return false; + if (cgroup_is_threaded(cgrp)) + return false; + } + + return true; } /* subsystems visibly enabled on a cgroup */ @@ -331,8 +480,14 @@ static u16 cgroup_control(struct cgroup *cgrp) struct cgroup *parent = cgroup_parent(cgrp); u16 root_ss_mask = cgrp->root->subsys_mask; - if (parent) - return parent->subtree_control; + if (parent) { + u16 ss_mask = parent->subtree_control; + + /* threaded cgroups can only have threaded controllers */ + if (cgroup_is_threaded(cgrp)) + ss_mask &= cgrp_dfl_threaded_ss_mask; + return ss_mask; + } if (cgroup_on_dfl(cgrp)) root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | @@ -345,8 +500,14 @@ static u16 cgroup_ss_mask(struct cgroup *cgrp) { struct cgroup *parent = cgroup_parent(cgrp); - if (parent) - return parent->subtree_ss_mask; + if (parent) { + u16 ss_mask = parent->subtree_ss_mask; + + /* threaded cgroups can only have threaded controllers */ + if (cgroup_is_threaded(cgrp)) + ss_mask &= cgrp_dfl_threaded_ss_mask; + return ss_mask; + } return cgrp->root->subsys_mask; } @@ -365,7 +526,7 @@ static u16 cgroup_ss_mask(struct cgroup *cgrp) static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, struct cgroup_subsys *ss) { - if (ss) + if (CGROUP_HAS_SUBSYS_CONFIG && ss) return rcu_dereference_check(cgrp->subsys[ss->id], lockdep_is_held(&cgroup_mutex)); else @@ -373,7 +534,7 @@ static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, } /** - * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem + * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss * @cgrp: the cgroup of interest * @ss: the subsystem of interest (%NULL returns @cgrp->self) * @@ -382,8 +543,8 @@ static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, * enabled. If @ss is associated with the hierarchy @cgrp is on, this * function is guaranteed to return non-NULL css. */ -static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, - struct cgroup_subsys *ss) +static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, + struct cgroup_subsys *ss) { lockdep_assert_held(&cgroup_mutex); @@ -404,6 +565,38 @@ static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, } /** + * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest + * + * Find and get the effective css of @cgrp for @ss. The effective css is + * defined as the matching css of the nearest ancestor including self which + * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, + * the root css is returned, so this function always returns a valid css. + * + * The returned css is not guaranteed to be online, and therefore it is the + * callers responsibility to try get a reference for it. + */ +struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + struct cgroup_subsys_state *css; + + if (!CGROUP_HAS_SUBSYS_CONFIG) + return NULL; + + do { + css = cgroup_css(cgrp, ss); + + if (css) + return css; + cgrp = cgroup_parent(cgrp); + } while (cgrp); + + return init_css_set.subsys[ss->id]; +} + +/** * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem * @cgrp: the cgroup of interest * @ss: the subsystem of interest @@ -419,6 +612,9 @@ struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, { struct cgroup_subsys_state *css; + if (!CGROUP_HAS_SUBSYS_CONFIG) + return NULL; + rcu_read_lock(); do { @@ -435,26 +631,63 @@ out_unlock: rcu_read_unlock(); return css; } +EXPORT_SYMBOL_GPL(cgroup_get_e_css); -static void __maybe_unused cgroup_get(struct cgroup *cgrp) +static void cgroup_get_live(struct cgroup *cgrp) { - css_get(&cgrp->self); + WARN_ON_ONCE(cgroup_is_dead(cgrp)); + cgroup_get(cgrp); } -static void cgroup_get_live(struct cgroup *cgrp) +/** + * __cgroup_task_count - count the number of tasks in a cgroup. The caller + * is responsible for taking the css_set_lock. + * @cgrp: the cgroup in question + */ +int __cgroup_task_count(const struct cgroup *cgrp) { - WARN_ON_ONCE(cgroup_is_dead(cgrp)); - css_get(&cgrp->self); + int count = 0; + struct cgrp_cset_link *link; + + lockdep_assert_held(&css_set_lock); + + list_for_each_entry(link, &cgrp->cset_links, cset_link) + count += link->cset->nr_tasks; + + return count; } -static bool cgroup_tryget(struct cgroup *cgrp) +/** + * cgroup_task_count - count the number of tasks in a cgroup. + * @cgrp: the cgroup in question + */ +int cgroup_task_count(const struct cgroup *cgrp) { - return css_tryget(&cgrp->self); + int count; + + spin_lock_irq(&css_set_lock); + count = __cgroup_task_count(cgrp); + spin_unlock_irq(&css_set_lock); + + return count; +} + +static struct cgroup *kn_priv(struct kernfs_node *kn) +{ + struct kernfs_node *parent; + /* + * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT. + * Therefore it is always safe to dereference this pointer outside of a + * RCU section. + */ + parent = rcu_dereference_check(kn->__parent, + kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT); + return parent->priv; } struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) { - struct cgroup *cgrp = of->kn->parent->priv; + struct cgroup *cgrp = kn_priv(of->kn); struct cftype *cft = of_cft(of); /* @@ -465,7 +698,7 @@ struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) * the matching css from the cgroup's subsys table is guaranteed to * be and stay valid until the enclosing operation is complete. */ - if (cft->ss) + if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); else return &cgrp->self; @@ -478,7 +711,7 @@ EXPORT_SYMBOL_GPL(of_css); * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end * @cgrp: the target cgroup to iterate css's of * - * Should be called under cgroup_[tree_]mutex. + * Should be called under cgroup_mutex. */ #define for_each_css(css, ssid, cgrp) \ for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ @@ -488,20 +721,6 @@ EXPORT_SYMBOL_GPL(of_css); else /** - * for_each_e_css - iterate all effective css's of a cgroup - * @css: the iteration cursor - * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end - * @cgrp: the target cgroup to iterate css's of - * - * Should be called under cgroup_[tree_]mutex. - */ -#define for_each_e_css(css, ssid, cgrp) \ - for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ - if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ - ; \ - else - -/** * do_each_subsys_mask - filter for_each_subsys with a bitmask * @ss: the iteration cursor * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end @@ -512,7 +731,7 @@ EXPORT_SYMBOL_GPL(of_css); */ #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ unsigned long __ss_mask = (ss_mask); \ - if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ + if (!CGROUP_HAS_SUBSYS_CONFIG) { \ (ssid) = 0; \ break; \ } \ @@ -533,7 +752,7 @@ EXPORT_SYMBOL_GPL(of_css); ; \ else -/* walk live descendants in preorder */ +/* walk live descendants in pre order */ #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ if (({ lockdep_assert_held(&cgroup_mutex); \ @@ -560,16 +779,33 @@ EXPORT_SYMBOL_GPL(of_css); */ struct css_set init_css_set = { .refcount = REFCOUNT_INIT(1), + .dom_cset = &init_css_set, .tasks = LIST_HEAD_INIT(init_css_set.tasks), .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), + .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), + .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), - .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), + .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), + .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), + + /* + * The following field is re-initialized when this cset gets linked + * in cgroup_init(). However, let's initialize the field + * statically too so that the default cgroup can be accessed safely + * early during boot. + */ + .dfl_cgrp = &cgrp_dfl_root.cgrp, }; static int css_set_count = 1; /* 1 for init_css_set */ +static bool css_set_threaded(struct css_set *cset) +{ + return cset->dom_cset != cset; +} + /** * css_set_populated - does a css_set contain any tasks? * @cset: target css_set @@ -587,39 +823,50 @@ static bool css_set_populated(struct css_set *cset) } /** - * cgroup_update_populated - updated populated count of a cgroup + * cgroup_update_populated - update the populated count of a cgroup * @cgrp: the target cgroup * @populated: inc or dec populated count * * One of the css_sets associated with @cgrp is either getting its first - * task or losing the last. Update @cgrp->populated_cnt accordingly. The - * count is propagated towards root so that a given cgroup's populated_cnt - * is zero iff the cgroup and all its descendants don't contain any tasks. - * - * @cgrp's interface file "cgroup.populated" is zero if - * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt - * changes from or to zero, userland is notified that the content of the - * interface file has changed. This can be used to detect when @cgrp and - * its descendants become populated or empty. + * task or losing the last. Update @cgrp->nr_populated_* accordingly. The + * count is propagated towards root so that a given cgroup's + * nr_populated_children is zero iff none of its descendants contain any + * tasks. + * + * @cgrp's interface file "cgroup.populated" is zero if both + * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and + * 1 otherwise. When the sum changes from or to zero, userland is notified + * that the content of the interface file has changed. This can be used to + * detect when @cgrp and its descendants become populated or empty. */ static void cgroup_update_populated(struct cgroup *cgrp, bool populated) { + struct cgroup *child = NULL; + int adj = populated ? 1 : -1; + lockdep_assert_held(&css_set_lock); do { - bool trigger; + bool was_populated = cgroup_is_populated(cgrp); - if (populated) - trigger = !cgrp->populated_cnt++; - else - trigger = !--cgrp->populated_cnt; + if (!child) { + cgrp->nr_populated_csets += adj; + } else { + if (cgroup_is_threaded(child)) + cgrp->nr_populated_threaded_children += adj; + else + cgrp->nr_populated_domain_children += adj; + } - if (!trigger) + if (was_populated == cgroup_is_populated(cgrp)) break; cgroup1_check_for_release(cgrp); + TRACE_CGROUP_PATH(notify_populated, cgrp, + cgroup_is_populated(cgrp)); cgroup_file_notify(&cgrp->events_file); + child = cgrp; cgrp = cgroup_parent(cgrp); } while (cgrp); } @@ -630,7 +877,7 @@ static void cgroup_update_populated(struct cgroup *cgrp, bool populated) * @populated: whether @cset is populated or depopulated * * @cset is either getting the first task or losing the last. Update the - * ->populated_cnt of all associated cgroups accordingly. + * populated counters of all associated cgroups accordingly. */ static void css_set_update_populated(struct css_set *cset, bool populated) { @@ -642,6 +889,21 @@ static void css_set_update_populated(struct css_set *cset, bool populated) cgroup_update_populated(link->cgrp, populated); } +/* + * @task is leaving, advance task iterators which are pointing to it so + * that they can resume at the next position. Advancing an iterator might + * remove it from the list, use safe walk. See css_task_iter_skip() for + * details. + */ +static void css_set_skip_task_iters(struct css_set *cset, + struct task_struct *task) +{ + struct css_task_iter *it, *pos; + + list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) + css_task_iter_skip(it, task); +} + /** * css_set_move_task - move a task from one css_set to another * @task: task being moved @@ -653,7 +915,7 @@ static void css_set_update_populated(struct css_set *cset, bool populated) * css_set, @from_cset can be NULL. If @task is being disassociated * instead of moved, @to_cset can be NULL. * - * This function automatically handles populated_cnt updates and + * This function automatically handles populated counter updates and * css_task_iter adjustments but the caller is responsible for managing * @from_cset and @to_cset's reference counts. */ @@ -667,22 +929,9 @@ static void css_set_move_task(struct task_struct *task, css_set_update_populated(to_cset, true); if (from_cset) { - struct css_task_iter *it, *pos; - WARN_ON_ONCE(list_empty(&task->cg_list)); - /* - * @task is leaving, advance task iterators which are - * pointing to it so that they can resume at the next - * position. Advancing an iterator might remove it from - * the list, use safe walk. See css_task_iter_advance*() - * for details. - */ - list_for_each_entry_safe(it, pos, &from_cset->task_iters, - iters_node) - if (it->task_pos == &task->cg_list) - css_task_iter_advance(it); - + css_set_skip_task_iters(from_cset, task); list_del_init(&task->cg_list); if (!css_set_populated(from_cset)) css_set_update_populated(from_cset, false); @@ -694,12 +943,12 @@ static void css_set_move_task(struct task_struct *task, /* * We are synchronized through cgroup_threadgroup_rwsem * against PF_EXITING setting such that we can't race - * against cgroup_exit() changing the css_set to - * init_css_set and dropping the old one. + * against cgroup_task_dead()/cgroup_task_free() dropping + * the css_set. */ WARN_ON_ONCE(task->flags & PF_EXITING); - rcu_assign_pointer(task->cgroups, to_cset); + cgroup_move_task(task, to_cset); list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : &to_cset->tasks); } @@ -713,7 +962,7 @@ static void css_set_move_task(struct task_struct *task, #define CSS_SET_HASH_BITS 7 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); -static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) +static unsigned long css_set_hash(struct cgroup_subsys_state **css) { unsigned long key = 0UL; struct cgroup_subsys *ss; @@ -737,7 +986,9 @@ void put_css_set_locked(struct css_set *cset) if (!refcount_dec_and_test(&cset->refcount)) return; - /* This css_set is dead. unlink it and release cgroup and css refs */ + WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); + + /* This css_set is dead. Unlink it and release cgroup and css refs */ for_each_subsys(ss, ssid) { list_del(&cset->e_cset_node[ssid]); css_put(cset->subsys[ssid]); @@ -753,6 +1004,11 @@ void put_css_set_locked(struct css_set *cset) kfree(link); } + if (css_set_threaded(cset)) { + list_del(&cset->threaded_csets_node); + put_css_set_locked(cset->dom_cset); + } + kfree_rcu(cset, rcu_head); } @@ -771,6 +1027,7 @@ static bool compare_css_sets(struct css_set *cset, struct cgroup *new_cgrp, struct cgroup_subsys_state *template[]) { + struct cgroup *new_dfl_cgrp; struct list_head *l1, *l2; /* @@ -781,6 +1038,16 @@ static bool compare_css_sets(struct css_set *cset, if (memcmp(template, cset->subsys, sizeof(cset->subsys))) return false; + + /* @cset's domain should match the default cgroup's */ + if (cgroup_on_dfl(new_cgrp)) + new_dfl_cgrp = new_cgrp; + else + new_dfl_cgrp = old_cset->dfl_cgrp; + + if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) + return false; + /* * Compare cgroup pointers in order to distinguish between * different cgroups in hierarchies. As different cgroups may @@ -836,7 +1103,7 @@ static bool compare_css_sets(struct css_set *cset, */ static struct css_set *find_existing_css_set(struct css_set *old_cset, struct cgroup *cgrp, - struct cgroup_subsys_state *template[]) + struct cgroup_subsys_state **template) { struct cgroup_root *root = cgrp->root; struct cgroup_subsys *ss; @@ -846,7 +1113,7 @@ static struct css_set *find_existing_css_set(struct css_set *old_cset, /* * Build the set of subsystem state objects that we want to see in the - * new css_set. while subsystems can change globally, the entries here + * new css_set. While subsystems can change globally, the entries here * won't change, so no need for locking. */ for_each_subsys(ss, i) { @@ -855,7 +1122,7 @@ static struct css_set *find_existing_css_set(struct css_set *old_cset, * @ss is in this hierarchy, so we want the * effective css from @cgrp. */ - template[i] = cgroup_e_css(cgrp, ss); + template[i] = cgroup_e_css_by_mask(cgrp, ss); } else { /* * @ss is not in this hierarchy, so we don't want @@ -936,7 +1203,7 @@ static void link_css_set(struct list_head *tmp_links, struct css_set *cset, /* * Always add links to the tail of the lists so that the lists are - * in choronological order. + * in chronological order. */ list_move_tail(&link->cset_link, &cgrp->cset_links); list_add_tail(&link->cgrp_link, &cset->cgrp_links); @@ -988,12 +1255,16 @@ static struct css_set *find_css_set(struct css_set *old_cset, } refcount_set(&cset->refcount, 1); + cset->dom_cset = cset; INIT_LIST_HEAD(&cset->tasks); INIT_LIST_HEAD(&cset->mg_tasks); + INIT_LIST_HEAD(&cset->dying_tasks); INIT_LIST_HEAD(&cset->task_iters); + INIT_LIST_HEAD(&cset->threaded_csets); INIT_HLIST_NODE(&cset->hlist); INIT_LIST_HEAD(&cset->cgrp_links); - INIT_LIST_HEAD(&cset->mg_preload_node); + INIT_LIST_HEAD(&cset->mg_src_preload_node); + INIT_LIST_HEAD(&cset->mg_dst_preload_node); INIT_LIST_HEAD(&cset->mg_node); /* Copy the set of subsystem state objects generated in @@ -1028,16 +1299,68 @@ static struct css_set *find_css_set(struct css_set *old_cset, spin_unlock_irq(&css_set_lock); + /* + * If @cset should be threaded, look up the matching dom_cset and + * link them up. We first fully initialize @cset then look for the + * dom_cset. It's simpler this way and safe as @cset is guaranteed + * to stay empty until we return. + */ + if (cgroup_is_threaded(cset->dfl_cgrp)) { + struct css_set *dcset; + + dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); + if (!dcset) { + put_css_set(cset); + return NULL; + } + + spin_lock_irq(&css_set_lock); + cset->dom_cset = dcset; + list_add_tail(&cset->threaded_csets_node, + &dcset->threaded_csets); + spin_unlock_irq(&css_set_lock); + } + return cset; } struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) { - struct cgroup *root_cgrp = kf_root->kn->priv; + struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; return root_cgrp->root; } +void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) +{ + bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; + + /* + * see the comment above CGRP_ROOT_FAVOR_DYNMODS definition. + * favordynmods can flip while task is between + * cgroup_threadgroup_change_begin() and end(), so down_write global + * cgroup_threadgroup_rwsem to synchronize them. + * + * Once cgroup_enable_per_threadgroup_rwsem is enabled, holding + * cgroup_threadgroup_rwsem doesn't exlude tasks between + * cgroup_thread_group_change_begin() and end() and thus it's unsafe to + * turn off. As the scenario is unlikely, simply disallow disabling once + * enabled and print out a warning. + */ + percpu_down_write(&cgroup_threadgroup_rwsem); + if (favor && !favoring) { + cgroup_enable_per_threadgroup_rwsem = true; + rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); + root->flags |= CGRP_ROOT_FAVOR_DYNMODS; + } else if (!favor && favoring) { + if (cgroup_enable_per_threadgroup_rwsem) + pr_warn_once("cgroup favordynmods: per threadgroup rwsem mechanism can't be disabled\n"); + rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); + root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; + } + percpu_up_write(&cgroup_threadgroup_rwsem); +} + static int cgroup_init_root_id(struct cgroup_root *root) { int id; @@ -1061,16 +1384,14 @@ static void cgroup_exit_root_id(struct cgroup_root *root) void cgroup_free_root(struct cgroup_root *root) { - if (root) { - idr_destroy(&root->cgroup_idr); - kfree(root); - } + kfree_rcu(root, rcu); } static void cgroup_destroy_root(struct cgroup_root *root) { struct cgroup *cgrp = &root->cgrp; struct cgrp_cset_link *link, *tmp_link; + int ret; trace_cgroup_destroy_root(root); @@ -1079,6 +1400,10 @@ static void cgroup_destroy_root(struct cgroup_root *root) BUG_ON(atomic_read(&root->nr_cgrps)); BUG_ON(!list_empty(&cgrp->self.children)); + ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, + CGROUP_LIFETIME_OFFLINE, cgrp); + WARN_ON_ONCE(notifier_to_errno(ret)); + /* Rebind all subsystems back to the default hierarchy */ WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); @@ -1096,93 +1421,136 @@ static void cgroup_destroy_root(struct cgroup_root *root) spin_unlock_irq(&css_set_lock); - if (!list_empty(&root->root_list)) { - list_del(&root->root_list); - cgroup_root_count--; - } + WARN_ON_ONCE(list_empty(&root->root_list)); + list_del_rcu(&root->root_list); + cgroup_root_count--; + + if (!have_favordynmods) + cgroup_favor_dynmods(root, false); cgroup_exit_root_id(root); - mutex_unlock(&cgroup_mutex); + cgroup_unlock(); kernfs_destroy_root(root->kf_root); cgroup_free_root(root); } /* - * look up cgroup associated with current task's cgroup namespace on the - * specified hierarchy + * Returned cgroup is without refcount but it's valid as long as cset pins it. */ -static struct cgroup * -current_cgns_cgroup_from_root(struct cgroup_root *root) +static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, + struct cgroup_root *root) { - struct cgroup *res = NULL; - struct css_set *cset; - - lockdep_assert_held(&css_set_lock); - - rcu_read_lock(); + struct cgroup *res_cgroup = NULL; - cset = current->nsproxy->cgroup_ns->root_cset; if (cset == &init_css_set) { - res = &root->cgrp; + res_cgroup = &root->cgrp; + } else if (root == &cgrp_dfl_root) { + res_cgroup = cset->dfl_cgrp; } else { struct cgrp_cset_link *link; + lockdep_assert_held(&css_set_lock); list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; if (c->root == root) { - res = c; + res_cgroup = c; break; } } } - rcu_read_unlock(); - BUG_ON(!res); - return res; + /* + * If cgroup_mutex is not held, the cgrp_cset_link will be freed + * before we remove the cgroup root from the root_list. Consequently, + * when accessing a cgroup root, the cset_link may have already been + * freed, resulting in a NULL res_cgroup. However, by holding the + * cgroup_mutex, we ensure that res_cgroup can't be NULL. + * If we don't hold cgroup_mutex in the caller, we must do the NULL + * check. + */ + return res_cgroup; } -/* look up cgroup associated with given css_set on the specified hierarchy */ -static struct cgroup *cset_cgroup_from_root(struct css_set *cset, - struct cgroup_root *root) +/* + * look up cgroup associated with current task's cgroup namespace on the + * specified hierarchy + */ +static struct cgroup * +current_cgns_cgroup_from_root(struct cgroup_root *root) { struct cgroup *res = NULL; + struct css_set *cset; - lockdep_assert_held(&cgroup_mutex); lockdep_assert_held(&css_set_lock); - if (cset == &init_css_set) { - res = &root->cgrp; - } else { - struct cgrp_cset_link *link; + rcu_read_lock(); - list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { - struct cgroup *c = link->cgrp; + cset = current->nsproxy->cgroup_ns->root_cset; + res = __cset_cgroup_from_root(cset, root); - if (c->root == root) { - res = c; - break; - } - } - } + rcu_read_unlock(); - BUG_ON(!res); + /* + * The namespace_sem is held by current, so the root cgroup can't + * be umounted. Therefore, we can ensure that the res is non-NULL. + */ + WARN_ON_ONCE(!res); return res; } /* + * Look up cgroup associated with current task's cgroup namespace on the default + * hierarchy. + * + * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: + * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu + * pointers. + * - css_set_lock is not needed because we just read cset->dfl_cgrp. + * - As a bonus returned cgrp is pinned with the current because it cannot + * switch cgroup_ns asynchronously. + */ +static struct cgroup *current_cgns_cgroup_dfl(void) +{ + struct css_set *cset; + + if (current->nsproxy) { + cset = current->nsproxy->cgroup_ns->root_cset; + return __cset_cgroup_from_root(cset, &cgrp_dfl_root); + } else { + /* + * NOTE: This function may be called from bpf_cgroup_from_id() + * on a task which has already passed exit_nsproxy_namespaces() + * and nsproxy == NULL. Fall back to cgrp_dfl_root which will + * make all cgroups visible for lookups. + */ + return &cgrp_dfl_root.cgrp; + } +} + +/* look up cgroup associated with given css_set on the specified hierarchy */ +static struct cgroup *cset_cgroup_from_root(struct css_set *cset, + struct cgroup_root *root) +{ + lockdep_assert_held(&css_set_lock); + + return __cset_cgroup_from_root(cset, root); +} + +/* * Return the cgroup for "task" from the given hierarchy. Must be - * called with cgroup_mutex and css_set_lock held. + * called with css_set_lock held to prevent task's groups from being modified. + * Must be called with either cgroup_mutex or rcu read lock to prevent the + * cgroup root from being destroyed. */ struct cgroup *task_cgroup_from_root(struct task_struct *task, struct cgroup_root *root) { /* - * No need to lock the task - since we hold cgroup_mutex the - * task can't change groups, so the only thing that can happen - * is that it exits and its css is set back to init_css_set. + * No need to lock the task - since we hold css_set_lock the + * task can't change groups. */ return cset_cgroup_from_root(task_css_set(task), root); } @@ -1221,12 +1589,15 @@ static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, struct cgroup_subsys *ss = cft->ss; if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && - !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) - snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", - cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, + !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { + const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; + + snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", + dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, cft->name); - else - strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); + } else { + strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); + } return buf; } @@ -1314,9 +1685,9 @@ void cgroup_kn_unlock(struct kernfs_node *kn) if (kernfs_type(kn) == KERNFS_DIR) cgrp = kn->priv; else - cgrp = kn->parent->priv; + cgrp = kn_priv(kn); - mutex_unlock(&cgroup_mutex); + cgroup_unlock(); kernfs_unbreak_active_protection(kn); cgroup_put(cgrp); @@ -1346,7 +1717,7 @@ struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) if (kernfs_type(kn) == KERNFS_DIR) cgrp = kn->priv; else - cgrp = kn->parent->priv; + cgrp = kn_priv(kn); /* * We're gonna grab cgroup_mutex which nests outside kernfs @@ -1361,7 +1732,7 @@ struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) if (drain_offline) cgroup_lock_and_drain_offline(cgrp); else - mutex_lock(&cgroup_mutex); + cgroup_lock(); if (!cgroup_is_dead(cgrp)) return cgrp; @@ -1383,6 +1754,8 @@ static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) spin_lock_irq(&cgroup_file_kn_lock); cfile->kn = NULL; spin_unlock_irq(&cgroup_file_kn_lock); + + timer_delete_sync(&cfile->notify_timer); } kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); @@ -1390,7 +1763,7 @@ static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) /** * css_clear_dir - remove subsys files in a cgroup directory - * @css: taget css + * @css: target css */ static void css_clear_dir(struct cgroup_subsys_state *css) { @@ -1402,8 +1775,21 @@ static void css_clear_dir(struct cgroup_subsys_state *css) css->flags &= ~CSS_VISIBLE; - list_for_each_entry(cfts, &css->ss->cfts, node) - cgroup_addrm_files(css, cgrp, cfts, false); + if (css_is_self(css)) { + if (cgroup_on_dfl(cgrp)) { + cgroup_addrm_files(css, cgrp, + cgroup_base_files, false); + if (cgroup_psi_enabled()) + cgroup_addrm_files(css, cgrp, + cgroup_psi_files, false); + } else { + cgroup_addrm_files(css, cgrp, + cgroup1_base_files, false); + } + } else { + list_for_each_entry(cfts, &css->ss->cfts, node) + cgroup_addrm_files(css, cgrp, cfts, false); + } } /** @@ -1418,23 +1804,38 @@ static int css_populate_dir(struct cgroup_subsys_state *css) struct cftype *cfts, *failed_cfts; int ret; - if ((css->flags & CSS_VISIBLE) || !cgrp->kn) + if (css->flags & CSS_VISIBLE) return 0; - if (!css->ss) { - if (cgroup_on_dfl(cgrp)) - cfts = cgroup_base_files; - else - cfts = cgroup1_base_files; - - return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); - } - - list_for_each_entry(cfts, &css->ss->cfts, node) { - ret = cgroup_addrm_files(css, cgrp, cfts, true); - if (ret < 0) { - failed_cfts = cfts; - goto err; + if (css_is_self(css)) { + if (cgroup_on_dfl(cgrp)) { + ret = cgroup_addrm_files(css, cgrp, + cgroup_base_files, true); + if (ret < 0) + return ret; + + if (cgroup_psi_enabled()) { + ret = cgroup_addrm_files(css, cgrp, + cgroup_psi_files, true); + if (ret < 0) { + cgroup_addrm_files(css, cgrp, + cgroup_base_files, false); + return ret; + } + } + } else { + ret = cgroup_addrm_files(css, cgrp, + cgroup1_base_files, true); + if (ret < 0) + return ret; + } + } else { + list_for_each_entry(cfts, &css->ss->cfts, node) { + ret = cgroup_addrm_files(css, cgrp, cfts, true); + if (ret < 0) { + failed_cfts = cfts; + goto err; + } } } @@ -1454,7 +1855,8 @@ int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) { struct cgroup *dcgrp = &dst_root->cgrp; struct cgroup_subsys *ss; - int ssid, i, ret; + int ssid, ret; + u16 dfl_disable_ss_mask = 0; lockdep_assert_held(&cgroup_mutex); @@ -1471,31 +1873,67 @@ int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) /* can't move between two non-dummy roots either */ if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) return -EBUSY; + + /* + * Collect ssid's that need to be disabled from default + * hierarchy. + */ + if (ss->root == &cgrp_dfl_root) + dfl_disable_ss_mask |= 1 << ssid; + } while_each_subsys_mask(); + if (dfl_disable_ss_mask) { + struct cgroup *scgrp = &cgrp_dfl_root.cgrp; + + /* + * Controllers from default hierarchy that need to be rebound + * are all disabled together in one go. + */ + cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; + WARN_ON(cgroup_apply_control(scgrp)); + cgroup_finalize_control(scgrp, 0); + } + do_each_subsys_mask(ss, ssid, ss_mask) { struct cgroup_root *src_root = ss->root; struct cgroup *scgrp = &src_root->cgrp; struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); - struct css_set *cset; + struct css_set *cset, *cset_pos; + struct css_task_iter *it; WARN_ON(!css || cgroup_css(dcgrp, ss)); - /* disable from the source */ - src_root->subsys_mask &= ~(1 << ssid); - WARN_ON(cgroup_apply_control(scgrp)); - cgroup_finalize_control(scgrp, 0); + if (src_root != &cgrp_dfl_root) { + /* disable from the source */ + src_root->subsys_mask &= ~(1 << ssid); + WARN_ON(cgroup_apply_control(scgrp)); + cgroup_finalize_control(scgrp, 0); + } /* rebind */ RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); rcu_assign_pointer(dcgrp->subsys[ssid], css); ss->root = dst_root; - css->cgroup = dcgrp; spin_lock_irq(&css_set_lock); - hash_for_each(css_set_table, i, cset, hlist) + css->cgroup = dcgrp; + WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); + list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], + e_cset_node[ss->id]) { list_move_tail(&cset->e_cset_node[ss->id], &dcgrp->e_csets[ss->id]); + /* + * all css_sets of scgrp together in same order to dcgrp, + * patch in-flight iterators to preserve correct iteration. + * since the iterator is always advanced right away and + * finished when it->cset_pos meets it->cset_head, so only + * update it->cset_head is enough here. + */ + list_for_each_entry(it, &cset->task_iters, iters_node) + if (it->cset_head == &scgrp->e_csets[ss->id]) + it->cset_head = &dcgrp->e_csets[ss->id]; + } spin_unlock_irq(&css_set_lock); /* default hierarchy doesn't enable controllers by default */ @@ -1537,7 +1975,7 @@ int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); spin_unlock_irq(&css_set_lock); - if (len >= PATH_MAX) + if (len == -E2BIG) len = -ERANGE; else if (len > 0) { seq_escape(sf, buf, " \t\n\\"); @@ -1547,26 +1985,64 @@ int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, return len; } -static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) -{ - char *token; +enum cgroup2_param { + Opt_nsdelegate, + Opt_favordynmods, + Opt_memory_localevents, + Opt_memory_recursiveprot, + Opt_memory_hugetlb_accounting, + Opt_pids_localevents, + nr__cgroup2_params +}; - *root_flags = 0; +static const struct fs_parameter_spec cgroup2_fs_parameters[] = { + fsparam_flag("nsdelegate", Opt_nsdelegate), + fsparam_flag("favordynmods", Opt_favordynmods), + fsparam_flag("memory_localevents", Opt_memory_localevents), + fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), + fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting), + fsparam_flag("pids_localevents", Opt_pids_localevents), + {} +}; - if (!data) - return 0; +static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) +{ + struct cgroup_fs_context *ctx = cgroup_fc2context(fc); + struct fs_parse_result result; + int opt; - while ((token = strsep(&data, ",")) != NULL) { - if (!strcmp(token, "nsdelegate")) { - *root_flags |= CGRP_ROOT_NS_DELEGATE; - continue; - } + opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); + if (opt < 0) + return opt; - pr_err("cgroup2: unknown option \"%s\"\n", token); - return -EINVAL; + switch (opt) { + case Opt_nsdelegate: + ctx->flags |= CGRP_ROOT_NS_DELEGATE; + return 0; + case Opt_favordynmods: + ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; + return 0; + case Opt_memory_localevents: + ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; + return 0; + case Opt_memory_recursiveprot: + ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; + return 0; + case Opt_memory_hugetlb_accounting: + ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; + return 0; + case Opt_pids_localevents: + ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; + return 0; } + return -EINVAL; +} - return 0; +struct cgroup_of_peak *of_peak(struct kernfs_open_file *of) +{ + struct cgroup_file_ctx *ctx = of->priv; + + return &ctx->peak; } static void apply_cgroup_root_flags(unsigned int root_flags) @@ -1576,6 +2052,29 @@ static void apply_cgroup_root_flags(unsigned int root_flags) cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; else cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; + + cgroup_favor_dynmods(&cgrp_dfl_root, + root_flags & CGRP_ROOT_FAVOR_DYNMODS); + + if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) + cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; + else + cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; + + if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) + cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; + else + cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; + + if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) + cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; + else + cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; + + if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) + cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; + else + cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS; } } @@ -1583,81 +2082,27 @@ static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root { if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) seq_puts(seq, ",nsdelegate"); + if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) + seq_puts(seq, ",favordynmods"); + if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) + seq_puts(seq, ",memory_localevents"); + if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) + seq_puts(seq, ",memory_recursiveprot"); + if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) + seq_puts(seq, ",memory_hugetlb_accounting"); + if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) + seq_puts(seq, ",pids_localevents"); return 0; } -static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) +static int cgroup_reconfigure(struct fs_context *fc) { - unsigned int root_flags; - int ret; - - ret = parse_cgroup_root_flags(data, &root_flags); - if (ret) - return ret; + struct cgroup_fs_context *ctx = cgroup_fc2context(fc); - apply_cgroup_root_flags(root_flags); + apply_cgroup_root_flags(ctx->flags); return 0; } -/* - * To reduce the fork() overhead for systems that are not actually using - * their cgroups capability, we don't maintain the lists running through - * each css_set to its tasks until we see the list actually used - in other - * words after the first mount. - */ -static bool use_task_css_set_links __read_mostly; - -static void cgroup_enable_task_cg_lists(void) -{ - struct task_struct *p, *g; - - spin_lock_irq(&css_set_lock); - - if (use_task_css_set_links) - goto out_unlock; - - use_task_css_set_links = true; - - /* - * We need tasklist_lock because RCU is not safe against - * while_each_thread(). Besides, a forking task that has passed - * cgroup_post_fork() without seeing use_task_css_set_links = 1 - * is not guaranteed to have its child immediately visible in the - * tasklist if we walk through it with RCU. - */ - read_lock(&tasklist_lock); - do_each_thread(g, p) { - WARN_ON_ONCE(!list_empty(&p->cg_list) || - task_css_set(p) != &init_css_set); - - /* - * We should check if the process is exiting, otherwise - * it will race with cgroup_exit() in that the list - * entry won't be deleted though the process has exited. - * Do it while holding siglock so that we don't end up - * racing against cgroup_exit(). - * - * Interrupts were already disabled while acquiring - * the css_set_lock, so we do not need to disable it - * again when acquiring the sighand->siglock here. - */ - spin_lock(&p->sighand->siglock); - if (!(p->flags & PF_EXITING)) { - struct css_set *cset = task_css_set(p); - - if (!css_set_populated(cset)) - css_set_update_populated(cset, true); - list_add_tail(&p->cg_list, &cset->tasks); - get_css_set(cset); - cset->nr_tasks++; - } - spin_unlock(&p->sighand->siglock); - } while_each_thread(g, p); - read_unlock(&tasklist_lock); -out_unlock: - spin_unlock_irq(&css_set_lock); -} - static void init_cgroup_housekeeping(struct cgroup *cgrp) { struct cgroup_subsys *ss; @@ -1670,34 +2115,44 @@ static void init_cgroup_housekeeping(struct cgroup *cgrp) mutex_init(&cgrp->pidlist_mutex); cgrp->self.cgroup = cgrp; cgrp->self.flags |= CSS_ONLINE; + cgrp->dom_cgrp = cgrp; + cgrp->max_descendants = INT_MAX; + cgrp->max_depth = INT_MAX; + prev_cputime_init(&cgrp->prev_cputime); for_each_subsys(ss, ssid) INIT_LIST_HEAD(&cgrp->e_csets[ssid]); +#ifdef CONFIG_CGROUP_BPF + for (int i = 0; i < ARRAY_SIZE(cgrp->bpf.revisions); i++) + cgrp->bpf.revisions[i] = 1; +#endif + init_waitqueue_head(&cgrp->offline_waitq); INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); } -void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) +void init_cgroup_root(struct cgroup_fs_context *ctx) { + struct cgroup_root *root = ctx->root; struct cgroup *cgrp = &root->cgrp; - INIT_LIST_HEAD(&root->root_list); + INIT_LIST_HEAD_RCU(&root->root_list); atomic_set(&root->nr_cgrps, 1); cgrp->root = root; init_cgroup_housekeeping(cgrp); - idr_init(&root->cgroup_idr); - - root->flags = opts->flags; - if (opts->release_agent) - strcpy(root->release_agent_path, opts->release_agent); - if (opts->name) - strcpy(root->name, opts->name); - if (opts->cpuset_clone_children) + + /* DYNMODS must be modified through cgroup_favor_dynmods() */ + root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; + if (ctx->release_agent) + strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); + if (ctx->name) + strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); + if (ctx->cpuset_clone_children) set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); } -int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) +int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) { LIST_HEAD(tmp_links); struct cgroup *root_cgrp = &root->cgrp; @@ -1707,14 +2162,8 @@ int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) lockdep_assert_held(&cgroup_mutex); - ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); - if (ret < 0) - goto out; - root_cgrp->id = ret; - root_cgrp->ancestor_ids[0] = ret; - ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, - ref_flags, GFP_KERNEL); + 0, GFP_KERNEL); if (ret) goto out; @@ -1737,22 +2186,35 @@ int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; root->kf_root = kernfs_create_root(kf_sops, - KERNFS_ROOT_CREATE_DEACTIVATED, + KERNFS_ROOT_CREATE_DEACTIVATED | + KERNFS_ROOT_SUPPORT_EXPORTOP | + KERNFS_ROOT_SUPPORT_USER_XATTR | + KERNFS_ROOT_INVARIANT_PARENT, root_cgrp); if (IS_ERR(root->kf_root)) { ret = PTR_ERR(root->kf_root); goto exit_root_id; } - root_cgrp->kn = root->kf_root->kn; + root_cgrp->kn = kernfs_root_to_node(root->kf_root); + WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); + root_cgrp->ancestors[0] = root_cgrp; ret = css_populate_dir(&root_cgrp->self); if (ret) goto destroy_root; - ret = rebind_subsystems(root, ss_mask); + ret = css_rstat_init(&root_cgrp->self); if (ret) goto destroy_root; + ret = rebind_subsystems(root, ss_mask); + if (ret) + goto exit_stats; + + ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, + CGROUP_LIFETIME_ONLINE, root_cgrp); + WARN_ON_ONCE(notifier_to_errno(ret)); + trace_cgroup_setup_root(root); /* @@ -1760,7 +2222,7 @@ int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) * care of subsystems' refcounts, which are explicitly dropped in * the failure exit path. */ - list_add(&root->root_list, &cgroup_roots); + list_add_rcu(&root->root_list, &cgroup_roots); cgroup_root_count++; /* @@ -1778,10 +2240,11 @@ int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) BUG_ON(!list_empty(&root_cgrp->self.children)); BUG_ON(atomic_read(&root->nr_cgrps) != 1); - kernfs_activate(root_cgrp->kn); ret = 0; goto out; +exit_stats: + css_rstat_exit(&root_cgrp->self); destroy_root: kernfs_destroy_root(root->kf_root); root->kf_root = NULL; @@ -1794,88 +2257,121 @@ out: return ret; } -struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, - struct cgroup_root *root, unsigned long magic, - struct cgroup_namespace *ns) +int cgroup_do_get_tree(struct fs_context *fc) { - struct dentry *dentry; - bool new_sb; + struct cgroup_fs_context *ctx = cgroup_fc2context(fc); + int ret; - dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); + ctx->kfc.root = ctx->root->kf_root; + if (fc->fs_type == &cgroup2_fs_type) + ctx->kfc.magic = CGROUP2_SUPER_MAGIC; + else + ctx->kfc.magic = CGROUP_SUPER_MAGIC; + ret = kernfs_get_tree(fc); /* * In non-init cgroup namespace, instead of root cgroup's dentry, * we return the dentry corresponding to the cgroupns->root_cgrp. */ - if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { + if (!ret && ctx->ns != &init_cgroup_ns) { struct dentry *nsdentry; + struct super_block *sb = fc->root->d_sb; struct cgroup *cgrp; - mutex_lock(&cgroup_mutex); + cgroup_lock(); spin_lock_irq(&css_set_lock); - cgrp = cset_cgroup_from_root(ns->root_cset, root); + cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); spin_unlock_irq(&css_set_lock); - mutex_unlock(&cgroup_mutex); - - nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); - dput(dentry); - dentry = nsdentry; + cgroup_unlock(); + + nsdentry = kernfs_node_dentry(cgrp->kn, sb); + dput(fc->root); + if (IS_ERR(nsdentry)) { + deactivate_locked_super(sb); + ret = PTR_ERR(nsdentry); + nsdentry = NULL; + } + fc->root = nsdentry; } - if (IS_ERR(dentry) || !new_sb) - cgroup_put(&root->cgrp); + if (!ctx->kfc.new_sb_created) + cgroup_put(&ctx->root->cgrp); - return dentry; + return ret; } -static struct dentry *cgroup_mount(struct file_system_type *fs_type, - int flags, const char *unused_dev_name, - void *data) +/* + * Destroy a cgroup filesystem context. + */ +static void cgroup_fs_context_free(struct fs_context *fc) { - struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; - struct dentry *dentry; + struct cgroup_fs_context *ctx = cgroup_fc2context(fc); + + kfree(ctx->name); + kfree(ctx->release_agent); + put_cgroup_ns(ctx->ns); + kernfs_free_fs_context(fc); + kfree(ctx); +} + +static int cgroup_get_tree(struct fs_context *fc) +{ + struct cgroup_fs_context *ctx = cgroup_fc2context(fc); int ret; - get_cgroup_ns(ns); + WRITE_ONCE(cgrp_dfl_visible, true); + cgroup_get_live(&cgrp_dfl_root.cgrp); + ctx->root = &cgrp_dfl_root; - /* Check if the caller has permission to mount. */ - if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { - put_cgroup_ns(ns); - return ERR_PTR(-EPERM); - } + ret = cgroup_do_get_tree(fc); + if (!ret) + apply_cgroup_root_flags(ctx->flags); + return ret; +} - /* - * The first time anyone tries to mount a cgroup, enable the list - * linking each css_set to its tasks and fix up all existing tasks. - */ - if (!use_task_css_set_links) - cgroup_enable_task_cg_lists(); +static const struct fs_context_operations cgroup_fs_context_ops = { + .free = cgroup_fs_context_free, + .parse_param = cgroup2_parse_param, + .get_tree = cgroup_get_tree, + .reconfigure = cgroup_reconfigure, +}; - if (fs_type == &cgroup2_fs_type) { - unsigned int root_flags; +static const struct fs_context_operations cgroup1_fs_context_ops = { + .free = cgroup_fs_context_free, + .parse_param = cgroup1_parse_param, + .get_tree = cgroup1_get_tree, + .reconfigure = cgroup1_reconfigure, +}; - ret = parse_cgroup_root_flags(data, &root_flags); - if (ret) { - put_cgroup_ns(ns); - return ERR_PTR(ret); - } +/* + * Initialise the cgroup filesystem creation/reconfiguration context. Notably, + * we select the namespace we're going to use. + */ +static int cgroup_init_fs_context(struct fs_context *fc) +{ + struct cgroup_fs_context *ctx; - cgrp_dfl_visible = true; - cgroup_get_live(&cgrp_dfl_root.cgrp); + ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); + if (!ctx) + return -ENOMEM; - dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, - CGROUP2_SUPER_MAGIC, ns); - if (!IS_ERR(dentry)) - apply_cgroup_root_flags(root_flags); - } else { - dentry = cgroup1_mount(&cgroup_fs_type, flags, data, - CGROUP_SUPER_MAGIC, ns); - } + ctx->ns = current->nsproxy->cgroup_ns; + get_cgroup_ns(ctx->ns); + fc->fs_private = &ctx->kfc; + if (fc->fs_type == &cgroup2_fs_type) + fc->ops = &cgroup_fs_context_ops; + else + fc->ops = &cgroup1_fs_context_ops; + put_user_ns(fc->user_ns); + fc->user_ns = get_user_ns(ctx->ns->user_ns); + fc->global = true; + + if (have_favordynmods) + ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; - put_cgroup_ns(ns); - return dentry; + return 0; } static void cgroup_kill_sb(struct super_block *sb) @@ -1884,35 +2380,107 @@ static void cgroup_kill_sb(struct super_block *sb) struct cgroup_root *root = cgroup_root_from_kf(kf_root); /* - * If @root doesn't have any mounts or children, start killing it. + * If @root doesn't have any children, start killing it. * This prevents new mounts by disabling percpu_ref_tryget_live(). - * cgroup_mount() may wait for @root's release. * * And don't kill the default root. */ - if (!list_empty(&root->cgrp.self.children) || - root == &cgrp_dfl_root) - cgroup_put(&root->cgrp); - else + if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && + !percpu_ref_is_dying(&root->cgrp.self.refcnt)) percpu_ref_kill(&root->cgrp.self.refcnt); - + cgroup_put(&root->cgrp); kernfs_kill_sb(sb); } struct file_system_type cgroup_fs_type = { - .name = "cgroup", - .mount = cgroup_mount, - .kill_sb = cgroup_kill_sb, - .fs_flags = FS_USERNS_MOUNT, + .name = "cgroup", + .init_fs_context = cgroup_init_fs_context, + .parameters = cgroup1_fs_parameters, + .kill_sb = cgroup_kill_sb, + .fs_flags = FS_USERNS_MOUNT, }; static struct file_system_type cgroup2_fs_type = { - .name = "cgroup2", - .mount = cgroup_mount, - .kill_sb = cgroup_kill_sb, - .fs_flags = FS_USERNS_MOUNT, + .name = "cgroup2", + .init_fs_context = cgroup_init_fs_context, + .parameters = cgroup2_fs_parameters, + .kill_sb = cgroup_kill_sb, + .fs_flags = FS_USERNS_MOUNT, +}; + +#ifdef CONFIG_CPUSETS_V1 +enum cpuset_param { + Opt_cpuset_v2_mode, +}; + +static const struct fs_parameter_spec cpuset_fs_parameters[] = { + fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), + {} }; +static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param) +{ + struct cgroup_fs_context *ctx = cgroup_fc2context(fc); + struct fs_parse_result result; + int opt; + + opt = fs_parse(fc, cpuset_fs_parameters, param, &result); + if (opt < 0) + return opt; + + switch (opt) { + case Opt_cpuset_v2_mode: + ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; + return 0; + } + return -EINVAL; +} + +static const struct fs_context_operations cpuset_fs_context_ops = { + .get_tree = cgroup1_get_tree, + .free = cgroup_fs_context_free, + .parse_param = cpuset_parse_param, +}; + +/* + * This is ugly, but preserves the userspace API for existing cpuset + * users. If someone tries to mount the "cpuset" filesystem, we + * silently switch it to mount "cgroup" instead + */ +static int cpuset_init_fs_context(struct fs_context *fc) +{ + char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); + struct cgroup_fs_context *ctx; + int err; + + err = cgroup_init_fs_context(fc); + if (err) { + kfree(agent); + return err; + } + + fc->ops = &cpuset_fs_context_ops; + + ctx = cgroup_fc2context(fc); + ctx->subsys_mask = 1 << cpuset_cgrp_id; + ctx->flags |= CGRP_ROOT_NOPREFIX; + ctx->release_agent = agent; + + get_filesystem(&cgroup_fs_type); + put_filesystem(fc->fs_type); + fc->fs_type = &cgroup_fs_type; + + return 0; +} + +static struct file_system_type cpuset_fs_type = { + .name = "cpuset", + .init_fs_context = cpuset_init_fs_context, + .parameters = cpuset_fs_parameters, + .fs_flags = FS_USERNS_MOUNT, +}; +#endif + int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, struct cgroup_namespace *ns) { @@ -1926,56 +2494,92 @@ int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, { int ret; - mutex_lock(&cgroup_mutex); + cgroup_lock(); spin_lock_irq(&css_set_lock); ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); spin_unlock_irq(&css_set_lock); - mutex_unlock(&cgroup_mutex); + cgroup_unlock(); return ret; } EXPORT_SYMBOL_GPL(cgroup_path_ns); /** - * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy - * @task: target task - * @buf: the buffer to write the path into - * @buflen: the length of the buffer + * cgroup_attach_lock - Lock for ->attach() + * @lock_mode: whether acquire and acquire which rwsem + * @tsk: thread group to lock * - * Determine @task's cgroup on the first (the one with the lowest non-zero - * hierarchy_id) cgroup hierarchy and copy its path into @buf. This - * function grabs cgroup_mutex and shouldn't be used inside locks used by - * cgroup controller callbacks. + * cgroup migration sometimes needs to stabilize threadgroups against forks and + * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() + * implementations (e.g. cpuset), also need to disable CPU hotplug. + * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can + * lead to deadlocks. * - * Return value is the same as kernfs_path(). + * Bringing up a CPU may involve creating and destroying tasks which requires + * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside + * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while + * write-locking threadgroup_rwsem, the locking order is reversed and we end up + * waiting for an on-going CPU hotplug operation which in turn is waiting for + * the threadgroup_rwsem to be released to create new tasks. For more details: + * + * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu + * + * Resolve the situation by always acquiring cpus_read_lock() before optionally + * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that + * CPU hotplug is disabled on entry. + * + * When favordynmods is enabled, take per threadgroup rwsem to reduce overhead + * on dynamic cgroup modifications. see the comment above + * CGRP_ROOT_FAVOR_DYNMODS definition. + * + * tsk is not NULL only when writing to cgroup.procs. */ -int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) -{ - struct cgroup_root *root; - struct cgroup *cgrp; - int hierarchy_id = 1; - int ret; - - mutex_lock(&cgroup_mutex); - spin_lock_irq(&css_set_lock); - - root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); +void cgroup_attach_lock(enum cgroup_attach_lock_mode lock_mode, + struct task_struct *tsk) +{ + cpus_read_lock(); + + switch (lock_mode) { + case CGRP_ATTACH_LOCK_NONE: + break; + case CGRP_ATTACH_LOCK_GLOBAL: + percpu_down_write(&cgroup_threadgroup_rwsem); + break; + case CGRP_ATTACH_LOCK_PER_THREADGROUP: + down_write(&tsk->signal->cgroup_threadgroup_rwsem); + break; + default: + pr_warn("cgroup: Unexpected attach lock mode."); + break; + } +} - if (root) { - cgrp = task_cgroup_from_root(task, root); - ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); - } else { - /* if no hierarchy exists, everyone is in "/" */ - ret = strlcpy(buf, "/", buflen); +/** + * cgroup_attach_unlock - Undo cgroup_attach_lock() + * @lock_mode: whether release and release which rwsem + * @tsk: thread group to lock + */ +void cgroup_attach_unlock(enum cgroup_attach_lock_mode lock_mode, + struct task_struct *tsk) +{ + switch (lock_mode) { + case CGRP_ATTACH_LOCK_NONE: + break; + case CGRP_ATTACH_LOCK_GLOBAL: + percpu_up_write(&cgroup_threadgroup_rwsem); + break; + case CGRP_ATTACH_LOCK_PER_THREADGROUP: + up_write(&tsk->signal->cgroup_threadgroup_rwsem); + break; + default: + pr_warn("cgroup: Unexpected attach lock mode."); + break; } - spin_unlock_irq(&css_set_lock); - mutex_unlock(&cgroup_mutex); - return ret; + cpus_read_unlock(); } -EXPORT_SYMBOL_GPL(task_cgroup_path); /** * cgroup_migrate_add_task - add a migration target task to a migration context @@ -1998,9 +2602,8 @@ static void cgroup_migrate_add_task(struct task_struct *task, if (task->flags & PF_EXITING) return; - /* leave @task alone if post_fork() hasn't linked it yet */ - if (list_empty(&task->cg_list)) - return; + /* cgroup_threadgroup_rwsem protects racing against forks */ + WARN_ON_ONCE(list_empty(&task->cg_list)); cset = task_css_set(task); if (!cset->mg_src_cgrp) @@ -2047,7 +2650,7 @@ struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, struct css_set *cset = tset->cur_cset; struct task_struct *task = tset->cur_task; - while (&cset->mg_node != tset->csets) { + while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { if (!task) task = list_first_entry(&cset->mg_tasks, struct task_struct, cg_list); @@ -2060,7 +2663,7 @@ struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, /* * This function may be called both before and - * after cgroup_taskset_migrate(). The two cases + * after cgroup_migrate_execute(). The two cases * can be distinguished by looking at whether @cset * has its ->mg_dst_cset set. */ @@ -2080,7 +2683,7 @@ struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, } /** - * cgroup_taskset_migrate - migrate a taskset + * cgroup_migrate_execute - migrate a taskset * @mgctx: migration context * * Migrate tasks in @mgctx as setup by migration preparation functions. @@ -2124,8 +2727,15 @@ static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) get_css_set(to_cset); to_cset->nr_tasks++; css_set_move_task(task, from_cset, to_cset, true); - put_css_set_locked(from_cset); from_cset->nr_tasks--; + /* + * If the source or destination cgroup is frozen, + * the task might require to change its state. + */ + cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, + to_cset->dfl_cgrp); + put_css_set_locked(from_cset); + } } spin_unlock_irq(&css_set_lock); @@ -2168,21 +2778,48 @@ out_release_tset: list_del_init(&cset->mg_node); } spin_unlock_irq(&css_set_lock); + + /* + * Re-initialize the cgroup_taskset structure in case it is reused + * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() + * iteration. + */ + tset->nr_tasks = 0; + tset->csets = &tset->src_csets; return ret; } /** - * cgroup_may_migrate_to - verify whether a cgroup can be migration destination + * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination * @dst_cgrp: destination cgroup to test * - * On the default hierarchy, except for the root, subtree_control must be - * zero for migration destination cgroups with tasks so that child cgroups - * don't compete against tasks. + * On the default hierarchy, except for the mixable, (possible) thread root + * and threaded cgroups, subtree_control must be zero for migration + * destination cgroups with tasks so that child cgroups don't compete + * against tasks. */ -bool cgroup_may_migrate_to(struct cgroup *dst_cgrp) +int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) { - return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) || - !dst_cgrp->subtree_control; + /* v1 doesn't have any restriction */ + if (!cgroup_on_dfl(dst_cgrp)) + return 0; + + /* verify @dst_cgrp can host resources */ + if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) + return -EOPNOTSUPP; + + /* + * If @dst_cgrp is already or can become a thread root or is + * threaded, it doesn't matter. + */ + if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) + return 0; + + /* apply no-internal-process constraint */ + if (dst_cgrp->subtree_control) + return -EBUSY; + + return 0; } /** @@ -2194,21 +2831,27 @@ bool cgroup_may_migrate_to(struct cgroup *dst_cgrp) */ void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) { - LIST_HEAD(preloaded); struct css_set *cset, *tmp_cset; lockdep_assert_held(&cgroup_mutex); spin_lock_irq(&css_set_lock); - list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); - list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); + list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, + mg_src_preload_node) { + cset->mg_src_cgrp = NULL; + cset->mg_dst_cgrp = NULL; + cset->mg_dst_cset = NULL; + list_del_init(&cset->mg_src_preload_node); + put_css_set_locked(cset); + } - list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { + list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, + mg_dst_preload_node) { cset->mg_src_cgrp = NULL; cset->mg_dst_cgrp = NULL; cset->mg_dst_cset = NULL; - list_del_init(&cset->mg_preload_node); + list_del_init(&cset->mg_dst_preload_node); put_css_set_locked(cset); } @@ -2248,11 +2891,11 @@ void cgroup_migrate_add_src(struct css_set *src_cset, if (src_cset->dead) return; - src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); - - if (!list_empty(&src_cset->mg_preload_node)) + if (!list_empty(&src_cset->mg_src_preload_node)) return; + src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); + WARN_ON(src_cset->mg_src_cgrp); WARN_ON(src_cset->mg_dst_cgrp); WARN_ON(!list_empty(&src_cset->mg_tasks)); @@ -2261,7 +2904,7 @@ void cgroup_migrate_add_src(struct css_set *src_cset, src_cset->mg_src_cgrp = src_cgrp; src_cset->mg_dst_cgrp = dst_cgrp; get_css_set(src_cset); - list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); + list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); } /** @@ -2286,14 +2929,14 @@ int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) /* look up the dst cset for each src cset and link it to src */ list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, - mg_preload_node) { + mg_src_preload_node) { struct css_set *dst_cset; struct cgroup_subsys *ss; int ssid; dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); if (!dst_cset) - goto err; + return -ENOMEM; WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); @@ -2305,7 +2948,7 @@ int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) if (src_cset == dst_cset) { src_cset->mg_src_cgrp = NULL; src_cset->mg_dst_cgrp = NULL; - list_del_init(&src_cset->mg_preload_node); + list_del_init(&src_cset->mg_src_preload_node); put_css_set(src_cset); put_css_set(dst_cset); continue; @@ -2313,8 +2956,8 @@ int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) src_cset->mg_dst_cset = dst_cset; - if (list_empty(&dst_cset->mg_preload_node)) - list_add_tail(&dst_cset->mg_preload_node, + if (list_empty(&dst_cset->mg_dst_preload_node)) + list_add_tail(&dst_cset->mg_dst_preload_node, &mgctx->preloaded_dst_csets); else put_css_set(dst_cset); @@ -2325,9 +2968,6 @@ int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) } return 0; -err: - cgroup_migrate_finish(mgctx); - return -ENOMEM; } /** @@ -2354,19 +2994,17 @@ int cgroup_migrate(struct task_struct *leader, bool threadgroup, struct task_struct *task; /* - * Prevent freeing of tasks while we take a snapshot. Tasks that are - * already PF_EXITING could be freed from underneath us unless we - * take an rcu_read_lock. + * The following thread iteration should be inside an RCU critical + * section to prevent tasks from being freed while taking the snapshot. + * spin_lock_irq() implies RCU critical section here. */ spin_lock_irq(&css_set_lock); - rcu_read_lock(); task = leader; do { cgroup_migrate_add_task(task, mgctx); if (!threadgroup) break; } while_each_thread(leader, task); - rcu_read_unlock(); spin_unlock_irq(&css_set_lock); return cgroup_migrate_execute(mgctx); @@ -2385,21 +3023,16 @@ int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, { DEFINE_CGROUP_MGCTX(mgctx); struct task_struct *task; - int ret; - - if (!cgroup_may_migrate_to(dst_cgrp)) - return -EBUSY; + int ret = 0; /* look up all src csets */ spin_lock_irq(&css_set_lock); - rcu_read_lock(); task = leader; do { cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); if (!threadgroup) break; } while_each_thread(leader, task); - rcu_read_unlock(); spin_unlock_irq(&css_set_lock); /* prepare dst csets and commit */ @@ -2410,100 +3043,26 @@ int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, cgroup_migrate_finish(&mgctx); if (!ret) - trace_cgroup_attach_task(dst_cgrp, leader, threadgroup); + TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); return ret; } -static int cgroup_procs_write_permission(struct task_struct *task, - struct cgroup *dst_cgrp, - struct kernfs_open_file *of) -{ - struct super_block *sb = of->file->f_path.dentry->d_sb; - struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; - struct cgroup *root_cgrp = ns->root_cset->dfl_cgrp; - struct cgroup *src_cgrp, *com_cgrp; - struct inode *inode; - int ret; - - if (!cgroup_on_dfl(dst_cgrp)) { - const struct cred *cred = current_cred(); - const struct cred *tcred = get_task_cred(task); - - /* - * even if we're attaching all tasks in the thread group, - * we only need to check permissions on one of them. - */ - if (uid_eq(cred->euid, GLOBAL_ROOT_UID) || - uid_eq(cred->euid, tcred->uid) || - uid_eq(cred->euid, tcred->suid)) - ret = 0; - else - ret = -EACCES; - - put_cred(tcred); - return ret; - } - - /* find the source cgroup */ - spin_lock_irq(&css_set_lock); - src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); - spin_unlock_irq(&css_set_lock); - - /* and the common ancestor */ - com_cgrp = src_cgrp; - while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) - com_cgrp = cgroup_parent(com_cgrp); - - /* %current should be authorized to migrate to the common ancestor */ - inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); - if (!inode) - return -ENOMEM; - - ret = inode_permission(inode, MAY_WRITE); - iput(inode); - if (ret) - return ret; - - /* - * If namespaces are delegation boundaries, %current must be able - * to see both source and destination cgroups from its namespace. - */ - if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && - (!cgroup_is_descendant(src_cgrp, root_cgrp) || - !cgroup_is_descendant(dst_cgrp, root_cgrp))) - return -ENOENT; - - return 0; -} - -/* - * Find the task_struct of the task to attach by vpid and pass it along to the - * function to attach either it or all tasks in its threadgroup. Will lock - * cgroup_mutex and threadgroup. - */ -ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, - size_t nbytes, loff_t off, bool threadgroup) +struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, + enum cgroup_attach_lock_mode *lock_mode) { struct task_struct *tsk; - struct cgroup_subsys *ss; - struct cgroup *cgrp; pid_t pid; - int ssid, ret; if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) - return -EINVAL; + return ERR_PTR(-EINVAL); - cgrp = cgroup_kn_lock_live(of->kn, false); - if (!cgrp) - return -ENODEV; - - percpu_down_write(&cgroup_threadgroup_rwsem); +retry_find_task: rcu_read_lock(); if (pid) { tsk = find_task_by_vpid(pid); if (!tsk) { - ret = -ESRCH; + tsk = ERR_PTR(-ESRCH); goto out_unlock_rcu; } } else { @@ -2520,35 +3079,59 @@ ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, * cgroup with no rt_runtime allocated. Just say no. */ if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { - ret = -EINVAL; + tsk = ERR_PTR(-EINVAL); goto out_unlock_rcu; } - get_task_struct(tsk); rcu_read_unlock(); - ret = cgroup_procs_write_permission(tsk, cgrp, of); - if (!ret) - ret = cgroup_attach_task(cgrp, tsk, threadgroup); + /* + * If we migrate a single thread, we don't care about threadgroup + * stability. If the thread is `current`, it won't exit(2) under our + * hands or change PID through exec(2). We exclude + * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write callers + * by cgroup_mutex. Therefore, we can skip the global lock. + */ + lockdep_assert_held(&cgroup_mutex); - put_task_struct(tsk); - goto out_unlock_threadgroup; + if (pid || threadgroup) { + if (cgroup_enable_per_threadgroup_rwsem) + *lock_mode = CGRP_ATTACH_LOCK_PER_THREADGROUP; + else + *lock_mode = CGRP_ATTACH_LOCK_GLOBAL; + } else { + *lock_mode = CGRP_ATTACH_LOCK_NONE; + } + + cgroup_attach_lock(*lock_mode, tsk); + + if (threadgroup) { + if (!thread_group_leader(tsk)) { + /* + * A race with de_thread from another thread's exec() + * may strip us of our leadership. If this happens, + * throw this task away and try again. + */ + cgroup_attach_unlock(*lock_mode, tsk); + put_task_struct(tsk); + goto retry_find_task; + } + } + + return tsk; out_unlock_rcu: rcu_read_unlock(); -out_unlock_threadgroup: - percpu_up_write(&cgroup_threadgroup_rwsem); - for_each_subsys(ss, ssid) - if (ss->post_attach) - ss->post_attach(); - cgroup_kn_unlock(of->kn); - return ret ?: nbytes; + return tsk; } -ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, - loff_t off) +void cgroup_procs_write_finish(struct task_struct *task, + enum cgroup_attach_lock_mode lock_mode) { - return __cgroup_procs_write(of, buf, nbytes, off, true); + cgroup_attach_unlock(lock_mode, task); + + /* release reference from cgroup_procs_write_start() */ + put_task_struct(task); } static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) @@ -2560,7 +3143,7 @@ static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) do_each_subsys_mask(ss, ssid, ss_mask) { if (printed) seq_putc(seq, ' '); - seq_printf(seq, "%s", ss->name); + seq_puts(seq, ss->name); printed = true; } while_each_subsys_mask(); if (printed) @@ -2600,29 +3183,54 @@ static int cgroup_update_dfl_csses(struct cgroup *cgrp) struct cgroup_subsys_state *d_css; struct cgroup *dsct; struct css_set *src_cset; + enum cgroup_attach_lock_mode lock_mode; + bool has_tasks; int ret; lockdep_assert_held(&cgroup_mutex); - percpu_down_write(&cgroup_threadgroup_rwsem); - /* look up all csses currently attached to @cgrp's subtree */ spin_lock_irq(&css_set_lock); cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { struct cgrp_cset_link *link; + /* + * As cgroup_update_dfl_csses() is only called by + * cgroup_apply_control(). The csses associated with the + * given cgrp will not be affected by changes made to + * its subtree_control file. We can skip them. + */ + if (dsct == cgrp) + continue; + list_for_each_entry(link, &dsct->cset_links, cset_link) cgroup_migrate_add_src(link->cset, dsct, &mgctx); } spin_unlock_irq(&css_set_lock); + /* + * We need to write-lock threadgroup_rwsem while migrating tasks. + * However, if there are no source csets for @cgrp, changing its + * controllers isn't gonna produce any task migrations and the + * write-locking can be skipped safely. + */ + has_tasks = !list_empty(&mgctx.preloaded_src_csets); + + if (has_tasks) + lock_mode = CGRP_ATTACH_LOCK_GLOBAL; + else + lock_mode = CGRP_ATTACH_LOCK_NONE; + + cgroup_attach_lock(lock_mode, NULL); + /* NULL dst indicates self on default hierarchy */ ret = cgroup_migrate_prepare_dst(&mgctx); if (ret) goto out_finish; spin_lock_irq(&css_set_lock); - list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { + list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, + mg_src_preload_node) { struct task_struct *task, *ntask; /* all tasks in src_csets need to be migrated */ @@ -2634,7 +3242,7 @@ static int cgroup_update_dfl_csses(struct cgroup *cgrp) ret = cgroup_migrate_execute(&mgctx); out_finish: cgroup_migrate_finish(&mgctx); - percpu_up_write(&cgroup_threadgroup_rwsem); + cgroup_attach_unlock(lock_mode, NULL); return ret; } @@ -2655,7 +3263,7 @@ void cgroup_lock_and_drain_offline(struct cgroup *cgrp) int ssid; restart: - mutex_lock(&cgroup_mutex); + cgroup_lock(); cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { for_each_subsys(ss, ssid) { @@ -2669,7 +3277,7 @@ restart: prepare_to_wait(&dsct->offline_waitq, &wait, TASK_UNINTERRUPTIBLE); - mutex_unlock(&cgroup_mutex); + cgroup_unlock(); schedule(); finish_wait(&dsct->offline_waitq, &wait); @@ -2680,11 +3288,12 @@ restart: } /** - * cgroup_save_control - save control masks of a subtree + * cgroup_save_control - save control masks and dom_cgrp of a subtree * @cgrp: root of the target subtree * - * Save ->subtree_control and ->subtree_ss_mask to the respective old_ - * prefixed fields for @cgrp's subtree including @cgrp itself. + * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the + * respective old_ prefixed fields for @cgrp's subtree including @cgrp + * itself. */ static void cgroup_save_control(struct cgroup *cgrp) { @@ -2694,6 +3303,7 @@ static void cgroup_save_control(struct cgroup *cgrp) cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { dsct->old_subtree_control = dsct->subtree_control; dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; + dsct->old_dom_cgrp = dsct->dom_cgrp; } } @@ -2719,11 +3329,12 @@ static void cgroup_propagate_control(struct cgroup *cgrp) } /** - * cgroup_restore_control - restore control masks of a subtree + * cgroup_restore_control - restore control masks and dom_cgrp of a subtree * @cgrp: root of the target subtree * - * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ - * prefixed fields for @cgrp's subtree including @cgrp itself. + * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the + * respective old_ prefixed fields for @cgrp's subtree including @cgrp + * itself. */ static void cgroup_restore_control(struct cgroup *cgrp) { @@ -2733,6 +3344,7 @@ static void cgroup_restore_control(struct cgroup *cgrp) cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { dsct->subtree_control = dsct->old_subtree_control; dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; + dsct->dom_cgrp = dsct->old_dom_cgrp; } } @@ -2772,8 +3384,6 @@ static int cgroup_apply_control_enable(struct cgroup *cgrp) for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cgroup_css(dsct, ss); - WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); - if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) continue; @@ -2783,6 +3393,8 @@ static int cgroup_apply_control_enable(struct cgroup *cgrp) return PTR_ERR(css); } + WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); + if (css_visible(css)) { ret = css_populate_dir(css); if (ret) @@ -2818,11 +3430,11 @@ static void cgroup_apply_control_disable(struct cgroup *cgrp) for_each_subsys(ss, ssid) { struct cgroup_subsys_state *css = cgroup_css(dsct, ss); - WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); - if (!css) continue; + WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); + if (css->parent && !(cgroup_ss_mask(dsct) & (1 << ss->id))) { kill_css(css); @@ -2863,15 +3475,11 @@ static int cgroup_apply_control(struct cgroup *cgrp) return ret; /* - * At this point, cgroup_e_css() results reflect the new csses + * At this point, cgroup_e_css_by_mask() results reflect the new csses * making the following cgroup_update_dfl_csses() properly update * css associations of all tasks in the subtree. */ - ret = cgroup_update_dfl_csses(cgrp); - if (ret) - return ret; - - return 0; + return cgroup_update_dfl_csses(cgrp); } /** @@ -2891,6 +3499,46 @@ static void cgroup_finalize_control(struct cgroup *cgrp, int ret) cgroup_apply_control_disable(cgrp); } +static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) +{ + u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; + + /* if nothing is getting enabled, nothing to worry about */ + if (!enable) + return 0; + + /* can @cgrp host any resources? */ + if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) + return -EOPNOTSUPP; + + /* mixables don't care */ + if (cgroup_is_mixable(cgrp)) + return 0; + + if (domain_enable) { + /* can't enable domain controllers inside a thread subtree */ + if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) + return -EOPNOTSUPP; + } else { + /* + * Threaded controllers can handle internal competitions + * and are always allowed inside a (prospective) thread + * subtree. + */ + if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) + return 0; + } + + /* + * Controllers can't be enabled for a cgroup with tasks to avoid + * child cgroups competing against tasks. + */ + if (cgroup_has_tasks(cgrp)) + return -EBUSY; + + return 0; +} + /* change the enabled child controllers for a cgroup in the default hierarchy */ static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, char *buf, size_t nbytes, @@ -2966,33 +3614,9 @@ static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, goto out_unlock; } - /* - * Except for the root, subtree_control must be zero for a cgroup - * with tasks so that child cgroups don't compete against tasks. - */ - if (enable && cgroup_parent(cgrp)) { - struct cgrp_cset_link *link; - - /* - * Because namespaces pin csets too, @cgrp->cset_links - * might not be empty even when @cgrp is empty. Walk and - * verify each cset. - */ - spin_lock_irq(&css_set_lock); - - ret = 0; - list_for_each_entry(link, &cgrp->cset_links, cset_link) { - if (css_set_populated(link->cset)) { - ret = -EBUSY; - break; - } - } - - spin_unlock_irq(&css_set_lock); - - if (ret) - goto out_unlock; - } + ret = cgroup_vet_subtree_control_enable(cgrp, enable); + if (ret) + goto out_unlock; /* save and update control masks and prepare csses */ cgroup_save_control(cgrp); @@ -3011,48 +3635,677 @@ out_unlock: return ret ?: nbytes; } +/** + * cgroup_enable_threaded - make @cgrp threaded + * @cgrp: the target cgroup + * + * Called when "threaded" is written to the cgroup.type interface file and + * tries to make @cgrp threaded and join the parent's resource domain. + * This function is never called on the root cgroup as cgroup.type doesn't + * exist on it. + */ +static int cgroup_enable_threaded(struct cgroup *cgrp) +{ + struct cgroup *parent = cgroup_parent(cgrp); + struct cgroup *dom_cgrp = parent->dom_cgrp; + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + int ret; + + lockdep_assert_held(&cgroup_mutex); + + /* noop if already threaded */ + if (cgroup_is_threaded(cgrp)) + return 0; + + /* + * If @cgroup is populated or has domain controllers enabled, it + * can't be switched. While the below cgroup_can_be_thread_root() + * test can catch the same conditions, that's only when @parent is + * not mixable, so let's check it explicitly. + */ + if (cgroup_is_populated(cgrp) || + cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) + return -EOPNOTSUPP; + + /* we're joining the parent's domain, ensure its validity */ + if (!cgroup_is_valid_domain(dom_cgrp) || + !cgroup_can_be_thread_root(dom_cgrp)) + return -EOPNOTSUPP; + + /* + * The following shouldn't cause actual migrations and should + * always succeed. + */ + cgroup_save_control(cgrp); + + cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) + if (dsct == cgrp || cgroup_is_threaded(dsct)) + dsct->dom_cgrp = dom_cgrp; + + ret = cgroup_apply_control(cgrp); + if (!ret) + parent->nr_threaded_children++; + + cgroup_finalize_control(cgrp, ret); + return ret; +} + +static int cgroup_type_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + + if (cgroup_is_threaded(cgrp)) + seq_puts(seq, "threaded\n"); + else if (!cgroup_is_valid_domain(cgrp)) + seq_puts(seq, "domain invalid\n"); + else if (cgroup_is_thread_root(cgrp)) + seq_puts(seq, "domain threaded\n"); + else + seq_puts(seq, "domain\n"); + + return 0; +} + +static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) +{ + struct cgroup *cgrp; + int ret; + + /* only switching to threaded mode is supported */ + if (strcmp(strstrip(buf), "threaded")) + return -EINVAL; + + /* drain dying csses before we re-apply (threaded) subtree control */ + cgrp = cgroup_kn_lock_live(of->kn, true); + if (!cgrp) + return -ENOENT; + + /* threaded can only be enabled */ + ret = cgroup_enable_threaded(cgrp); + + cgroup_kn_unlock(of->kn); + return ret ?: nbytes; +} + +static int cgroup_max_descendants_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + int descendants = READ_ONCE(cgrp->max_descendants); + + if (descendants == INT_MAX) + seq_puts(seq, "max\n"); + else + seq_printf(seq, "%d\n", descendants); + + return 0; +} + +static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct cgroup *cgrp; + int descendants; + ssize_t ret; + + buf = strstrip(buf); + if (!strcmp(buf, "max")) { + descendants = INT_MAX; + } else { + ret = kstrtoint(buf, 0, &descendants); + if (ret) + return ret; + } + + if (descendants < 0) + return -ERANGE; + + cgrp = cgroup_kn_lock_live(of->kn, false); + if (!cgrp) + return -ENOENT; + + cgrp->max_descendants = descendants; + + cgroup_kn_unlock(of->kn); + + return nbytes; +} + +static int cgroup_max_depth_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + int depth = READ_ONCE(cgrp->max_depth); + + if (depth == INT_MAX) + seq_puts(seq, "max\n"); + else + seq_printf(seq, "%d\n", depth); + + return 0; +} + +static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct cgroup *cgrp; + ssize_t ret; + int depth; + + buf = strstrip(buf); + if (!strcmp(buf, "max")) { + depth = INT_MAX; + } else { + ret = kstrtoint(buf, 0, &depth); + if (ret) + return ret; + } + + if (depth < 0) + return -ERANGE; + + cgrp = cgroup_kn_lock_live(of->kn, false); + if (!cgrp) + return -ENOENT; + + cgrp->max_depth = depth; + + cgroup_kn_unlock(of->kn); + + return nbytes; +} + static int cgroup_events_show(struct seq_file *seq, void *v) { - seq_printf(seq, "populated %d\n", - cgroup_is_populated(seq_css(seq)->cgroup)); + struct cgroup *cgrp = seq_css(seq)->cgroup; + + seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); + seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); + return 0; } -static int cgroup_file_open(struct kernfs_open_file *of) +static int cgroup_stat_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgroup = seq_css(seq)->cgroup; + struct cgroup_subsys_state *css; + int dying_cnt[CGROUP_SUBSYS_COUNT]; + int ssid; + + seq_printf(seq, "nr_descendants %d\n", + cgroup->nr_descendants); + + /* + * Show the number of live and dying csses associated with each of + * non-inhibited cgroup subsystems that is bound to cgroup v2. + * + * Without proper lock protection, racing is possible. So the + * numbers may not be consistent when that happens. + */ + rcu_read_lock(); + for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { + dying_cnt[ssid] = -1; + if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) || + (cgroup_subsys[ssid]->root != &cgrp_dfl_root)) + continue; + css = rcu_dereference_raw(cgroup->subsys[ssid]); + dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid]; + seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name, + css ? (css->nr_descendants + 1) : 0); + } + + seq_printf(seq, "nr_dying_descendants %d\n", + cgroup->nr_dying_descendants); + for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { + if (dying_cnt[ssid] >= 0) + seq_printf(seq, "nr_dying_subsys_%s %d\n", + cgroup_subsys[ssid]->name, dying_cnt[ssid]); + } + rcu_read_unlock(); + return 0; +} + +static int cgroup_core_local_stat_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + unsigned int sequence; + u64 freeze_time; + + do { + sequence = read_seqcount_begin(&cgrp->freezer.freeze_seq); + freeze_time = cgrp->freezer.frozen_nsec; + /* Add in current freezer interval if the cgroup is freezing. */ + if (test_bit(CGRP_FREEZE, &cgrp->flags)) + freeze_time += (ktime_get_ns() - + cgrp->freezer.freeze_start_nsec); + } while (read_seqcount_retry(&cgrp->freezer.freeze_seq, sequence)); + + do_div(freeze_time, NSEC_PER_USEC); + seq_printf(seq, "frozen_usec %llu\n", freeze_time); + + return 0; +} + +#ifdef CONFIG_CGROUP_SCHED +/** + * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest + * + * Find and get @cgrp's css associated with @ss. If the css doesn't exist + * or is offline, %NULL is returned. + */ +static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + struct cgroup_subsys_state *css; + + rcu_read_lock(); + css = cgroup_css(cgrp, ss); + if (css && !css_tryget_online(css)) + css = NULL; + rcu_read_unlock(); + + return css; +} + +static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + struct cgroup_subsys *ss = cgroup_subsys[ssid]; + struct cgroup_subsys_state *css; + int ret; + + if (!ss->css_extra_stat_show) + return 0; + + css = cgroup_tryget_css(cgrp, ss); + if (!css) + return 0; + + ret = ss->css_extra_stat_show(seq, css); + css_put(css); + return ret; +} + +static int cgroup_local_stat_show(struct seq_file *seq, + struct cgroup *cgrp, int ssid) +{ + struct cgroup_subsys *ss = cgroup_subsys[ssid]; + struct cgroup_subsys_state *css; + int ret; + + if (!ss->css_local_stat_show) + return 0; + + css = cgroup_tryget_css(cgrp, ss); + if (!css) + return 0; + + ret = ss->css_local_stat_show(seq, css); + css_put(css); + return ret; +} +#endif + +static int cpu_stat_show(struct seq_file *seq, void *v) +{ + int ret = 0; + + cgroup_base_stat_cputime_show(seq); +#ifdef CONFIG_CGROUP_SCHED + ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); +#endif + return ret; +} + +static int cpu_local_stat_show(struct seq_file *seq, void *v) +{ + struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; + int ret = 0; + +#ifdef CONFIG_CGROUP_SCHED + ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); +#endif + return ret; +} + +#ifdef CONFIG_PSI +static int cgroup_io_pressure_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + struct psi_group *psi = cgroup_psi(cgrp); + + return psi_show(seq, psi, PSI_IO); +} +static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + struct psi_group *psi = cgroup_psi(cgrp); + + return psi_show(seq, psi, PSI_MEM); +} +static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + struct psi_group *psi = cgroup_psi(cgrp); + + return psi_show(seq, psi, PSI_CPU); +} + +static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, enum psi_res res) +{ + struct cgroup_file_ctx *ctx = of->priv; + struct psi_trigger *new; + struct cgroup *cgrp; + struct psi_group *psi; + + cgrp = cgroup_kn_lock_live(of->kn, false); + if (!cgrp) + return -ENODEV; + + cgroup_get(cgrp); + cgroup_kn_unlock(of->kn); + + /* Allow only one trigger per file descriptor */ + if (ctx->psi.trigger) { + cgroup_put(cgrp); + return -EBUSY; + } + + psi = cgroup_psi(cgrp); + new = psi_trigger_create(psi, buf, res, of->file, of); + if (IS_ERR(new)) { + cgroup_put(cgrp); + return PTR_ERR(new); + } + + smp_store_release(&ctx->psi.trigger, new); + cgroup_put(cgrp); + + return nbytes; +} + +static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + return pressure_write(of, buf, nbytes, PSI_IO); +} + +static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + return pressure_write(of, buf, nbytes, PSI_MEM); +} + +static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + return pressure_write(of, buf, nbytes, PSI_CPU); +} + +#ifdef CONFIG_IRQ_TIME_ACCOUNTING +static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + struct psi_group *psi = cgroup_psi(cgrp); + + return psi_show(seq, psi, PSI_IRQ); +} + +static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + return pressure_write(of, buf, nbytes, PSI_IRQ); +} +#endif + +static int cgroup_pressure_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + struct psi_group *psi = cgroup_psi(cgrp); + + seq_printf(seq, "%d\n", psi->enabled); + + return 0; +} + +static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + ssize_t ret; + int enable; + struct cgroup *cgrp; + struct psi_group *psi; + + ret = kstrtoint(strstrip(buf), 0, &enable); + if (ret) + return ret; + + if (enable < 0 || enable > 1) + return -ERANGE; + + cgrp = cgroup_kn_lock_live(of->kn, false); + if (!cgrp) + return -ENOENT; + + psi = cgroup_psi(cgrp); + if (psi->enabled != enable) { + int i; + + /* show or hide {cpu,memory,io,irq}.pressure files */ + for (i = 0; i < NR_PSI_RESOURCES; i++) + cgroup_file_show(&cgrp->psi_files[i], enable); + + psi->enabled = enable; + if (enable) + psi_cgroup_restart(psi); + } + + cgroup_kn_unlock(of->kn); + + return nbytes; +} + +static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, + poll_table *pt) +{ + struct cgroup_file_ctx *ctx = of->priv; + + return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); +} + +static void cgroup_pressure_release(struct kernfs_open_file *of) { - struct cftype *cft = of->kn->priv; + struct cgroup_file_ctx *ctx = of->priv; + + psi_trigger_destroy(ctx->psi.trigger); +} + +bool cgroup_psi_enabled(void) +{ + if (static_branch_likely(&psi_disabled)) + return false; + + return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; +} + +#else /* CONFIG_PSI */ +bool cgroup_psi_enabled(void) +{ + return false; +} + +#endif /* CONFIG_PSI */ + +static int cgroup_freeze_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + + seq_printf(seq, "%d\n", cgrp->freezer.freeze); - if (cft->open) - return cft->open(of); return 0; } +static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct cgroup *cgrp; + ssize_t ret; + int freeze; + + ret = kstrtoint(strstrip(buf), 0, &freeze); + if (ret) + return ret; + + if (freeze < 0 || freeze > 1) + return -ERANGE; + + cgrp = cgroup_kn_lock_live(of->kn, false); + if (!cgrp) + return -ENOENT; + + cgroup_freeze(cgrp, freeze); + + cgroup_kn_unlock(of->kn); + + return nbytes; +} + +static void __cgroup_kill(struct cgroup *cgrp) +{ + struct css_task_iter it; + struct task_struct *task; + + lockdep_assert_held(&cgroup_mutex); + + spin_lock_irq(&css_set_lock); + cgrp->kill_seq++; + spin_unlock_irq(&css_set_lock); + + css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); + while ((task = css_task_iter_next(&it))) { + /* Ignore kernel threads here. */ + if (task->flags & PF_KTHREAD) + continue; + + /* Skip tasks that are already dying. */ + if (__fatal_signal_pending(task)) + continue; + + send_sig(SIGKILL, task, 0); + } + css_task_iter_end(&it); +} + +static void cgroup_kill(struct cgroup *cgrp) +{ + struct cgroup_subsys_state *css; + struct cgroup *dsct; + + lockdep_assert_held(&cgroup_mutex); + + cgroup_for_each_live_descendant_pre(dsct, css, cgrp) + __cgroup_kill(dsct); +} + +static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) +{ + ssize_t ret = 0; + int kill; + struct cgroup *cgrp; + + ret = kstrtoint(strstrip(buf), 0, &kill); + if (ret) + return ret; + + if (kill != 1) + return -ERANGE; + + cgrp = cgroup_kn_lock_live(of->kn, false); + if (!cgrp) + return -ENOENT; + + /* + * Killing is a process directed operation, i.e. the whole thread-group + * is taken down so act like we do for cgroup.procs and only make this + * writable in non-threaded cgroups. + */ + if (cgroup_is_threaded(cgrp)) + ret = -EOPNOTSUPP; + else + cgroup_kill(cgrp); + + cgroup_kn_unlock(of->kn); + + return ret ?: nbytes; +} + +static int cgroup_file_open(struct kernfs_open_file *of) +{ + struct cftype *cft = of_cft(of); + struct cgroup_file_ctx *ctx; + int ret; + + ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); + if (!ctx) + return -ENOMEM; + + ctx->ns = current->nsproxy->cgroup_ns; + get_cgroup_ns(ctx->ns); + of->priv = ctx; + + if (!cft->open) + return 0; + + ret = cft->open(of); + if (ret) { + put_cgroup_ns(ctx->ns); + kfree(ctx); + } + return ret; +} + static void cgroup_file_release(struct kernfs_open_file *of) { - struct cftype *cft = of->kn->priv; + struct cftype *cft = of_cft(of); + struct cgroup_file_ctx *ctx = of->priv; if (cft->release) cft->release(of); + put_cgroup_ns(ctx->ns); + kfree(ctx); + of->priv = NULL; } static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { - struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; - struct cgroup *cgrp = of->kn->parent->priv; - struct cftype *cft = of->kn->priv; + struct cgroup_file_ctx *ctx = of->priv; + struct cgroup *cgrp = kn_priv(of->kn); + struct cftype *cft = of_cft(of); struct cgroup_subsys_state *css; int ret; + if (!nbytes) + return 0; + /* * If namespaces are delegation boundaries, disallow writes to * files in an non-init namespace root from inside the namespace * except for the files explicitly marked delegatable - - * cgroup.procs and cgroup.subtree_control. + * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control. */ if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && !(cft->flags & CFTYPE_NS_DELEGATABLE) && - ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) + ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) return -EPERM; if (cft->write) @@ -3085,6 +4338,16 @@ static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, return ret ?: nbytes; } +static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) +{ + struct cftype *cft = of_cft(of); + + if (cft->poll) + return cft->poll(of, pt); + + return kernfs_generic_poll(of, pt); +} + static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) { return seq_cft(seq)->seq_start(seq, ppos); @@ -3123,6 +4386,7 @@ static struct kernfs_ops cgroup_kf_single_ops = { .open = cgroup_file_open, .release = cgroup_file_release, .write = cgroup_file_write, + .poll = cgroup_file_poll, .seq_show = cgroup_seqfile_show, }; @@ -3131,24 +4395,17 @@ static struct kernfs_ops cgroup_kf_ops = { .open = cgroup_file_open, .release = cgroup_file_release, .write = cgroup_file_write, + .poll = cgroup_file_poll, .seq_start = cgroup_seqfile_start, .seq_next = cgroup_seqfile_next, .seq_stop = cgroup_seqfile_stop, .seq_show = cgroup_seqfile_show, }; -/* set uid and gid of cgroup dirs and files to that of the creator */ -static int cgroup_kn_set_ugid(struct kernfs_node *kn) +static void cgroup_file_notify_timer(struct timer_list *timer) { - struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, - .ia_uid = current_fsuid(), - .ia_gid = current_fsgid(), }; - - if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && - gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) - return 0; - - return kernfs_setattr(kn, &iattr); + cgroup_file_notify(container_of(timer, struct cgroup_file, + notify_timer)); } static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, @@ -3157,26 +4414,23 @@ static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, char name[CGROUP_FILE_NAME_MAX]; struct kernfs_node *kn; struct lock_class_key *key = NULL; - int ret; #ifdef CONFIG_DEBUG_LOCK_ALLOC key = &cft->lockdep_key; #endif kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), - cgroup_file_mode(cft), 0, cft->kf_ops, cft, + cgroup_file_mode(cft), + current_fsuid(), current_fsgid(), + 0, cft->kf_ops, cft, NULL, key); if (IS_ERR(kn)) return PTR_ERR(kn); - ret = cgroup_kn_set_ugid(kn); - if (ret) { - kernfs_remove(kn); - return ret; - } - if (cft->file_offset) { struct cgroup_file *cfile = (void *)css + cft->file_offset; + timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); + spin_lock_irq(&cgroup_file_kn_lock); cfile->kn = kn; spin_unlock_irq(&cgroup_file_kn_lock); @@ -3215,7 +4469,8 @@ restart: continue; if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) continue; - + if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) + continue; if (is_add) { ret = cgroup_add_file(css, cgrp, cft); if (ret) { @@ -3234,7 +4489,6 @@ restart: static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) { - LIST_HEAD(pending); struct cgroup_subsys *ss = cfts[0].ss; struct cgroup *root = &ss->root->cgrp; struct cgroup_subsys_state *css; @@ -3271,19 +4525,26 @@ static void cgroup_exit_cftypes(struct cftype *cfts) cft->ss = NULL; /* revert flags set by cgroup core while adding @cfts */ - cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); + cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | + __CFTYPE_ADDED); } } static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { struct cftype *cft; + int ret = 0; for (cft = cfts; cft->name[0] != '\0'; cft++) { struct kernfs_ops *kf_ops; WARN_ON(cft->ss || cft->kf_ops); + if (cft->flags & __CFTYPE_ADDED) { + ret = -EBUSY; + break; + } + if (cft->seq_start) kf_ops = &cgroup_kf_ops; else @@ -3296,30 +4557,29 @@ static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); if (!kf_ops) { - cgroup_exit_cftypes(cfts); - return -ENOMEM; + ret = -ENOMEM; + break; } kf_ops->atomic_write_len = cft->max_write_len; } cft->kf_ops = kf_ops; cft->ss = ss; + cft->flags |= __CFTYPE_ADDED; } - return 0; + if (ret) + cgroup_exit_cftypes(cfts); + return ret; } -static int cgroup_rm_cftypes_locked(struct cftype *cfts) +static void cgroup_rm_cftypes_locked(struct cftype *cfts) { lockdep_assert_held(&cgroup_mutex); - if (!cfts || !cfts[0].ss) - return -ENOENT; - list_del(&cfts->node); cgroup_apply_cftypes(cfts, false); cgroup_exit_cftypes(cfts); - return 0; } /** @@ -3335,12 +4595,16 @@ static int cgroup_rm_cftypes_locked(struct cftype *cfts) */ int cgroup_rm_cftypes(struct cftype *cfts) { - int ret; + if (!cfts || cfts[0].name[0] == '\0') + return 0; - mutex_lock(&cgroup_mutex); - ret = cgroup_rm_cftypes_locked(cfts); - mutex_unlock(&cgroup_mutex); - return ret; + if (!(cfts[0].flags & __CFTYPE_ADDED)) + return -ENOENT; + + cgroup_lock(); + cgroup_rm_cftypes_locked(cfts); + cgroup_unlock(); + return 0; } /** @@ -3357,7 +4621,7 @@ int cgroup_rm_cftypes(struct cftype *cfts) * function currently returns 0 as long as @cfts registration is successful * even if some file creation attempts on existing cgroups fail. */ -static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { int ret; @@ -3371,14 +4635,14 @@ static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) if (ret) return ret; - mutex_lock(&cgroup_mutex); + cgroup_lock(); list_add_tail(&cfts->node, &ss->cfts); ret = cgroup_apply_cftypes(cfts, true); if (ret) cgroup_rm_cftypes_locked(cfts); - mutex_unlock(&cgroup_mutex); + cgroup_unlock(); return ret; } @@ -3427,10 +4691,40 @@ void cgroup_file_notify(struct cgroup_file *cfile) unsigned long flags; spin_lock_irqsave(&cgroup_file_kn_lock, flags); - if (cfile->kn) - kernfs_notify(cfile->kn); + if (cfile->kn) { + unsigned long last = cfile->notified_at; + unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; + + if (time_in_range(jiffies, last, next)) { + timer_reduce(&cfile->notify_timer, next); + } else { + kernfs_notify(cfile->kn); + cfile->notified_at = jiffies; + } + } spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); } +EXPORT_SYMBOL_GPL(cgroup_file_notify); + +/** + * cgroup_file_show - show or hide a hidden cgroup file + * @cfile: target cgroup_file obtained by setting cftype->file_offset + * @show: whether to show or hide + */ +void cgroup_file_show(struct cgroup_file *cfile, bool show) +{ + struct kernfs_node *kn; + + spin_lock_irq(&cgroup_file_kn_lock); + kn = cfile->kn; + kernfs_get(kn); + spin_unlock_irq(&cgroup_file_kn_lock); + + if (kn) + kernfs_show(kn, show); + + kernfs_put(kn); +} /** * css_next_child - find the next child of a given css @@ -3466,7 +4760,7 @@ struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, * implies that if we observe !CSS_RELEASED on @pos in this RCU * critical section, the one pointed to by its next pointer is * guaranteed to not have finished its RCU grace period even if we - * have dropped rcu_read_lock() inbetween iterations. + * have dropped rcu_read_lock() in-between iterations. * * If @pos has CSS_RELEASED set, its next pointer can't be * dereferenced; however, as each css is given a monotonically @@ -3481,7 +4775,8 @@ struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, } else if (likely(!(pos->flags & CSS_RELEASED))) { next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); } else { - list_for_each_entry_rcu(next, &parent->children, sibling) + list_for_each_entry_rcu(next, &parent->children, sibling, + lockdep_is_held(&cgroup_mutex)) if (next->serial_nr > pos->serial_nr) break; } @@ -3506,8 +4801,9 @@ struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical - * section. This function will return the correct next descendant as long - * as both @pos and @root are accessible and @pos is a descendant of @root. + * section. Additionally, it isn't necessary to hold onto a reference to @pos. + * This function will return the correct next descendant as long as both @pos + * and @root are accessible and @pos is a descendant of @root. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the @@ -3543,6 +4839,7 @@ css_next_descendant_pre(struct cgroup_subsys_state *pos, return NULL; } +EXPORT_SYMBOL_GPL(css_next_descendant_pre); /** * css_rightmost_descendant - return the rightmost descendant of a css @@ -3554,8 +4851,9 @@ css_next_descendant_pre(struct cgroup_subsys_state *pos, * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical - * section. This function will return the correct rightmost descendant as - * long as @pos is accessible. + * section. Additionally, it isn't necessary to hold onto a reference to @pos. + * This function will return the correct rightmost descendant as long as @pos + * is accessible. */ struct cgroup_subsys_state * css_rightmost_descendant(struct cgroup_subsys_state *pos) @@ -3599,9 +4897,9 @@ css_leftmost_descendant(struct cgroup_subsys_state *pos) * * While this function requires cgroup_mutex or RCU read locking, it * doesn't require the whole traversal to be contained in a single critical - * section. This function will return the correct next descendant as long - * as both @pos and @cgroup are accessible and @pos is a descendant of - * @cgroup. + * section. Additionally, it isn't necessary to hold onto a reference to @pos. + * This function will return the correct next descendant as long as both @pos + * and @cgroup are accessible and @pos is a descendant of @cgroup. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the @@ -3659,47 +4957,88 @@ bool css_has_online_children(struct cgroup_subsys_state *css) return ret; } -/** - * css_task_iter_advance_css_set - advance a task itererator to the next css_set - * @it: the iterator to advance - * - * Advance @it to the next css_set to walk. - */ -static void css_task_iter_advance_css_set(struct css_task_iter *it) +static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) { - struct list_head *l = it->cset_pos; + struct list_head *l; struct cgrp_cset_link *link; struct css_set *cset; lockdep_assert_held(&css_set_lock); - /* Advance to the next non-empty css_set */ - do { - l = l->next; - if (l == it->cset_head) { - it->cset_pos = NULL; - it->task_pos = NULL; - return; - } + /* find the next threaded cset */ + if (it->tcset_pos) { + l = it->tcset_pos->next; - if (it->ss) { - cset = container_of(l, struct css_set, - e_cset_node[it->ss->id]); - } else { - link = list_entry(l, struct cgrp_cset_link, cset_link); - cset = link->cset; + if (l != it->tcset_head) { + it->tcset_pos = l; + return container_of(l, struct css_set, + threaded_csets_node); } - } while (!css_set_populated(cset)); + + it->tcset_pos = NULL; + } + + /* find the next cset */ + l = it->cset_pos; + l = l->next; + if (l == it->cset_head) { + it->cset_pos = NULL; + return NULL; + } + + if (it->ss) { + cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); + } else { + link = list_entry(l, struct cgrp_cset_link, cset_link); + cset = link->cset; + } it->cset_pos = l; - if (!list_empty(&cset->tasks)) - it->task_pos = cset->tasks.next; - else - it->task_pos = cset->mg_tasks.next; + /* initialize threaded css_set walking */ + if (it->flags & CSS_TASK_ITER_THREADED) { + if (it->cur_dcset) + put_css_set_locked(it->cur_dcset); + it->cur_dcset = cset; + get_css_set(cset); + + it->tcset_head = &cset->threaded_csets; + it->tcset_pos = &cset->threaded_csets; + } + + return cset; +} + +/** + * css_task_iter_advance_css_set - advance a task iterator to the next css_set + * @it: the iterator to advance + * + * Advance @it to the next css_set to walk. + */ +static void css_task_iter_advance_css_set(struct css_task_iter *it) +{ + struct css_set *cset; - it->tasks_head = &cset->tasks; - it->mg_tasks_head = &cset->mg_tasks; + lockdep_assert_held(&css_set_lock); + + /* Advance to the next non-empty css_set and find first non-empty tasks list*/ + while ((cset = css_task_iter_next_css_set(it))) { + if (!list_empty(&cset->tasks)) { + it->cur_tasks_head = &cset->tasks; + break; + } else if (!list_empty(&cset->mg_tasks)) { + it->cur_tasks_head = &cset->mg_tasks; + break; + } else if (!list_empty(&cset->dying_tasks)) { + it->cur_tasks_head = &cset->dying_tasks; + break; + } + } + if (!cset) { + it->task_pos = NULL; + return; + } + it->task_pos = it->cur_tasks_head->next; /* * We don't keep css_sets locked across iteration steps and thus @@ -3725,32 +5064,74 @@ static void css_task_iter_advance_css_set(struct css_task_iter *it) list_add(&it->iters_node, &cset->task_iters); } +static void css_task_iter_skip(struct css_task_iter *it, + struct task_struct *task) +{ + lockdep_assert_held(&css_set_lock); + + if (it->task_pos == &task->cg_list) { + it->task_pos = it->task_pos->next; + it->flags |= CSS_TASK_ITER_SKIPPED; + } +} + static void css_task_iter_advance(struct css_task_iter *it) { - struct list_head *l = it->task_pos; + struct task_struct *task; lockdep_assert_held(&css_set_lock); - WARN_ON_ONCE(!l); +repeat: + if (it->task_pos) { + /* + * Advance iterator to find next entry. We go through cset + * tasks, mg_tasks and dying_tasks, when consumed we move onto + * the next cset. + */ + if (it->flags & CSS_TASK_ITER_SKIPPED) + it->flags &= ~CSS_TASK_ITER_SKIPPED; + else + it->task_pos = it->task_pos->next; - /* - * Advance iterator to find next entry. cset->tasks is consumed - * first and then ->mg_tasks. After ->mg_tasks, we move onto the - * next cset. - */ - l = l->next; + if (it->task_pos == &it->cur_cset->tasks) { + it->cur_tasks_head = &it->cur_cset->mg_tasks; + it->task_pos = it->cur_tasks_head->next; + } + if (it->task_pos == &it->cur_cset->mg_tasks) { + it->cur_tasks_head = &it->cur_cset->dying_tasks; + it->task_pos = it->cur_tasks_head->next; + } + if (it->task_pos == &it->cur_cset->dying_tasks) + css_task_iter_advance_css_set(it); + } else { + /* called from start, proceed to the first cset */ + css_task_iter_advance_css_set(it); + } - if (l == it->tasks_head) - l = it->mg_tasks_head->next; + if (!it->task_pos) + return; - if (l == it->mg_tasks_head) - css_task_iter_advance_css_set(it); - else - it->task_pos = l; + task = list_entry(it->task_pos, struct task_struct, cg_list); + + if (it->flags & CSS_TASK_ITER_PROCS) { + /* if PROCS, skip over tasks which aren't group leaders */ + if (!thread_group_leader(task)) + goto repeat; + + /* and dying leaders w/o live member threads */ + if (it->cur_tasks_head == &it->cur_cset->dying_tasks && + !atomic_read(&task->signal->live)) + goto repeat; + } else { + /* skip all dying ones */ + if (it->cur_tasks_head == &it->cur_cset->dying_tasks) + goto repeat; + } } /** * css_task_iter_start - initiate task iteration * @css: the css to walk tasks of + * @flags: CSS_TASK_ITER_* flags * @it: the task iterator to use * * Initiate iteration through the tasks of @css. The caller can call @@ -3758,28 +5139,28 @@ static void css_task_iter_advance(struct css_task_iter *it) * returns NULL. On completion of iteration, css_task_iter_end() must be * called. */ -void css_task_iter_start(struct cgroup_subsys_state *css, +void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, struct css_task_iter *it) { - /* no one should try to iterate before mounting cgroups */ - WARN_ON_ONCE(!use_task_css_set_links); + unsigned long irqflags; memset(it, 0, sizeof(*it)); - spin_lock_irq(&css_set_lock); + spin_lock_irqsave(&css_set_lock, irqflags); it->ss = css->ss; + it->flags = flags; - if (it->ss) + if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) it->cset_pos = &css->cgroup->e_csets[css->ss->id]; else it->cset_pos = &css->cgroup->cset_links; it->cset_head = it->cset_pos; - css_task_iter_advance_css_set(it); + css_task_iter_advance(it); - spin_unlock_irq(&css_set_lock); + spin_unlock_irqrestore(&css_set_lock, irqflags); } /** @@ -3792,12 +5173,18 @@ void css_task_iter_start(struct cgroup_subsys_state *css, */ struct task_struct *css_task_iter_next(struct css_task_iter *it) { + unsigned long irqflags; + if (it->cur_task) { put_task_struct(it->cur_task); it->cur_task = NULL; } - spin_lock_irq(&css_set_lock); + spin_lock_irqsave(&css_set_lock, irqflags); + + /* @it may be half-advanced by skips, finish advancing */ + if (it->flags & CSS_TASK_ITER_SKIPPED) + css_task_iter_advance(it); if (it->task_pos) { it->cur_task = list_entry(it->task_pos, struct task_struct, @@ -3806,7 +5193,7 @@ struct task_struct *css_task_iter_next(struct css_task_iter *it) css_task_iter_advance(it); } - spin_unlock_irq(&css_set_lock); + spin_unlock_irqrestore(&css_set_lock, irqflags); return it->cur_task; } @@ -3819,74 +5206,229 @@ struct task_struct *css_task_iter_next(struct css_task_iter *it) */ void css_task_iter_end(struct css_task_iter *it) { + unsigned long irqflags; + if (it->cur_cset) { - spin_lock_irq(&css_set_lock); + spin_lock_irqsave(&css_set_lock, irqflags); list_del(&it->iters_node); put_css_set_locked(it->cur_cset); - spin_unlock_irq(&css_set_lock); + spin_unlock_irqrestore(&css_set_lock, irqflags); } + if (it->cur_dcset) + put_css_set(it->cur_dcset); + if (it->cur_task) put_task_struct(it->cur_task); } static void cgroup_procs_release(struct kernfs_open_file *of) { - if (of->priv) { - css_task_iter_end(of->priv); - kfree(of->priv); - } + struct cgroup_file_ctx *ctx = of->priv; + + if (ctx->procs.started) + css_task_iter_end(&ctx->procs.iter); } static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) { struct kernfs_open_file *of = s->private; - struct css_task_iter *it = of->priv; - struct task_struct *task; + struct cgroup_file_ctx *ctx = of->priv; - do { - task = css_task_iter_next(it); - } while (task && !thread_group_leader(task)); + if (pos) + (*pos)++; - return task; + return css_task_iter_next(&ctx->procs.iter); } -static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) +static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, + unsigned int iter_flags) { struct kernfs_open_file *of = s->private; struct cgroup *cgrp = seq_css(s)->cgroup; - struct css_task_iter *it = of->priv; + struct cgroup_file_ctx *ctx = of->priv; + struct css_task_iter *it = &ctx->procs.iter; /* * When a seq_file is seeked, it's always traversed sequentially * from position 0, so we can simply keep iterating on !0 *pos. */ - if (!it) { - if (WARN_ON_ONCE((*pos)++)) + if (!ctx->procs.started) { + if (WARN_ON_ONCE((*pos))) return ERR_PTR(-EINVAL); - - it = kzalloc(sizeof(*it), GFP_KERNEL); - if (!it) - return ERR_PTR(-ENOMEM); - of->priv = it; - css_task_iter_start(&cgrp->self, it); - } else if (!(*pos)++) { + css_task_iter_start(&cgrp->self, iter_flags, it); + ctx->procs.started = true; + } else if (!(*pos)) { css_task_iter_end(it); - css_task_iter_start(&cgrp->self, it); - } + css_task_iter_start(&cgrp->self, iter_flags, it); + } else + return it->cur_task; return cgroup_procs_next(s, NULL, NULL); } +static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) +{ + struct cgroup *cgrp = seq_css(s)->cgroup; + + /* + * All processes of a threaded subtree belong to the domain cgroup + * of the subtree. Only threads can be distributed across the + * subtree. Reject reads on cgroup.procs in the subtree proper. + * They're always empty anyway. + */ + if (cgroup_is_threaded(cgrp)) + return ERR_PTR(-EOPNOTSUPP); + + return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | + CSS_TASK_ITER_THREADED); +} + static int cgroup_procs_show(struct seq_file *s, void *v) { - seq_printf(s, "%d\n", task_tgid_vnr(v)); + seq_printf(s, "%d\n", task_pid_vnr(v)); return 0; } +static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) +{ + int ret; + struct inode *inode; + + lockdep_assert_held(&cgroup_mutex); + + inode = kernfs_get_inode(sb, cgrp->procs_file.kn); + if (!inode) + return -ENOMEM; + + ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); + iput(inode); + return ret; +} + +static int cgroup_procs_write_permission(struct cgroup *src_cgrp, + struct cgroup *dst_cgrp, + struct super_block *sb, + struct cgroup_namespace *ns) +{ + struct cgroup *com_cgrp = src_cgrp; + int ret; + + lockdep_assert_held(&cgroup_mutex); + + /* find the common ancestor */ + while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) + com_cgrp = cgroup_parent(com_cgrp); + + /* %current should be authorized to migrate to the common ancestor */ + ret = cgroup_may_write(com_cgrp, sb); + if (ret) + return ret; + + /* + * If namespaces are delegation boundaries, %current must be able + * to see both source and destination cgroups from its namespace. + */ + if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && + (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || + !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) + return -ENOENT; + + return 0; +} + +static int cgroup_attach_permissions(struct cgroup *src_cgrp, + struct cgroup *dst_cgrp, + struct super_block *sb, bool threadgroup, + struct cgroup_namespace *ns) +{ + int ret = 0; + + ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); + if (ret) + return ret; + + ret = cgroup_migrate_vet_dst(dst_cgrp); + if (ret) + return ret; + + if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) + ret = -EOPNOTSUPP; + + return ret; +} + +static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, + bool threadgroup) +{ + struct cgroup_file_ctx *ctx = of->priv; + struct cgroup *src_cgrp, *dst_cgrp; + struct task_struct *task; + ssize_t ret; + enum cgroup_attach_lock_mode lock_mode; + + dst_cgrp = cgroup_kn_lock_live(of->kn, false); + if (!dst_cgrp) + return -ENODEV; + + task = cgroup_procs_write_start(buf, threadgroup, &lock_mode); + ret = PTR_ERR_OR_ZERO(task); + if (ret) + goto out_unlock; + + /* find the source cgroup */ + spin_lock_irq(&css_set_lock); + src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); + spin_unlock_irq(&css_set_lock); + + /* + * Process and thread migrations follow same delegation rule. Check + * permissions using the credentials from file open to protect against + * inherited fd attacks. + */ + scoped_with_creds(of->file->f_cred) + ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, + of->file->f_path.dentry->d_sb, + threadgroup, ctx->ns); + if (ret) + goto out_finish; + + ret = cgroup_attach_task(dst_cgrp, task, threadgroup); + +out_finish: + cgroup_procs_write_finish(task, lock_mode); +out_unlock: + cgroup_kn_unlock(of->kn); + + return ret; +} + +static ssize_t cgroup_procs_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + return __cgroup_procs_write(of, buf, true) ?: nbytes; +} + +static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) +{ + return __cgroup_procs_start(s, pos, 0); +} + +static ssize_t cgroup_threads_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + return __cgroup_procs_write(of, buf, false) ?: nbytes; +} + /* cgroup core interface files for the default hierarchy */ static struct cftype cgroup_base_files[] = { { + .name = "cgroup.type", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cgroup_type_show, + .write = cgroup_type_write, + }, + { .name = "cgroup.procs", .flags = CFTYPE_NS_DELEGATABLE, .file_offset = offsetof(struct cgroup, procs_file), @@ -3897,6 +5439,15 @@ static struct cftype cgroup_base_files[] = { .write = cgroup_procs_write, }, { + .name = "cgroup.threads", + .flags = CFTYPE_NS_DELEGATABLE, + .release = cgroup_procs_release, + .seq_start = cgroup_threads_start, + .seq_next = cgroup_procs_next, + .seq_show = cgroup_procs_show, + .write = cgroup_threads_write, + }, + { .name = "cgroup.controllers", .seq_show = cgroup_controllers_show, }, @@ -3912,6 +5463,89 @@ static struct cftype cgroup_base_files[] = { .file_offset = offsetof(struct cgroup, events_file), .seq_show = cgroup_events_show, }, + { + .name = "cgroup.max.descendants", + .seq_show = cgroup_max_descendants_show, + .write = cgroup_max_descendants_write, + }, + { + .name = "cgroup.max.depth", + .seq_show = cgroup_max_depth_show, + .write = cgroup_max_depth_write, + }, + { + .name = "cgroup.stat", + .seq_show = cgroup_stat_show, + }, + { + .name = "cgroup.stat.local", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cgroup_core_local_stat_show, + }, + { + .name = "cgroup.freeze", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cgroup_freeze_show, + .write = cgroup_freeze_write, + }, + { + .name = "cgroup.kill", + .flags = CFTYPE_NOT_ON_ROOT, + .write = cgroup_kill_write, + }, + { + .name = "cpu.stat", + .seq_show = cpu_stat_show, + }, + { + .name = "cpu.stat.local", + .seq_show = cpu_local_stat_show, + }, + { } /* terminate */ +}; + +static struct cftype cgroup_psi_files[] = { +#ifdef CONFIG_PSI + { + .name = "io.pressure", + .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), + .seq_show = cgroup_io_pressure_show, + .write = cgroup_io_pressure_write, + .poll = cgroup_pressure_poll, + .release = cgroup_pressure_release, + }, + { + .name = "memory.pressure", + .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), + .seq_show = cgroup_memory_pressure_show, + .write = cgroup_memory_pressure_write, + .poll = cgroup_pressure_poll, + .release = cgroup_pressure_release, + }, + { + .name = "cpu.pressure", + .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), + .seq_show = cgroup_cpu_pressure_show, + .write = cgroup_cpu_pressure_write, + .poll = cgroup_pressure_poll, + .release = cgroup_pressure_release, + }, +#ifdef CONFIG_IRQ_TIME_ACCOUNTING + { + .name = "irq.pressure", + .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), + .seq_show = cgroup_irq_pressure_show, + .write = cgroup_irq_pressure_write, + .poll = cgroup_pressure_poll, + .release = cgroup_pressure_release, + }, +#endif + { + .name = "cgroup.pressure", + .seq_show = cgroup_pressure_show, + .write = cgroup_pressure_write, + }, +#endif /* CONFIG_PSI */ { } /* terminate */ }; @@ -3931,22 +5565,23 @@ static struct cftype cgroup_base_files[] = { * RCU callback. * * 4. After the grace period, the css can be freed. Implemented in - * css_free_work_fn(). + * css_free_rwork_fn(). * * It is actually hairier because both step 2 and 4 require process context * and thus involve punting to css->destroy_work adding two additional * steps to the already complex sequence. */ -static void css_free_work_fn(struct work_struct *work) +static void css_free_rwork_fn(struct work_struct *work) { - struct cgroup_subsys_state *css = - container_of(work, struct cgroup_subsys_state, destroy_work); + struct cgroup_subsys_state *css = container_of(to_rcu_work(work), + struct cgroup_subsys_state, destroy_rwork); struct cgroup_subsys *ss = css->ss; struct cgroup *cgrp = css->cgroup; percpu_ref_exit(&css->refcnt); + css_rstat_exit(css); - if (ss) { + if (!css_is_self(css)) { /* css free path */ struct cgroup_subsys_state *parent = css->parent; int id = css->id; @@ -3960,8 +5595,10 @@ static void css_free_work_fn(struct work_struct *work) } else { /* cgroup free path */ atomic_dec(&cgrp->root->nr_cgrps); - cgroup1_pidlist_destroy_all(cgrp); + if (!cgroup_on_dfl(cgrp)) + cgroup1_pidlist_destroy_all(cgrp); cancel_work_sync(&cgrp->release_agent_work); + bpf_cgrp_storage_free(cgrp); if (cgroup_parent(cgrp)) { /* @@ -3972,6 +5609,7 @@ static void css_free_work_fn(struct work_struct *work) */ cgroup_put(cgroup_parent(cgrp)); kernfs_put(cgrp->kn); + psi_cgroup_free(cgrp); kfree(cgrp); } else { /* @@ -3984,15 +5622,6 @@ static void css_free_work_fn(struct work_struct *work) } } -static void css_free_rcu_fn(struct rcu_head *rcu_head) -{ - struct cgroup_subsys_state *css = - container_of(rcu_head, struct cgroup_subsys_state, rcu_head); - - INIT_WORK(&css->destroy_work, css_free_work_fn); - queue_work(cgroup_destroy_wq, &css->destroy_work); -} - static void css_release_work_fn(struct work_struct *work) { struct cgroup_subsys_state *css = @@ -4000,22 +5629,47 @@ static void css_release_work_fn(struct work_struct *work) struct cgroup_subsys *ss = css->ss; struct cgroup *cgrp = css->cgroup; - mutex_lock(&cgroup_mutex); + cgroup_lock(); css->flags |= CSS_RELEASED; list_del_rcu(&css->sibling); - if (ss) { - /* css release path */ + if (!css_is_self(css)) { + struct cgroup *parent_cgrp; + + css_rstat_flush(css); + cgroup_idr_replace(&ss->css_idr, NULL, css->id); if (ss->css_released) ss->css_released(css); + + cgrp->nr_dying_subsys[ss->id]--; + /* + * When a css is released and ready to be freed, its + * nr_descendants must be zero. However, the corresponding + * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem + * is activated and deactivated multiple times with one or + * more of its previous activation leaving behind dying csses. + */ + WARN_ON_ONCE(css->nr_descendants); + parent_cgrp = cgroup_parent(cgrp); + while (parent_cgrp) { + parent_cgrp->nr_dying_subsys[ss->id]--; + parent_cgrp = cgroup_parent(parent_cgrp); + } } else { + struct cgroup *tcgrp; + /* cgroup release path */ - trace_cgroup_release(cgrp); + TRACE_CGROUP_PATH(release, cgrp); - cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); - cgrp->id = -1; + css_rstat_flush(&cgrp->self); + + spin_lock_irq(&css_set_lock); + for (tcgrp = cgroup_parent(cgrp); tcgrp; + tcgrp = cgroup_parent(tcgrp)) + tcgrp->nr_dying_descendants--; + spin_unlock_irq(&css_set_lock); /* * There are two control paths which try to determine @@ -4027,13 +5681,12 @@ static void css_release_work_fn(struct work_struct *work) if (cgrp->kn) RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL); - - cgroup_bpf_put(cgrp); } - mutex_unlock(&cgroup_mutex); + cgroup_unlock(); - call_rcu(&css->rcu_head, css_free_rcu_fn); + INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); + queue_rcu_work(cgroup_free_wq, &css->destroy_rwork); } static void css_release(struct percpu_ref *ref) @@ -4042,7 +5695,7 @@ static void css_release(struct percpu_ref *ref) container_of(ref, struct cgroup_subsys_state, refcnt); INIT_WORK(&css->destroy_work, css_release_work_fn); - queue_work(cgroup_destroy_wq, &css->destroy_work); + queue_work(cgroup_release_wq, &css->destroy_work); } static void init_and_link_css(struct cgroup_subsys_state *css, @@ -4084,8 +5737,11 @@ static int online_css(struct cgroup_subsys_state *css) rcu_assign_pointer(css->cgroup->subsys[ss->id], css); atomic_inc(&css->online_cnt); - if (css->parent) + if (css->parent) { atomic_inc(&css->parent->online_cnt); + while ((css = css->parent)) + css->nr_descendants++; + } } return ret; } @@ -4100,9 +5756,6 @@ static void offline_css(struct cgroup_subsys_state *css) if (!(css->flags & CSS_ONLINE)) return; - if (ss->css_reset) - ss->css_reset(css); - if (ss->css_offline) ss->css_offline(css); @@ -4110,6 +5763,16 @@ static void offline_css(struct cgroup_subsys_state *css) RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); wake_up_all(&css->cgroup->offline_waitq); + + css->cgroup->nr_dying_subsys[ss->id]++; + /* + * Parent css and cgroup cannot be freed until after the freeing + * of child css, see css_free_rwork_fn(). + */ + while ((css = css->parent)) { + css->nr_descendants--; + css->cgroup->nr_dying_subsys[ss->id]++; + } } /** @@ -4148,6 +5811,10 @@ static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, goto err_free_css; css->id = err; + err = css_rstat_init(css); + if (err) + goto err_free_css; + /* @css is ready to be brought online now, make it visible */ list_add_tail_rcu(&css->sibling, &parent_css->children); cgroup_idr_replace(&ss->css_idr, css, css->id); @@ -4156,39 +5823,31 @@ static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, if (err) goto err_list_del; - if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && - cgroup_parent(parent)) { - pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", - current->comm, current->pid, ss->name); - if (!strcmp(ss->name, "memory")) - pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); - ss->warned_broken_hierarchy = true; - } - return css; err_list_del: list_del_rcu(&css->sibling); err_free_css: - call_rcu(&css->rcu_head, css_free_rcu_fn); + INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); + queue_rcu_work(cgroup_free_wq, &css->destroy_rwork); return ERR_PTR(err); } /* * The returned cgroup is fully initialized including its control mask, but - * it isn't associated with its kernfs_node and doesn't have the control - * mask applied. + * it doesn't have the control mask applied. */ -static struct cgroup *cgroup_create(struct cgroup *parent) +static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, + umode_t mode) { struct cgroup_root *root = parent->root; struct cgroup *cgrp, *tcgrp; - int level = parent->level + 1; + struct kernfs_node *kn; + int i, level = parent->level + 1; int ret; /* allocate the cgroup and its ID, 0 is reserved for the root */ - cgrp = kzalloc(sizeof(*cgrp) + - sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL); + cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); if (!cgrp) return ERR_PTR(-ENOMEM); @@ -4196,15 +5855,15 @@ static struct cgroup *cgroup_create(struct cgroup *parent) if (ret) goto out_free_cgrp; - /* - * Temporarily set the pointer to NULL, so idr_find() won't return - * a half-baked cgroup. - */ - cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); - if (cgrp->id < 0) { - ret = -ENOMEM; + /* create the directory */ + kn = kernfs_create_dir_ns(parent->kn, name, mode, + current_fsuid(), current_fsgid(), + cgrp, NULL); + if (IS_ERR(kn)) { + ret = PTR_ERR(kn); goto out_cancel_ref; } + cgrp->kn = kn; init_cgroup_housekeeping(cgrp); @@ -4212,8 +5871,38 @@ static struct cgroup *cgroup_create(struct cgroup *parent) cgrp->root = root; cgrp->level = level; + /* + * Now that init_cgroup_housekeeping() has been called and cgrp->self + * is setup, it is safe to perform rstat initialization on it. + */ + ret = css_rstat_init(&cgrp->self); + if (ret) + goto out_kernfs_remove; + + ret = psi_cgroup_alloc(cgrp); + if (ret) + goto out_stat_exit; + for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) - cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; + cgrp->ancestors[tcgrp->level] = tcgrp; + + /* + * New cgroup inherits effective freeze counter, and + * if the parent has to be frozen, the child has too. + */ + cgrp->freezer.e_freeze = parent->freezer.e_freeze; + seqcount_spinlock_init(&cgrp->freezer.freeze_seq, &css_set_lock); + if (cgrp->freezer.e_freeze) { + /* + * Set the CGRP_FREEZE flag, so when a process will be + * attached to the child cgroup, it will become frozen. + * At this point the new cgroup is unpopulated, so we can + * consider it frozen immediately. + */ + set_bit(CGRP_FREEZE, &cgrp->flags); + cgrp->freezer.freeze_start_nsec = ktime_get_ns(); + set_bit(CGRP_FROZEN, &cgrp->flags); + } if (notify_on_release(parent)) set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); @@ -4223,31 +5912,50 @@ static struct cgroup *cgroup_create(struct cgroup *parent) cgrp->self.serial_nr = css_serial_nr_next++; + ret = blocking_notifier_call_chain_robust(&cgroup_lifetime_notifier, + CGROUP_LIFETIME_ONLINE, + CGROUP_LIFETIME_OFFLINE, cgrp); + ret = notifier_to_errno(ret); + if (ret) + goto out_psi_free; + /* allocation complete, commit to creation */ + spin_lock_irq(&css_set_lock); + for (i = 0; i < level; i++) { + tcgrp = cgrp->ancestors[i]; + tcgrp->nr_descendants++; + + /* + * If the new cgroup is frozen, all ancestor cgroups get a new + * frozen descendant, but their state can't change because of + * this. + */ + if (cgrp->freezer.e_freeze) + tcgrp->freezer.nr_frozen_descendants++; + } + spin_unlock_irq(&css_set_lock); + list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); atomic_inc(&root->nr_cgrps); cgroup_get_live(parent); /* - * @cgrp is now fully operational. If something fails after this - * point, it'll be released via the normal destruction path. - */ - cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); - - /* * On the default hierarchy, a child doesn't automatically inherit * subtree_control from the parent. Each is configured manually. */ if (!cgroup_on_dfl(cgrp)) cgrp->subtree_control = cgroup_control(cgrp); - if (parent) - cgroup_bpf_inherit(cgrp, parent); - cgroup_propagate_control(cgrp); return cgrp; +out_psi_free: + psi_cgroup_free(cgrp); +out_stat_exit: + css_rstat_exit(&cgrp->self); +out_kernfs_remove: + kernfs_remove(cgrp->kn); out_cancel_ref: percpu_ref_exit(&cgrp->self.refcnt); out_free_cgrp: @@ -4255,10 +5963,32 @@ out_free_cgrp: return ERR_PTR(ret); } +static bool cgroup_check_hierarchy_limits(struct cgroup *parent) +{ + struct cgroup *cgroup; + int ret = false; + int level = 0; + + lockdep_assert_held(&cgroup_mutex); + + for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { + if (cgroup->nr_descendants >= cgroup->max_descendants) + goto fail; + + if (level >= cgroup->max_depth) + goto fail; + + level++; + } + + ret = true; +fail: + return ret; +} + int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) { struct cgroup *parent, *cgrp; - struct kernfs_node *kn; int ret; /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ @@ -4269,29 +5999,22 @@ int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) if (!parent) return -ENODEV; - cgrp = cgroup_create(parent); - if (IS_ERR(cgrp)) { - ret = PTR_ERR(cgrp); + if (!cgroup_check_hierarchy_limits(parent)) { + ret = -EAGAIN; goto out_unlock; } - /* create the directory */ - kn = kernfs_create_dir(parent->kn, name, mode, cgrp); - if (IS_ERR(kn)) { - ret = PTR_ERR(kn); - goto out_destroy; + cgrp = cgroup_create(parent, name, mode); + if (IS_ERR(cgrp)) { + ret = PTR_ERR(cgrp); + goto out_unlock; } - cgrp->kn = kn; /* - * This extra ref will be put in cgroup_free_fn() and guarantees + * This extra ref will be put in css_free_rwork_fn() and guarantees * that @cgrp->kn is always accessible. */ - kernfs_get(kn); - - ret = cgroup_kn_set_ugid(kn); - if (ret) - goto out_destroy; + kernfs_get(cgrp->kn); ret = css_populate_dir(&cgrp->self); if (ret) @@ -4301,10 +6024,10 @@ int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) if (ret) goto out_destroy; - trace_cgroup_mkdir(cgrp); + TRACE_CGROUP_PATH(mkdir, cgrp); /* let's create and online css's */ - kernfs_activate(kn); + kernfs_activate(cgrp->kn); ret = 0; goto out_unlock; @@ -4319,14 +6042,14 @@ out_unlock: /* * This is called when the refcnt of a css is confirmed to be killed. * css_tryget_online() is now guaranteed to fail. Tell the subsystem to - * initate destruction and put the css ref from kill_css(). + * initiate destruction and put the css ref from kill_css(). */ static void css_killed_work_fn(struct work_struct *work) { struct cgroup_subsys_state *css = container_of(work, struct cgroup_subsys_state, destroy_work); - mutex_lock(&cgroup_mutex); + cgroup_lock(); do { offline_css(css); @@ -4335,7 +6058,7 @@ static void css_killed_work_fn(struct work_struct *work) css = css->parent; } while (css && atomic_dec_and_test(&css->online_cnt)); - mutex_unlock(&cgroup_mutex); + cgroup_unlock(); } /* css kill confirmation processing requires process context, bounce */ @@ -4346,7 +6069,7 @@ static void css_killed_ref_fn(struct percpu_ref *ref) if (atomic_dec_and_test(&css->online_cnt)) { INIT_WORK(&css->destroy_work, css_killed_work_fn); - queue_work(cgroup_destroy_wq, &css->destroy_work); + queue_work(cgroup_offline_wq, &css->destroy_work); } } @@ -4366,6 +6089,12 @@ static void kill_css(struct cgroup_subsys_state *css) if (css->flags & CSS_DYING) return; + /* + * Call css_killed(), if defined, before setting the CSS_DYING flag + */ + if (css->ss->css_killed) + css->ss->css_killed(css); + css->flags |= CSS_DYING; /* @@ -4420,9 +6149,10 @@ static void kill_css(struct cgroup_subsys_state *css) static int cgroup_destroy_locked(struct cgroup *cgrp) __releases(&cgroup_mutex) __acquires(&cgroup_mutex) { + struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); struct cgroup_subsys_state *css; struct cgrp_cset_link *link; - int ssid; + int ssid, ret; lockdep_assert_held(&cgroup_mutex); @@ -4444,7 +6174,7 @@ static int cgroup_destroy_locked(struct cgroup *cgrp) /* * Mark @cgrp and the associated csets dead. The former prevents * further task migration and child creation by disabling - * cgroup_lock_live_group(). The latter makes the csets ignored by + * cgroup_kn_lock_live(). The latter makes the csets ignored by * the migration path. */ cgrp->self.flags &= ~CSS_ONLINE; @@ -4458,13 +6188,31 @@ static int cgroup_destroy_locked(struct cgroup *cgrp) for_each_css(css, ssid, cgrp) kill_css(css); - /* - * Remove @cgrp directory along with the base files. @cgrp has an - * extra ref on its kn. - */ + /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ + css_clear_dir(&cgrp->self); kernfs_remove(cgrp->kn); - cgroup1_check_for_release(cgroup_parent(cgrp)); + if (cgroup_is_threaded(cgrp)) + parent->nr_threaded_children--; + + spin_lock_irq(&css_set_lock); + for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { + tcgrp->nr_descendants--; + tcgrp->nr_dying_descendants++; + /* + * If the dying cgroup is frozen, decrease frozen descendants + * counters of ancestor cgroups. + */ + if (test_bit(CGRP_FROZEN, &cgrp->flags)) + tcgrp->freezer.nr_frozen_descendants--; + } + spin_unlock_irq(&css_set_lock); + + cgroup1_check_for_release(parent); + + ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, + CGROUP_LIFETIME_OFFLINE, cgrp); + WARN_ON_ONCE(notifier_to_errno(ret)); /* put the base reference */ percpu_ref_kill(&cgrp->self.refcnt); @@ -4482,9 +6230,8 @@ int cgroup_rmdir(struct kernfs_node *kn) return 0; ret = cgroup_destroy_locked(cgrp); - if (!ret) - trace_cgroup_rmdir(cgrp); + TRACE_CGROUP_PATH(rmdir, cgrp); cgroup_kn_unlock(kn); return ret; @@ -4492,7 +6239,6 @@ int cgroup_rmdir(struct kernfs_node *kn) static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { .show_options = cgroup_show_options, - .remount_fs = cgroup_remount, .mkdir = cgroup_mkdir, .rmdir = cgroup_rmdir, .show_path = cgroup_show_path, @@ -4504,14 +6250,14 @@ static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) pr_debug("Initializing cgroup subsys %s\n", ss->name); - mutex_lock(&cgroup_mutex); + cgroup_lock(); idr_init(&ss->css_idr); INIT_LIST_HEAD(&ss->cfts); /* Create the root cgroup state for this subsystem */ ss->root = &cgrp_dfl_root; - css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); + css = ss->css_alloc(NULL); /* We don't handle early failures gracefully */ BUG_ON(IS_ERR(css)); init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); @@ -4528,6 +6274,9 @@ static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) } else { css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); BUG_ON(css->id < 0); + + BUG_ON(ss_rstat_init(ss)); + BUG_ON(css_rstat_init(css)); } /* Update the init_css_set to contain a subsys @@ -4538,7 +6287,7 @@ static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) have_fork_callback |= (bool)ss->fork << ss->id; have_exit_callback |= (bool)ss->exit << ss->id; - have_free_callback |= (bool)ss->free << ss->id; + have_release_callback |= (bool)ss->release << ss->id; have_canfork_callback |= (bool)ss->can_fork << ss->id; /* At system boot, before all subsystems have been @@ -4548,7 +6297,7 @@ static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) BUG_ON(online_css(css)); - mutex_unlock(&cgroup_mutex); + cgroup_unlock(); } /** @@ -4559,11 +6308,12 @@ static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) */ int __init cgroup_init_early(void) { - static struct cgroup_sb_opts __initdata opts; + static struct cgroup_fs_context __initdata ctx; struct cgroup_subsys *ss; int i; - init_cgroup_root(&cgrp_dfl_root, &opts); + ctx.root = &cgrp_dfl_root; + init_cgroup_root(&ctx); cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; RCU_INIT_POINTER(init_task.cgroups, &init_css_set); @@ -4575,6 +6325,8 @@ int __init cgroup_init_early(void) ss->id, ss->name); WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); + WARN(ss->early_init && ss->css_rstat_flush, + "cgroup rstat cannot be used with early init subsystem\n"); ss->id = i; ss->name = cgroup_subsys_name[i]; @@ -4587,8 +6339,6 @@ int __init cgroup_init_early(void) return 0; } -static u16 cgroup_disable_mask __initdata; - /** * cgroup_init - cgroup initialization * @@ -4601,19 +6351,16 @@ int __init cgroup_init(void) int ssid; BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); - BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); + BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); - /* - * The latency of the synchronize_sched() is too high for cgroups, - * avoid it at the cost of forcing all readers into the slow path. - */ - rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); + BUG_ON(ss_rstat_init(NULL)); get_user_ns(init_cgroup_ns.user_ns); + cgroup_rt_init(); - mutex_lock(&cgroup_mutex); + cgroup_lock(); /* * Add init_css_set to the hash table so that dfl_root can link to @@ -4622,9 +6369,11 @@ int __init cgroup_init(void) hash_add(css_set_table, &init_css_set.hlist, css_set_hash(init_css_set.subsys)); - BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); + cgroup_bpf_lifetime_notifier_init(); + + BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); - mutex_unlock(&cgroup_mutex); + cgroup_unlock(); for_each_subsys(ss, ssid) { if (ss->early_init) { @@ -4646,24 +6395,26 @@ int __init cgroup_init(void) * disabled flag and cftype registration needs kmalloc, * both of which aren't available during early_init. */ - if (cgroup_disable_mask & (1 << ssid)) { - static_branch_disable(cgroup_subsys_enabled_key[ssid]); - printk(KERN_INFO "Disabling %s control group subsystem\n", - ss->name); + if (!cgroup_ssid_enabled(ssid)) continue; - } if (cgroup1_ssid_disabled(ssid)) - printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", - ss->name); + pr_info("Disabling %s control group subsystem in v1 mounts\n", + ss->legacy_name); cgrp_dfl_root.subsys_mask |= 1 << ss->id; + /* implicit controllers must be threaded too */ + WARN_ON(ss->implicit_on_dfl && !ss->threaded); + if (ss->implicit_on_dfl) cgrp_dfl_implicit_ss_mask |= 1 << ss->id; else if (!ss->dfl_cftypes) cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; + if (ss->threaded) + cgrp_dfl_threaded_ss_mask |= 1 << ss->id; + if (ss->dfl_cftypes == ss->legacy_cftypes) { WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); } else { @@ -4674,9 +6425,9 @@ int __init cgroup_init(void) if (ss->bind) ss->bind(init_css_set.subsys[ssid]); - mutex_lock(&cgroup_mutex); + cgroup_lock(); css_populate_dir(init_css_set.subsys[ssid]); - mutex_unlock(&cgroup_mutex); + cgroup_unlock(); } /* init_css_set.subsys[] has been updated, re-hash */ @@ -4687,8 +6438,12 @@ int __init cgroup_init(void) WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); WARN_ON(register_filesystem(&cgroup_fs_type)); WARN_ON(register_filesystem(&cgroup2_fs_type)); - WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); + WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); +#ifdef CONFIG_CPUSETS_V1 + WARN_ON(register_filesystem(&cpuset_fs_type)); +#endif + ns_tree_add(&init_cgroup_ns); return 0; } @@ -4702,12 +6457,87 @@ static int __init cgroup_wq_init(void) * We would prefer to do this in cgroup_init() above, but that * is called before init_workqueues(): so leave this until after. */ - cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); - BUG_ON(!cgroup_destroy_wq); + cgroup_offline_wq = alloc_workqueue("cgroup_offline", WQ_PERCPU, 1); + BUG_ON(!cgroup_offline_wq); + + cgroup_release_wq = alloc_workqueue("cgroup_release", WQ_PERCPU, 1); + BUG_ON(!cgroup_release_wq); + + cgroup_free_wq = alloc_workqueue("cgroup_free", WQ_PERCPU, 1); + BUG_ON(!cgroup_free_wq); return 0; } core_initcall(cgroup_wq_init); +void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) +{ + struct kernfs_node *kn; + + kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); + if (!kn) + return; + kernfs_path(kn, buf, buflen); + kernfs_put(kn); +} + +/* + * __cgroup_get_from_id : get the cgroup associated with cgroup id + * @id: cgroup id + * On success return the cgrp or ERR_PTR on failure + * There are no cgroup NS restrictions. + */ +struct cgroup *__cgroup_get_from_id(u64 id) +{ + struct kernfs_node *kn; + struct cgroup *cgrp; + + kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); + if (!kn) + return ERR_PTR(-ENOENT); + + if (kernfs_type(kn) != KERNFS_DIR) { + kernfs_put(kn); + return ERR_PTR(-ENOENT); + } + + rcu_read_lock(); + + cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); + if (cgrp && !cgroup_tryget(cgrp)) + cgrp = NULL; + + rcu_read_unlock(); + kernfs_put(kn); + + if (!cgrp) + return ERR_PTR(-ENOENT); + return cgrp; +} + +/* + * cgroup_get_from_id : get the cgroup associated with cgroup id + * @id: cgroup id + * On success return the cgrp or ERR_PTR on failure + * Only cgroups within current task's cgroup NS are valid. + */ +struct cgroup *cgroup_get_from_id(u64 id) +{ + struct cgroup *cgrp, *root_cgrp; + + cgrp = __cgroup_get_from_id(id); + if (IS_ERR(cgrp)) + return cgrp; + + root_cgrp = current_cgns_cgroup_dfl(); + if (!cgroup_is_descendant(cgrp, root_cgrp)) { + cgroup_put(cgrp); + return ERR_PTR(-ENOENT); + } + + return cgrp; +} +EXPORT_SYMBOL_GPL(cgroup_get_from_id); + /* * proc_cgroup_show() * - Print task's cgroup paths into seq_file, one line for each hierarchy @@ -4725,7 +6555,7 @@ int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, if (!buf) goto out; - mutex_lock(&cgroup_mutex); + rcu_read_lock(); spin_lock_irq(&css_set_lock); for_each_root(root) { @@ -4733,7 +6563,12 @@ int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, struct cgroup *cgrp; int ssid, count = 0; - if (root == &cgrp_dfl_root && !cgrp_dfl_visible) + if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) + continue; + + cgrp = task_cgroup_from_root(tsk, root); + /* The root has already been unmounted. */ + if (!cgrp) continue; seq_printf(m, "%d:", root->hierarchy_id); @@ -4746,9 +6581,6 @@ int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, seq_printf(m, "%sname=%s", count ? "," : "", root->name); seq_putc(m, ':'); - - cgrp = task_cgroup_from_root(tsk, root); - /* * On traditional hierarchies, all zombie tasks show up as * belonging to the root cgroup. On the default hierarchy, @@ -4761,7 +6593,7 @@ int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, current->nsproxy->cgroup_ns); - if (retval >= PATH_MAX) + if (retval == -E2BIG) retval = -ENAMETOOLONG; if (retval < 0) goto out_unlock; @@ -4780,7 +6612,7 @@ int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, retval = 0; out_unlock: spin_unlock_irq(&css_set_lock); - mutex_unlock(&cgroup_mutex); + rcu_read_unlock(); kfree(buf); out: return retval; @@ -4791,8 +6623,7 @@ out: * @child: pointer to task_struct of forking parent process. * * A task is associated with the init_css_set until cgroup_post_fork() - * attaches it to the parent's css_set. Empty cg_list indicates that - * @child isn't holding reference to its css_set. + * attaches it to the target css_set. */ void cgroup_fork(struct task_struct *child) { @@ -4801,20 +6632,207 @@ void cgroup_fork(struct task_struct *child) } /** + * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer + * @f: file corresponding to cgroup_dir + * + * Find the cgroup from a file pointer associated with a cgroup directory. + * Returns a pointer to the cgroup on success. ERR_PTR is returned if the + * cgroup cannot be found. + */ +static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) +{ + struct cgroup_subsys_state *css; + + css = css_tryget_online_from_dir(f->f_path.dentry, NULL); + if (IS_ERR(css)) + return ERR_CAST(css); + + return css->cgroup; +} + +/** + * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports + * cgroup2. + * @f: file corresponding to cgroup2_dir + */ +static struct cgroup *cgroup_get_from_file(struct file *f) +{ + struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); + + if (IS_ERR(cgrp)) + return ERR_CAST(cgrp); + + if (!cgroup_on_dfl(cgrp)) { + cgroup_put(cgrp); + return ERR_PTR(-EBADF); + } + + return cgrp; +} + +/** + * cgroup_css_set_fork - find or create a css_set for a child process + * @kargs: the arguments passed to create the child process + * + * This functions finds or creates a new css_set which the child + * process will be attached to in cgroup_post_fork(). By default, + * the child process will be given the same css_set as its parent. + * + * If CLONE_INTO_CGROUP is specified this function will try to find an + * existing css_set which includes the requested cgroup and if not create + * a new css_set that the child will be attached to later. If this function + * succeeds it will hold cgroup_threadgroup_rwsem on return. If + * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex + * before grabbing cgroup_threadgroup_rwsem and will hold a reference + * to the target cgroup. + */ +static int cgroup_css_set_fork(struct kernel_clone_args *kargs) + __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) +{ + int ret; + struct cgroup *dst_cgrp = NULL; + struct css_set *cset; + struct super_block *sb; + + if (kargs->flags & CLONE_INTO_CGROUP) + cgroup_lock(); + + cgroup_threadgroup_change_begin(current); + + spin_lock_irq(&css_set_lock); + cset = task_css_set(current); + get_css_set(cset); + if (kargs->cgrp) + kargs->kill_seq = kargs->cgrp->kill_seq; + else + kargs->kill_seq = cset->dfl_cgrp->kill_seq; + spin_unlock_irq(&css_set_lock); + + if (!(kargs->flags & CLONE_INTO_CGROUP)) { + kargs->cset = cset; + return 0; + } + + CLASS(fd_raw, f)(kargs->cgroup); + if (fd_empty(f)) { + ret = -EBADF; + goto err; + } + sb = fd_file(f)->f_path.dentry->d_sb; + + dst_cgrp = cgroup_get_from_file(fd_file(f)); + if (IS_ERR(dst_cgrp)) { + ret = PTR_ERR(dst_cgrp); + dst_cgrp = NULL; + goto err; + } + + if (cgroup_is_dead(dst_cgrp)) { + ret = -ENODEV; + goto err; + } + + /* + * Verify that we the target cgroup is writable for us. This is + * usually done by the vfs layer but since we're not going through + * the vfs layer here we need to do it "manually". + */ + ret = cgroup_may_write(dst_cgrp, sb); + if (ret) + goto err; + + /* + * Spawning a task directly into a cgroup works by passing a file + * descriptor to the target cgroup directory. This can even be an O_PATH + * file descriptor. But it can never be a cgroup.procs file descriptor. + * This was done on purpose so spawning into a cgroup could be + * conceptualized as an atomic + * + * fd = openat(dfd_cgroup, "cgroup.procs", ...); + * write(fd, <child-pid>, ...); + * + * sequence, i.e. it's a shorthand for the caller opening and writing + * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us + * to always use the caller's credentials. + */ + ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, + !(kargs->flags & CLONE_THREAD), + current->nsproxy->cgroup_ns); + if (ret) + goto err; + + kargs->cset = find_css_set(cset, dst_cgrp); + if (!kargs->cset) { + ret = -ENOMEM; + goto err; + } + + put_css_set(cset); + kargs->cgrp = dst_cgrp; + return ret; + +err: + cgroup_threadgroup_change_end(current); + cgroup_unlock(); + if (dst_cgrp) + cgroup_put(dst_cgrp); + put_css_set(cset); + if (kargs->cset) + put_css_set(kargs->cset); + return ret; +} + +/** + * cgroup_css_set_put_fork - drop references we took during fork + * @kargs: the arguments passed to create the child process + * + * Drop references to the prepared css_set and target cgroup if + * CLONE_INTO_CGROUP was requested. + */ +static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) + __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) +{ + struct cgroup *cgrp = kargs->cgrp; + struct css_set *cset = kargs->cset; + + cgroup_threadgroup_change_end(current); + + if (cset) { + put_css_set(cset); + kargs->cset = NULL; + } + + if (kargs->flags & CLONE_INTO_CGROUP) { + cgroup_unlock(); + if (cgrp) { + cgroup_put(cgrp); + kargs->cgrp = NULL; + } + } +} + +/** * cgroup_can_fork - called on a new task before the process is exposed - * @child: the task in question. + * @child: the child process + * @kargs: the arguments passed to create the child process * - * This calls the subsystem can_fork() callbacks. If the can_fork() callback - * returns an error, the fork aborts with that error code. This allows for - * a cgroup subsystem to conditionally allow or deny new forks. + * This prepares a new css_set for the child process which the child will + * be attached to in cgroup_post_fork(). + * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() + * callback returns an error, the fork aborts with that error code. This + * allows for a cgroup subsystem to conditionally allow or deny new forks. */ -int cgroup_can_fork(struct task_struct *child) +int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) { struct cgroup_subsys *ss; int i, j, ret; + ret = cgroup_css_set_fork(kargs); + if (ret) + return ret; + do_each_subsys_mask(ss, i, have_canfork_callback) { - ret = ss->can_fork(child); + ret = ss->can_fork(child, kargs->cset); if (ret) goto out_revert; } while_each_subsys_mask(); @@ -4826,78 +6844,108 @@ out_revert: if (j >= i) break; if (ss->cancel_fork) - ss->cancel_fork(child); + ss->cancel_fork(child, kargs->cset); } + cgroup_css_set_put_fork(kargs); + return ret; } /** * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() - * @child: the task in question + * @child: the child process + * @kargs: the arguments passed to create the child process * * This calls the cancel_fork() callbacks if a fork failed *after* - * cgroup_can_fork() succeded. + * cgroup_can_fork() succeeded and cleans up references we took to + * prepare a new css_set for the child process in cgroup_can_fork(). */ -void cgroup_cancel_fork(struct task_struct *child) +void cgroup_cancel_fork(struct task_struct *child, + struct kernel_clone_args *kargs) { struct cgroup_subsys *ss; int i; for_each_subsys(ss, i) if (ss->cancel_fork) - ss->cancel_fork(child); + ss->cancel_fork(child, kargs->cset); + + cgroup_css_set_put_fork(kargs); } /** - * cgroup_post_fork - called on a new task after adding it to the task list - * @child: the task in question - * - * Adds the task to the list running through its css_set if necessary and - * call the subsystem fork() callbacks. Has to be after the task is - * visible on the task list in case we race with the first call to - * cgroup_task_iter_start() - to guarantee that the new task ends up on its - * list. + * cgroup_post_fork - finalize cgroup setup for the child process + * @child: the child process + * @kargs: the arguments passed to create the child process + * + * Attach the child process to its css_set calling the subsystem fork() + * callbacks. */ -void cgroup_post_fork(struct task_struct *child) +void cgroup_post_fork(struct task_struct *child, + struct kernel_clone_args *kargs) + __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) { + unsigned int cgrp_kill_seq = 0; + unsigned long cgrp_flags = 0; + bool kill = false; struct cgroup_subsys *ss; + struct css_set *cset; int i; - /* - * This may race against cgroup_enable_task_cg_lists(). As that - * function sets use_task_css_set_links before grabbing - * tasklist_lock and we just went through tasklist_lock to add - * @child, it's guaranteed that either we see the set - * use_task_css_set_links or cgroup_enable_task_cg_lists() sees - * @child during its iteration. - * - * If we won the race, @child is associated with %current's - * css_set. Grabbing css_set_lock guarantees both that the - * association is stable, and, on completion of the parent's - * migration, @child is visible in the source of migration or - * already in the destination cgroup. This guarantee is necessary - * when implementing operations which need to migrate all tasks of - * a cgroup to another. - * - * Note that if we lose to cgroup_enable_task_cg_lists(), @child - * will remain in init_css_set. This is safe because all tasks are - * in the init_css_set before cg_links is enabled and there's no - * operation which transfers all tasks out of init_css_set. - */ - if (use_task_css_set_links) { - struct css_set *cset; + cset = kargs->cset; + kargs->cset = NULL; - spin_lock_irq(&css_set_lock); - cset = task_css_set(current); - if (list_empty(&child->cg_list)) { - get_css_set(cset); - cset->nr_tasks++; - css_set_move_task(child, NULL, cset, false); + spin_lock_irq(&css_set_lock); + + /* init tasks are special, only link regular threads */ + if (likely(child->pid)) { + if (kargs->cgrp) { + cgrp_flags = kargs->cgrp->flags; + cgrp_kill_seq = kargs->cgrp->kill_seq; + } else { + cgrp_flags = cset->dfl_cgrp->flags; + cgrp_kill_seq = cset->dfl_cgrp->kill_seq; } - spin_unlock_irq(&css_set_lock); + + WARN_ON_ONCE(!list_empty(&child->cg_list)); + cset->nr_tasks++; + css_set_move_task(child, NULL, cset, false); + } else { + put_css_set(cset); + cset = NULL; } + if (!(child->flags & PF_KTHREAD)) { + if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { + /* + * If the cgroup has to be frozen, the new task has + * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to + * get the task into the frozen state. + */ + spin_lock(&child->sighand->siglock); + WARN_ON_ONCE(child->frozen); + child->jobctl |= JOBCTL_TRAP_FREEZE; + spin_unlock(&child->sighand->siglock); + + /* + * Calling cgroup_update_frozen() isn't required here, + * because it will be called anyway a bit later from + * do_freezer_trap(). So we avoid cgroup's transient + * switch from the frozen state and back. + */ + } + + /* + * If the cgroup is to be killed notice it now and take the + * child down right after we finished preparing it for + * userspace. + */ + kill = kargs->kill_seq != cgrp_kill_seq; + } + + spin_unlock_irq(&css_set_lock); + /* * Call ss->fork(). This must happen after @child is linked on * css_set; otherwise, @child might change state between ->fork() @@ -4906,63 +6954,138 @@ void cgroup_post_fork(struct task_struct *child) do_each_subsys_mask(ss, i, have_fork_callback) { ss->fork(child); } while_each_subsys_mask(); + + /* Make the new cset the root_cset of the new cgroup namespace. */ + if (kargs->flags & CLONE_NEWCGROUP) { + struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; + + get_css_set(cset); + child->nsproxy->cgroup_ns->root_cset = cset; + put_css_set(rcset); + } + + /* Cgroup has to be killed so take down child immediately. */ + if (unlikely(kill)) + do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); + + cgroup_css_set_put_fork(kargs); } /** - * cgroup_exit - detach cgroup from exiting task + * cgroup_task_exit - detach cgroup from exiting task * @tsk: pointer to task_struct of exiting process * - * Description: Detach cgroup from @tsk and release it. - * - * Note that cgroups marked notify_on_release force every task in - * them to take the global cgroup_mutex mutex when exiting. - * This could impact scaling on very large systems. Be reluctant to - * use notify_on_release cgroups where very high task exit scaling - * is required on large systems. + * Description: Detach cgroup from @tsk. * - * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We - * call cgroup_exit() while the task is still competent to handle - * notify_on_release(), then leave the task attached to the root cgroup in - * each hierarchy for the remainder of its exit. No need to bother with - * init_css_set refcnting. init_css_set never goes away and we can't race - * with migration path - PF_EXITING is visible to migration path. */ -void cgroup_exit(struct task_struct *tsk) +void cgroup_task_exit(struct task_struct *tsk) { struct cgroup_subsys *ss; - struct css_set *cset; int i; - /* - * Unlink from @tsk from its css_set. As migration path can't race - * with us, we can check css_set and cg_list without synchronization. - */ - cset = task_css_set(tsk); - - if (!list_empty(&tsk->cg_list)) { - spin_lock_irq(&css_set_lock); - css_set_move_task(tsk, cset, NULL, false); - cset->nr_tasks--; - spin_unlock_irq(&css_set_lock); - } else { - get_css_set(cset); - } - /* see cgroup_post_fork() for details */ do_each_subsys_mask(ss, i, have_exit_callback) { ss->exit(tsk); } while_each_subsys_mask(); } -void cgroup_free(struct task_struct *task) +static void do_cgroup_task_dead(struct task_struct *tsk) +{ + struct css_set *cset; + unsigned long flags; + + spin_lock_irqsave(&css_set_lock, flags); + + WARN_ON_ONCE(list_empty(&tsk->cg_list)); + cset = task_css_set(tsk); + css_set_move_task(tsk, cset, NULL, false); + cset->nr_tasks--; + /* matches the signal->live check in css_task_iter_advance() */ + if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live)) + list_add_tail(&tsk->cg_list, &cset->dying_tasks); + + if (dl_task(tsk)) + dec_dl_tasks_cs(tsk); + + WARN_ON_ONCE(cgroup_task_frozen(tsk)); + if (unlikely(!(tsk->flags & PF_KTHREAD) && + test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) + cgroup_update_frozen(task_dfl_cgroup(tsk)); + + spin_unlock_irqrestore(&css_set_lock, flags); +} + +#ifdef CONFIG_PREEMPT_RT +/* + * cgroup_task_dead() is called from finish_task_switch() which doesn't allow + * scheduling even in RT. As the task_dead path requires grabbing css_set_lock, + * this lead to sleeping in the invalid context warning bug. css_set_lock is too + * big to become a raw_spinlock. The task_dead path doesn't need to run + * synchronously but can't be delayed indefinitely either as the dead task pins + * the cgroup and task_struct can be pinned indefinitely. Bounce through lazy + * irq_work to allow batching while ensuring timely completion. + */ +static DEFINE_PER_CPU(struct llist_head, cgrp_dead_tasks); +static DEFINE_PER_CPU(struct irq_work, cgrp_dead_tasks_iwork); + +static void cgrp_dead_tasks_iwork_fn(struct irq_work *iwork) +{ + struct llist_node *lnode; + struct task_struct *task, *next; + + lnode = llist_del_all(this_cpu_ptr(&cgrp_dead_tasks)); + llist_for_each_entry_safe(task, next, lnode, cg_dead_lnode) { + do_cgroup_task_dead(task); + put_task_struct(task); + } +} + +static void __init cgroup_rt_init(void) +{ + int cpu; + + for_each_possible_cpu(cpu) { + init_llist_head(per_cpu_ptr(&cgrp_dead_tasks, cpu)); + per_cpu(cgrp_dead_tasks_iwork, cpu) = + IRQ_WORK_INIT_LAZY(cgrp_dead_tasks_iwork_fn); + } +} + +void cgroup_task_dead(struct task_struct *task) +{ + get_task_struct(task); + llist_add(&task->cg_dead_lnode, this_cpu_ptr(&cgrp_dead_tasks)); + irq_work_queue(this_cpu_ptr(&cgrp_dead_tasks_iwork)); +} +#else /* CONFIG_PREEMPT_RT */ +static void __init cgroup_rt_init(void) {} + +void cgroup_task_dead(struct task_struct *task) +{ + do_cgroup_task_dead(task); +} +#endif /* CONFIG_PREEMPT_RT */ + +void cgroup_task_release(struct task_struct *task) { - struct css_set *cset = task_css_set(task); struct cgroup_subsys *ss; int ssid; - do_each_subsys_mask(ss, ssid, have_free_callback) { - ss->free(task); + do_each_subsys_mask(ss, ssid, have_release_callback) { + ss->release(task); } while_each_subsys_mask(); +} + +void cgroup_task_free(struct task_struct *task) +{ + struct css_set *cset = task_css_set(task); + + if (!list_empty(&task->cg_list)) { + spin_lock_irq(&css_set_lock); + css_set_skip_task_iters(task_css_set(task), task); + list_del_init(&task->cg_list); + spin_unlock_irq(&css_set_lock); + } put_css_set(cset); } @@ -4981,13 +7104,41 @@ static int __init cgroup_disable(char *str) if (strcmp(token, ss->name) && strcmp(token, ss->legacy_name)) continue; - cgroup_disable_mask |= 1 << i; + + static_branch_disable(cgroup_subsys_enabled_key[i]); + pr_info("Disabling %s control group subsystem\n", + ss->name); + } + + for (i = 0; i < OPT_FEATURE_COUNT; i++) { + if (strcmp(token, cgroup_opt_feature_names[i])) + continue; + cgroup_feature_disable_mask |= 1 << i; + pr_info("Disabling %s control group feature\n", + cgroup_opt_feature_names[i]); + break; } } return 1; } __setup("cgroup_disable=", cgroup_disable); +void __init __weak enable_debug_cgroup(void) { } + +static int __init enable_cgroup_debug(char *str) +{ + cgroup_debug = true; + enable_debug_cgroup(); + return 1; +} +__setup("cgroup_debug", enable_cgroup_debug); + +static int __init cgroup_favordynmods_setup(char *str) +{ + return (kstrtobool(str, &have_favordynmods) == 0); +} +__setup("cgroup_favordynmods=", cgroup_favordynmods_setup); + /** * css_tryget_online_from_dir - get corresponding css from a cgroup dentry * @dentry: directory dentry of interest @@ -5048,142 +7199,250 @@ struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) * * Find the cgroup at @path on the default hierarchy, increment its * reference count and return it. Returns pointer to the found cgroup on - * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) - * if @path points to a non-directory. + * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already + * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. */ struct cgroup *cgroup_get_from_path(const char *path) { struct kernfs_node *kn; - struct cgroup *cgrp; + struct cgroup *cgrp = ERR_PTR(-ENOENT); + struct cgroup *root_cgrp; - mutex_lock(&cgroup_mutex); + root_cgrp = current_cgns_cgroup_dfl(); + kn = kernfs_walk_and_get(root_cgrp->kn, path); + if (!kn) + goto out; - kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); - if (kn) { - if (kernfs_type(kn) == KERNFS_DIR) { - cgrp = kn->priv; - cgroup_get_live(cgrp); - } else { - cgrp = ERR_PTR(-ENOTDIR); - } - kernfs_put(kn); - } else { - cgrp = ERR_PTR(-ENOENT); + if (kernfs_type(kn) != KERNFS_DIR) { + cgrp = ERR_PTR(-ENOTDIR); + goto out_kernfs; } - mutex_unlock(&cgroup_mutex); + rcu_read_lock(); + + cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); + if (!cgrp || !cgroup_tryget(cgrp)) + cgrp = ERR_PTR(-ENOENT); + + rcu_read_unlock(); + +out_kernfs: + kernfs_put(kn); +out: return cgrp; } EXPORT_SYMBOL_GPL(cgroup_get_from_path); /** - * cgroup_get_from_fd - get a cgroup pointer from a fd - * @fd: fd obtained by open(cgroup2_dir) + * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd + * @fd: fd obtained by open(cgroup_dir) * * Find the cgroup from a fd which should be obtained * by opening a cgroup directory. Returns a pointer to the * cgroup on success. ERR_PTR is returned if the cgroup * cannot be found. */ -struct cgroup *cgroup_get_from_fd(int fd) +struct cgroup *cgroup_v1v2_get_from_fd(int fd) { - struct cgroup_subsys_state *css; - struct cgroup *cgrp; - struct file *f; - - f = fget_raw(fd); - if (!f) + CLASS(fd_raw, f)(fd); + if (fd_empty(f)) return ERR_PTR(-EBADF); - css = css_tryget_online_from_dir(f->f_path.dentry, NULL); - fput(f); - if (IS_ERR(css)) - return ERR_CAST(css); + return cgroup_v1v2_get_from_file(fd_file(f)); +} + +/** + * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports + * cgroup2. + * @fd: fd obtained by open(cgroup2_dir) + */ +struct cgroup *cgroup_get_from_fd(int fd) +{ + struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); + + if (IS_ERR(cgrp)) + return ERR_CAST(cgrp); - cgrp = css->cgroup; if (!cgroup_on_dfl(cgrp)) { cgroup_put(cgrp); return ERR_PTR(-EBADF); } - return cgrp; } EXPORT_SYMBOL_GPL(cgroup_get_from_fd); -/* - * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data - * definition in cgroup-defs.h. +static u64 power_of_ten(int power) +{ + u64 v = 1; + while (power--) + v *= 10; + return v; +} + +/** + * cgroup_parse_float - parse a floating number + * @input: input string + * @dec_shift: number of decimal digits to shift + * @v: output + * + * Parse a decimal floating point number in @input and store the result in + * @v with decimal point right shifted @dec_shift times. For example, if + * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. + * Returns 0 on success, -errno otherwise. + * + * There's nothing cgroup specific about this function except that it's + * currently the only user. */ -#ifdef CONFIG_SOCK_CGROUP_DATA +int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) +{ + s64 whole, frac = 0; + int fstart = 0, fend = 0, flen; -#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) + if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) + return -EINVAL; + if (frac < 0) + return -EINVAL; -DEFINE_SPINLOCK(cgroup_sk_update_lock); -static bool cgroup_sk_alloc_disabled __read_mostly; + flen = fend > fstart ? fend - fstart : 0; + if (flen < dec_shift) + frac *= power_of_ten(dec_shift - flen); + else + frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); -void cgroup_sk_alloc_disable(void) -{ - if (cgroup_sk_alloc_disabled) - return; - pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); - cgroup_sk_alloc_disabled = true; + *v = whole * power_of_ten(dec_shift) + frac; + return 0; } -#else - -#define cgroup_sk_alloc_disabled false - -#endif +/* + * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data + * definition in cgroup-defs.h. + */ +#ifdef CONFIG_SOCK_CGROUP_DATA void cgroup_sk_alloc(struct sock_cgroup_data *skcd) { - if (cgroup_sk_alloc_disabled) - return; - - /* Socket clone path */ - if (skcd->val) { - /* - * We might be cloning a socket which is left in an empty - * cgroup and the cgroup might have already been rmdir'd. - * Don't use cgroup_get_live(). - */ - cgroup_get(sock_cgroup_ptr(skcd)); - return; - } + struct cgroup *cgroup; rcu_read_lock(); + /* Don't associate the sock with unrelated interrupted task's cgroup. */ + if (in_interrupt()) { + cgroup = &cgrp_dfl_root.cgrp; + cgroup_get(cgroup); + goto out; + } while (true) { struct css_set *cset; cset = task_css_set(current); if (likely(cgroup_tryget(cset->dfl_cgrp))) { - skcd->val = (unsigned long)cset->dfl_cgrp; + cgroup = cset->dfl_cgrp; break; } cpu_relax(); } - +out: + skcd->cgroup = cgroup; + cgroup_bpf_get(cgroup); rcu_read_unlock(); } +void cgroup_sk_clone(struct sock_cgroup_data *skcd) +{ + struct cgroup *cgrp = sock_cgroup_ptr(skcd); + + /* + * We might be cloning a socket which is left in an empty + * cgroup and the cgroup might have already been rmdir'd. + * Don't use cgroup_get_live(). + */ + cgroup_get(cgrp); + cgroup_bpf_get(cgrp); +} + void cgroup_sk_free(struct sock_cgroup_data *skcd) { - cgroup_put(sock_cgroup_ptr(skcd)); + struct cgroup *cgrp = sock_cgroup_ptr(skcd); + + cgroup_bpf_put(cgrp); + cgroup_put(cgrp); } #endif /* CONFIG_SOCK_CGROUP_DATA */ -#ifdef CONFIG_CGROUP_BPF -int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog, - enum bpf_attach_type type, bool overridable) +#ifdef CONFIG_SYSFS +static ssize_t show_delegatable_files(struct cftype *files, char *buf, + ssize_t size, const char *prefix) { - struct cgroup *parent = cgroup_parent(cgrp); - int ret; + struct cftype *cft; + ssize_t ret = 0; + + for (cft = files; cft && cft->name[0] != '\0'; cft++) { + if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) + continue; + + if (prefix) + ret += snprintf(buf + ret, size - ret, "%s.", prefix); + + ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); + + if (WARN_ON(ret >= size)) + break; + } + + return ret; +} + +static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, + char *buf) +{ + struct cgroup_subsys *ss; + int ssid; + ssize_t ret = 0; + + ret = show_delegatable_files(cgroup_base_files, buf + ret, + PAGE_SIZE - ret, NULL); + if (cgroup_psi_enabled()) + ret += show_delegatable_files(cgroup_psi_files, buf + ret, + PAGE_SIZE - ret, NULL); + + for_each_subsys(ss, ssid) + ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, + PAGE_SIZE - ret, + cgroup_subsys_name[ssid]); - mutex_lock(&cgroup_mutex); - ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable); - mutex_unlock(&cgroup_mutex); return ret; } -#endif /* CONFIG_CGROUP_BPF */ +static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); + +static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, + char *buf) +{ + return snprintf(buf, PAGE_SIZE, + "nsdelegate\n" + "favordynmods\n" + "memory_localevents\n" + "memory_recursiveprot\n" + "memory_hugetlb_accounting\n" + "pids_localevents\n"); +} +static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); + +static struct attribute *cgroup_sysfs_attrs[] = { + &cgroup_delegate_attr.attr, + &cgroup_features_attr.attr, + NULL, +}; + +static const struct attribute_group cgroup_sysfs_attr_group = { + .attrs = cgroup_sysfs_attrs, + .name = "cgroup", +}; + +static int __init cgroup_sysfs_init(void) +{ + return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); +} +subsys_initcall(cgroup_sysfs_init); + +#endif /* CONFIG_SYSFS */ diff --git a/kernel/cgroup/cpuset-internal.h b/kernel/cgroup/cpuset-internal.h new file mode 100644 index 000000000000..01976c8e7d49 --- /dev/null +++ b/kernel/cgroup/cpuset-internal.h @@ -0,0 +1,308 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ + +#ifndef __CPUSET_INTERNAL_H +#define __CPUSET_INTERNAL_H + +#include <linux/cgroup.h> +#include <linux/cpu.h> +#include <linux/cpumask.h> +#include <linux/cpuset.h> +#include <linux/spinlock.h> +#include <linux/union_find.h> + +/* See "Frequency meter" comments, below. */ + +struct fmeter { + int cnt; /* unprocessed events count */ + int val; /* most recent output value */ + time64_t time; /* clock (secs) when val computed */ + spinlock_t lock; /* guards read or write of above */ +}; + +/* + * Invalid partition error code + */ +enum prs_errcode { + PERR_NONE = 0, + PERR_INVCPUS, + PERR_INVPARENT, + PERR_NOTPART, + PERR_NOTEXCL, + PERR_NOCPUS, + PERR_HOTPLUG, + PERR_CPUSEMPTY, + PERR_HKEEPING, + PERR_ACCESS, + PERR_REMOTE, +}; + +/* bits in struct cpuset flags field */ +typedef enum { + CS_CPU_EXCLUSIVE, + CS_MEM_EXCLUSIVE, + CS_MEM_HARDWALL, + CS_MEMORY_MIGRATE, + CS_SCHED_LOAD_BALANCE, + CS_SPREAD_PAGE, + CS_SPREAD_SLAB, +} cpuset_flagbits_t; + +/* The various types of files and directories in a cpuset file system */ + +typedef enum { + FILE_MEMORY_MIGRATE, + FILE_CPULIST, + FILE_MEMLIST, + FILE_EFFECTIVE_CPULIST, + FILE_EFFECTIVE_MEMLIST, + FILE_SUBPARTS_CPULIST, + FILE_EXCLUSIVE_CPULIST, + FILE_EFFECTIVE_XCPULIST, + FILE_ISOLATED_CPULIST, + FILE_CPU_EXCLUSIVE, + FILE_MEM_EXCLUSIVE, + FILE_MEM_HARDWALL, + FILE_SCHED_LOAD_BALANCE, + FILE_PARTITION_ROOT, + FILE_SCHED_RELAX_DOMAIN_LEVEL, + FILE_MEMORY_PRESSURE_ENABLED, + FILE_MEMORY_PRESSURE, + FILE_SPREAD_PAGE, + FILE_SPREAD_SLAB, +} cpuset_filetype_t; + +struct cpuset { + struct cgroup_subsys_state css; + + unsigned long flags; /* "unsigned long" so bitops work */ + + /* + * On default hierarchy: + * + * The user-configured masks can only be changed by writing to + * cpuset.cpus and cpuset.mems, and won't be limited by the + * parent masks. + * + * The effective masks is the real masks that apply to the tasks + * in the cpuset. They may be changed if the configured masks are + * changed or hotplug happens. + * + * effective_mask == configured_mask & parent's effective_mask, + * and if it ends up empty, it will inherit the parent's mask. + * + * + * On legacy hierarchy: + * + * The user-configured masks are always the same with effective masks. + */ + + /* user-configured CPUs and Memory Nodes allow to tasks */ + cpumask_var_t cpus_allowed; + nodemask_t mems_allowed; + + /* effective CPUs and Memory Nodes allow to tasks */ + cpumask_var_t effective_cpus; + nodemask_t effective_mems; + + /* + * Exclusive CPUs dedicated to current cgroup (default hierarchy only) + * + * The effective_cpus of a valid partition root comes solely from its + * effective_xcpus and some of the effective_xcpus may be distributed + * to sub-partitions below & hence excluded from its effective_cpus. + * For a valid partition root, its effective_cpus have no relationship + * with cpus_allowed unless its exclusive_cpus isn't set. + * + * This value will only be set if either exclusive_cpus is set or + * when this cpuset becomes a local partition root. + */ + cpumask_var_t effective_xcpus; + + /* + * Exclusive CPUs as requested by the user (default hierarchy only) + * + * Its value is independent of cpus_allowed and designates the set of + * CPUs that can be granted to the current cpuset or its children when + * it becomes a valid partition root. The effective set of exclusive + * CPUs granted (effective_xcpus) depends on whether those exclusive + * CPUs are passed down by its ancestors and not yet taken up by + * another sibling partition root along the way. + * + * If its value isn't set, it defaults to cpus_allowed. + */ + cpumask_var_t exclusive_cpus; + + /* + * This is old Memory Nodes tasks took on. + * + * - top_cpuset.old_mems_allowed is initialized to mems_allowed. + * - A new cpuset's old_mems_allowed is initialized when some + * task is moved into it. + * - old_mems_allowed is used in cpuset_migrate_mm() when we change + * cpuset.mems_allowed and have tasks' nodemask updated, and + * then old_mems_allowed is updated to mems_allowed. + */ + nodemask_t old_mems_allowed; + + struct fmeter fmeter; /* memory_pressure filter */ + + /* + * Tasks are being attached to this cpuset. Used to prevent + * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). + */ + int attach_in_progress; + + /* for custom sched domain */ + int relax_domain_level; + + /* partition root state */ + int partition_root_state; + + /* + * Whether cpuset is a remote partition. + * It used to be a list anchoring all remote partitions — we can switch back + * to a list if we need to iterate over the remote partitions. + */ + bool remote_partition; + + /* + * number of SCHED_DEADLINE tasks attached to this cpuset, so that we + * know when to rebuild associated root domain bandwidth information. + */ + int nr_deadline_tasks; + int nr_migrate_dl_tasks; + u64 sum_migrate_dl_bw; + + /* Invalid partition error code, not lock protected */ + enum prs_errcode prs_err; + + /* Handle for cpuset.cpus.partition */ + struct cgroup_file partition_file; + + /* Used to merge intersecting subsets for generate_sched_domains */ + struct uf_node node; +}; + +static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) +{ + return css ? container_of(css, struct cpuset, css) : NULL; +} + +/* Retrieve the cpuset for a task */ +static inline struct cpuset *task_cs(struct task_struct *task) +{ + return css_cs(task_css(task, cpuset_cgrp_id)); +} + +static inline struct cpuset *parent_cs(struct cpuset *cs) +{ + return css_cs(cs->css.parent); +} + +/* convenient tests for these bits */ +static inline bool is_cpuset_online(struct cpuset *cs) +{ + return css_is_online(&cs->css) && !css_is_dying(&cs->css); +} + +static inline int is_cpu_exclusive(const struct cpuset *cs) +{ + return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); +} + +static inline int is_mem_exclusive(const struct cpuset *cs) +{ + return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); +} + +static inline int is_mem_hardwall(const struct cpuset *cs) +{ + return test_bit(CS_MEM_HARDWALL, &cs->flags); +} + +static inline int is_sched_load_balance(const struct cpuset *cs) +{ + return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); +} + +static inline int is_memory_migrate(const struct cpuset *cs) +{ + return test_bit(CS_MEMORY_MIGRATE, &cs->flags); +} + +static inline int is_spread_page(const struct cpuset *cs) +{ + return test_bit(CS_SPREAD_PAGE, &cs->flags); +} + +static inline int is_spread_slab(const struct cpuset *cs) +{ + return test_bit(CS_SPREAD_SLAB, &cs->flags); +} + +/** + * cpuset_for_each_child - traverse online children of a cpuset + * @child_cs: loop cursor pointing to the current child + * @pos_css: used for iteration + * @parent_cs: target cpuset to walk children of + * + * Walk @child_cs through the online children of @parent_cs. Must be used + * with RCU read locked. + */ +#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ + css_for_each_child((pos_css), &(parent_cs)->css) \ + if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) + +/** + * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants + * @des_cs: loop cursor pointing to the current descendant + * @pos_css: used for iteration + * @root_cs: target cpuset to walk ancestor of + * + * Walk @des_cs through the online descendants of @root_cs. Must be used + * with RCU read locked. The caller may modify @pos_css by calling + * css_rightmost_descendant() to skip subtree. @root_cs is included in the + * iteration and the first node to be visited. + */ +#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ + css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ + if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) + +void rebuild_sched_domains_locked(void); +void cpuset_callback_lock_irq(void); +void cpuset_callback_unlock_irq(void); +void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus); +void cpuset_update_tasks_nodemask(struct cpuset *cs); +int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs, int turning_on); +ssize_t cpuset_write_resmask(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off); +int cpuset_common_seq_show(struct seq_file *sf, void *v); +void cpuset_full_lock(void); +void cpuset_full_unlock(void); + +/* + * cpuset-v1.c + */ +#ifdef CONFIG_CPUSETS_V1 +extern struct cftype cpuset1_files[]; +void fmeter_init(struct fmeter *fmp); +void cpuset1_update_task_spread_flags(struct cpuset *cs, + struct task_struct *tsk); +void cpuset1_update_tasks_flags(struct cpuset *cs); +void cpuset1_hotplug_update_tasks(struct cpuset *cs, + struct cpumask *new_cpus, nodemask_t *new_mems, + bool cpus_updated, bool mems_updated); +int cpuset1_validate_change(struct cpuset *cur, struct cpuset *trial); +#else +static inline void fmeter_init(struct fmeter *fmp) {} +static inline void cpuset1_update_task_spread_flags(struct cpuset *cs, + struct task_struct *tsk) {} +static inline void cpuset1_update_tasks_flags(struct cpuset *cs) {} +static inline void cpuset1_hotplug_update_tasks(struct cpuset *cs, + struct cpumask *new_cpus, nodemask_t *new_mems, + bool cpus_updated, bool mems_updated) {} +static inline int cpuset1_validate_change(struct cpuset *cur, + struct cpuset *trial) { return 0; } +#endif /* CONFIG_CPUSETS_V1 */ + +#endif /* __CPUSET_INTERNAL_H */ diff --git a/kernel/cgroup/cpuset-v1.c b/kernel/cgroup/cpuset-v1.c new file mode 100644 index 000000000000..12e76774c75b --- /dev/null +++ b/kernel/cgroup/cpuset-v1.c @@ -0,0 +1,607 @@ +// SPDX-License-Identifier: GPL-2.0-or-later + +#include "cgroup-internal.h" +#include "cpuset-internal.h" + +/* + * Legacy hierarchy call to cgroup_transfer_tasks() is handled asynchrously + */ +struct cpuset_remove_tasks_struct { + struct work_struct work; + struct cpuset *cs; +}; + +/* + * Frequency meter - How fast is some event occurring? + * + * These routines manage a digitally filtered, constant time based, + * event frequency meter. There are four routines: + * fmeter_init() - initialize a frequency meter. + * fmeter_markevent() - called each time the event happens. + * fmeter_getrate() - returns the recent rate of such events. + * fmeter_update() - internal routine used to update fmeter. + * + * A common data structure is passed to each of these routines, + * which is used to keep track of the state required to manage the + * frequency meter and its digital filter. + * + * The filter works on the number of events marked per unit time. + * The filter is single-pole low-pass recursive (IIR). The time unit + * is 1 second. Arithmetic is done using 32-bit integers scaled to + * simulate 3 decimal digits of precision (multiplied by 1000). + * + * With an FM_COEF of 933, and a time base of 1 second, the filter + * has a half-life of 10 seconds, meaning that if the events quit + * happening, then the rate returned from the fmeter_getrate() + * will be cut in half each 10 seconds, until it converges to zero. + * + * It is not worth doing a real infinitely recursive filter. If more + * than FM_MAXTICKS ticks have elapsed since the last filter event, + * just compute FM_MAXTICKS ticks worth, by which point the level + * will be stable. + * + * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid + * arithmetic overflow in the fmeter_update() routine. + * + * Given the simple 32 bit integer arithmetic used, this meter works + * best for reporting rates between one per millisecond (msec) and + * one per 32 (approx) seconds. At constant rates faster than one + * per msec it maxes out at values just under 1,000,000. At constant + * rates between one per msec, and one per second it will stabilize + * to a value N*1000, where N is the rate of events per second. + * At constant rates between one per second and one per 32 seconds, + * it will be choppy, moving up on the seconds that have an event, + * and then decaying until the next event. At rates slower than + * about one in 32 seconds, it decays all the way back to zero between + * each event. + */ + +#define FM_COEF 933 /* coefficient for half-life of 10 secs */ +#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ +#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ +#define FM_SCALE 1000 /* faux fixed point scale */ + +/* Initialize a frequency meter */ +void fmeter_init(struct fmeter *fmp) +{ + fmp->cnt = 0; + fmp->val = 0; + fmp->time = 0; + spin_lock_init(&fmp->lock); +} + +/* Internal meter update - process cnt events and update value */ +static void fmeter_update(struct fmeter *fmp) +{ + time64_t now; + u32 ticks; + + now = ktime_get_seconds(); + ticks = now - fmp->time; + + if (ticks == 0) + return; + + ticks = min(FM_MAXTICKS, ticks); + while (ticks-- > 0) + fmp->val = (FM_COEF * fmp->val) / FM_SCALE; + fmp->time = now; + + fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; + fmp->cnt = 0; +} + +/* Process any previous ticks, then bump cnt by one (times scale). */ +static void fmeter_markevent(struct fmeter *fmp) +{ + spin_lock(&fmp->lock); + fmeter_update(fmp); + fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); + spin_unlock(&fmp->lock); +} + +/* Process any previous ticks, then return current value. */ +static int fmeter_getrate(struct fmeter *fmp) +{ + int val; + + spin_lock(&fmp->lock); + fmeter_update(fmp); + val = fmp->val; + spin_unlock(&fmp->lock); + return val; +} + +/* + * Collection of memory_pressure is suppressed unless + * this flag is enabled by writing "1" to the special + * cpuset file 'memory_pressure_enabled' in the root cpuset. + */ + +int cpuset_memory_pressure_enabled __read_mostly; + +/* + * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. + * + * Keep a running average of the rate of synchronous (direct) + * page reclaim efforts initiated by tasks in each cpuset. + * + * This represents the rate at which some task in the cpuset + * ran low on memory on all nodes it was allowed to use, and + * had to enter the kernels page reclaim code in an effort to + * create more free memory by tossing clean pages or swapping + * or writing dirty pages. + * + * Display to user space in the per-cpuset read-only file + * "memory_pressure". Value displayed is an integer + * representing the recent rate of entry into the synchronous + * (direct) page reclaim by any task attached to the cpuset. + */ + +void __cpuset_memory_pressure_bump(void) +{ + rcu_read_lock(); + fmeter_markevent(&task_cs(current)->fmeter); + rcu_read_unlock(); +} + +static int update_relax_domain_level(struct cpuset *cs, s64 val) +{ +#ifdef CONFIG_SMP + if (val < -1 || val > sched_domain_level_max + 1) + return -EINVAL; +#endif + + if (val != cs->relax_domain_level) { + cs->relax_domain_level = val; + if (!cpumask_empty(cs->cpus_allowed) && + is_sched_load_balance(cs)) + rebuild_sched_domains_locked(); + } + + return 0; +} + +static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, + s64 val) +{ + struct cpuset *cs = css_cs(css); + cpuset_filetype_t type = cft->private; + int retval = -ENODEV; + + cpuset_full_lock(); + if (!is_cpuset_online(cs)) + goto out_unlock; + + switch (type) { + case FILE_SCHED_RELAX_DOMAIN_LEVEL: + pr_info_once("cpuset.%s is deprecated\n", cft->name); + retval = update_relax_domain_level(cs, val); + break; + default: + retval = -EINVAL; + break; + } +out_unlock: + cpuset_full_unlock(); + return retval; +} + +static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) +{ + struct cpuset *cs = css_cs(css); + cpuset_filetype_t type = cft->private; + + switch (type) { + case FILE_SCHED_RELAX_DOMAIN_LEVEL: + return cs->relax_domain_level; + default: + BUG(); + } + + /* Unreachable but makes gcc happy */ + return 0; +} + +/* + * update task's spread flag if cpuset's page/slab spread flag is set + * + * Call with callback_lock or cpuset_mutex held. The check can be skipped + * if on default hierarchy. + */ +void cpuset1_update_task_spread_flags(struct cpuset *cs, + struct task_struct *tsk) +{ + if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) + return; + + if (is_spread_page(cs)) + task_set_spread_page(tsk); + else + task_clear_spread_page(tsk); + + if (is_spread_slab(cs)) + task_set_spread_slab(tsk); + else + task_clear_spread_slab(tsk); +} + +/** + * cpuset1_update_tasks_flags - update the spread flags of tasks in the cpuset. + * @cs: the cpuset in which each task's spread flags needs to be changed + * + * Iterate through each task of @cs updating its spread flags. As this + * function is called with cpuset_mutex held, cpuset membership stays + * stable. + */ +void cpuset1_update_tasks_flags(struct cpuset *cs) +{ + struct css_task_iter it; + struct task_struct *task; + + css_task_iter_start(&cs->css, 0, &it); + while ((task = css_task_iter_next(&it))) + cpuset1_update_task_spread_flags(cs, task); + css_task_iter_end(&it); +} + +/* + * If CPU and/or memory hotplug handlers, below, unplug any CPUs + * or memory nodes, we need to walk over the cpuset hierarchy, + * removing that CPU or node from all cpusets. If this removes the + * last CPU or node from a cpuset, then move the tasks in the empty + * cpuset to its next-highest non-empty parent. + */ +static void remove_tasks_in_empty_cpuset(struct cpuset *cs) +{ + struct cpuset *parent; + + /* + * Find its next-highest non-empty parent, (top cpuset + * has online cpus, so can't be empty). + */ + parent = parent_cs(cs); + while (cpumask_empty(parent->cpus_allowed) || + nodes_empty(parent->mems_allowed)) + parent = parent_cs(parent); + + if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { + pr_err("cpuset: failed to transfer tasks out of empty cpuset "); + pr_cont_cgroup_name(cs->css.cgroup); + pr_cont("\n"); + } +} + +static void cpuset_migrate_tasks_workfn(struct work_struct *work) +{ + struct cpuset_remove_tasks_struct *s; + + s = container_of(work, struct cpuset_remove_tasks_struct, work); + remove_tasks_in_empty_cpuset(s->cs); + css_put(&s->cs->css); + kfree(s); +} + +void cpuset1_hotplug_update_tasks(struct cpuset *cs, + struct cpumask *new_cpus, nodemask_t *new_mems, + bool cpus_updated, bool mems_updated) +{ + bool is_empty; + + cpuset_callback_lock_irq(); + cpumask_copy(cs->cpus_allowed, new_cpus); + cpumask_copy(cs->effective_cpus, new_cpus); + cs->mems_allowed = *new_mems; + cs->effective_mems = *new_mems; + cpuset_callback_unlock_irq(); + + /* + * Don't call cpuset_update_tasks_cpumask() if the cpuset becomes empty, + * as the tasks will be migrated to an ancestor. + */ + if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) + cpuset_update_tasks_cpumask(cs, new_cpus); + if (mems_updated && !nodes_empty(cs->mems_allowed)) + cpuset_update_tasks_nodemask(cs); + + is_empty = cpumask_empty(cs->cpus_allowed) || + nodes_empty(cs->mems_allowed); + + /* + * Move tasks to the nearest ancestor with execution resources, + * This is full cgroup operation which will also call back into + * cpuset. Execute it asynchronously using workqueue. + */ + if (is_empty && cs->css.cgroup->nr_populated_csets && + css_tryget_online(&cs->css)) { + struct cpuset_remove_tasks_struct *s; + + s = kzalloc(sizeof(*s), GFP_KERNEL); + if (WARN_ON_ONCE(!s)) { + css_put(&cs->css); + return; + } + + s->cs = cs; + INIT_WORK(&s->work, cpuset_migrate_tasks_workfn); + schedule_work(&s->work); + } +} + +/* + * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? + * + * One cpuset is a subset of another if all its allowed CPUs and + * Memory Nodes are a subset of the other, and its exclusive flags + * are only set if the other's are set. Call holding cpuset_mutex. + */ + +static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) +{ + return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && + nodes_subset(p->mems_allowed, q->mems_allowed) && + is_cpu_exclusive(p) <= is_cpu_exclusive(q) && + is_mem_exclusive(p) <= is_mem_exclusive(q); +} + +/* + * cpuset1_validate_change() - Validate conditions specific to legacy (v1) + * behavior. + */ +int cpuset1_validate_change(struct cpuset *cur, struct cpuset *trial) +{ + struct cgroup_subsys_state *css; + struct cpuset *c, *par; + int ret; + + WARN_ON_ONCE(!rcu_read_lock_held()); + + /* Each of our child cpusets must be a subset of us */ + ret = -EBUSY; + cpuset_for_each_child(c, css, cur) + if (!is_cpuset_subset(c, trial)) + goto out; + + /* On legacy hierarchy, we must be a subset of our parent cpuset. */ + ret = -EACCES; + par = parent_cs(cur); + if (par && !is_cpuset_subset(trial, par)) + goto out; + + ret = 0; +out: + return ret; +} + +#ifdef CONFIG_PROC_PID_CPUSET +/* + * proc_cpuset_show() + * - Print tasks cpuset path into seq_file. + * - Used for /proc/<pid>/cpuset. + */ +int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, + struct pid *pid, struct task_struct *tsk) +{ + char *buf; + struct cgroup_subsys_state *css; + int retval; + + retval = -ENOMEM; + buf = kmalloc(PATH_MAX, GFP_KERNEL); + if (!buf) + goto out; + + rcu_read_lock(); + spin_lock_irq(&css_set_lock); + css = task_css(tsk, cpuset_cgrp_id); + retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX, + current->nsproxy->cgroup_ns); + spin_unlock_irq(&css_set_lock); + rcu_read_unlock(); + + if (retval == -E2BIG) + retval = -ENAMETOOLONG; + if (retval < 0) + goto out_free; + seq_puts(m, buf); + seq_putc(m, '\n'); + retval = 0; +out_free: + kfree(buf); +out: + return retval; +} +#endif /* CONFIG_PROC_PID_CPUSET */ + +static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) +{ + struct cpuset *cs = css_cs(css); + cpuset_filetype_t type = cft->private; + + switch (type) { + case FILE_CPU_EXCLUSIVE: + return is_cpu_exclusive(cs); + case FILE_MEM_EXCLUSIVE: + return is_mem_exclusive(cs); + case FILE_MEM_HARDWALL: + return is_mem_hardwall(cs); + case FILE_SCHED_LOAD_BALANCE: + return is_sched_load_balance(cs); + case FILE_MEMORY_MIGRATE: + return is_memory_migrate(cs); + case FILE_MEMORY_PRESSURE_ENABLED: + return cpuset_memory_pressure_enabled; + case FILE_MEMORY_PRESSURE: + return fmeter_getrate(&cs->fmeter); + case FILE_SPREAD_PAGE: + return is_spread_page(cs); + case FILE_SPREAD_SLAB: + return is_spread_slab(cs); + default: + BUG(); + } + + /* Unreachable but makes gcc happy */ + return 0; +} + +static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, + u64 val) +{ + struct cpuset *cs = css_cs(css); + cpuset_filetype_t type = cft->private; + int retval = 0; + + cpuset_full_lock(); + if (!is_cpuset_online(cs)) { + retval = -ENODEV; + goto out_unlock; + } + + switch (type) { + case FILE_CPU_EXCLUSIVE: + retval = cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, val); + break; + case FILE_MEM_EXCLUSIVE: + pr_info_once("cpuset.%s is deprecated\n", cft->name); + retval = cpuset_update_flag(CS_MEM_EXCLUSIVE, cs, val); + break; + case FILE_MEM_HARDWALL: + pr_info_once("cpuset.%s is deprecated\n", cft->name); + retval = cpuset_update_flag(CS_MEM_HARDWALL, cs, val); + break; + case FILE_SCHED_LOAD_BALANCE: + pr_info_once("cpuset.%s is deprecated, use cpuset.cpus.partition instead\n", cft->name); + retval = cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, val); + break; + case FILE_MEMORY_MIGRATE: + pr_info_once("cpuset.%s is deprecated\n", cft->name); + retval = cpuset_update_flag(CS_MEMORY_MIGRATE, cs, val); + break; + case FILE_MEMORY_PRESSURE_ENABLED: + pr_info_once("cpuset.%s is deprecated, use memory.pressure with CONFIG_PSI instead\n", cft->name); + cpuset_memory_pressure_enabled = !!val; + break; + case FILE_SPREAD_PAGE: + pr_info_once("cpuset.%s is deprecated\n", cft->name); + retval = cpuset_update_flag(CS_SPREAD_PAGE, cs, val); + break; + case FILE_SPREAD_SLAB: + pr_warn_once("cpuset.%s is deprecated\n", cft->name); + retval = cpuset_update_flag(CS_SPREAD_SLAB, cs, val); + break; + default: + retval = -EINVAL; + break; + } +out_unlock: + cpuset_full_unlock(); + return retval; +} + +/* + * for the common functions, 'private' gives the type of file + */ + +struct cftype cpuset1_files[] = { + { + .name = "cpus", + .seq_show = cpuset_common_seq_show, + .write = cpuset_write_resmask, + .max_write_len = (100U + 6 * NR_CPUS), + .private = FILE_CPULIST, + }, + + { + .name = "mems", + .seq_show = cpuset_common_seq_show, + .write = cpuset_write_resmask, + .max_write_len = (100U + 6 * MAX_NUMNODES), + .private = FILE_MEMLIST, + }, + + { + .name = "effective_cpus", + .seq_show = cpuset_common_seq_show, + .private = FILE_EFFECTIVE_CPULIST, + }, + + { + .name = "effective_mems", + .seq_show = cpuset_common_seq_show, + .private = FILE_EFFECTIVE_MEMLIST, + }, + + { + .name = "cpu_exclusive", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_CPU_EXCLUSIVE, + }, + + { + .name = "mem_exclusive", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_MEM_EXCLUSIVE, + }, + + { + .name = "mem_hardwall", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_MEM_HARDWALL, + }, + + { + .name = "sched_load_balance", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_SCHED_LOAD_BALANCE, + }, + + { + .name = "sched_relax_domain_level", + .read_s64 = cpuset_read_s64, + .write_s64 = cpuset_write_s64, + .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, + }, + + { + .name = "memory_migrate", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_MEMORY_MIGRATE, + }, + + { + .name = "memory_pressure", + .read_u64 = cpuset_read_u64, + .private = FILE_MEMORY_PRESSURE, + }, + + { + .name = "memory_spread_page", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_SPREAD_PAGE, + }, + + { + /* obsolete, may be removed in the future */ + .name = "memory_spread_slab", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_SPREAD_SLAB, + }, + + { + .name = "memory_pressure_enabled", + .flags = CFTYPE_ONLY_ON_ROOT, + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_MEMORY_PRESSURE_ENABLED, + }, + + { } /* terminate */ +}; diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c index 8d5151688504..6e6eb09b8db6 100644 --- a/kernel/cgroup/cpuset.c +++ b/kernel/cgroup/cpuset.c @@ -21,250 +21,220 @@ * License. See the file COPYING in the main directory of the Linux * distribution for more details. */ +#include "cpuset-internal.h" -#include <linux/cpu.h> -#include <linux/cpumask.h> -#include <linux/cpuset.h> -#include <linux/err.h> -#include <linux/errno.h> -#include <linux/file.h> -#include <linux/fs.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> -#include <linux/kmod.h> -#include <linux/list.h> #include <linux/mempolicy.h> #include <linux/mm.h> #include <linux/memory.h> #include <linux/export.h> -#include <linux/mount.h> -#include <linux/namei.h> -#include <linux/pagemap.h> -#include <linux/proc_fs.h> #include <linux/rcupdate.h> #include <linux/sched.h> +#include <linux/sched/deadline.h> #include <linux/sched/mm.h> #include <linux/sched/task.h> -#include <linux/seq_file.h> #include <linux/security.h> -#include <linux/slab.h> -#include <linux/spinlock.h> -#include <linux/stat.h> -#include <linux/string.h> -#include <linux/time.h> -#include <linux/time64.h> -#include <linux/backing-dev.h> -#include <linux/sort.h> - -#include <linux/uaccess.h> -#include <linux/atomic.h> -#include <linux/mutex.h> -#include <linux/cgroup.h> +#include <linux/oom.h> +#include <linux/sched/isolation.h> #include <linux/wait.h> +#include <linux/workqueue.h> +#include <linux/task_work.h> DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); -/* See "Frequency meter" comments, below. */ - -struct fmeter { - int cnt; /* unprocessed events count */ - int val; /* most recent output value */ - time64_t time; /* clock (secs) when val computed */ - spinlock_t lock; /* guards read or write of above */ +/* + * There could be abnormal cpuset configurations for cpu or memory + * node binding, add this key to provide a quick low-cost judgment + * of the situation. + */ +DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); + +static const char * const perr_strings[] = { + [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", + [PERR_INVPARENT] = "Parent is an invalid partition root", + [PERR_NOTPART] = "Parent is not a partition root", + [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", + [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", + [PERR_HOTPLUG] = "No cpu available due to hotplug", + [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty", + [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", + [PERR_ACCESS] = "Enable partition not permitted", + [PERR_REMOTE] = "Have remote partition underneath", }; -struct cpuset { - struct cgroup_subsys_state css; - - unsigned long flags; /* "unsigned long" so bitops work */ - - /* - * On default hierarchy: - * - * The user-configured masks can only be changed by writing to - * cpuset.cpus and cpuset.mems, and won't be limited by the - * parent masks. - * - * The effective masks is the real masks that apply to the tasks - * in the cpuset. They may be changed if the configured masks are - * changed or hotplug happens. - * - * effective_mask == configured_mask & parent's effective_mask, - * and if it ends up empty, it will inherit the parent's mask. - * - * - * On legacy hierachy: - * - * The user-configured masks are always the same with effective masks. - */ - - /* user-configured CPUs and Memory Nodes allow to tasks */ - cpumask_var_t cpus_allowed; - nodemask_t mems_allowed; +/* + * For local partitions, update to subpartitions_cpus & isolated_cpus is done + * in update_parent_effective_cpumask(). For remote partitions, it is done in + * the remote_partition_*() and remote_cpus_update() helpers. + */ +/* + * Exclusive CPUs distributed out to local or remote sub-partitions of + * top_cpuset + */ +static cpumask_var_t subpartitions_cpus; - /* effective CPUs and Memory Nodes allow to tasks */ - cpumask_var_t effective_cpus; - nodemask_t effective_mems; +/* + * Exclusive CPUs in isolated partitions + */ +static cpumask_var_t isolated_cpus; - /* - * This is old Memory Nodes tasks took on. - * - * - top_cpuset.old_mems_allowed is initialized to mems_allowed. - * - A new cpuset's old_mems_allowed is initialized when some - * task is moved into it. - * - old_mems_allowed is used in cpuset_migrate_mm() when we change - * cpuset.mems_allowed and have tasks' nodemask updated, and - * then old_mems_allowed is updated to mems_allowed. - */ - nodemask_t old_mems_allowed; +/* + * isolated_cpus updating flag (protected by cpuset_mutex) + * Set if isolated_cpus is going to be updated in the current + * cpuset_mutex crtical section. + */ +static bool isolated_cpus_updating; - struct fmeter fmeter; /* memory_pressure filter */ +/* + * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot + */ +static cpumask_var_t boot_hk_cpus; +static bool have_boot_isolcpus; - /* - * Tasks are being attached to this cpuset. Used to prevent - * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). - */ - int attach_in_progress; +/* + * A flag to force sched domain rebuild at the end of an operation. + * It can be set in + * - update_partition_sd_lb() + * - update_cpumasks_hier() + * - cpuset_update_flag() + * - cpuset_hotplug_update_tasks() + * - cpuset_handle_hotplug() + * + * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock. + * + * Note that update_relax_domain_level() in cpuset-v1.c can still call + * rebuild_sched_domains_locked() directly without using this flag. + */ +static bool force_sd_rebuild; - /* partition number for rebuild_sched_domains() */ - int pn; +/* + * Partition root states: + * + * 0 - member (not a partition root) + * 1 - partition root + * 2 - partition root without load balancing (isolated) + * -1 - invalid partition root + * -2 - invalid isolated partition root + * + * There are 2 types of partitions - local or remote. Local partitions are + * those whose parents are partition root themselves. Setting of + * cpuset.cpus.exclusive are optional in setting up local partitions. + * Remote partitions are those whose parents are not partition roots. Passing + * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor + * nodes are mandatory in creating a remote partition. + * + * For simplicity, a local partition can be created under a local or remote + * partition but a remote partition cannot have any partition root in its + * ancestor chain except the cgroup root. + */ +#define PRS_MEMBER 0 +#define PRS_ROOT 1 +#define PRS_ISOLATED 2 +#define PRS_INVALID_ROOT -1 +#define PRS_INVALID_ISOLATED -2 - /* for custom sched domain */ - int relax_domain_level; +/* + * Temporary cpumasks for working with partitions that are passed among + * functions to avoid memory allocation in inner functions. + */ +struct tmpmasks { + cpumask_var_t addmask, delmask; /* For partition root */ + cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ }; -static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) +void inc_dl_tasks_cs(struct task_struct *p) { - return css ? container_of(css, struct cpuset, css) : NULL; -} + struct cpuset *cs = task_cs(p); -/* Retrieve the cpuset for a task */ -static inline struct cpuset *task_cs(struct task_struct *task) -{ - return css_cs(task_css(task, cpuset_cgrp_id)); + cs->nr_deadline_tasks++; } -static inline struct cpuset *parent_cs(struct cpuset *cs) +void dec_dl_tasks_cs(struct task_struct *p) { - return css_cs(cs->css.parent); -} + struct cpuset *cs = task_cs(p); -#ifdef CONFIG_NUMA -static inline bool task_has_mempolicy(struct task_struct *task) -{ - return task->mempolicy; -} -#else -static inline bool task_has_mempolicy(struct task_struct *task) -{ - return false; -} -#endif - - -/* bits in struct cpuset flags field */ -typedef enum { - CS_ONLINE, - CS_CPU_EXCLUSIVE, - CS_MEM_EXCLUSIVE, - CS_MEM_HARDWALL, - CS_MEMORY_MIGRATE, - CS_SCHED_LOAD_BALANCE, - CS_SPREAD_PAGE, - CS_SPREAD_SLAB, -} cpuset_flagbits_t; - -/* convenient tests for these bits */ -static inline bool is_cpuset_online(struct cpuset *cs) -{ - return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); -} - -static inline int is_cpu_exclusive(const struct cpuset *cs) -{ - return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); + cs->nr_deadline_tasks--; } -static inline int is_mem_exclusive(const struct cpuset *cs) +static inline bool is_partition_valid(const struct cpuset *cs) { - return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); + return cs->partition_root_state > 0; } -static inline int is_mem_hardwall(const struct cpuset *cs) +static inline bool is_partition_invalid(const struct cpuset *cs) { - return test_bit(CS_MEM_HARDWALL, &cs->flags); + return cs->partition_root_state < 0; } -static inline int is_sched_load_balance(const struct cpuset *cs) +static inline bool cs_is_member(const struct cpuset *cs) { - return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); + return cs->partition_root_state == PRS_MEMBER; } -static inline int is_memory_migrate(const struct cpuset *cs) +/* + * Callers should hold callback_lock to modify partition_root_state. + */ +static inline void make_partition_invalid(struct cpuset *cs) { - return test_bit(CS_MEMORY_MIGRATE, &cs->flags); + if (cs->partition_root_state > 0) + cs->partition_root_state = -cs->partition_root_state; } -static inline int is_spread_page(const struct cpuset *cs) +/* + * Send notification event of whenever partition_root_state changes. + */ +static inline void notify_partition_change(struct cpuset *cs, int old_prs) { - return test_bit(CS_SPREAD_PAGE, &cs->flags); -} + if (old_prs == cs->partition_root_state) + return; + cgroup_file_notify(&cs->partition_file); -static inline int is_spread_slab(const struct cpuset *cs) -{ - return test_bit(CS_SPREAD_SLAB, &cs->flags); + /* Reset prs_err if not invalid */ + if (is_partition_valid(cs)) + WRITE_ONCE(cs->prs_err, PERR_NONE); } -static struct cpuset top_cpuset = { - .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | - (1 << CS_MEM_EXCLUSIVE)), -}; - -/** - * cpuset_for_each_child - traverse online children of a cpuset - * @child_cs: loop cursor pointing to the current child - * @pos_css: used for iteration - * @parent_cs: target cpuset to walk children of - * - * Walk @child_cs through the online children of @parent_cs. Must be used - * with RCU read locked. - */ -#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ - css_for_each_child((pos_css), &(parent_cs)->css) \ - if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) - -/** - * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants - * @des_cs: loop cursor pointing to the current descendant - * @pos_css: used for iteration - * @root_cs: target cpuset to walk ancestor of +/* + * The top_cpuset is always synchronized to cpu_active_mask and we should avoid + * using cpu_online_mask as much as possible. An active CPU is always an online + * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ + * during hotplug operations. A CPU is marked active at the last stage of CPU + * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code + * will be called to update the sched domains so that the scheduler can move + * a normal task to a newly active CPU or remove tasks away from a newly + * inactivated CPU. The online bit is set much earlier in the CPU bringup + * process and cleared much later in CPU teardown. * - * Walk @des_cs through the online descendants of @root_cs. Must be used - * with RCU read locked. The caller may modify @pos_css by calling - * css_rightmost_descendant() to skip subtree. @root_cs is included in the - * iteration and the first node to be visited. + * If cpu_online_mask is used while a hotunplug operation is happening in + * parallel, we may leave an offline CPU in cpu_allowed or some other masks. */ -#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ - css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ - if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) +static struct cpuset top_cpuset = { + .flags = BIT(CS_CPU_EXCLUSIVE) | + BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE), + .partition_root_state = PRS_ROOT, + .relax_domain_level = -1, + .remote_partition = false, +}; /* * There are two global locks guarding cpuset structures - cpuset_mutex and - * callback_lock. We also require taking task_lock() when dereferencing a - * task's cpuset pointer. See "The task_lock() exception", at the end of this - * comment. + * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel + * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset + * structures. Note that cpuset_mutex needs to be a mutex as it is used in + * paths that rely on priority inheritance (e.g. scheduler - on RT) for + * correctness. * * A task must hold both locks to modify cpusets. If a task holds - * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it - * is the only task able to also acquire callback_lock and be able to - * modify cpusets. It can perform various checks on the cpuset structure - * first, knowing nothing will change. It can also allocate memory while - * just holding cpuset_mutex. While it is performing these checks, various - * callback routines can briefly acquire callback_lock to query cpusets. - * Once it is ready to make the changes, it takes callback_lock, blocking - * everyone else. + * cpuset_mutex, it blocks others, ensuring that it is the only task able to + * also acquire callback_lock and be able to modify cpusets. It can perform + * various checks on the cpuset structure first, knowing nothing will change. + * It can also allocate memory while just holding cpuset_mutex. While it is + * performing these checks, various callback routines can briefly acquire + * callback_lock to query cpusets. Once it is ready to make the changes, it + * takes callback_lock, blocking everyone else. * * Calls to the kernel memory allocator can not be made while holding * callback_lock, as that would risk double tripping on callback_lock @@ -278,80 +248,199 @@ static struct cpuset top_cpuset = { * by other task, we use alloc_lock in the task_struct fields to protect * them. * - * The cpuset_common_file_read() handlers only hold callback_lock across + * The cpuset_common_seq_show() handlers only hold callback_lock across * small pieces of code, such as when reading out possibly multi-word * cpumasks and nodemasks. - * - * Accessing a task's cpuset should be done in accordance with the - * guidelines for accessing subsystem state in kernel/cgroup.c */ static DEFINE_MUTEX(cpuset_mutex); + +/** + * cpuset_lock - Acquire the global cpuset mutex + * + * This locks the global cpuset mutex to prevent modifications to cpuset + * hierarchy and configurations. This helper is not enough to make modification. + */ +void cpuset_lock(void) +{ + mutex_lock(&cpuset_mutex); +} + +void cpuset_unlock(void) +{ + mutex_unlock(&cpuset_mutex); +} + +/** + * cpuset_full_lock - Acquire full protection for cpuset modification + * + * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex + * to safely modify cpuset data. + */ +void cpuset_full_lock(void) +{ + cpus_read_lock(); + mutex_lock(&cpuset_mutex); +} + +void cpuset_full_unlock(void) +{ + mutex_unlock(&cpuset_mutex); + cpus_read_unlock(); +} + static DEFINE_SPINLOCK(callback_lock); +void cpuset_callback_lock_irq(void) +{ + spin_lock_irq(&callback_lock); +} + +void cpuset_callback_unlock_irq(void) +{ + spin_unlock_irq(&callback_lock); +} + static struct workqueue_struct *cpuset_migrate_mm_wq; +static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); + +static inline void check_insane_mems_config(nodemask_t *nodes) +{ + if (!cpusets_insane_config() && + movable_only_nodes(nodes)) { + static_branch_enable_cpuslocked(&cpusets_insane_config_key); + pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" + "Cpuset allocations might fail even with a lot of memory available.\n", + nodemask_pr_args(nodes)); + } +} + /* - * CPU / memory hotplug is handled asynchronously. + * decrease cs->attach_in_progress. + * wake_up cpuset_attach_wq if cs->attach_in_progress==0. */ -static void cpuset_hotplug_workfn(struct work_struct *work); -static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); +static inline void dec_attach_in_progress_locked(struct cpuset *cs) +{ + lockdep_assert_held(&cpuset_mutex); -static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); + cs->attach_in_progress--; + if (!cs->attach_in_progress) + wake_up(&cpuset_attach_wq); +} + +static inline void dec_attach_in_progress(struct cpuset *cs) +{ + mutex_lock(&cpuset_mutex); + dec_attach_in_progress_locked(cs); + mutex_unlock(&cpuset_mutex); +} + +static inline bool cpuset_v2(void) +{ + return !IS_ENABLED(CONFIG_CPUSETS_V1) || + cgroup_subsys_on_dfl(cpuset_cgrp_subsys); +} /* - * This is ugly, but preserves the userspace API for existing cpuset - * users. If someone tries to mount the "cpuset" filesystem, we - * silently switch it to mount "cgroup" instead - */ -static struct dentry *cpuset_mount(struct file_system_type *fs_type, - int flags, const char *unused_dev_name, void *data) -{ - struct file_system_type *cgroup_fs = get_fs_type("cgroup"); - struct dentry *ret = ERR_PTR(-ENODEV); - if (cgroup_fs) { - char mountopts[] = - "cpuset,noprefix," - "release_agent=/sbin/cpuset_release_agent"; - ret = cgroup_fs->mount(cgroup_fs, flags, - unused_dev_name, mountopts); - put_filesystem(cgroup_fs); - } - return ret; + * Cgroup v2 behavior is used on the "cpus" and "mems" control files when + * on default hierarchy or when the cpuset_v2_mode flag is set by mounting + * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. + * With v2 behavior, "cpus" and "mems" are always what the users have + * requested and won't be changed by hotplug events. Only the effective + * cpus or mems will be affected. + */ +static inline bool is_in_v2_mode(void) +{ + return cpuset_v2() || + (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); } -static struct file_system_type cpuset_fs_type = { - .name = "cpuset", - .mount = cpuset_mount, -}; +static inline bool cpuset_is_populated(struct cpuset *cs) +{ + lockdep_assert_held(&cpuset_mutex); + + /* Cpusets in the process of attaching should be considered as populated */ + return cgroup_is_populated(cs->css.cgroup) || + cs->attach_in_progress; +} + +/** + * partition_is_populated - check if partition has tasks + * @cs: partition root to be checked + * @excluded_child: a child cpuset to be excluded in task checking + * Return: true if there are tasks, false otherwise + * + * @cs should be a valid partition root or going to become a partition root. + * @excluded_child should be non-NULL when this cpuset is going to become a + * partition itself. + * + * Note that a remote partition is not allowed underneath a valid local + * or remote partition. So if a non-partition root child is populated, + * the whole partition is considered populated. + */ +static inline bool partition_is_populated(struct cpuset *cs, + struct cpuset *excluded_child) +{ + struct cpuset *cp; + struct cgroup_subsys_state *pos_css; + + /* + * We cannot call cs_is_populated(cs) directly, as + * nr_populated_domain_children may include populated + * csets from descendants that are partitions. + */ + if (cs->css.cgroup->nr_populated_csets || + cs->attach_in_progress) + return true; + + rcu_read_lock(); + cpuset_for_each_descendant_pre(cp, pos_css, cs) { + if (cp == cs || cp == excluded_child) + continue; + + if (is_partition_valid(cp)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + + if (cpuset_is_populated(cp)) { + rcu_read_unlock(); + return true; + } + } + rcu_read_unlock(); + return false; +} /* - * Return in pmask the portion of a cpusets's cpus_allowed that - * are online. If none are online, walk up the cpuset hierarchy - * until we find one that does have some online cpus. + * Return in pmask the portion of a task's cpusets's cpus_allowed that + * are online and are capable of running the task. If none are found, + * walk up the cpuset hierarchy until we find one that does have some + * appropriate cpus. * * One way or another, we guarantee to return some non-empty subset - * of cpu_online_mask. + * of cpu_active_mask. * * Call with callback_lock or cpuset_mutex held. */ -static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) +static void guarantee_active_cpus(struct task_struct *tsk, + struct cpumask *pmask) { - while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { + const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); + struct cpuset *cs; + + if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask))) + cpumask_copy(pmask, cpu_active_mask); + + rcu_read_lock(); + cs = task_cs(tsk); + + while (!cpumask_intersects(cs->effective_cpus, pmask)) cs = parent_cs(cs); - if (unlikely(!cs)) { - /* - * The top cpuset doesn't have any online cpu as a - * consequence of a race between cpuset_hotplug_work - * and cpu hotplug notifier. But we know the top - * cpuset's effective_cpus is on its way to to be - * identical to cpu_online_mask. - */ - cpumask_copy(pmask, cpu_online_mask); - return; - } - } - cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); + + cpumask_and(pmask, pmask, cs->effective_cpus); + rcu_read_unlock(); } /* @@ -372,78 +461,188 @@ static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); } -/* - * update task's spread flag if cpuset's page/slab spread flag is set +/** + * alloc_cpumasks - Allocate an array of cpumask variables + * @pmasks: Pointer to array of cpumask_var_t pointers + * @size: Number of cpumasks to allocate + * Return: 0 if successful, -ENOMEM otherwise. * - * Call with callback_lock or cpuset_mutex held. + * Allocates @size cpumasks and initializes them to empty. Returns 0 on + * success, -ENOMEM on allocation failure. On failure, any previously + * allocated cpumasks are freed. */ -static void cpuset_update_task_spread_flag(struct cpuset *cs, - struct task_struct *tsk) +static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size) { - if (is_spread_page(cs)) - task_set_spread_page(tsk); - else - task_clear_spread_page(tsk); + int i; - if (is_spread_slab(cs)) - task_set_spread_slab(tsk); - else - task_clear_spread_slab(tsk); + for (i = 0; i < size; i++) { + if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) { + while (--i >= 0) + free_cpumask_var(*pmasks[i]); + return -ENOMEM; + } + } + return 0; } -/* - * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? - * - * One cpuset is a subset of another if all its allowed CPUs and - * Memory Nodes are a subset of the other, and its exclusive flags - * are only set if the other's are set. Call holding cpuset_mutex. +/** + * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations. + * @tmp: Pointer to tmpmasks structure to populate + * Return: 0 on success, -ENOMEM on allocation failure */ +static inline int alloc_tmpmasks(struct tmpmasks *tmp) +{ + /* + * Array of pointers to the three cpumask_var_t fields in tmpmasks. + * Note: Array size must match actual number of masks (3) + */ + cpumask_var_t *pmask[3] = { + &tmp->new_cpus, + &tmp->addmask, + &tmp->delmask + }; + + return alloc_cpumasks(pmask, ARRAY_SIZE(pmask)); +} -static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) +/** + * free_tmpmasks - free cpumasks in a tmpmasks structure + * @tmp: the tmpmasks structure pointer + */ +static inline void free_tmpmasks(struct tmpmasks *tmp) { - return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && - nodes_subset(p->mems_allowed, q->mems_allowed) && - is_cpu_exclusive(p) <= is_cpu_exclusive(q) && - is_mem_exclusive(p) <= is_mem_exclusive(q); + if (!tmp) + return; + + free_cpumask_var(tmp->new_cpus); + free_cpumask_var(tmp->addmask); + free_cpumask_var(tmp->delmask); } /** - * alloc_trial_cpuset - allocate a trial cpuset - * @cs: the cpuset that the trial cpuset duplicates + * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset + * @cs: Source cpuset to duplicate (NULL for a fresh allocation) + * + * Creates a new cpuset by either: + * 1. Duplicating an existing cpuset (if @cs is non-NULL), or + * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL) + * + * Return: Pointer to newly allocated cpuset on success, NULL on failure */ -static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) +static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs) { struct cpuset *trial; - trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); + /* Allocate base structure */ + trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) : + kzalloc(sizeof(*cs), GFP_KERNEL); if (!trial) return NULL; - if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) - goto free_cs; - if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL)) - goto free_cpus; + /* Setup cpumask pointer array */ + cpumask_var_t *pmask[4] = { + &trial->cpus_allowed, + &trial->effective_cpus, + &trial->effective_xcpus, + &trial->exclusive_cpus + }; + + if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) { + kfree(trial); + return NULL; + } + + /* Copy masks if duplicating */ + if (cs) { + cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); + cpumask_copy(trial->effective_cpus, cs->effective_cpus); + cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); + cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); + } - cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); - cpumask_copy(trial->effective_cpus, cs->effective_cpus); return trial; +} + +/** + * free_cpuset - free the cpuset + * @cs: the cpuset to be freed + */ +static inline void free_cpuset(struct cpuset *cs) +{ + free_cpumask_var(cs->cpus_allowed); + free_cpumask_var(cs->effective_cpus); + free_cpumask_var(cs->effective_xcpus); + free_cpumask_var(cs->exclusive_cpus); + kfree(cs); +} -free_cpus: - free_cpumask_var(trial->cpus_allowed); -free_cs: - kfree(trial); - return NULL; +/* Return user specified exclusive CPUs */ +static inline struct cpumask *user_xcpus(struct cpuset *cs) +{ + return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed + : cs->exclusive_cpus; +} + +static inline bool xcpus_empty(struct cpuset *cs) +{ + return cpumask_empty(cs->cpus_allowed) && + cpumask_empty(cs->exclusive_cpus); +} + +/* + * cpusets_are_exclusive() - check if two cpusets are exclusive + * + * Return true if exclusive, false if not + */ +static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) +{ + struct cpumask *xcpus1 = user_xcpus(cs1); + struct cpumask *xcpus2 = user_xcpus(cs2); + + if (cpumask_intersects(xcpus1, xcpus2)) + return false; + return true; } /** - * free_trial_cpuset - free the trial cpuset - * @trial: the trial cpuset to be freed + * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts + * @cs1: first cpuset to check + * @cs2: second cpuset to check + * + * Returns: true if CPU exclusivity conflict exists, false otherwise + * + * Conflict detection rules: + * 1. If either cpuset is CPU exclusive, they must be mutually exclusive + * 2. exclusive_cpus masks cannot intersect between cpusets + * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs */ -static void free_trial_cpuset(struct cpuset *trial) +static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2) { - free_cpumask_var(trial->effective_cpus); - free_cpumask_var(trial->cpus_allowed); - kfree(trial); + /* If either cpuset is exclusive, check if they are mutually exclusive */ + if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2)) + return !cpusets_are_exclusive(cs1, cs2); + + /* Exclusive_cpus cannot intersect */ + if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus)) + return true; + + /* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */ + if (!cpumask_empty(cs1->cpus_allowed) && + cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus)) + return true; + + if (!cpumask_empty(cs2->cpus_allowed) && + cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus)) + return true; + + return false; +} + +static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2) +{ + if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2))) + return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed); + return false; } /* @@ -470,51 +669,27 @@ static int validate_change(struct cpuset *cur, struct cpuset *trial) { struct cgroup_subsys_state *css; struct cpuset *c, *par; - int ret; + int ret = 0; rcu_read_lock(); - /* Each of our child cpusets must be a subset of us */ - ret = -EBUSY; - cpuset_for_each_child(c, css, cur) - if (!is_cpuset_subset(c, trial)) - goto out; + if (!is_in_v2_mode()) + ret = cpuset1_validate_change(cur, trial); + if (ret) + goto out; /* Remaining checks don't apply to root cpuset */ - ret = 0; if (cur == &top_cpuset) goto out; par = parent_cs(cur); - /* On legacy hiearchy, we must be a subset of our parent cpuset. */ - ret = -EACCES; - if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && - !is_cpuset_subset(trial, par)) - goto out; - - /* - * If either I or some sibling (!= me) is exclusive, we can't - * overlap - */ - ret = -EINVAL; - cpuset_for_each_child(c, css, par) { - if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && - c != cur && - cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) - goto out; - if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && - c != cur && - nodes_intersects(trial->mems_allowed, c->mems_allowed)) - goto out; - } - /* * Cpusets with tasks - existing or newly being attached - can't * be changed to have empty cpus_allowed or mems_allowed. */ ret = -ENOSPC; - if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { + if (cpuset_is_populated(cur)) { if (!cpumask_empty(cur->cpus_allowed) && cpumask_empty(trial->cpus_allowed)) goto out; @@ -525,14 +700,40 @@ static int validate_change(struct cpuset *cur, struct cpuset *trial) /* * We can't shrink if we won't have enough room for SCHED_DEADLINE - * tasks. + * tasks. This check is not done when scheduling is disabled as the + * users should know what they are doing. + * + * For v1, effective_cpus == cpus_allowed & user_xcpus() returns + * cpus_allowed. + * + * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only + * for non-isolated partition root. At this point, the target + * effective_cpus isn't computed yet. user_xcpus() is the best + * approximation. + * + * TBD: May need to precompute the real effective_cpus here in case + * incorrect scheduling of SCHED_DEADLINE tasks in a partition + * becomes an issue. */ ret = -EBUSY; - if (is_cpu_exclusive(cur) && - !cpuset_cpumask_can_shrink(cur->cpus_allowed, - trial->cpus_allowed)) + if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) && + !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial))) goto out; + /* + * If either I or some sibling (!= me) is exclusive, we can't + * overlap. exclusive_cpus cannot overlap with each other if set. + */ + ret = -EINVAL; + cpuset_for_each_child(c, css, par) { + if (c == cur) + continue; + if (cpus_excl_conflict(trial, c)) + goto out; + if (mems_excl_conflict(trial, c)) + goto out; + } + ret = 0; out: rcu_read_unlock(); @@ -577,6 +778,13 @@ static void update_domain_attr_tree(struct sched_domain_attr *dattr, rcu_read_unlock(); } +/* Must be called with cpuset_mutex held. */ +static inline int nr_cpusets(void) +{ + /* jump label reference count + the top-level cpuset */ + return static_key_count(&cpusets_enabled_key.key) + 1; +} + /* * generate_sched_domains() * @@ -588,7 +796,7 @@ static void update_domain_attr_tree(struct sched_domain_attr *dattr, * load balancing domains (sched domains) as specified by that partial * partition. * - * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt + * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst * for a background explanation of this. * * Does not return errors, on the theory that the callers of this @@ -599,11 +807,10 @@ static void update_domain_attr_tree(struct sched_domain_attr *dattr, * Must be called with cpuset_mutex held. * * The three key local variables below are: - * q - a linked-list queue of cpuset pointers, used to implement a - * top-down scan of all cpusets. This scan loads a pointer - * to each cpuset marked is_sched_load_balance into the - * array 'csa'. For our purposes, rebuilding the schedulers - * sched domains, we can ignore !is_sched_load_balance cpusets. + * cp - cpuset pointer, used (together with pos_css) to perform a + * top-down scan of all cpusets. For our purposes, rebuilding + * the schedulers sched domains, we can ignore !is_sched_load_ + * balance cpusets. * csa - (for CpuSet Array) Array of pointers to all the cpusets * that need to be load balanced, for convenient iterative * access by the subsequent code that finds the best partition, @@ -618,43 +825,39 @@ static void update_domain_attr_tree(struct sched_domain_attr *dattr, * were changed (added or removed.) * * Finding the best partition (set of domains): - * The triple nested loops below over i, j, k scan over the - * load balanced cpusets (using the array of cpuset pointers in - * csa[]) looking for pairs of cpusets that have overlapping - * cpus_allowed, but which don't have the same 'pn' partition - * number and gives them in the same partition number. It keeps - * looping on the 'restart' label until it can no longer find - * any such pairs. - * - * The union of the cpus_allowed masks from the set of - * all cpusets having the same 'pn' value then form the one - * element of the partition (one sched domain) to be passed to - * partition_sched_domains(). + * The double nested loops below over i, j scan over the load + * balanced cpusets (using the array of cpuset pointers in csa[]) + * looking for pairs of cpusets that have overlapping cpus_allowed + * and merging them using a union-find algorithm. + * + * The union of the cpus_allowed masks from the set of all cpusets + * having the same root then form the one element of the partition + * (one sched domain) to be passed to partition_sched_domains(). + * */ static int generate_sched_domains(cpumask_var_t **domains, struct sched_domain_attr **attributes) { - struct cpuset *cp; /* scans q */ + struct cpuset *cp; /* top-down scan of cpusets */ struct cpuset **csa; /* array of all cpuset ptrs */ int csn; /* how many cpuset ptrs in csa so far */ - int i, j, k; /* indices for partition finding loops */ + int i, j; /* indices for partition finding loops */ cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ - cpumask_var_t non_isolated_cpus; /* load balanced CPUs */ struct sched_domain_attr *dattr; /* attributes for custom domains */ int ndoms = 0; /* number of sched domains in result */ int nslot; /* next empty doms[] struct cpumask slot */ struct cgroup_subsys_state *pos_css; + bool root_load_balance = is_sched_load_balance(&top_cpuset); + bool cgrpv2 = cpuset_v2(); + int nslot_update; doms = NULL; dattr = NULL; csa = NULL; - if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL)) - goto done; - cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); - /* Special case for the 99% of systems with one, full, sched domain */ - if (is_sched_load_balance(&top_cpuset)) { + if (root_load_balance && cpumask_empty(subpartitions_cpus)) { +single_root_domain: ndoms = 1; doms = alloc_sched_domains(ndoms); if (!doms) @@ -666,21 +869,28 @@ static int generate_sched_domains(cpumask_var_t **domains, update_domain_attr_tree(dattr, &top_cpuset); } cpumask_and(doms[0], top_cpuset.effective_cpus, - non_isolated_cpus); + housekeeping_cpumask(HK_TYPE_DOMAIN)); goto done; } - csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL); + csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); if (!csa) goto done; csn = 0; rcu_read_lock(); + if (root_load_balance) + csa[csn++] = &top_cpuset; cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { if (cp == &top_cpuset) continue; + + if (cgrpv2) + goto v2; + /* + * v1: * Continue traversing beyond @cp iff @cp has some CPUs and * isn't load balancing. The former is obvious. The * latter: All child cpusets contain a subset of the @@ -690,44 +900,66 @@ static int generate_sched_domains(cpumask_var_t **domains, */ if (!cpumask_empty(cp->cpus_allowed) && !(is_sched_load_balance(cp) && - cpumask_intersects(cp->cpus_allowed, non_isolated_cpus))) + cpumask_intersects(cp->cpus_allowed, + housekeeping_cpumask(HK_TYPE_DOMAIN)))) continue; - if (is_sched_load_balance(cp)) + if (is_sched_load_balance(cp) && + !cpumask_empty(cp->effective_cpus)) csa[csn++] = cp; /* skip @cp's subtree */ pos_css = css_rightmost_descendant(pos_css); + continue; + +v2: + /* + * Only valid partition roots that are not isolated and with + * non-empty effective_cpus will be saved into csn[]. + */ + if ((cp->partition_root_state == PRS_ROOT) && + !cpumask_empty(cp->effective_cpus)) + csa[csn++] = cp; + + /* + * Skip @cp's subtree if not a partition root and has no + * exclusive CPUs to be granted to child cpusets. + */ + if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus)) + pos_css = css_rightmost_descendant(pos_css); } rcu_read_unlock(); + /* + * If there are only isolated partitions underneath the cgroup root, + * we can optimize out unneeded sched domains scanning. + */ + if (root_load_balance && (csn == 1)) + goto single_root_domain; + for (i = 0; i < csn; i++) - csa[i]->pn = i; - ndoms = csn; + uf_node_init(&csa[i]->node); -restart: - /* Find the best partition (set of sched domains) */ + /* Merge overlapping cpusets */ for (i = 0; i < csn; i++) { - struct cpuset *a = csa[i]; - int apn = a->pn; - - for (j = 0; j < csn; j++) { - struct cpuset *b = csa[j]; - int bpn = b->pn; - - if (apn != bpn && cpusets_overlap(a, b)) { - for (k = 0; k < csn; k++) { - struct cpuset *c = csa[k]; - - if (c->pn == bpn) - c->pn = apn; - } - ndoms--; /* one less element */ - goto restart; + for (j = i + 1; j < csn; j++) { + if (cpusets_overlap(csa[i], csa[j])) { + /* + * Cgroup v2 shouldn't pass down overlapping + * partition root cpusets. + */ + WARN_ON_ONCE(cgrpv2); + uf_union(&csa[i]->node, &csa[j]->node); } } } + /* Count the total number of domains */ + for (i = 0; i < csn; i++) { + if (uf_find(&csa[i]->node) == &csa[i]->node) + ndoms++; + } + /* * Now we know how many domains to create. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. @@ -740,52 +972,55 @@ restart: * The rest of the code, including the scheduler, can deal with * dattr==NULL case. No need to abort if alloc fails. */ - dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); - - for (nslot = 0, i = 0; i < csn; i++) { - struct cpuset *a = csa[i]; - struct cpumask *dp; - int apn = a->pn; - - if (apn < 0) { - /* Skip completed partitions */ - continue; - } - - dp = doms[nslot]; + dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), + GFP_KERNEL); - if (nslot == ndoms) { - static int warnings = 10; - if (warnings) { - pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", - nslot, ndoms, csn, i, apn); - warnings--; - } - continue; + /* + * Cgroup v2 doesn't support domain attributes, just set all of them + * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a + * subset of HK_TYPE_DOMAIN housekeeping CPUs. + */ + if (cgrpv2) { + for (i = 0; i < ndoms; i++) { + /* + * The top cpuset may contain some boot time isolated + * CPUs that need to be excluded from the sched domain. + */ + if (csa[i] == &top_cpuset) + cpumask_and(doms[i], csa[i]->effective_cpus, + housekeeping_cpumask(HK_TYPE_DOMAIN)); + else + cpumask_copy(doms[i], csa[i]->effective_cpus); + if (dattr) + dattr[i] = SD_ATTR_INIT; } + goto done; + } - cpumask_clear(dp); - if (dattr) - *(dattr + nslot) = SD_ATTR_INIT; + for (nslot = 0, i = 0; i < csn; i++) { + nslot_update = 0; for (j = i; j < csn; j++) { - struct cpuset *b = csa[j]; - - if (apn == b->pn) { - cpumask_or(dp, dp, b->effective_cpus); - cpumask_and(dp, dp, non_isolated_cpus); + if (uf_find(&csa[j]->node) == &csa[i]->node) { + struct cpumask *dp = doms[nslot]; + + if (i == j) { + nslot_update = 1; + cpumask_clear(dp); + if (dattr) + *(dattr + nslot) = SD_ATTR_INIT; + } + cpumask_or(dp, dp, csa[j]->effective_cpus); + cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); if (dattr) - update_domain_attr_tree(dattr + nslot, b); - - /* Done with this partition */ - b->pn = -1; + update_domain_attr_tree(dattr + nslot, csa[j]); } } - nslot++; + if (nslot_update) + nslot++; } BUG_ON(nslot != ndoms); done: - free_cpumask_var(non_isolated_cpus); kfree(csa); /* @@ -800,6 +1035,61 @@ done: return ndoms; } +static void dl_update_tasks_root_domain(struct cpuset *cs) +{ + struct css_task_iter it; + struct task_struct *task; + + if (cs->nr_deadline_tasks == 0) + return; + + css_task_iter_start(&cs->css, 0, &it); + + while ((task = css_task_iter_next(&it))) + dl_add_task_root_domain(task); + + css_task_iter_end(&it); +} + +void dl_rebuild_rd_accounting(void) +{ + struct cpuset *cs = NULL; + struct cgroup_subsys_state *pos_css; + int cpu; + u64 cookie = ++dl_cookie; + + lockdep_assert_held(&cpuset_mutex); + lockdep_assert_cpus_held(); + lockdep_assert_held(&sched_domains_mutex); + + rcu_read_lock(); + + for_each_possible_cpu(cpu) { + if (dl_bw_visited(cpu, cookie)) + continue; + + dl_clear_root_domain_cpu(cpu); + } + + cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { + + if (cpumask_empty(cs->effective_cpus)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + + css_get(&cs->css); + + rcu_read_unlock(); + + dl_update_tasks_root_domain(cs); + + rcu_read_lock(); + css_put(&cs->css); + } + rcu_read_unlock(); +} + /* * Rebuild scheduler domains. * @@ -809,131 +1099,1454 @@ done: * 'cpus' is removed, then call this routine to rebuild the * scheduler's dynamic sched domains. * - * Call with cpuset_mutex held. Takes get_online_cpus(). + * Call with cpuset_mutex held. Takes cpus_read_lock(). */ -static void rebuild_sched_domains_locked(void) +void rebuild_sched_domains_locked(void) { + struct cgroup_subsys_state *pos_css; struct sched_domain_attr *attr; cpumask_var_t *doms; + struct cpuset *cs; int ndoms; + lockdep_assert_cpus_held(); lockdep_assert_held(&cpuset_mutex); - get_online_cpus(); + force_sd_rebuild = false; /* - * We have raced with CPU hotplug. Don't do anything to avoid + * If we have raced with CPU hotplug, return early to avoid * passing doms with offlined cpu to partition_sched_domains(). - * Anyways, hotplug work item will rebuild sched domains. + * Anyways, cpuset_handle_hotplug() will rebuild sched domains. + * + * With no CPUs in any subpartitions, top_cpuset's effective CPUs + * should be the same as the active CPUs, so checking only top_cpuset + * is enough to detect racing CPU offlines. */ - if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) - goto out; + if (cpumask_empty(subpartitions_cpus) && + !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) + return; + + /* + * With subpartition CPUs, however, the effective CPUs of a partition + * root should be only a subset of the active CPUs. Since a CPU in any + * partition root could be offlined, all must be checked. + */ + if (!cpumask_empty(subpartitions_cpus)) { + rcu_read_lock(); + cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { + if (!is_partition_valid(cs)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + if (!cpumask_subset(cs->effective_cpus, + cpu_active_mask)) { + rcu_read_unlock(); + return; + } + } + rcu_read_unlock(); + } /* Generate domain masks and attrs */ ndoms = generate_sched_domains(&doms, &attr); /* Have scheduler rebuild the domains */ partition_sched_domains(ndoms, doms, attr); -out: - put_online_cpus(); } #else /* !CONFIG_SMP */ -static void rebuild_sched_domains_locked(void) +void rebuild_sched_domains_locked(void) { } #endif /* CONFIG_SMP */ -void rebuild_sched_domains(void) +static void rebuild_sched_domains_cpuslocked(void) { mutex_lock(&cpuset_mutex); rebuild_sched_domains_locked(); mutex_unlock(&cpuset_mutex); } +void rebuild_sched_domains(void) +{ + cpus_read_lock(); + rebuild_sched_domains_cpuslocked(); + cpus_read_unlock(); +} + +void cpuset_reset_sched_domains(void) +{ + mutex_lock(&cpuset_mutex); + partition_sched_domains(1, NULL, NULL); + mutex_unlock(&cpuset_mutex); +} + /** - * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. + * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed + * @new_cpus: the temp variable for the new effective_cpus mask * * Iterate through each task of @cs updating its cpus_allowed to the * effective cpuset's. As this function is called with cpuset_mutex held, * cpuset membership stays stable. + * + * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus + * to make sure all offline CPUs are also included as hotplug code won't + * update cpumasks for tasks in top_cpuset. + * + * As task_cpu_possible_mask() can be task dependent in arm64, we have to + * do cpu masking per task instead of doing it once for all. */ -static void update_tasks_cpumask(struct cpuset *cs) +void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) { struct css_task_iter it; struct task_struct *task; + bool top_cs = cs == &top_cpuset; - css_task_iter_start(&cs->css, &it); - while ((task = css_task_iter_next(&it))) - set_cpus_allowed_ptr(task, cs->effective_cpus); + css_task_iter_start(&cs->css, 0, &it); + while ((task = css_task_iter_next(&it))) { + const struct cpumask *possible_mask = task_cpu_possible_mask(task); + + if (top_cs) { + /* + * PF_NO_SETAFFINITY tasks are ignored. + * All per cpu kthreads should have PF_NO_SETAFFINITY + * flag set, see kthread_set_per_cpu(). + */ + if (task->flags & PF_NO_SETAFFINITY) + continue; + cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); + } else { + cpumask_and(new_cpus, possible_mask, cs->effective_cpus); + } + set_cpus_allowed_ptr(task, new_cpus); + } css_task_iter_end(&it); } +/** + * compute_effective_cpumask - Compute the effective cpumask of the cpuset + * @new_cpus: the temp variable for the new effective_cpus mask + * @cs: the cpuset the need to recompute the new effective_cpus mask + * @parent: the parent cpuset + * + * The result is valid only if the given cpuset isn't a partition root. + */ +static void compute_effective_cpumask(struct cpumask *new_cpus, + struct cpuset *cs, struct cpuset *parent) +{ + cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); +} + +/* + * Commands for update_parent_effective_cpumask + */ +enum partition_cmd { + partcmd_enable, /* Enable partition root */ + partcmd_enablei, /* Enable isolated partition root */ + partcmd_disable, /* Disable partition root */ + partcmd_update, /* Update parent's effective_cpus */ + partcmd_invalidate, /* Make partition invalid */ +}; + +static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, + struct tmpmasks *tmp); + +/* + * Update partition exclusive flag + * + * Return: 0 if successful, an error code otherwise + */ +static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs) +{ + bool exclusive = (new_prs > PRS_MEMBER); + + if (exclusive && !is_cpu_exclusive(cs)) { + if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1)) + return PERR_NOTEXCL; + } else if (!exclusive && is_cpu_exclusive(cs)) { + /* Turning off CS_CPU_EXCLUSIVE will not return error */ + cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0); + } + return 0; +} + +/* + * Update partition load balance flag and/or rebuild sched domain + * + * Changing load balance flag will automatically call + * rebuild_sched_domains_locked(). + * This function is for cgroup v2 only. + */ +static void update_partition_sd_lb(struct cpuset *cs, int old_prs) +{ + int new_prs = cs->partition_root_state; + bool rebuild_domains = (new_prs > 0) || (old_prs > 0); + bool new_lb; + + /* + * If cs is not a valid partition root, the load balance state + * will follow its parent. + */ + if (new_prs > 0) { + new_lb = (new_prs != PRS_ISOLATED); + } else { + new_lb = is_sched_load_balance(parent_cs(cs)); + } + if (new_lb != !!is_sched_load_balance(cs)) { + rebuild_domains = true; + if (new_lb) + set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); + else + clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); + } + + if (rebuild_domains) + cpuset_force_rebuild(); +} + +/* + * tasks_nocpu_error - Return true if tasks will have no effective_cpus + */ +static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, + struct cpumask *xcpus) +{ + /* + * A populated partition (cs or parent) can't have empty effective_cpus + */ + return (cpumask_subset(parent->effective_cpus, xcpus) && + partition_is_populated(parent, cs)) || + (!cpumask_intersects(xcpus, cpu_active_mask) && + partition_is_populated(cs, NULL)); +} + +static void reset_partition_data(struct cpuset *cs) +{ + struct cpuset *parent = parent_cs(cs); + + if (!cpuset_v2()) + return; + + lockdep_assert_held(&callback_lock); + + if (cpumask_empty(cs->exclusive_cpus)) { + cpumask_clear(cs->effective_xcpus); + if (is_cpu_exclusive(cs)) + clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); + } + if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed)) + cpumask_copy(cs->effective_cpus, parent->effective_cpus); +} + +/* + * isolated_cpus_update - Update the isolated_cpus mask + * @old_prs: old partition_root_state + * @new_prs: new partition_root_state + * @xcpus: exclusive CPUs with state change + */ +static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus) +{ + WARN_ON_ONCE(old_prs == new_prs); + if (new_prs == PRS_ISOLATED) + cpumask_or(isolated_cpus, isolated_cpus, xcpus); + else + cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); + + isolated_cpus_updating = true; +} + +/* + * partition_xcpus_add - Add new exclusive CPUs to partition + * @new_prs: new partition_root_state + * @parent: parent cpuset + * @xcpus: exclusive CPUs to be added + * + * Remote partition if parent == NULL + */ +static void partition_xcpus_add(int new_prs, struct cpuset *parent, + struct cpumask *xcpus) +{ + WARN_ON_ONCE(new_prs < 0); + lockdep_assert_held(&callback_lock); + if (!parent) + parent = &top_cpuset; + + + if (parent == &top_cpuset) + cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); + + if (new_prs != parent->partition_root_state) + isolated_cpus_update(parent->partition_root_state, new_prs, + xcpus); + + cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); +} + +/* + * partition_xcpus_del - Remove exclusive CPUs from partition + * @old_prs: old partition_root_state + * @parent: parent cpuset + * @xcpus: exclusive CPUs to be removed + * + * Remote partition if parent == NULL + */ +static void partition_xcpus_del(int old_prs, struct cpuset *parent, + struct cpumask *xcpus) +{ + WARN_ON_ONCE(old_prs < 0); + lockdep_assert_held(&callback_lock); + if (!parent) + parent = &top_cpuset; + + if (parent == &top_cpuset) + cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); + + if (old_prs != parent->partition_root_state) + isolated_cpus_update(old_prs, parent->partition_root_state, + xcpus); + + cpumask_and(xcpus, xcpus, cpu_active_mask); + cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); +} + +/* + * isolated_cpus_can_update - check for isolated & nohz_full conflicts + * @add_cpus: cpu mask for cpus that are going to be isolated + * @del_cpus: cpu mask for cpus that are no longer isolated, can be NULL + * Return: false if there is conflict, true otherwise + * + * If nohz_full is enabled and we have isolated CPUs, their combination must + * still leave housekeeping CPUs. + * + * TBD: Should consider merging this function into + * prstate_housekeeping_conflict(). + */ +static bool isolated_cpus_can_update(struct cpumask *add_cpus, + struct cpumask *del_cpus) +{ + cpumask_var_t full_hk_cpus; + int res = true; + + if (!housekeeping_enabled(HK_TYPE_KERNEL_NOISE)) + return true; + + if (del_cpus && cpumask_weight_and(del_cpus, + housekeeping_cpumask(HK_TYPE_KERNEL_NOISE))) + return true; + + if (!alloc_cpumask_var(&full_hk_cpus, GFP_KERNEL)) + return false; + + cpumask_and(full_hk_cpus, housekeeping_cpumask(HK_TYPE_KERNEL_NOISE), + housekeeping_cpumask(HK_TYPE_DOMAIN)); + cpumask_andnot(full_hk_cpus, full_hk_cpus, isolated_cpus); + cpumask_and(full_hk_cpus, full_hk_cpus, cpu_active_mask); + if (!cpumask_weight_andnot(full_hk_cpus, add_cpus)) + res = false; + + free_cpumask_var(full_hk_cpus); + return res; +} + +/* + * prstate_housekeeping_conflict - check for partition & housekeeping conflicts + * @prstate: partition root state to be checked + * @new_cpus: cpu mask + * Return: true if there is conflict, false otherwise + * + * CPUs outside of boot_hk_cpus, if defined, can only be used in an + * isolated partition. + */ +static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) +{ + if (!have_boot_isolcpus) + return false; + + if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus)) + return true; + + return false; +} + +/* + * update_isolation_cpumasks - Update external isolation related CPU masks + * + * The following external CPU masks will be updated if necessary: + * - workqueue unbound cpumask + */ +static void update_isolation_cpumasks(void) +{ + int ret; + + if (!isolated_cpus_updating) + return; + + lockdep_assert_cpus_held(); + + ret = workqueue_unbound_exclude_cpumask(isolated_cpus); + WARN_ON_ONCE(ret < 0); + + ret = tmigr_isolated_exclude_cpumask(isolated_cpus); + WARN_ON_ONCE(ret < 0); + + isolated_cpus_updating = false; +} + +/** + * cpuset_cpu_is_isolated - Check if the given CPU is isolated + * @cpu: the CPU number to be checked + * Return: true if CPU is used in an isolated partition, false otherwise + */ +bool cpuset_cpu_is_isolated(int cpu) +{ + return cpumask_test_cpu(cpu, isolated_cpus); +} +EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated); + +/** + * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets + * @parent: Parent cpuset containing all siblings + * @cs: Current cpuset (will be skipped) + * @excpus: exclusive effective CPU mask to modify + * + * This function ensures the given @excpus mask doesn't include any CPUs that + * are exclusively allocated to sibling cpusets. It walks through all siblings + * of @cs under @parent and removes their exclusive CPUs from @excpus. + */ +static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs, + struct cpumask *excpus) +{ + struct cgroup_subsys_state *css; + struct cpuset *sibling; + int retval = 0; + + if (cpumask_empty(excpus)) + return retval; + + /* + * Exclude exclusive CPUs from siblings + */ + rcu_read_lock(); + cpuset_for_each_child(sibling, css, parent) { + if (sibling == cs) + continue; + + if (cpumask_intersects(excpus, sibling->exclusive_cpus)) { + cpumask_andnot(excpus, excpus, sibling->exclusive_cpus); + retval++; + continue; + } + if (cpumask_intersects(excpus, sibling->effective_xcpus)) { + cpumask_andnot(excpus, excpus, sibling->effective_xcpus); + retval++; + } + } + rcu_read_unlock(); + + return retval; +} + +/* + * compute_excpus - compute effective exclusive CPUs + * @cs: cpuset + * @xcpus: effective exclusive CPUs value to be set + * Return: 0 if there is no sibling conflict, > 0 otherwise + * + * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets + * and exclude their exclusive_cpus or effective_xcpus as well. + */ +static int compute_excpus(struct cpuset *cs, struct cpumask *excpus) +{ + struct cpuset *parent = parent_cs(cs); + + cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus); + + if (!cpumask_empty(cs->exclusive_cpus)) + return 0; + + return rm_siblings_excl_cpus(parent, cs, excpus); +} + +/* + * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset + * @trialcs: The trial cpuset containing the proposed new configuration + * @cs: The original cpuset that the trial configuration is based on + * Return: 0 if successful with no sibling conflict, >0 if a conflict is found + * + * Computes the effective_xcpus for a trial configuration. @cs is provided to represent + * the real cs. + */ +static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs) +{ + struct cpuset *parent = parent_cs(trialcs); + struct cpumask *excpus = trialcs->effective_xcpus; + + /* trialcs is member, cpuset.cpus has no impact to excpus */ + if (cs_is_member(cs)) + cpumask_and(excpus, trialcs->exclusive_cpus, + parent->effective_xcpus); + else + cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus); + + return rm_siblings_excl_cpus(parent, cs, excpus); +} + +static inline bool is_remote_partition(struct cpuset *cs) +{ + return cs->remote_partition; +} + +static inline bool is_local_partition(struct cpuset *cs) +{ + return is_partition_valid(cs) && !is_remote_partition(cs); +} + +/* + * remote_partition_enable - Enable current cpuset as a remote partition root + * @cs: the cpuset to update + * @new_prs: new partition_root_state + * @tmp: temporary masks + * Return: 0 if successful, errcode if error + * + * Enable the current cpuset to become a remote partition root taking CPUs + * directly from the top cpuset. cpuset_mutex must be held by the caller. + */ +static int remote_partition_enable(struct cpuset *cs, int new_prs, + struct tmpmasks *tmp) +{ + /* + * The user must have sysadmin privilege. + */ + if (!capable(CAP_SYS_ADMIN)) + return PERR_ACCESS; + + /* + * The requested exclusive_cpus must not be allocated to other + * partitions and it can't use up all the root's effective_cpus. + * + * The effective_xcpus mask can contain offline CPUs, but there must + * be at least one or more online CPUs present before it can be enabled. + * + * Note that creating a remote partition with any local partition root + * above it or remote partition root underneath it is not allowed. + */ + compute_excpus(cs, tmp->new_cpus); + WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus)); + if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) || + cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) + return PERR_INVCPUS; + if (((new_prs == PRS_ISOLATED) && + !isolated_cpus_can_update(tmp->new_cpus, NULL)) || + prstate_housekeeping_conflict(new_prs, tmp->new_cpus)) + return PERR_HKEEPING; + + spin_lock_irq(&callback_lock); + partition_xcpus_add(new_prs, NULL, tmp->new_cpus); + cs->remote_partition = true; + cpumask_copy(cs->effective_xcpus, tmp->new_cpus); + spin_unlock_irq(&callback_lock); + update_isolation_cpumasks(); + cpuset_force_rebuild(); + cs->prs_err = 0; + + /* + * Propagate changes in top_cpuset's effective_cpus down the hierarchy. + */ + cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); + update_sibling_cpumasks(&top_cpuset, NULL, tmp); + return 0; +} + +/* + * remote_partition_disable - Remove current cpuset from remote partition list + * @cs: the cpuset to update + * @tmp: temporary masks + * + * The effective_cpus is also updated. + * + * cpuset_mutex must be held by the caller. + */ +static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) +{ + WARN_ON_ONCE(!is_remote_partition(cs)); + WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); + + spin_lock_irq(&callback_lock); + cs->remote_partition = false; + partition_xcpus_del(cs->partition_root_state, NULL, cs->effective_xcpus); + if (cs->prs_err) + cs->partition_root_state = -cs->partition_root_state; + else + cs->partition_root_state = PRS_MEMBER; + + /* effective_xcpus may need to be changed */ + compute_excpus(cs, cs->effective_xcpus); + reset_partition_data(cs); + spin_unlock_irq(&callback_lock); + update_isolation_cpumasks(); + cpuset_force_rebuild(); + + /* + * Propagate changes in top_cpuset's effective_cpus down the hierarchy. + */ + cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); + update_sibling_cpumasks(&top_cpuset, NULL, tmp); +} + +/* + * remote_cpus_update - cpus_exclusive change of remote partition + * @cs: the cpuset to be updated + * @xcpus: the new exclusive_cpus mask, if non-NULL + * @excpus: the new effective_xcpus mask + * @tmp: temporary masks + * + * top_cpuset and subpartitions_cpus will be updated or partition can be + * invalidated. + */ +static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus, + struct cpumask *excpus, struct tmpmasks *tmp) +{ + bool adding, deleting; + int prs = cs->partition_root_state; + + if (WARN_ON_ONCE(!is_remote_partition(cs))) + return; + + WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); + + if (cpumask_empty(excpus)) { + cs->prs_err = PERR_CPUSEMPTY; + goto invalidate; + } + + adding = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus); + deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus); + + /* + * Additions of remote CPUs is only allowed if those CPUs are + * not allocated to other partitions and there are effective_cpus + * left in the top cpuset. + */ + if (adding) { + WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus)); + if (!capable(CAP_SYS_ADMIN)) + cs->prs_err = PERR_ACCESS; + else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) || + cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)) + cs->prs_err = PERR_NOCPUS; + else if ((prs == PRS_ISOLATED) && + !isolated_cpus_can_update(tmp->addmask, tmp->delmask)) + cs->prs_err = PERR_HKEEPING; + if (cs->prs_err) + goto invalidate; + } + + spin_lock_irq(&callback_lock); + if (adding) + partition_xcpus_add(prs, NULL, tmp->addmask); + if (deleting) + partition_xcpus_del(prs, NULL, tmp->delmask); + /* + * Need to update effective_xcpus and exclusive_cpus now as + * update_sibling_cpumasks() below may iterate back to the same cs. + */ + cpumask_copy(cs->effective_xcpus, excpus); + if (xcpus) + cpumask_copy(cs->exclusive_cpus, xcpus); + spin_unlock_irq(&callback_lock); + update_isolation_cpumasks(); + if (adding || deleting) + cpuset_force_rebuild(); + + /* + * Propagate changes in top_cpuset's effective_cpus down the hierarchy. + */ + cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); + update_sibling_cpumasks(&top_cpuset, NULL, tmp); + return; + +invalidate: + remote_partition_disable(cs, tmp); +} + +/** + * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset + * @cs: The cpuset that requests change in partition root state + * @cmd: Partition root state change command + * @newmask: Optional new cpumask for partcmd_update + * @tmp: Temporary addmask and delmask + * Return: 0 or a partition root state error code + * + * For partcmd_enable*, the cpuset is being transformed from a non-partition + * root to a partition root. The effective_xcpus (cpus_allowed if + * effective_xcpus not set) mask of the given cpuset will be taken away from + * parent's effective_cpus. The function will return 0 if all the CPUs listed + * in effective_xcpus can be granted or an error code will be returned. + * + * For partcmd_disable, the cpuset is being transformed from a partition + * root back to a non-partition root. Any CPUs in effective_xcpus will be + * given back to parent's effective_cpus. 0 will always be returned. + * + * For partcmd_update, if the optional newmask is specified, the cpu list is + * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is + * assumed to remain the same. The cpuset should either be a valid or invalid + * partition root. The partition root state may change from valid to invalid + * or vice versa. An error code will be returned if transitioning from + * invalid to valid violates the exclusivity rule. + * + * For partcmd_invalidate, the current partition will be made invalid. + * + * The partcmd_enable* and partcmd_disable commands are used by + * update_prstate(). An error code may be returned and the caller will check + * for error. + * + * The partcmd_update command is used by update_cpumasks_hier() with newmask + * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used + * by update_cpumask() with NULL newmask. In both cases, the callers won't + * check for error and so partition_root_state and prs_err will be updated + * directly. + */ +static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, + struct cpumask *newmask, + struct tmpmasks *tmp) +{ + struct cpuset *parent = parent_cs(cs); + int adding; /* Adding cpus to parent's effective_cpus */ + int deleting; /* Deleting cpus from parent's effective_cpus */ + int old_prs, new_prs; + int part_error = PERR_NONE; /* Partition error? */ + struct cpumask *xcpus = user_xcpus(cs); + int parent_prs = parent->partition_root_state; + bool nocpu; + + lockdep_assert_held(&cpuset_mutex); + WARN_ON_ONCE(is_remote_partition(cs)); /* For local partition only */ + + /* + * new_prs will only be changed for the partcmd_update and + * partcmd_invalidate commands. + */ + adding = deleting = false; + old_prs = new_prs = cs->partition_root_state; + + if (cmd == partcmd_invalidate) { + if (is_partition_invalid(cs)) + return 0; + + /* + * Make the current partition invalid. + */ + if (is_partition_valid(parent)) + adding = cpumask_and(tmp->addmask, + xcpus, parent->effective_xcpus); + if (old_prs > 0) + new_prs = -old_prs; + + goto write_error; + } + + /* + * The parent must be a partition root. + * The new cpumask, if present, or the current cpus_allowed must + * not be empty. + */ + if (!is_partition_valid(parent)) { + return is_partition_invalid(parent) + ? PERR_INVPARENT : PERR_NOTPART; + } + if (!newmask && xcpus_empty(cs)) + return PERR_CPUSEMPTY; + + nocpu = tasks_nocpu_error(parent, cs, xcpus); + + if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { + /* + * Need to call compute_excpus() in case + * exclusive_cpus not set. Sibling conflict should only happen + * if exclusive_cpus isn't set. + */ + xcpus = tmp->delmask; + if (compute_excpus(cs, xcpus)) + WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus)); + new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; + + /* + * Enabling partition root is not allowed if its + * effective_xcpus is empty. + */ + if (cpumask_empty(xcpus)) + return PERR_INVCPUS; + + if (prstate_housekeeping_conflict(new_prs, xcpus)) + return PERR_HKEEPING; + + if ((new_prs == PRS_ISOLATED) && (new_prs != parent_prs) && + !isolated_cpus_can_update(xcpus, NULL)) + return PERR_HKEEPING; + + if (tasks_nocpu_error(parent, cs, xcpus)) + return PERR_NOCPUS; + + /* + * This function will only be called when all the preliminary + * checks have passed. At this point, the following condition + * should hold. + * + * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus + * + * Warn if it is not the case. + */ + cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask); + WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); + + deleting = true; + } else if (cmd == partcmd_disable) { + /* + * May need to add cpus back to parent's effective_cpus + * (and maybe removed from subpartitions_cpus/isolated_cpus) + * for valid partition root. xcpus may contain CPUs that + * shouldn't be removed from the two global cpumasks. + */ + if (is_partition_valid(cs)) { + cpumask_copy(tmp->addmask, cs->effective_xcpus); + adding = true; + } + new_prs = PRS_MEMBER; + } else if (newmask) { + /* + * Empty cpumask is not allowed + */ + if (cpumask_empty(newmask)) { + part_error = PERR_CPUSEMPTY; + goto write_error; + } + + /* Check newmask again, whether cpus are available for parent/cs */ + nocpu |= tasks_nocpu_error(parent, cs, newmask); + + /* + * partcmd_update with newmask: + * + * Compute add/delete mask to/from effective_cpus + * + * For valid partition: + * addmask = exclusive_cpus & ~newmask + * & parent->effective_xcpus + * delmask = newmask & ~exclusive_cpus + * & parent->effective_xcpus + * + * For invalid partition: + * delmask = newmask & parent->effective_xcpus + * The partition may become valid soon. + */ + if (is_partition_invalid(cs)) { + adding = false; + deleting = cpumask_and(tmp->delmask, + newmask, parent->effective_xcpus); + } else { + cpumask_andnot(tmp->addmask, xcpus, newmask); + adding = cpumask_and(tmp->addmask, tmp->addmask, + parent->effective_xcpus); + + cpumask_andnot(tmp->delmask, newmask, xcpus); + deleting = cpumask_and(tmp->delmask, tmp->delmask, + parent->effective_xcpus); + } + + /* + * TBD: Invalidate a currently valid child root partition may + * still break isolated_cpus_can_update() rule if parent is an + * isolated partition. + */ + if (is_partition_valid(cs) && (old_prs != parent_prs)) { + if ((parent_prs == PRS_ROOT) && + /* Adding to parent means removing isolated CPUs */ + !isolated_cpus_can_update(tmp->delmask, tmp->addmask)) + part_error = PERR_HKEEPING; + if ((parent_prs == PRS_ISOLATED) && + /* Adding to parent means adding isolated CPUs */ + !isolated_cpus_can_update(tmp->addmask, tmp->delmask)) + part_error = PERR_HKEEPING; + } + + /* + * The new CPUs to be removed from parent's effective CPUs + * must be present. + */ + if (deleting) { + cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask); + WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); + } + + /* + * Make partition invalid if parent's effective_cpus could + * become empty and there are tasks in the parent. + */ + if (nocpu && (!adding || + !cpumask_intersects(tmp->addmask, cpu_active_mask))) { + part_error = PERR_NOCPUS; + deleting = false; + adding = cpumask_and(tmp->addmask, + xcpus, parent->effective_xcpus); + } + } else { + /* + * partcmd_update w/o newmask + * + * delmask = effective_xcpus & parent->effective_cpus + * + * This can be called from: + * 1) update_cpumasks_hier() + * 2) cpuset_hotplug_update_tasks() + * + * Check to see if it can be transitioned from valid to + * invalid partition or vice versa. + * + * A partition error happens when parent has tasks and all + * its effective CPUs will have to be distributed out. + */ + if (nocpu) { + part_error = PERR_NOCPUS; + if (is_partition_valid(cs)) + adding = cpumask_and(tmp->addmask, + xcpus, parent->effective_xcpus); + } else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) && + cpumask_subset(xcpus, parent->effective_xcpus)) { + struct cgroup_subsys_state *css; + struct cpuset *child; + bool exclusive = true; + + /* + * Convert invalid partition to valid has to + * pass the cpu exclusivity test. + */ + rcu_read_lock(); + cpuset_for_each_child(child, css, parent) { + if (child == cs) + continue; + if (!cpusets_are_exclusive(cs, child)) { + exclusive = false; + break; + } + } + rcu_read_unlock(); + if (exclusive) + deleting = cpumask_and(tmp->delmask, + xcpus, parent->effective_cpus); + else + part_error = PERR_NOTEXCL; + } + } + +write_error: + if (part_error) + WRITE_ONCE(cs->prs_err, part_error); + + if (cmd == partcmd_update) { + /* + * Check for possible transition between valid and invalid + * partition root. + */ + switch (cs->partition_root_state) { + case PRS_ROOT: + case PRS_ISOLATED: + if (part_error) + new_prs = -old_prs; + break; + case PRS_INVALID_ROOT: + case PRS_INVALID_ISOLATED: + if (!part_error) + new_prs = -old_prs; + break; + } + } + + if (!adding && !deleting && (new_prs == old_prs)) + return 0; + + /* + * Transitioning between invalid to valid or vice versa may require + * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, + * validate_change() has already been successfully called and + * CPU lists in cs haven't been updated yet. So defer it to later. + */ + if ((old_prs != new_prs) && (cmd != partcmd_update)) { + int err = update_partition_exclusive_flag(cs, new_prs); + + if (err) + return err; + } + + /* + * Change the parent's effective_cpus & effective_xcpus (top cpuset + * only). + * + * Newly added CPUs will be removed from effective_cpus and + * newly deleted ones will be added back to effective_cpus. + */ + spin_lock_irq(&callback_lock); + if (old_prs != new_prs) + cs->partition_root_state = new_prs; + + /* + * Adding to parent's effective_cpus means deletion CPUs from cs + * and vice versa. + */ + if (adding) + partition_xcpus_del(old_prs, parent, tmp->addmask); + if (deleting) + partition_xcpus_add(new_prs, parent, tmp->delmask); + + spin_unlock_irq(&callback_lock); + update_isolation_cpumasks(); + + if ((old_prs != new_prs) && (cmd == partcmd_update)) + update_partition_exclusive_flag(cs, new_prs); + + if (adding || deleting) { + cpuset_update_tasks_cpumask(parent, tmp->addmask); + update_sibling_cpumasks(parent, cs, tmp); + } + + /* + * For partcmd_update without newmask, it is being called from + * cpuset_handle_hotplug(). Update the load balance flag and + * scheduling domain accordingly. + */ + if ((cmd == partcmd_update) && !newmask) + update_partition_sd_lb(cs, old_prs); + + notify_partition_change(cs, old_prs); + return 0; +} + +/** + * compute_partition_effective_cpumask - compute effective_cpus for partition + * @cs: partition root cpuset + * @new_ecpus: previously computed effective_cpus to be updated + * + * Compute the effective_cpus of a partition root by scanning effective_xcpus + * of child partition roots and excluding their effective_xcpus. + * + * This has the side effect of invalidating valid child partition roots, + * if necessary. Since it is called from either cpuset_hotplug_update_tasks() + * or update_cpumasks_hier() where parent and children are modified + * successively, we don't need to call update_parent_effective_cpumask() + * and the child's effective_cpus will be updated in later iterations. + * + * Note that rcu_read_lock() is assumed to be held. + */ +static void compute_partition_effective_cpumask(struct cpuset *cs, + struct cpumask *new_ecpus) +{ + struct cgroup_subsys_state *css; + struct cpuset *child; + bool populated = partition_is_populated(cs, NULL); + + /* + * Check child partition roots to see if they should be + * invalidated when + * 1) child effective_xcpus not a subset of new + * excluisve_cpus + * 2) All the effective_cpus will be used up and cp + * has tasks + */ + compute_excpus(cs, new_ecpus); + cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); + + rcu_read_lock(); + cpuset_for_each_child(child, css, cs) { + if (!is_partition_valid(child)) + continue; + + /* + * There shouldn't be a remote partition underneath another + * partition root. + */ + WARN_ON_ONCE(is_remote_partition(child)); + child->prs_err = 0; + if (!cpumask_subset(child->effective_xcpus, + cs->effective_xcpus)) + child->prs_err = PERR_INVCPUS; + else if (populated && + cpumask_subset(new_ecpus, child->effective_xcpus)) + child->prs_err = PERR_NOCPUS; + + if (child->prs_err) { + int old_prs = child->partition_root_state; + + /* + * Invalidate child partition + */ + spin_lock_irq(&callback_lock); + make_partition_invalid(child); + spin_unlock_irq(&callback_lock); + notify_partition_change(child, old_prs); + continue; + } + cpumask_andnot(new_ecpus, new_ecpus, + child->effective_xcpus); + } + rcu_read_unlock(); +} + /* * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree - * @cs: the cpuset to consider - * @new_cpus: temp variable for calculating new effective_cpus + * @cs: the cpuset to consider + * @tmp: temp variables for calculating effective_cpus & partition setup + * @force: don't skip any descendant cpusets if set * - * When congifured cpumask is changed, the effective cpumasks of this cpuset + * When configured cpumask is changed, the effective cpumasks of this cpuset * and all its descendants need to be updated. * - * On legacy hierachy, effective_cpus will be the same with cpu_allowed. + * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. * * Called with cpuset_mutex held */ -static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus) +static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, + bool force) { struct cpuset *cp; struct cgroup_subsys_state *pos_css; - bool need_rebuild_sched_domains = false; + int old_prs, new_prs; rcu_read_lock(); cpuset_for_each_descendant_pre(cp, pos_css, cs) { struct cpuset *parent = parent_cs(cp); + bool remote = is_remote_partition(cp); + bool update_parent = false; - cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus); + old_prs = new_prs = cp->partition_root_state; + + /* + * For child remote partition root (!= cs), we need to call + * remote_cpus_update() if effective_xcpus will be changed. + * Otherwise, we can skip the whole subtree. + * + * remote_cpus_update() will reuse tmp->new_cpus only after + * its value is being processed. + */ + if (remote && (cp != cs)) { + compute_excpus(cp, tmp->new_cpus); + if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + rcu_read_unlock(); + remote_cpus_update(cp, NULL, tmp->new_cpus, tmp); + rcu_read_lock(); + + /* Remote partition may be invalidated */ + new_prs = cp->partition_root_state; + remote = (new_prs == old_prs); + } + + if (remote || (is_partition_valid(parent) && is_partition_valid(cp))) + compute_partition_effective_cpumask(cp, tmp->new_cpus); + else + compute_effective_cpumask(tmp->new_cpus, cp, parent); + + if (remote) + goto get_css; /* Ready to update cpuset data */ + + /* + * A partition with no effective_cpus is allowed as long as + * there is no task associated with it. Call + * update_parent_effective_cpumask() to check it. + */ + if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { + update_parent = true; + goto update_parent_effective; + } /* * If it becomes empty, inherit the effective mask of the - * parent, which is guaranteed to have some CPUs. + * parent, which is guaranteed to have some CPUs unless + * it is a partition root that has explicitly distributed + * out all its CPUs. */ - if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && - cpumask_empty(new_cpus)) - cpumask_copy(new_cpus, parent->effective_cpus); + if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) + cpumask_copy(tmp->new_cpus, parent->effective_cpus); - /* Skip the whole subtree if the cpumask remains the same. */ - if (cpumask_equal(new_cpus, cp->effective_cpus)) { + /* + * Skip the whole subtree if + * 1) the cpumask remains the same, + * 2) has no partition root state, + * 3) force flag not set, and + * 4) for v2 load balance state same as its parent. + */ + if (!cp->partition_root_state && !force && + cpumask_equal(tmp->new_cpus, cp->effective_cpus) && + (!cpuset_v2() || + (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { pos_css = css_rightmost_descendant(pos_css); continue; } +update_parent_effective: + /* + * update_parent_effective_cpumask() should have been called + * for cs already in update_cpumask(). We should also call + * cpuset_update_tasks_cpumask() again for tasks in the parent + * cpuset if the parent's effective_cpus changes. + */ + if ((cp != cs) && old_prs) { + switch (parent->partition_root_state) { + case PRS_ROOT: + case PRS_ISOLATED: + update_parent = true; + break; + + default: + /* + * When parent is not a partition root or is + * invalid, child partition roots become + * invalid too. + */ + if (is_partition_valid(cp)) + new_prs = -cp->partition_root_state; + WRITE_ONCE(cp->prs_err, + is_partition_invalid(parent) + ? PERR_INVPARENT : PERR_NOTPART); + break; + } + } +get_css: if (!css_tryget_online(&cp->css)) continue; rcu_read_unlock(); + if (update_parent) { + update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); + /* + * The cpuset partition_root_state may become + * invalid. Capture it. + */ + new_prs = cp->partition_root_state; + } + spin_lock_irq(&callback_lock); - cpumask_copy(cp->effective_cpus, new_cpus); + cpumask_copy(cp->effective_cpus, tmp->new_cpus); + cp->partition_root_state = new_prs; + if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) + compute_excpus(cp, cp->effective_xcpus); + + /* + * Make sure effective_xcpus is properly set for a valid + * partition root. + */ + if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus)) + cpumask_and(cp->effective_xcpus, + cp->cpus_allowed, parent->effective_xcpus); + else if (new_prs < 0) + reset_partition_data(cp); spin_unlock_irq(&callback_lock); - WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && + notify_partition_change(cp, old_prs); + + WARN_ON(!is_in_v2_mode() && !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); - update_tasks_cpumask(cp); + cpuset_update_tasks_cpumask(cp, cp->effective_cpus); /* - * If the effective cpumask of any non-empty cpuset is changed, - * we need to rebuild sched domains. + * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE + * from parent if current cpuset isn't a valid partition root + * and their load balance states differ. + */ + if (cpuset_v2() && !is_partition_valid(cp) && + (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { + if (is_sched_load_balance(parent)) + set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); + else + clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); + } + + /* + * On legacy hierarchy, if the effective cpumask of any non- + * empty cpuset is changed, we need to rebuild sched domains. + * On default hierarchy, the cpuset needs to be a partition + * root as well. */ if (!cpumask_empty(cp->cpus_allowed) && - is_sched_load_balance(cp)) - need_rebuild_sched_domains = true; + is_sched_load_balance(cp) && + (!cpuset_v2() || is_partition_valid(cp))) + cpuset_force_rebuild(); rcu_read_lock(); css_put(&cp->css); } rcu_read_unlock(); +} - if (need_rebuild_sched_domains) - rebuild_sched_domains_locked(); +/** + * update_sibling_cpumasks - Update siblings cpumasks + * @parent: Parent cpuset + * @cs: Current cpuset + * @tmp: Temp variables + */ +static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, + struct tmpmasks *tmp) +{ + struct cpuset *sibling; + struct cgroup_subsys_state *pos_css; + + lockdep_assert_held(&cpuset_mutex); + + /* + * Check all its siblings and call update_cpumasks_hier() + * if their effective_cpus will need to be changed. + * + * It is possible a change in parent's effective_cpus + * due to a change in a child partition's effective_xcpus will impact + * its siblings even if they do not inherit parent's effective_cpus + * directly. + * + * The update_cpumasks_hier() function may sleep. So we have to + * release the RCU read lock before calling it. + */ + rcu_read_lock(); + cpuset_for_each_child(sibling, pos_css, parent) { + if (sibling == cs) + continue; + if (!is_partition_valid(sibling)) { + compute_effective_cpumask(tmp->new_cpus, sibling, + parent); + if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) + continue; + } else if (is_remote_partition(sibling)) { + /* + * Change in a sibling cpuset won't affect a remote + * partition root. + */ + continue; + } + + if (!css_tryget_online(&sibling->css)) + continue; + + rcu_read_unlock(); + update_cpumasks_hier(sibling, tmp, false); + rcu_read_lock(); + css_put(&sibling->css); + } + rcu_read_unlock(); +} + +static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask) +{ + int retval; + + retval = cpulist_parse(buf, out_mask); + if (retval < 0) + return retval; + if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed)) + return -EINVAL; + + return 0; +} + +/** + * validate_partition - Validate a cpuset partition configuration + * @cs: The cpuset to validate + * @trialcs: The trial cpuset containing proposed configuration changes + * + * If any validation check fails, the appropriate error code is set in the + * cpuset's prs_err field. + * + * Return: PRS error code (0 if valid, non-zero error code if invalid) + */ +static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs) +{ + struct cpuset *parent = parent_cs(cs); + + if (cs_is_member(trialcs)) + return PERR_NONE; + + if (cpumask_empty(trialcs->effective_xcpus)) + return PERR_INVCPUS; + + if (prstate_housekeeping_conflict(trialcs->partition_root_state, + trialcs->effective_xcpus)) + return PERR_HKEEPING; + + if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) + return PERR_NOCPUS; + + return PERR_NONE; +} + +static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs, + struct tmpmasks *tmp) +{ + int retval; + struct cpuset *parent = parent_cs(cs); + + retval = validate_change(cs, trialcs); + + if ((retval == -EINVAL) && cpuset_v2()) { + struct cgroup_subsys_state *css; + struct cpuset *cp; + + /* + * The -EINVAL error code indicates that partition sibling + * CPU exclusivity rule has been violated. We still allow + * the cpumask change to proceed while invalidating the + * partition. However, any conflicting sibling partitions + * have to be marked as invalid too. + */ + trialcs->prs_err = PERR_NOTEXCL; + rcu_read_lock(); + cpuset_for_each_child(cp, css, parent) { + struct cpumask *xcpus = user_xcpus(trialcs); + + if (is_partition_valid(cp) && + cpumask_intersects(xcpus, cp->effective_xcpus)) { + rcu_read_unlock(); + update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp); + rcu_read_lock(); + } + } + rcu_read_unlock(); + retval = 0; + } + return retval; +} + +/** + * partition_cpus_change - Handle partition state changes due to CPU mask updates + * @cs: The target cpuset being modified + * @trialcs: The trial cpuset containing proposed configuration changes + * @tmp: Temporary masks for intermediate calculations + * + * This function handles partition state transitions triggered by CPU mask changes. + * CPU modifications may cause a partition to be disabled or require state updates. + */ +static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs, + struct tmpmasks *tmp) +{ + enum prs_errcode prs_err; + + if (cs_is_member(cs)) + return; + + prs_err = validate_partition(cs, trialcs); + if (prs_err) + trialcs->prs_err = cs->prs_err = prs_err; + + if (is_remote_partition(cs)) { + if (trialcs->prs_err) + remote_partition_disable(cs, tmp); + else + remote_cpus_update(cs, trialcs->exclusive_cpus, + trialcs->effective_xcpus, tmp); + } else { + if (trialcs->prs_err) + update_parent_effective_cpumask(cs, partcmd_invalidate, + NULL, tmp); + else + update_parent_effective_cpumask(cs, partcmd_update, + trialcs->effective_xcpus, tmp); + } } /** @@ -946,43 +2559,121 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, const char *buf) { int retval; + struct tmpmasks tmp; + bool force = false; + int old_prs = cs->partition_root_state; - /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ - if (cs == &top_cpuset) - return -EACCES; + retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed); + if (retval < 0) + return retval; + + /* Nothing to do if the cpus didn't change */ + if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) + return 0; + + if (alloc_tmpmasks(&tmp)) + return -ENOMEM; + + compute_trialcs_excpus(trialcs, cs); + trialcs->prs_err = PERR_NONE; + + retval = cpus_allowed_validate_change(cs, trialcs, &tmp); + if (retval < 0) + goto out_free; /* - * An empty cpus_allowed is ok only if the cpuset has no tasks. - * Since cpulist_parse() fails on an empty mask, we special case - * that parsing. The validate_change() call ensures that cpusets - * with tasks have cpus. + * Check all the descendants in update_cpumasks_hier() if + * effective_xcpus is to be changed. */ - if (!*buf) { - cpumask_clear(trialcs->cpus_allowed); - } else { - retval = cpulist_parse(buf, trialcs->cpus_allowed); - if (retval < 0) - return retval; + force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); - if (!cpumask_subset(trialcs->cpus_allowed, - top_cpuset.cpus_allowed)) - return -EINVAL; - } + partition_cpus_change(cs, trialcs, &tmp); - /* Nothing to do if the cpus didn't change */ - if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) + spin_lock_irq(&callback_lock); + cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); + cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); + if ((old_prs > 0) && !is_partition_valid(cs)) + reset_partition_data(cs); + spin_unlock_irq(&callback_lock); + + /* effective_cpus/effective_xcpus will be updated here */ + update_cpumasks_hier(cs, &tmp, force); + + /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ + if (cs->partition_root_state) + update_partition_sd_lb(cs, old_prs); +out_free: + free_tmpmasks(&tmp); + return retval; +} + +/** + * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset + * @cs: the cpuset to consider + * @trialcs: trial cpuset + * @buf: buffer of cpu numbers written to this cpuset + * + * The tasks' cpumask will be updated if cs is a valid partition root. + */ +static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, + const char *buf) +{ + int retval; + struct tmpmasks tmp; + bool force = false; + int old_prs = cs->partition_root_state; + + retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus); + if (retval < 0) + return retval; + + /* Nothing to do if the CPUs didn't change */ + if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) return 0; + /* + * Reject the change if there is exclusive CPUs conflict with + * the siblings. + */ + if (compute_trialcs_excpus(trialcs, cs)) + return -EINVAL; + + /* + * Check all the descendants in update_cpumasks_hier() if + * effective_xcpus is to be changed. + */ + force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); + retval = validate_change(cs, trialcs); - if (retval < 0) + if (retval) return retval; + if (alloc_tmpmasks(&tmp)) + return -ENOMEM; + + trialcs->prs_err = PERR_NONE; + partition_cpus_change(cs, trialcs, &tmp); + spin_lock_irq(&callback_lock); - cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); + cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); + cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); + if ((old_prs > 0) && !is_partition_valid(cs)) + reset_partition_data(cs); spin_unlock_irq(&callback_lock); - /* use trialcs->cpus_allowed as a temp variable */ - update_cpumasks_hier(cs, trialcs->cpus_allowed); + /* + * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus + * of the subtree when it is a valid partition root or effective_xcpus + * is updated. + */ + if (is_partition_valid(cs) || force) + update_cpumasks_hier(cs, &tmp, force); + + /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ + if (cs->partition_root_state) + update_partition_sd_lb(cs, old_prs); + + free_tmpmasks(&tmp); return 0; } @@ -1017,6 +2708,11 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, { struct cpuset_migrate_mm_work *mwork; + if (nodes_equal(*from, *to)) { + mmput(mm); + return; + } + mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); if (mwork) { mwork->mm = mm; @@ -1029,9 +2725,24 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, } } -static void cpuset_post_attach(void) +static void flush_migrate_mm_task_workfn(struct callback_head *head) { flush_workqueue(cpuset_migrate_mm_wq); + kfree(head); +} + +static void schedule_flush_migrate_mm(void) +{ + struct callback_head *flush_cb; + + flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL); + if (!flush_cb) + return; + + init_task_work(flush_cb, flush_migrate_mm_task_workfn); + + if (task_work_add(current, flush_cb, TWA_RESUME)) + kfree(flush_cb); } /* @@ -1065,14 +2776,14 @@ static void cpuset_change_task_nodemask(struct task_struct *tsk, static void *cpuset_being_rebound; /** - * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. + * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed * * Iterate through each task of @cs updating its mems_allowed to the * effective cpuset's. As this function is called with cpuset_mutex held, * cpuset membership stays stable. */ -static void update_tasks_nodemask(struct cpuset *cs) +void cpuset_update_tasks_nodemask(struct cpuset *cs) { static nodemask_t newmems; /* protected by cpuset_mutex */ struct css_task_iter it; @@ -1083,7 +2794,7 @@ static void update_tasks_nodemask(struct cpuset *cs) guarantee_online_mems(cs, &newmems); /* - * The mpol_rebind_mm() call takes mmap_sem, which we couldn't + * The mpol_rebind_mm() call takes mmap_lock, which we couldn't * take while holding tasklist_lock. Forks can happen - the * mpol_dup() cpuset_being_rebound check will catch such forks, * and rebind their vma mempolicies too. Because we still hold @@ -1092,7 +2803,7 @@ static void update_tasks_nodemask(struct cpuset *cs) * It's ok if we rebind the same mm twice; mpol_rebind_mm() * is idempotent. Also migrate pages in each mm to new nodes. */ - css_task_iter_start(&cs->css, &it); + css_task_iter_start(&cs->css, 0, &it); while ((task = css_task_iter_next(&it))) { struct mm_struct *mm; bool migrate; @@ -1131,7 +2842,7 @@ static void update_tasks_nodemask(struct cpuset *cs) * When configured nodemask is changed, the effective nodemasks of this cpuset * and all its descendants need to be updated. * - * On legacy hiearchy, effective_mems will be the same with mems_allowed. + * On legacy hierarchy, effective_mems will be the same with mems_allowed. * * Called with cpuset_mutex held */ @@ -1150,8 +2861,7 @@ static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) * If it becomes empty, inherit the effective mask of the * parent, which is guaranteed to have some MEMs. */ - if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && - nodes_empty(*new_mems)) + if (is_in_v2_mode() && nodes_empty(*new_mems)) *new_mems = parent->effective_mems; /* Skip the whole subtree if the nodemask remains the same. */ @@ -1168,10 +2878,10 @@ static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) cp->effective_mems = *new_mems; spin_unlock_irq(&callback_lock); - WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && + WARN_ON(!is_in_v2_mode() && !nodes_equal(cp->mems_allowed, cp->effective_mems)); - update_tasks_nodemask(cp); + cpuset_update_tasks_nodemask(cp); rcu_read_lock(); css_put(&cp->css); @@ -1189,7 +2899,7 @@ static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) * * Call with cpuset_mutex held. May take callback_lock during call. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, - * lock each such tasks mm->mmap_sem, scan its vma's and rebind + * lock each such tasks mm->mmap_lock, scan its vma's and rebind * their mempolicies to the cpusets new mems_allowed. */ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, @@ -1198,41 +2908,26 @@ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, int retval; /* - * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; - * it's read-only - */ - if (cs == &top_cpuset) { - retval = -EACCES; - goto done; - } - - /* * An empty mems_allowed is ok iff there are no tasks in the cpuset. - * Since nodelist_parse() fails on an empty mask, we special case - * that parsing. The validate_change() call ensures that cpusets - * with tasks have memory. + * The validate_change() call ensures that cpusets with tasks have memory. */ - if (!*buf) { - nodes_clear(trialcs->mems_allowed); - } else { - retval = nodelist_parse(buf, trialcs->mems_allowed); - if (retval < 0) - goto done; + retval = nodelist_parse(buf, trialcs->mems_allowed); + if (retval < 0) + return retval; - if (!nodes_subset(trialcs->mems_allowed, - top_cpuset.mems_allowed)) { - retval = -EINVAL; - goto done; - } - } + if (!nodes_subset(trialcs->mems_allowed, + top_cpuset.mems_allowed)) + return -EINVAL; + + /* No change? nothing to do */ + if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) + return 0; - if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { - retval = 0; /* Too easy - nothing to do */ - goto done; - } retval = validate_change(cs, trialcs); if (retval < 0) - goto done; + return retval; + + check_insane_mems_config(&trialcs->mems_allowed); spin_lock_irq(&callback_lock); cs->mems_allowed = trialcs->mems_allowed; @@ -1240,13 +2935,12 @@ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, /* use trialcs->mems_allowed as a temp variable */ update_nodemasks_hier(cs, &trialcs->mems_allowed); -done: - return retval; + return 0; } -int current_cpuset_is_being_rebound(void) +bool current_cpuset_is_being_rebound(void) { - int ret; + bool ret; rcu_read_lock(); ret = task_cs(current) == cpuset_being_rebound; @@ -1255,44 +2949,8 @@ int current_cpuset_is_being_rebound(void) return ret; } -static int update_relax_domain_level(struct cpuset *cs, s64 val) -{ -#ifdef CONFIG_SMP - if (val < -1 || val >= sched_domain_level_max) - return -EINVAL; -#endif - - if (val != cs->relax_domain_level) { - cs->relax_domain_level = val; - if (!cpumask_empty(cs->cpus_allowed) && - is_sched_load_balance(cs)) - rebuild_sched_domains_locked(); - } - - return 0; -} - -/** - * update_tasks_flags - update the spread flags of tasks in the cpuset. - * @cs: the cpuset in which each task's spread flags needs to be changed - * - * Iterate through each task of @cs updating its spread flags. As this - * function is called with cpuset_mutex held, cpuset membership stays - * stable. - */ -static void update_tasks_flags(struct cpuset *cs) -{ - struct css_task_iter it; - struct task_struct *task; - - css_task_iter_start(&cs->css, &it); - while ((task = css_task_iter_next(&it))) - cpuset_update_task_spread_flag(cs, task); - css_task_iter_end(&it); -} - /* - * update_flag - read a 0 or a 1 in a file and update associated flag + * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag * bit: the bit to update (see cpuset_flagbits_t) * cs: the cpuset to update * turning_on: whether the flag is being set or cleared @@ -1300,7 +2958,7 @@ static void update_tasks_flags(struct cpuset *cs) * Call with cpuset_mutex held. */ -static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, +int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs, int turning_on) { struct cpuset *trialcs; @@ -1308,7 +2966,7 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, int spread_flag_changed; int err; - trialcs = alloc_trial_cpuset(cs); + trialcs = dup_or_alloc_cpuset(cs); if (!trialcs) return -ENOMEM; @@ -1331,154 +2989,242 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, cs->flags = trialcs->flags; spin_unlock_irq(&callback_lock); - if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) - rebuild_sched_domains_locked(); + if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) { + if (cpuset_v2()) + cpuset_force_rebuild(); + else + rebuild_sched_domains_locked(); + } if (spread_flag_changed) - update_tasks_flags(cs); + cpuset1_update_tasks_flags(cs); out: - free_trial_cpuset(trialcs); + free_cpuset(trialcs); return err; } -/* - * Frequency meter - How fast is some event occurring? - * - * These routines manage a digitally filtered, constant time based, - * event frequency meter. There are four routines: - * fmeter_init() - initialize a frequency meter. - * fmeter_markevent() - called each time the event happens. - * fmeter_getrate() - returns the recent rate of such events. - * fmeter_update() - internal routine used to update fmeter. - * - * A common data structure is passed to each of these routines, - * which is used to keep track of the state required to manage the - * frequency meter and its digital filter. - * - * The filter works on the number of events marked per unit time. - * The filter is single-pole low-pass recursive (IIR). The time unit - * is 1 second. Arithmetic is done using 32-bit integers scaled to - * simulate 3 decimal digits of precision (multiplied by 1000). - * - * With an FM_COEF of 933, and a time base of 1 second, the filter - * has a half-life of 10 seconds, meaning that if the events quit - * happening, then the rate returned from the fmeter_getrate() - * will be cut in half each 10 seconds, until it converges to zero. - * - * It is not worth doing a real infinitely recursive filter. If more - * than FM_MAXTICKS ticks have elapsed since the last filter event, - * just compute FM_MAXTICKS ticks worth, by which point the level - * will be stable. - * - * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid - * arithmetic overflow in the fmeter_update() routine. - * - * Given the simple 32 bit integer arithmetic used, this meter works - * best for reporting rates between one per millisecond (msec) and - * one per 32 (approx) seconds. At constant rates faster than one - * per msec it maxes out at values just under 1,000,000. At constant - * rates between one per msec, and one per second it will stabilize - * to a value N*1000, where N is the rate of events per second. - * At constant rates between one per second and one per 32 seconds, - * it will be choppy, moving up on the seconds that have an event, - * and then decaying until the next event. At rates slower than - * about one in 32 seconds, it decays all the way back to zero between - * each event. - */ - -#define FM_COEF 933 /* coefficient for half-life of 10 secs */ -#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ -#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ -#define FM_SCALE 1000 /* faux fixed point scale */ - -/* Initialize a frequency meter */ -static void fmeter_init(struct fmeter *fmp) -{ - fmp->cnt = 0; - fmp->val = 0; - fmp->time = 0; - spin_lock_init(&fmp->lock); -} - -/* Internal meter update - process cnt events and update value */ -static void fmeter_update(struct fmeter *fmp) -{ - time64_t now; - u32 ticks; - - now = ktime_get_seconds(); - ticks = now - fmp->time; - - if (ticks == 0) - return; +/** + * update_prstate - update partition_root_state + * @cs: the cpuset to update + * @new_prs: new partition root state + * Return: 0 if successful, != 0 if error + * + * Call with cpuset_mutex held. + */ +static int update_prstate(struct cpuset *cs, int new_prs) +{ + int err = PERR_NONE, old_prs = cs->partition_root_state; + struct cpuset *parent = parent_cs(cs); + struct tmpmasks tmpmask; + bool isolcpus_updated = false; + + if (old_prs == new_prs) + return 0; + + /* + * Treat a previously invalid partition root as if it is a "member". + */ + if (new_prs && is_partition_invalid(cs)) + old_prs = PRS_MEMBER; - ticks = min(FM_MAXTICKS, ticks); - while (ticks-- > 0) - fmp->val = (FM_COEF * fmp->val) / FM_SCALE; - fmp->time = now; + if (alloc_tmpmasks(&tmpmask)) + return -ENOMEM; + + err = update_partition_exclusive_flag(cs, new_prs); + if (err) + goto out; + + if (!old_prs) { + /* + * cpus_allowed and exclusive_cpus cannot be both empty. + */ + if (xcpus_empty(cs)) { + err = PERR_CPUSEMPTY; + goto out; + } + + /* + * We don't support the creation of a new local partition with + * a remote partition underneath it. This unsupported + * setting can happen only if parent is the top_cpuset because + * a remote partition cannot be created underneath an existing + * local or remote partition. + */ + if ((parent == &top_cpuset) && + cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) { + err = PERR_REMOTE; + goto out; + } + + /* + * If parent is valid partition, enable local partiion. + * Otherwise, enable a remote partition. + */ + if (is_partition_valid(parent)) { + enum partition_cmd cmd = (new_prs == PRS_ROOT) + ? partcmd_enable : partcmd_enablei; + + err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); + } else { + err = remote_partition_enable(cs, new_prs, &tmpmask); + } + } else if (old_prs && new_prs) { + /* + * A change in load balance state only, no change in cpumasks. + * Need to update isolated_cpus. + */ + if (((new_prs == PRS_ISOLATED) && + !isolated_cpus_can_update(cs->effective_xcpus, NULL)) || + prstate_housekeeping_conflict(new_prs, cs->effective_xcpus)) + err = PERR_HKEEPING; + else + isolcpus_updated = true; + } else { + /* + * Switching back to member is always allowed even if it + * disables child partitions. + */ + if (is_remote_partition(cs)) + remote_partition_disable(cs, &tmpmask); + else + update_parent_effective_cpumask(cs, partcmd_disable, + NULL, &tmpmask); + + /* + * Invalidation of child partitions will be done in + * update_cpumasks_hier(). + */ + } +out: + /* + * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error + * happens. + */ + if (err) { + new_prs = -new_prs; + update_partition_exclusive_flag(cs, new_prs); + } - fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; - fmp->cnt = 0; + spin_lock_irq(&callback_lock); + cs->partition_root_state = new_prs; + WRITE_ONCE(cs->prs_err, err); + if (!is_partition_valid(cs)) + reset_partition_data(cs); + else if (isolcpus_updated) + isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus); + spin_unlock_irq(&callback_lock); + update_isolation_cpumasks(); + + /* Force update if switching back to member & update effective_xcpus */ + update_cpumasks_hier(cs, &tmpmask, !new_prs); + + /* A newly created partition must have effective_xcpus set */ + WARN_ON_ONCE(!old_prs && (new_prs > 0) + && cpumask_empty(cs->effective_xcpus)); + + /* Update sched domains and load balance flag */ + update_partition_sd_lb(cs, old_prs); + + notify_partition_change(cs, old_prs); + if (force_sd_rebuild) + rebuild_sched_domains_locked(); + free_tmpmasks(&tmpmask); + return 0; } -/* Process any previous ticks, then bump cnt by one (times scale). */ -static void fmeter_markevent(struct fmeter *fmp) +static struct cpuset *cpuset_attach_old_cs; + +/* + * Check to see if a cpuset can accept a new task + * For v1, cpus_allowed and mems_allowed can't be empty. + * For v2, effective_cpus can't be empty. + * Note that in v1, effective_cpus = cpus_allowed. + */ +static int cpuset_can_attach_check(struct cpuset *cs) { - spin_lock(&fmp->lock); - fmeter_update(fmp); - fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); - spin_unlock(&fmp->lock); + if (cpumask_empty(cs->effective_cpus) || + (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) + return -ENOSPC; + return 0; } -/* Process any previous ticks, then return current value. */ -static int fmeter_getrate(struct fmeter *fmp) +static void reset_migrate_dl_data(struct cpuset *cs) { - int val; - - spin_lock(&fmp->lock); - fmeter_update(fmp); - val = fmp->val; - spin_unlock(&fmp->lock); - return val; + cs->nr_migrate_dl_tasks = 0; + cs->sum_migrate_dl_bw = 0; } -static struct cpuset *cpuset_attach_old_cs; - /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ static int cpuset_can_attach(struct cgroup_taskset *tset) { struct cgroup_subsys_state *css; - struct cpuset *cs; + struct cpuset *cs, *oldcs; struct task_struct *task; + bool cpus_updated, mems_updated; int ret; /* used later by cpuset_attach() */ cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); + oldcs = cpuset_attach_old_cs; cs = css_cs(css); mutex_lock(&cpuset_mutex); - /* allow moving tasks into an empty cpuset if on default hierarchy */ - ret = -ENOSPC; - if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && - (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) + /* Check to see if task is allowed in the cpuset */ + ret = cpuset_can_attach_check(cs); + if (ret) goto out_unlock; + cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); + mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); + cgroup_taskset_for_each(task, css, tset) { - ret = task_can_attach(task, cs->cpus_allowed); + ret = task_can_attach(task); if (ret) goto out_unlock; - ret = security_task_setscheduler(task); - if (ret) + + /* + * Skip rights over task check in v2 when nothing changes, + * migration permission derives from hierarchy ownership in + * cgroup_procs_write_permission()). + */ + if (!cpuset_v2() || (cpus_updated || mems_updated)) { + ret = security_task_setscheduler(task); + if (ret) + goto out_unlock; + } + + if (dl_task(task)) { + cs->nr_migrate_dl_tasks++; + cs->sum_migrate_dl_bw += task->dl.dl_bw; + } + } + + if (!cs->nr_migrate_dl_tasks) + goto out_success; + + if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { + int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); + + if (unlikely(cpu >= nr_cpu_ids)) { + reset_migrate_dl_data(cs); + ret = -EINVAL; goto out_unlock; + } + + ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); + if (ret) { + reset_migrate_dl_data(cs); + goto out_unlock; + } } +out_success: /* * Mark attach is in progress. This makes validate_change() fail * changes which zero cpus/mems_allowed. */ cs->attach_in_progress++; - ret = 0; out_unlock: mutex_unlock(&cpuset_mutex); return ret; @@ -1493,56 +3239,90 @@ static void cpuset_cancel_attach(struct cgroup_taskset *tset) cs = css_cs(css); mutex_lock(&cpuset_mutex); - css_cs(css)->attach_in_progress--; + dec_attach_in_progress_locked(cs); + + if (cs->nr_migrate_dl_tasks) { + int cpu = cpumask_any(cs->effective_cpus); + + dl_bw_free(cpu, cs->sum_migrate_dl_bw); + reset_migrate_dl_data(cs); + } + mutex_unlock(&cpuset_mutex); } /* - * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() + * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() * but we can't allocate it dynamically there. Define it global and * allocate from cpuset_init(). */ static cpumask_var_t cpus_attach; +static nodemask_t cpuset_attach_nodemask_to; + +static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) +{ + lockdep_assert_held(&cpuset_mutex); + + if (cs != &top_cpuset) + guarantee_active_cpus(task, cpus_attach); + else + cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), + subpartitions_cpus); + /* + * can_attach beforehand should guarantee that this doesn't + * fail. TODO: have a better way to handle failure here + */ + WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); + + cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); + cpuset1_update_task_spread_flags(cs, task); +} static void cpuset_attach(struct cgroup_taskset *tset) { - /* static buf protected by cpuset_mutex */ - static nodemask_t cpuset_attach_nodemask_to; struct task_struct *task; struct task_struct *leader; struct cgroup_subsys_state *css; struct cpuset *cs; struct cpuset *oldcs = cpuset_attach_old_cs; + bool cpus_updated, mems_updated; + bool queue_task_work = false; cgroup_taskset_first(tset, &css); cs = css_cs(css); + lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ mutex_lock(&cpuset_mutex); + cpus_updated = !cpumask_equal(cs->effective_cpus, + oldcs->effective_cpus); + mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); - /* prepare for attach */ - if (cs == &top_cpuset) - cpumask_copy(cpus_attach, cpu_possible_mask); - else - guarantee_online_cpus(cs, cpus_attach); + /* + * In the default hierarchy, enabling cpuset in the child cgroups + * will trigger a number of cpuset_attach() calls with no change + * in effective cpus and mems. In that case, we can optimize out + * by skipping the task iteration and update. + */ + if (cpuset_v2() && !cpus_updated && !mems_updated) { + cpuset_attach_nodemask_to = cs->effective_mems; + goto out; + } guarantee_online_mems(cs, &cpuset_attach_nodemask_to); - cgroup_taskset_for_each(task, css, tset) { - /* - * can_attach beforehand should guarantee that this doesn't - * fail. TODO: have a better way to handle failure here - */ - WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); - - cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); - cpuset_update_task_spread_flag(cs, task); - } + cgroup_taskset_for_each(task, css, tset) + cpuset_attach_task(cs, task); /* * Change mm for all threadgroup leaders. This is expensive and may - * sleep and should be moved outside migration path proper. + * sleep and should be moved outside migration path proper. Skip it + * if there is no change in effective_mems and CS_MEMORY_MIGRATE is + * not set. */ cpuset_attach_nodemask_to = cs->effective_mems; + if (!is_memory_migrate(cs) && !mems_updated) + goto out; + cgroup_taskset_for_each_leader(leader, css, tset) { struct mm_struct *mm = get_task_mm(leader); @@ -1557,153 +3337,51 @@ static void cpuset_attach(struct cgroup_taskset *tset) * @old_mems_allowed is the right nodesets that we * migrate mm from. */ - if (is_memory_migrate(cs)) + if (is_memory_migrate(cs)) { cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, &cpuset_attach_nodemask_to); - else + queue_task_work = true; + } else mmput(mm); } } +out: + if (queue_task_work) + schedule_flush_migrate_mm(); cs->old_mems_allowed = cpuset_attach_nodemask_to; - cs->attach_in_progress--; - if (!cs->attach_in_progress) - wake_up(&cpuset_attach_wq); - - mutex_unlock(&cpuset_mutex); -} - -/* The various types of files and directories in a cpuset file system */ - -typedef enum { - FILE_MEMORY_MIGRATE, - FILE_CPULIST, - FILE_MEMLIST, - FILE_EFFECTIVE_CPULIST, - FILE_EFFECTIVE_MEMLIST, - FILE_CPU_EXCLUSIVE, - FILE_MEM_EXCLUSIVE, - FILE_MEM_HARDWALL, - FILE_SCHED_LOAD_BALANCE, - FILE_SCHED_RELAX_DOMAIN_LEVEL, - FILE_MEMORY_PRESSURE_ENABLED, - FILE_MEMORY_PRESSURE, - FILE_SPREAD_PAGE, - FILE_SPREAD_SLAB, -} cpuset_filetype_t; - -static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, - u64 val) -{ - struct cpuset *cs = css_cs(css); - cpuset_filetype_t type = cft->private; - int retval = 0; - - mutex_lock(&cpuset_mutex); - if (!is_cpuset_online(cs)) { - retval = -ENODEV; - goto out_unlock; - } - - switch (type) { - case FILE_CPU_EXCLUSIVE: - retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); - break; - case FILE_MEM_EXCLUSIVE: - retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); - break; - case FILE_MEM_HARDWALL: - retval = update_flag(CS_MEM_HARDWALL, cs, val); - break; - case FILE_SCHED_LOAD_BALANCE: - retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); - break; - case FILE_MEMORY_MIGRATE: - retval = update_flag(CS_MEMORY_MIGRATE, cs, val); - break; - case FILE_MEMORY_PRESSURE_ENABLED: - cpuset_memory_pressure_enabled = !!val; - break; - case FILE_SPREAD_PAGE: - retval = update_flag(CS_SPREAD_PAGE, cs, val); - break; - case FILE_SPREAD_SLAB: - retval = update_flag(CS_SPREAD_SLAB, cs, val); - break; - default: - retval = -EINVAL; - break; + if (cs->nr_migrate_dl_tasks) { + cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; + oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; + reset_migrate_dl_data(cs); } -out_unlock: - mutex_unlock(&cpuset_mutex); - return retval; -} -static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, - s64 val) -{ - struct cpuset *cs = css_cs(css); - cpuset_filetype_t type = cft->private; - int retval = -ENODEV; - - mutex_lock(&cpuset_mutex); - if (!is_cpuset_online(cs)) - goto out_unlock; + dec_attach_in_progress_locked(cs); - switch (type) { - case FILE_SCHED_RELAX_DOMAIN_LEVEL: - retval = update_relax_domain_level(cs, val); - break; - default: - retval = -EINVAL; - break; - } -out_unlock: mutex_unlock(&cpuset_mutex); - return retval; } /* * Common handling for a write to a "cpus" or "mems" file. */ -static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, +ssize_t cpuset_write_resmask(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cpuset *cs = css_cs(of_css(of)); struct cpuset *trialcs; int retval = -ENODEV; - buf = strstrip(buf); - - /* - * CPU or memory hotunplug may leave @cs w/o any execution - * resources, in which case the hotplug code asynchronously updates - * configuration and transfers all tasks to the nearest ancestor - * which can execute. - * - * As writes to "cpus" or "mems" may restore @cs's execution - * resources, wait for the previously scheduled operations before - * proceeding, so that we don't end up keep removing tasks added - * after execution capability is restored. - * - * cpuset_hotplug_work calls back into cgroup core via - * cgroup_transfer_tasks() and waiting for it from a cgroupfs - * operation like this one can lead to a deadlock through kernfs - * active_ref protection. Let's break the protection. Losing the - * protection is okay as we check whether @cs is online after - * grabbing cpuset_mutex anyway. This only happens on the legacy - * hierarchies. - */ - css_get(&cs->css); - kernfs_break_active_protection(of->kn); - flush_work(&cpuset_hotplug_work); + /* root is read-only */ + if (cs == &top_cpuset) + return -EACCES; - mutex_lock(&cpuset_mutex); + buf = strstrip(buf); + cpuset_full_lock(); if (!is_cpuset_online(cs)) goto out_unlock; - trialcs = alloc_trial_cpuset(cs); + trialcs = dup_or_alloc_cpuset(cs); if (!trialcs) { retval = -ENOMEM; goto out_unlock; @@ -1713,6 +3391,9 @@ static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, case FILE_CPULIST: retval = update_cpumask(cs, trialcs, buf); break; + case FILE_EXCLUSIVE_CPULIST: + retval = update_exclusive_cpumask(cs, trialcs, buf); + break; case FILE_MEMLIST: retval = update_nodemask(cs, trialcs, buf); break; @@ -1721,12 +3402,13 @@ static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, break; } - free_trial_cpuset(trialcs); + free_cpuset(trialcs); + if (force_sd_rebuild) + rebuild_sched_domains_locked(); out_unlock: - mutex_unlock(&cpuset_mutex); - kernfs_unbreak_active_protection(of->kn); - css_put(&cs->css); - flush_workqueue(cpuset_migrate_mm_wq); + cpuset_full_unlock(); + if (of_cft(of)->private == FILE_MEMLIST) + schedule_flush_migrate_mm(); return retval ?: nbytes; } @@ -1738,7 +3420,7 @@ out_unlock: * and since these maps can change value dynamically, one could read * gibberish by doing partial reads while a list was changing. */ -static int cpuset_common_seq_show(struct seq_file *sf, void *v) +int cpuset_common_seq_show(struct seq_file *sf, void *v) { struct cpuset *cs = css_cs(seq_css(sf)); cpuset_filetype_t type = seq_cft(sf)->private; @@ -1759,6 +3441,18 @@ static int cpuset_common_seq_show(struct seq_file *sf, void *v) case FILE_EFFECTIVE_MEMLIST: seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); break; + case FILE_EXCLUSIVE_CPULIST: + seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); + break; + case FILE_EFFECTIVE_XCPULIST: + seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); + break; + case FILE_SUBPARTS_CPULIST: + seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); + break; + case FILE_ISOLATED_CPULIST: + seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); + break; default: ret = -EINVAL; } @@ -1767,64 +3461,74 @@ static int cpuset_common_seq_show(struct seq_file *sf, void *v) return ret; } -static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) +static int cpuset_partition_show(struct seq_file *seq, void *v) { - struct cpuset *cs = css_cs(css); - cpuset_filetype_t type = cft->private; - switch (type) { - case FILE_CPU_EXCLUSIVE: - return is_cpu_exclusive(cs); - case FILE_MEM_EXCLUSIVE: - return is_mem_exclusive(cs); - case FILE_MEM_HARDWALL: - return is_mem_hardwall(cs); - case FILE_SCHED_LOAD_BALANCE: - return is_sched_load_balance(cs); - case FILE_MEMORY_MIGRATE: - return is_memory_migrate(cs); - case FILE_MEMORY_PRESSURE_ENABLED: - return cpuset_memory_pressure_enabled; - case FILE_MEMORY_PRESSURE: - return fmeter_getrate(&cs->fmeter); - case FILE_SPREAD_PAGE: - return is_spread_page(cs); - case FILE_SPREAD_SLAB: - return is_spread_slab(cs); - default: - BUG(); - } + struct cpuset *cs = css_cs(seq_css(seq)); + const char *err, *type = NULL; - /* Unreachable but makes gcc happy */ + switch (cs->partition_root_state) { + case PRS_ROOT: + seq_puts(seq, "root\n"); + break; + case PRS_ISOLATED: + seq_puts(seq, "isolated\n"); + break; + case PRS_MEMBER: + seq_puts(seq, "member\n"); + break; + case PRS_INVALID_ROOT: + type = "root"; + fallthrough; + case PRS_INVALID_ISOLATED: + if (!type) + type = "isolated"; + err = perr_strings[READ_ONCE(cs->prs_err)]; + if (err) + seq_printf(seq, "%s invalid (%s)\n", type, err); + else + seq_printf(seq, "%s invalid\n", type); + break; + } return 0; } -static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) +static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) { - struct cpuset *cs = css_cs(css); - cpuset_filetype_t type = cft->private; - switch (type) { - case FILE_SCHED_RELAX_DOMAIN_LEVEL: - return cs->relax_domain_level; - default: - BUG(); - } + struct cpuset *cs = css_cs(of_css(of)); + int val; + int retval = -ENODEV; - /* Unrechable but makes gcc happy */ - return 0; -} + buf = strstrip(buf); + + if (!strcmp(buf, "root")) + val = PRS_ROOT; + else if (!strcmp(buf, "member")) + val = PRS_MEMBER; + else if (!strcmp(buf, "isolated")) + val = PRS_ISOLATED; + else + return -EINVAL; + cpuset_full_lock(); + if (is_cpuset_online(cs)) + retval = update_prstate(cs, val); + cpuset_full_unlock(); + return retval ?: nbytes; +} /* - * for the common functions, 'private' gives the type of file + * This is currently a minimal set for the default hierarchy. It can be + * expanded later on by migrating more features and control files from v1. */ - -static struct cftype files[] = { +static struct cftype dfl_files[] = { { .name = "cpus", .seq_show = cpuset_common_seq_show, .write = cpuset_write_resmask, .max_write_len = (100U + 6 * NR_CPUS), .private = FILE_CPULIST, + .flags = CFTYPE_NOT_ON_ROOT, }, { @@ -1833,97 +3537,73 @@ static struct cftype files[] = { .write = cpuset_write_resmask, .max_write_len = (100U + 6 * MAX_NUMNODES), .private = FILE_MEMLIST, + .flags = CFTYPE_NOT_ON_ROOT, }, { - .name = "effective_cpus", + .name = "cpus.effective", .seq_show = cpuset_common_seq_show, .private = FILE_EFFECTIVE_CPULIST, }, { - .name = "effective_mems", + .name = "mems.effective", .seq_show = cpuset_common_seq_show, .private = FILE_EFFECTIVE_MEMLIST, }, { - .name = "cpu_exclusive", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_CPU_EXCLUSIVE, - }, - - { - .name = "mem_exclusive", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_MEM_EXCLUSIVE, + .name = "cpus.partition", + .seq_show = cpuset_partition_show, + .write = cpuset_partition_write, + .private = FILE_PARTITION_ROOT, + .flags = CFTYPE_NOT_ON_ROOT, + .file_offset = offsetof(struct cpuset, partition_file), }, { - .name = "mem_hardwall", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_MEM_HARDWALL, - }, - - { - .name = "sched_load_balance", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_SCHED_LOAD_BALANCE, - }, - - { - .name = "sched_relax_domain_level", - .read_s64 = cpuset_read_s64, - .write_s64 = cpuset_write_s64, - .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, - }, - - { - .name = "memory_migrate", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_MEMORY_MIGRATE, - }, - - { - .name = "memory_pressure", - .read_u64 = cpuset_read_u64, + .name = "cpus.exclusive", + .seq_show = cpuset_common_seq_show, + .write = cpuset_write_resmask, + .max_write_len = (100U + 6 * NR_CPUS), + .private = FILE_EXCLUSIVE_CPULIST, + .flags = CFTYPE_NOT_ON_ROOT, }, { - .name = "memory_spread_page", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_SPREAD_PAGE, + .name = "cpus.exclusive.effective", + .seq_show = cpuset_common_seq_show, + .private = FILE_EFFECTIVE_XCPULIST, + .flags = CFTYPE_NOT_ON_ROOT, }, { - .name = "memory_spread_slab", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_SPREAD_SLAB, + .name = "cpus.subpartitions", + .seq_show = cpuset_common_seq_show, + .private = FILE_SUBPARTS_CPULIST, + .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, }, { - .name = "memory_pressure_enabled", + .name = "cpus.isolated", + .seq_show = cpuset_common_seq_show, + .private = FILE_ISOLATED_CPULIST, .flags = CFTYPE_ONLY_ON_ROOT, - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_MEMORY_PRESSURE_ENABLED, }, { } /* terminate */ }; -/* - * cpuset_css_alloc - allocate a cpuset css - * cgrp: control group that the new cpuset will be part of - */ +/** + * cpuset_css_alloc - Allocate a cpuset css + * @parent_css: Parent css of the control group that the new cpuset will be + * part of + * Return: cpuset css on success, -ENOMEM on failure. + * + * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return + * top cpuset css otherwise. + */ static struct cgroup_subsys_state * cpuset_css_alloc(struct cgroup_subsys_state *parent_css) { @@ -1932,29 +3612,19 @@ cpuset_css_alloc(struct cgroup_subsys_state *parent_css) if (!parent_css) return &top_cpuset.css; - cs = kzalloc(sizeof(*cs), GFP_KERNEL); + cs = dup_or_alloc_cpuset(NULL); if (!cs) return ERR_PTR(-ENOMEM); - if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) - goto free_cs; - if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL)) - goto free_cpus; - - set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); - cpumask_clear(cs->cpus_allowed); - nodes_clear(cs->mems_allowed); - cpumask_clear(cs->effective_cpus); - nodes_clear(cs->effective_mems); + + __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); fmeter_init(&cs->fmeter); cs->relax_domain_level = -1; - return &cs->css; + /* Set CS_MEMORY_MIGRATE for default hierarchy */ + if (cpuset_v2()) + __set_bit(CS_MEMORY_MIGRATE, &cs->flags); -free_cpus: - free_cpumask_var(cs->cpus_allowed); -free_cs: - kfree(cs); - return ERR_PTR(-ENOMEM); + return &cs->css; } static int cpuset_css_online(struct cgroup_subsys_state *css) @@ -1967,18 +3637,21 @@ static int cpuset_css_online(struct cgroup_subsys_state *css) if (!parent) return 0; - mutex_lock(&cpuset_mutex); - - set_bit(CS_ONLINE, &cs->flags); + cpuset_full_lock(); if (is_spread_page(parent)) set_bit(CS_SPREAD_PAGE, &cs->flags); if (is_spread_slab(parent)) set_bit(CS_SPREAD_SLAB, &cs->flags); + /* + * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated + */ + if (cpuset_v2() && !is_sched_load_balance(parent)) + clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); cpuset_inc(); spin_lock_irq(&callback_lock); - if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { + if (is_in_v2_mode()) { cpumask_copy(cs->effective_cpus, parent->effective_cpus); cs->effective_mems = parent->effective_mems; } @@ -1990,7 +3663,7 @@ static int cpuset_css_online(struct cgroup_subsys_state *css) /* * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is * set. This flag handling is implemented in cgroup core for - * histrical reasons - the flag may be specified during mount. + * historical reasons - the flag may be specified during mount. * * Currently, if any sibling cpusets have exclusive cpus or mem, we * refuse to clone the configuration - thereby refusing the task to @@ -2016,38 +3689,50 @@ static int cpuset_css_online(struct cgroup_subsys_state *css) cpumask_copy(cs->effective_cpus, parent->cpus_allowed); spin_unlock_irq(&callback_lock); out_unlock: - mutex_unlock(&cpuset_mutex); + cpuset_full_unlock(); return 0; } /* * If the cpuset being removed has its flag 'sched_load_balance' * enabled, then simulate turning sched_load_balance off, which - * will call rebuild_sched_domains_locked(). + * will call rebuild_sched_domains_locked(). That is not needed + * in the default hierarchy where only changes in partition + * will cause repartitioning. */ - static void cpuset_css_offline(struct cgroup_subsys_state *css) { struct cpuset *cs = css_cs(css); - mutex_lock(&cpuset_mutex); - - if (is_sched_load_balance(cs)) - update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); + cpuset_full_lock(); + if (!cpuset_v2() && is_sched_load_balance(cs)) + cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); cpuset_dec(); - clear_bit(CS_ONLINE, &cs->flags); + cpuset_full_unlock(); +} - mutex_unlock(&cpuset_mutex); +/* + * If a dying cpuset has the 'cpus.partition' enabled, turn it off by + * changing it back to member to free its exclusive CPUs back to the pool to + * be used by other online cpusets. + */ +static void cpuset_css_killed(struct cgroup_subsys_state *css) +{ + struct cpuset *cs = css_cs(css); + + cpuset_full_lock(); + /* Reset valid partition back to member */ + if (is_partition_valid(cs)) + update_prstate(cs, PRS_MEMBER); + cpuset_full_unlock(); } static void cpuset_css_free(struct cgroup_subsys_state *css) { struct cpuset *cs = css_cs(css); - free_cpumask_var(cs->effective_cpus); - free_cpumask_var(cs->cpus_allowed); - kfree(cs); + free_cpuset(cs); } static void cpuset_bind(struct cgroup_subsys_state *root_css) @@ -2055,8 +3740,9 @@ static void cpuset_bind(struct cgroup_subsys_state *root_css) mutex_lock(&cpuset_mutex); spin_lock_irq(&callback_lock); - if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { + if (is_in_v2_mode()) { cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); + cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); top_cpuset.mems_allowed = node_possible_map; } else { cpumask_copy(top_cpuset.cpus_allowed, @@ -2069,129 +3755,151 @@ static void cpuset_bind(struct cgroup_subsys_state *root_css) } /* + * In case the child is cloned into a cpuset different from its parent, + * additional checks are done to see if the move is allowed. + */ +static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) +{ + struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); + bool same_cs; + int ret; + + rcu_read_lock(); + same_cs = (cs == task_cs(current)); + rcu_read_unlock(); + + if (same_cs) + return 0; + + lockdep_assert_held(&cgroup_mutex); + mutex_lock(&cpuset_mutex); + + /* Check to see if task is allowed in the cpuset */ + ret = cpuset_can_attach_check(cs); + if (ret) + goto out_unlock; + + ret = task_can_attach(task); + if (ret) + goto out_unlock; + + ret = security_task_setscheduler(task); + if (ret) + goto out_unlock; + + /* + * Mark attach is in progress. This makes validate_change() fail + * changes which zero cpus/mems_allowed. + */ + cs->attach_in_progress++; +out_unlock: + mutex_unlock(&cpuset_mutex); + return ret; +} + +static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) +{ + struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); + bool same_cs; + + rcu_read_lock(); + same_cs = (cs == task_cs(current)); + rcu_read_unlock(); + + if (same_cs) + return; + + dec_attach_in_progress(cs); +} + +/* * Make sure the new task conform to the current state of its parent, * which could have been changed by cpuset just after it inherits the * state from the parent and before it sits on the cgroup's task list. */ static void cpuset_fork(struct task_struct *task) { - if (task_css_is_root(task, cpuset_cgrp_id)) + struct cpuset *cs; + bool same_cs; + + rcu_read_lock(); + cs = task_cs(task); + same_cs = (cs == task_cs(current)); + rcu_read_unlock(); + + if (same_cs) { + if (cs == &top_cpuset) + return; + + set_cpus_allowed_ptr(task, current->cpus_ptr); + task->mems_allowed = current->mems_allowed; return; + } - set_cpus_allowed_ptr(task, ¤t->cpus_allowed); - task->mems_allowed = current->mems_allowed; + /* CLONE_INTO_CGROUP */ + mutex_lock(&cpuset_mutex); + guarantee_online_mems(cs, &cpuset_attach_nodemask_to); + cpuset_attach_task(cs, task); + + dec_attach_in_progress_locked(cs); + mutex_unlock(&cpuset_mutex); } struct cgroup_subsys cpuset_cgrp_subsys = { .css_alloc = cpuset_css_alloc, .css_online = cpuset_css_online, .css_offline = cpuset_css_offline, + .css_killed = cpuset_css_killed, .css_free = cpuset_css_free, .can_attach = cpuset_can_attach, .cancel_attach = cpuset_cancel_attach, .attach = cpuset_attach, - .post_attach = cpuset_post_attach, .bind = cpuset_bind, + .can_fork = cpuset_can_fork, + .cancel_fork = cpuset_cancel_fork, .fork = cpuset_fork, - .legacy_cftypes = files, +#ifdef CONFIG_CPUSETS_V1 + .legacy_cftypes = cpuset1_files, +#endif + .dfl_cftypes = dfl_files, .early_init = true, + .threaded = true, }; /** * cpuset_init - initialize cpusets at system boot * - * Description: Initialize top_cpuset and the cpuset internal file system, + * Description: Initialize top_cpuset **/ int __init cpuset_init(void) { - int err = 0; - BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); + BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); + BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); + BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); + BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); cpumask_setall(top_cpuset.cpus_allowed); nodes_setall(top_cpuset.mems_allowed); cpumask_setall(top_cpuset.effective_cpus); + cpumask_setall(top_cpuset.effective_xcpus); + cpumask_setall(top_cpuset.exclusive_cpus); nodes_setall(top_cpuset.effective_mems); fmeter_init(&top_cpuset.fmeter); - set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); - top_cpuset.relax_domain_level = -1; - - err = register_filesystem(&cpuset_fs_type); - if (err < 0) - return err; BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); - return 0; -} - -/* - * If CPU and/or memory hotplug handlers, below, unplug any CPUs - * or memory nodes, we need to walk over the cpuset hierarchy, - * removing that CPU or node from all cpusets. If this removes the - * last CPU or node from a cpuset, then move the tasks in the empty - * cpuset to its next-highest non-empty parent. - */ -static void remove_tasks_in_empty_cpuset(struct cpuset *cs) -{ - struct cpuset *parent; - - /* - * Find its next-highest non-empty parent, (top cpuset - * has online cpus, so can't be empty). - */ - parent = parent_cs(cs); - while (cpumask_empty(parent->cpus_allowed) || - nodes_empty(parent->mems_allowed)) - parent = parent_cs(parent); - - if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { - pr_err("cpuset: failed to transfer tasks out of empty cpuset "); - pr_cont_cgroup_name(cs->css.cgroup); - pr_cont("\n"); + have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN); + if (have_boot_isolcpus) { + BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL)); + cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN)); + cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus); } -} - -static void -hotplug_update_tasks_legacy(struct cpuset *cs, - struct cpumask *new_cpus, nodemask_t *new_mems, - bool cpus_updated, bool mems_updated) -{ - bool is_empty; - spin_lock_irq(&callback_lock); - cpumask_copy(cs->cpus_allowed, new_cpus); - cpumask_copy(cs->effective_cpus, new_cpus); - cs->mems_allowed = *new_mems; - cs->effective_mems = *new_mems; - spin_unlock_irq(&callback_lock); - - /* - * Don't call update_tasks_cpumask() if the cpuset becomes empty, - * as the tasks will be migratecd to an ancestor. - */ - if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) - update_tasks_cpumask(cs); - if (mems_updated && !nodes_empty(cs->mems_allowed)) - update_tasks_nodemask(cs); - - is_empty = cpumask_empty(cs->cpus_allowed) || - nodes_empty(cs->mems_allowed); - - mutex_unlock(&cpuset_mutex); - - /* - * Move tasks to the nearest ancestor with execution resources, - * This is full cgroup operation which will also call back into - * cpuset. Should be done outside any lock. - */ - if (is_empty) - remove_tasks_in_empty_cpuset(cs); - - mutex_lock(&cpuset_mutex); + return 0; } static void @@ -2199,7 +3907,8 @@ hotplug_update_tasks(struct cpuset *cs, struct cpumask *new_cpus, nodemask_t *new_mems, bool cpus_updated, bool mems_updated) { - if (cpumask_empty(new_cpus)) + /* A partition root is allowed to have empty effective cpus */ + if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); if (nodes_empty(*new_mems)) *new_mems = parent_cs(cs)->effective_mems; @@ -2210,25 +3919,34 @@ hotplug_update_tasks(struct cpuset *cs, spin_unlock_irq(&callback_lock); if (cpus_updated) - update_tasks_cpumask(cs); + cpuset_update_tasks_cpumask(cs, new_cpus); if (mems_updated) - update_tasks_nodemask(cs); + cpuset_update_tasks_nodemask(cs); +} + +void cpuset_force_rebuild(void) +{ + force_sd_rebuild = true; } /** * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug * @cs: cpuset in interest + * @tmp: the tmpmasks structure pointer * * Compare @cs's cpu and mem masks against top_cpuset and if some have gone * offline, update @cs accordingly. If @cs ends up with no CPU or memory, * all its tasks are moved to the nearest ancestor with both resources. */ -static void cpuset_hotplug_update_tasks(struct cpuset *cs) +static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) { static cpumask_t new_cpus; static nodemask_t new_mems; bool cpus_updated; bool mems_updated; + bool remote; + int partcmd = -1; + struct cpuset *parent; retry: wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); @@ -2243,24 +3961,77 @@ retry: goto retry; } - cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus); - nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems); + parent = parent_cs(cs); + compute_effective_cpumask(&new_cpus, cs, parent); + nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); + + if (!tmp || !cs->partition_root_state) + goto update_tasks; + /* + * Compute effective_cpus for valid partition root, may invalidate + * child partition roots if necessary. + */ + remote = is_remote_partition(cs); + if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) + compute_partition_effective_cpumask(cs, &new_cpus); + + if (remote && cpumask_empty(&new_cpus) && + partition_is_populated(cs, NULL)) { + cs->prs_err = PERR_HOTPLUG; + remote_partition_disable(cs, tmp); + compute_effective_cpumask(&new_cpus, cs, parent); + remote = false; + } + + /* + * Force the partition to become invalid if either one of + * the following conditions hold: + * 1) empty effective cpus but not valid empty partition. + * 2) parent is invalid or doesn't grant any cpus to child + * partitions. + */ + if (is_local_partition(cs) && (!is_partition_valid(parent) || + tasks_nocpu_error(parent, cs, &new_cpus))) + partcmd = partcmd_invalidate; + /* + * On the other hand, an invalid partition root may be transitioned + * back to a regular one with a non-empty effective xcpus. + */ + else if (is_partition_valid(parent) && is_partition_invalid(cs) && + !cpumask_empty(cs->effective_xcpus)) + partcmd = partcmd_update; + + if (partcmd >= 0) { + update_parent_effective_cpumask(cs, partcmd, NULL, tmp); + if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { + compute_partition_effective_cpumask(cs, &new_cpus); + cpuset_force_rebuild(); + } + } + +update_tasks: cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); mems_updated = !nodes_equal(new_mems, cs->effective_mems); + if (!cpus_updated && !mems_updated) + goto unlock; /* Hotplug doesn't affect this cpuset */ + + if (mems_updated) + check_insane_mems_config(&new_mems); - if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) + if (is_in_v2_mode()) hotplug_update_tasks(cs, &new_cpus, &new_mems, cpus_updated, mems_updated); else - hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, + cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems, cpus_updated, mems_updated); +unlock: mutex_unlock(&cpuset_mutex); } /** - * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset + * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset * * This function is called after either CPU or memory configuration has * changed and updates cpuset accordingly. The top_cpuset is always @@ -2274,28 +4045,56 @@ retry: * * Note that CPU offlining during suspend is ignored. We don't modify * cpusets across suspend/resume cycles at all. + * + * CPU / memory hotplug is handled synchronously. */ -static void cpuset_hotplug_workfn(struct work_struct *work) +static void cpuset_handle_hotplug(void) { static cpumask_t new_cpus; static nodemask_t new_mems; bool cpus_updated, mems_updated; - bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys); + bool on_dfl = is_in_v2_mode(); + struct tmpmasks tmp, *ptmp = NULL; + + if (on_dfl && !alloc_tmpmasks(&tmp)) + ptmp = &tmp; + lockdep_assert_cpus_held(); mutex_lock(&cpuset_mutex); /* fetch the available cpus/mems and find out which changed how */ cpumask_copy(&new_cpus, cpu_active_mask); new_mems = node_states[N_MEMORY]; - cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); + /* + * If subpartitions_cpus is populated, it is likely that the check + * below will produce a false positive on cpus_updated when the cpu + * list isn't changed. It is extra work, but it is better to be safe. + */ + cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || + !cpumask_empty(subpartitions_cpus); mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); - /* synchronize cpus_allowed to cpu_active_mask */ + /* For v1, synchronize cpus_allowed to cpu_active_mask */ if (cpus_updated) { + cpuset_force_rebuild(); spin_lock_irq(&callback_lock); if (!on_dfl) cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); + /* + * Make sure that CPUs allocated to child partitions + * do not show up in effective_cpus. If no CPU is left, + * we clear the subpartitions_cpus & let the child partitions + * fight for the CPUs again. + */ + if (!cpumask_empty(subpartitions_cpus)) { + if (cpumask_subset(&new_cpus, subpartitions_cpus)) { + cpumask_clear(subpartitions_cpus); + } else { + cpumask_andnot(&new_cpus, &new_cpus, + subpartitions_cpus); + } + } cpumask_copy(top_cpuset.effective_cpus, &new_cpus); spin_unlock_irq(&callback_lock); /* we don't mess with cpumasks of tasks in top_cpuset */ @@ -2308,7 +4107,7 @@ static void cpuset_hotplug_workfn(struct work_struct *work) top_cpuset.mems_allowed = new_mems; top_cpuset.effective_mems = new_mems; spin_unlock_irq(&callback_lock); - update_tasks_nodemask(&top_cpuset); + cpuset_update_tasks_nodemask(&top_cpuset); } mutex_unlock(&cpuset_mutex); @@ -2324,7 +4123,7 @@ static void cpuset_hotplug_workfn(struct work_struct *work) continue; rcu_read_unlock(); - cpuset_hotplug_update_tasks(cs); + cpuset_hotplug_update_tasks(cs, ptmp); rcu_read_lock(); css_put(&cs->css); @@ -2332,9 +4131,11 @@ static void cpuset_hotplug_workfn(struct work_struct *work) rcu_read_unlock(); } - /* rebuild sched domains if cpus_allowed has changed */ - if (cpus_updated) - rebuild_sched_domains(); + /* rebuild sched domains if necessary */ + if (force_sd_rebuild) + rebuild_sched_domains_cpuslocked(); + + free_tmpmasks(ptmp); } void cpuset_update_active_cpus(void) @@ -2343,14 +4144,8 @@ void cpuset_update_active_cpus(void) * We're inside cpu hotplug critical region which usually nests * inside cgroup synchronization. Bounce actual hotplug processing * to a work item to avoid reverse locking order. - * - * We still need to do partition_sched_domains() synchronously; - * otherwise, the scheduler will get confused and put tasks to the - * dead CPU. Fall back to the default single domain. - * cpuset_hotplug_workfn() will rebuild it as necessary. */ - partition_sched_domains(1, NULL, NULL); - schedule_work(&cpuset_hotplug_work); + cpuset_handle_hotplug(); } /* @@ -2361,15 +4156,10 @@ void cpuset_update_active_cpus(void) static int cpuset_track_online_nodes(struct notifier_block *self, unsigned long action, void *arg) { - schedule_work(&cpuset_hotplug_work); + cpuset_handle_hotplug(); return NOTIFY_OK; } -static struct notifier_block cpuset_track_online_nodes_nb = { - .notifier_call = cpuset_track_online_nodes, - .priority = 10, /* ??! */ -}; - /** * cpuset_init_smp - initialize cpus_allowed * @@ -2377,28 +4167,73 @@ static struct notifier_block cpuset_track_online_nodes_nb = { */ void __init cpuset_init_smp(void) { - cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); - top_cpuset.mems_allowed = node_states[N_MEMORY]; + /* + * cpus_allowd/mems_allowed set to v2 values in the initial + * cpuset_bind() call will be reset to v1 values in another + * cpuset_bind() call when v1 cpuset is mounted. + */ top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); top_cpuset.effective_mems = node_states[N_MEMORY]; - register_hotmemory_notifier(&cpuset_track_online_nodes_nb); + hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); BUG_ON(!cpuset_migrate_mm_wq); } +/* + * Return cpus_allowed mask from a task's cpuset. + */ +static void __cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) +{ + struct cpuset *cs; + + cs = task_cs(tsk); + if (cs != &top_cpuset) + guarantee_active_cpus(tsk, pmask); + /* + * Tasks in the top cpuset won't get update to their cpumasks + * when a hotplug online/offline event happens. So we include all + * offline cpus in the allowed cpu list. + */ + if ((cs == &top_cpuset) || cpumask_empty(pmask)) { + const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); + + /* + * We first exclude cpus allocated to partitions. If there is no + * allowable online cpu left, we fall back to all possible cpus. + */ + cpumask_andnot(pmask, possible_mask, subpartitions_cpus); + if (!cpumask_intersects(pmask, cpu_active_mask)) + cpumask_copy(pmask, possible_mask); + } +} + /** - * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. + * cpuset_cpus_allowed_locked - return cpus_allowed mask from a task's cpuset. + * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. + * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. + * + * Similir to cpuset_cpus_allowed() except that the caller must have acquired + * cpuset_mutex. + */ +void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) +{ + lockdep_assert_held(&cpuset_mutex); + __cpuset_cpus_allowed_locked(tsk, pmask); +} + +/** + * cpuset_cpus_allowed - return cpus_allowed mask from a task's cpuset. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. * * Description: Returns the cpumask_var_t cpus_allowed of the cpuset * attached to the specified @tsk. Guaranteed to return some non-empty - * subset of cpu_online_mask, even if this means going outside the - * tasks cpuset. + * subset of cpu_active_mask, even if this means going outside the + * tasks cpuset, except when the task is in the top cpuset. **/ void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) @@ -2406,16 +4241,36 @@ void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) unsigned long flags; spin_lock_irqsave(&callback_lock, flags); - rcu_read_lock(); - guarantee_online_cpus(task_cs(tsk), pmask); - rcu_read_unlock(); + __cpuset_cpus_allowed_locked(tsk, pmask); spin_unlock_irqrestore(&callback_lock, flags); } -void cpuset_cpus_allowed_fallback(struct task_struct *tsk) +/** + * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. + * @tsk: pointer to task_struct with which the scheduler is struggling + * + * Description: In the case that the scheduler cannot find an allowed cpu in + * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy + * mode however, this value is the same as task_cs(tsk)->effective_cpus, + * which will not contain a sane cpumask during cases such as cpu hotplugging. + * This is the absolute last resort for the scheduler and it is only used if + * _every_ other avenue has been traveled. + * + * Returns true if the affinity of @tsk was changed, false otherwise. + **/ + +bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) { + const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); + const struct cpumask *cs_mask; + bool changed = false; + rcu_read_lock(); - do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus); + cs_mask = task_cs(tsk)->cpus_allowed; + if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { + set_cpus_allowed_force(tsk, cs_mask); + changed = true; + } rcu_read_unlock(); /* @@ -2435,6 +4290,7 @@ void cpuset_cpus_allowed_fallback(struct task_struct *tsk) * select_fallback_rq() will fix things ups and set cpu_possible_mask * if required. */ + return changed; } void __init cpuset_init_current_mems_allowed(void) @@ -2458,16 +4314,14 @@ nodemask_t cpuset_mems_allowed(struct task_struct *tsk) unsigned long flags; spin_lock_irqsave(&callback_lock, flags); - rcu_read_lock(); guarantee_online_mems(task_cs(tsk), &mask); - rcu_read_unlock(); spin_unlock_irqrestore(&callback_lock, flags); return mask; } /** - * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed + * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed * @nodemask: the nodemask to be checked * * Are any of the nodes in the nodemask allowed in current->mems_allowed? @@ -2490,20 +4344,20 @@ static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) return cs; } -/** - * cpuset_node_allowed - Can we allocate on a memory node? +/* + * cpuset_current_node_allowed - Can current task allocate on a memory node? * @node: is this an allowed node? * @gfp_mask: memory allocation flags * * If we're in interrupt, yes, we can always allocate. If @node is set in * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, - * yes. If current has access to memory reserves due to TIF_MEMDIE, yes. + * yes. If current has access to memory reserves as an oom victim, yes. * Otherwise, no. * * GFP_USER allocations are marked with the __GFP_HARDWALL bit, * and do not allow allocations outside the current tasks cpuset - * unless the task has been OOM killed as is marked TIF_MEMDIE. + * unless the task has been OOM killed. * GFP_KERNEL allocations are not so marked, so can escape to the * nearest enclosing hardwalled ancestor cpuset. * @@ -2526,14 +4380,14 @@ static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) * affect that: * in_interrupt - any node ok (current task context irrelevant) * GFP_ATOMIC - any node ok - * TIF_MEMDIE - any node ok + * tsk_is_oom_victim - any node ok * GFP_KERNEL - any node in enclosing hardwalled cpuset ok * GFP_USER - only nodes in current tasks mems allowed ok. */ -bool __cpuset_node_allowed(int node, gfp_t gfp_mask) +bool cpuset_current_node_allowed(int node, gfp_t gfp_mask) { struct cpuset *cs; /* current cpuset ancestors */ - int allowed; /* is allocation in zone z allowed? */ + bool allowed; /* is allocation in zone z allowed? */ unsigned long flags; if (in_interrupt()) @@ -2544,7 +4398,7 @@ bool __cpuset_node_allowed(int node, gfp_t gfp_mask) * Allow tasks that have access to memory reserves because they have * been OOM killed to get memory anywhere. */ - if (unlikely(test_thread_flag(TIF_MEMDIE))) + if (unlikely(tsk_is_oom_victim(current))) return true; if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ return false; @@ -2555,18 +4409,52 @@ bool __cpuset_node_allowed(int node, gfp_t gfp_mask) /* Not hardwall and node outside mems_allowed: scan up cpusets */ spin_lock_irqsave(&callback_lock, flags); - rcu_read_lock(); cs = nearest_hardwall_ancestor(task_cs(current)); allowed = node_isset(node, cs->mems_allowed); - rcu_read_unlock(); spin_unlock_irqrestore(&callback_lock, flags); return allowed; } +bool cpuset_node_allowed(struct cgroup *cgroup, int nid) +{ + struct cgroup_subsys_state *css; + struct cpuset *cs; + bool allowed; + + /* + * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy + * and mems_allowed is likely to be empty even if we could get to it, + * so return true to avoid taking a global lock on the empty check. + */ + if (!cpuset_v2()) + return true; + + css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys); + if (!css) + return true; + + /* + * Normally, accessing effective_mems would require the cpuset_mutex + * or callback_lock - but node_isset is atomic and the reference + * taken via cgroup_get_e_css is sufficient to protect css. + * + * Since this interface is intended for use by migration paths, we + * relax locking here to avoid taking global locks - while accepting + * there may be rare scenarios where the result may be innaccurate. + * + * Reclaim and migration are subject to these same race conditions, and + * cannot make strong isolation guarantees, so this is acceptable. + */ + cs = container_of(css, struct cpuset, css); + allowed = node_isset(nid, cs->effective_mems); + css_put(css); + return allowed; +} + /** - * cpuset_mem_spread_node() - On which node to begin search for a file page - * cpuset_slab_spread_node() - On which node to begin search for a slab page + * cpuset_spread_node() - On which node to begin search for a page + * @rotor: round robin rotor * * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for * tasks in a cpuset with is_spread_page or is_spread_slab set), @@ -2590,12 +4478,14 @@ bool __cpuset_node_allowed(int node, gfp_t gfp_mask) * is passed an offline node, it will fall back to the local node. * See kmem_cache_alloc_node(). */ - static int cpuset_spread_node(int *rotor) { return *rotor = next_node_in(*rotor, current->mems_allowed); } +/** + * cpuset_mem_spread_node() - On which node to begin search for a file page + */ int cpuset_mem_spread_node(void) { if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) @@ -2605,17 +4495,6 @@ int cpuset_mem_spread_node(void) return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); } -int cpuset_slab_spread_node(void) -{ - if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) - current->cpuset_slab_spread_rotor = - node_random(¤t->mems_allowed); - - return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); -} - -EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); - /** * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? * @tsk1: pointer to task_struct of some task. @@ -2646,87 +4525,14 @@ void cpuset_print_current_mems_allowed(void) rcu_read_lock(); cgrp = task_cs(current)->css.cgroup; - pr_info("%s cpuset=", current->comm); + pr_cont(",cpuset="); pr_cont_cgroup_name(cgrp); - pr_cont(" mems_allowed=%*pbl\n", + pr_cont(",mems_allowed=%*pbl", nodemask_pr_args(¤t->mems_allowed)); rcu_read_unlock(); } -/* - * Collection of memory_pressure is suppressed unless - * this flag is enabled by writing "1" to the special - * cpuset file 'memory_pressure_enabled' in the root cpuset. - */ - -int cpuset_memory_pressure_enabled __read_mostly; - -/** - * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. - * - * Keep a running average of the rate of synchronous (direct) - * page reclaim efforts initiated by tasks in each cpuset. - * - * This represents the rate at which some task in the cpuset - * ran low on memory on all nodes it was allowed to use, and - * had to enter the kernels page reclaim code in an effort to - * create more free memory by tossing clean pages or swapping - * or writing dirty pages. - * - * Display to user space in the per-cpuset read-only file - * "memory_pressure". Value displayed is an integer - * representing the recent rate of entry into the synchronous - * (direct) page reclaim by any task attached to the cpuset. - **/ - -void __cpuset_memory_pressure_bump(void) -{ - rcu_read_lock(); - fmeter_markevent(&task_cs(current)->fmeter); - rcu_read_unlock(); -} - -#ifdef CONFIG_PROC_PID_CPUSET -/* - * proc_cpuset_show() - * - Print tasks cpuset path into seq_file. - * - Used for /proc/<pid>/cpuset. - * - No need to task_lock(tsk) on this tsk->cpuset reference, as it - * doesn't really matter if tsk->cpuset changes after we read it, - * and we take cpuset_mutex, keeping cpuset_attach() from changing it - * anyway. - */ -int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, - struct pid *pid, struct task_struct *tsk) -{ - char *buf; - struct cgroup_subsys_state *css; - int retval; - - retval = -ENOMEM; - buf = kmalloc(PATH_MAX, GFP_KERNEL); - if (!buf) - goto out; - - css = task_get_css(tsk, cpuset_cgrp_id); - retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, - current->nsproxy->cgroup_ns); - css_put(css); - if (retval >= PATH_MAX) - retval = -ENAMETOOLONG; - if (retval < 0) - goto out_free; - seq_puts(m, buf); - seq_putc(m, '\n'); - retval = 0; -out_free: - kfree(buf); -out: - return retval; -} -#endif /* CONFIG_PROC_PID_CPUSET */ - /* Display task mems_allowed in /proc/<pid>/status file. */ void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) { diff --git a/kernel/cgroup/debug.c b/kernel/cgroup/debug.c index dac46af22782..81ea38dd6f9d 100644 --- a/kernel/cgroup/debug.c +++ b/kernel/cgroup/debug.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0 /* * Debug controller * @@ -48,8 +49,7 @@ static int current_css_set_read(struct seq_file *seq, void *v) return -ENODEV; spin_lock_irq(&css_set_lock); - rcu_read_lock(); - cset = rcu_dereference(current->cgroups); + cset = task_css_set(current); refcnt = refcount_read(&cset->refcount); seq_printf(seq, "css_set %pK %d", cset, refcnt); if (refcnt > cset->nr_tasks) @@ -63,10 +63,9 @@ static int current_css_set_read(struct seq_file *seq, void *v) css = cset->subsys[ss->id]; if (!css) continue; - seq_printf(seq, "%2d: %-4s\t- %lx[%d]\n", ss->id, ss->name, - (unsigned long)css, css->id); + seq_printf(seq, "%2d: %-4s\t- %p[%d]\n", ss->id, ss->name, + css, css->id); } - rcu_read_unlock(); spin_unlock_irq(&css_set_lock); cgroup_kn_unlock(of->kn); return 0; @@ -94,8 +93,7 @@ static int current_css_set_cg_links_read(struct seq_file *seq, void *v) return -ENOMEM; spin_lock_irq(&css_set_lock); - rcu_read_lock(); - cset = rcu_dereference(current->cgroups); + cset = task_css_set(current); list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; @@ -103,7 +101,6 @@ static int current_css_set_cg_links_read(struct seq_file *seq, void *v) seq_printf(seq, "Root %d group %s\n", c->root->hierarchy_id, name_buf); } - rcu_read_unlock(); spin_unlock_irq(&css_set_lock); kfree(name_buf); return 0; @@ -114,27 +111,49 @@ static int cgroup_css_links_read(struct seq_file *seq, void *v) { struct cgroup_subsys_state *css = seq_css(seq); struct cgrp_cset_link *link; - int dead_cnt = 0, extra_refs = 0; + int dead_cnt = 0, extra_refs = 0, threaded_csets = 0; spin_lock_irq(&css_set_lock); + list_for_each_entry(link, &css->cgroup->cset_links, cset_link) { struct css_set *cset = link->cset; struct task_struct *task; int count = 0; int refcnt = refcount_read(&cset->refcount); - seq_printf(seq, " %d", refcnt); - if (refcnt - cset->nr_tasks > 0) { - int extra = refcnt - cset->nr_tasks; - - seq_printf(seq, " +%d", extra); - /* - * Take out the one additional reference in - * init_css_set. - */ - if (cset == &init_css_set) - extra--; - extra_refs += extra; + /* + * Print out the proc_cset and threaded_cset relationship + * and highlight difference between refcount and task_count. + */ + seq_printf(seq, "css_set %pK", cset); + if (rcu_dereference_protected(cset->dom_cset, 1) != cset) { + threaded_csets++; + seq_printf(seq, "=>%pK", cset->dom_cset); + } + if (!list_empty(&cset->threaded_csets)) { + struct css_set *tcset; + int idx = 0; + + list_for_each_entry(tcset, &cset->threaded_csets, + threaded_csets_node) { + seq_puts(seq, idx ? "," : "<="); + seq_printf(seq, "%pK", tcset); + idx++; + } + } else { + seq_printf(seq, " %d", refcnt); + if (refcnt - cset->nr_tasks > 0) { + int extra = refcnt - cset->nr_tasks; + + seq_printf(seq, " +%d", extra); + /* + * Take out the one additional reference in + * init_css_set. + */ + if (cset == &init_css_set) + extra--; + extra_refs += extra; + } } seq_puts(seq, "\n"); @@ -163,10 +182,12 @@ static int cgroup_css_links_read(struct seq_file *seq, void *v) } spin_unlock_irq(&css_set_lock); - if (!dead_cnt && !extra_refs) + if (!dead_cnt && !extra_refs && !threaded_csets) return 0; seq_puts(seq, "\n"); + if (threaded_csets) + seq_printf(seq, "threaded css_sets = %d\n", threaded_csets); if (extra_refs) seq_printf(seq, "extra references = %d\n", extra_refs); if (dead_cnt) @@ -199,8 +220,8 @@ static int cgroup_subsys_states_read(struct seq_file *seq, void *v) if (css->parent) snprintf(pbuf, sizeof(pbuf) - 1, " P=%d", css->parent->id); - seq_printf(seq, "%2d: %-4s\t- %lx[%d] %d%s\n", ss->id, ss->name, - (unsigned long)css, css->id, + seq_printf(seq, "%2d: %-4s\t- %p[%d] %d%s\n", ss->id, ss->name, + css, css->id, atomic_read(&css->online_cnt), pbuf); } @@ -348,10 +369,9 @@ struct cgroup_subsys debug_cgrp_subsys = { * On v2, debug is an implicit controller enabled by "cgroup_debug" boot * parameter. */ -static int __init enable_cgroup_debug(char *str) +void __init enable_debug_cgroup(void) { debug_cgrp_subsys.dfl_cftypes = debug_files; debug_cgrp_subsys.implicit_on_dfl = true; - return 1; + debug_cgrp_subsys.threaded = true; } -__setup("cgroup_debug", enable_cgroup_debug); diff --git a/kernel/cgroup/dmem.c b/kernel/cgroup/dmem.c new file mode 100644 index 000000000000..e12b946278b6 --- /dev/null +++ b/kernel/cgroup/dmem.c @@ -0,0 +1,830 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright 2023-2024 Intel Corporation (Maarten Lankhorst <dev@lankhorst.se>) + * Copyright 2024 Red Hat (Maxime Ripard <mripard@kernel.org>) + * Partially based on the rdma and misc controllers, which bear the following copyrights: + * + * Copyright 2020 Google LLC + * Copyright (C) 2016 Parav Pandit <pandit.parav@gmail.com> + */ + +#include <linux/cgroup.h> +#include <linux/cgroup_dmem.h> +#include <linux/list.h> +#include <linux/mutex.h> +#include <linux/page_counter.h> +#include <linux/parser.h> +#include <linux/rculist.h> +#include <linux/slab.h> + +struct dmem_cgroup_region { + /** + * @ref: References keeping the region alive. + * Keeps the region reference alive after a succesful RCU lookup. + */ + struct kref ref; + + /** @rcu: RCU head for freeing */ + struct rcu_head rcu; + + /** + * @region_node: Linked into &dmem_cgroup_regions list. + * Protected by RCU and global spinlock. + */ + struct list_head region_node; + + /** + * @pools: List of pools linked to this region. + * Protected by global spinlock only + */ + struct list_head pools; + + /** @size: Size of region, in bytes */ + u64 size; + + /** @name: Name describing the node, set by dmem_cgroup_register_region */ + char *name; + + /** + * @unregistered: Whether the region is unregistered by its caller. + * No new pools should be added to the region afterwards. + */ + bool unregistered; +}; + +struct dmemcg_state { + struct cgroup_subsys_state css; + + struct list_head pools; +}; + +struct dmem_cgroup_pool_state { + struct dmem_cgroup_region *region; + struct dmemcg_state *cs; + + /* css node, RCU protected against region teardown */ + struct list_head css_node; + + /* dev node, no RCU protection required */ + struct list_head region_node; + + struct rcu_head rcu; + + struct page_counter cnt; + + bool inited; +}; + +/* + * 3 operations require locking protection: + * - Registering and unregistering region to/from list, requires global lock. + * - Adding a dmem_cgroup_pool_state to a CSS, removing when CSS is freed. + * - Adding a dmem_cgroup_pool_state to a region list. + * + * Since for the most common operations RCU provides enough protection, I + * do not think more granular locking makes sense. Most protection is offered + * by RCU and the lockless operating page_counter. + */ +static DEFINE_SPINLOCK(dmemcg_lock); +static LIST_HEAD(dmem_cgroup_regions); + +static inline struct dmemcg_state * +css_to_dmemcs(struct cgroup_subsys_state *css) +{ + return container_of(css, struct dmemcg_state, css); +} + +static inline struct dmemcg_state *get_current_dmemcs(void) +{ + return css_to_dmemcs(task_get_css(current, dmem_cgrp_id)); +} + +static struct dmemcg_state *parent_dmemcs(struct dmemcg_state *cg) +{ + return cg->css.parent ? css_to_dmemcs(cg->css.parent) : NULL; +} + +static void free_cg_pool(struct dmem_cgroup_pool_state *pool) +{ + list_del(&pool->region_node); + kfree(pool); +} + +static void +set_resource_min(struct dmem_cgroup_pool_state *pool, u64 val) +{ + page_counter_set_min(&pool->cnt, val); +} + +static void +set_resource_low(struct dmem_cgroup_pool_state *pool, u64 val) +{ + page_counter_set_low(&pool->cnt, val); +} + +static void +set_resource_max(struct dmem_cgroup_pool_state *pool, u64 val) +{ + page_counter_set_max(&pool->cnt, val); +} + +static u64 get_resource_low(struct dmem_cgroup_pool_state *pool) +{ + return pool ? READ_ONCE(pool->cnt.low) : 0; +} + +static u64 get_resource_min(struct dmem_cgroup_pool_state *pool) +{ + return pool ? READ_ONCE(pool->cnt.min) : 0; +} + +static u64 get_resource_max(struct dmem_cgroup_pool_state *pool) +{ + return pool ? READ_ONCE(pool->cnt.max) : PAGE_COUNTER_MAX; +} + +static u64 get_resource_current(struct dmem_cgroup_pool_state *pool) +{ + return pool ? page_counter_read(&pool->cnt) : 0; +} + +static void reset_all_resource_limits(struct dmem_cgroup_pool_state *rpool) +{ + set_resource_min(rpool, 0); + set_resource_low(rpool, 0); + set_resource_max(rpool, PAGE_COUNTER_MAX); +} + +static void dmemcs_offline(struct cgroup_subsys_state *css) +{ + struct dmemcg_state *dmemcs = css_to_dmemcs(css); + struct dmem_cgroup_pool_state *pool; + + rcu_read_lock(); + list_for_each_entry_rcu(pool, &dmemcs->pools, css_node) + reset_all_resource_limits(pool); + rcu_read_unlock(); +} + +static void dmemcs_free(struct cgroup_subsys_state *css) +{ + struct dmemcg_state *dmemcs = css_to_dmemcs(css); + struct dmem_cgroup_pool_state *pool, *next; + + spin_lock(&dmemcg_lock); + list_for_each_entry_safe(pool, next, &dmemcs->pools, css_node) { + /* + *The pool is dead and all references are 0, + * no need for RCU protection with list_del_rcu or freeing. + */ + list_del(&pool->css_node); + free_cg_pool(pool); + } + spin_unlock(&dmemcg_lock); + + kfree(dmemcs); +} + +static struct cgroup_subsys_state * +dmemcs_alloc(struct cgroup_subsys_state *parent_css) +{ + struct dmemcg_state *dmemcs = kzalloc(sizeof(*dmemcs), GFP_KERNEL); + if (!dmemcs) + return ERR_PTR(-ENOMEM); + + INIT_LIST_HEAD(&dmemcs->pools); + return &dmemcs->css; +} + +static struct dmem_cgroup_pool_state * +find_cg_pool_locked(struct dmemcg_state *dmemcs, struct dmem_cgroup_region *region) +{ + struct dmem_cgroup_pool_state *pool; + + list_for_each_entry_rcu(pool, &dmemcs->pools, css_node, spin_is_locked(&dmemcg_lock)) + if (pool->region == region) + return pool; + + return NULL; +} + +static struct dmem_cgroup_pool_state *pool_parent(struct dmem_cgroup_pool_state *pool) +{ + if (!pool->cnt.parent) + return NULL; + + return container_of(pool->cnt.parent, typeof(*pool), cnt); +} + +static void +dmem_cgroup_calculate_protection(struct dmem_cgroup_pool_state *limit_pool, + struct dmem_cgroup_pool_state *test_pool) +{ + struct page_counter *climit; + struct cgroup_subsys_state *css; + struct dmemcg_state *dmemcg_iter; + struct dmem_cgroup_pool_state *pool, *found_pool; + + climit = &limit_pool->cnt; + + rcu_read_lock(); + + css_for_each_descendant_pre(css, &limit_pool->cs->css) { + dmemcg_iter = container_of(css, struct dmemcg_state, css); + found_pool = NULL; + + list_for_each_entry_rcu(pool, &dmemcg_iter->pools, css_node) { + if (pool->region == limit_pool->region) { + found_pool = pool; + break; + } + } + if (!found_pool) + continue; + + page_counter_calculate_protection( + climit, &found_pool->cnt, true); + + if (found_pool == test_pool) + break; + } + rcu_read_unlock(); +} + +/** + * dmem_cgroup_state_evict_valuable() - Check if we should evict from test_pool + * @limit_pool: The pool for which we hit limits + * @test_pool: The pool for which to test + * @ignore_low: Whether we have to respect low watermarks. + * @ret_hit_low: Pointer to whether it makes sense to consider low watermark. + * + * This function returns true if we can evict from @test_pool, false if not. + * When returning false and @ignore_low is false, @ret_hit_low may + * be set to true to indicate this function can be retried with @ignore_low + * set to true. + * + * Return: bool + */ +bool dmem_cgroup_state_evict_valuable(struct dmem_cgroup_pool_state *limit_pool, + struct dmem_cgroup_pool_state *test_pool, + bool ignore_low, bool *ret_hit_low) +{ + struct dmem_cgroup_pool_state *pool = test_pool; + struct page_counter *ctest; + u64 used, min, low; + + /* Can always evict from current pool, despite limits */ + if (limit_pool == test_pool) + return true; + + if (limit_pool) { + if (!parent_dmemcs(limit_pool->cs)) + return true; + + for (pool = test_pool; pool && limit_pool != pool; pool = pool_parent(pool)) + {} + + if (!pool) + return false; + } else { + /* + * If there is no cgroup limiting memory usage, use the root + * cgroup instead for limit calculations. + */ + for (limit_pool = test_pool; pool_parent(limit_pool); limit_pool = pool_parent(limit_pool)) + {} + } + + ctest = &test_pool->cnt; + + dmem_cgroup_calculate_protection(limit_pool, test_pool); + + used = page_counter_read(ctest); + min = READ_ONCE(ctest->emin); + + if (used <= min) + return false; + + if (!ignore_low) { + low = READ_ONCE(ctest->elow); + if (used > low) + return true; + + *ret_hit_low = true; + return false; + } + return true; +} +EXPORT_SYMBOL_GPL(dmem_cgroup_state_evict_valuable); + +static struct dmem_cgroup_pool_state * +alloc_pool_single(struct dmemcg_state *dmemcs, struct dmem_cgroup_region *region, + struct dmem_cgroup_pool_state **allocpool) +{ + struct dmemcg_state *parent = parent_dmemcs(dmemcs); + struct dmem_cgroup_pool_state *pool, *ppool = NULL; + + if (!*allocpool) { + pool = kzalloc(sizeof(*pool), GFP_NOWAIT); + if (!pool) + return ERR_PTR(-ENOMEM); + } else { + pool = *allocpool; + *allocpool = NULL; + } + + pool->region = region; + pool->cs = dmemcs; + + if (parent) + ppool = find_cg_pool_locked(parent, region); + + page_counter_init(&pool->cnt, + ppool ? &ppool->cnt : NULL, true); + reset_all_resource_limits(pool); + + list_add_tail_rcu(&pool->css_node, &dmemcs->pools); + list_add_tail(&pool->region_node, ®ion->pools); + + if (!parent) + pool->inited = true; + else + pool->inited = ppool ? ppool->inited : false; + return pool; +} + +static struct dmem_cgroup_pool_state * +get_cg_pool_locked(struct dmemcg_state *dmemcs, struct dmem_cgroup_region *region, + struct dmem_cgroup_pool_state **allocpool) +{ + struct dmem_cgroup_pool_state *pool, *ppool, *retpool; + struct dmemcg_state *p, *pp; + + /* + * Recursively create pool, we may not initialize yet on + * recursion, this is done as a separate step. + */ + for (p = dmemcs; p; p = parent_dmemcs(p)) { + pool = find_cg_pool_locked(p, region); + if (!pool) + pool = alloc_pool_single(p, region, allocpool); + + if (IS_ERR(pool)) + return pool; + + if (p == dmemcs && pool->inited) + return pool; + + if (pool->inited) + break; + } + + retpool = pool = find_cg_pool_locked(dmemcs, region); + for (p = dmemcs, pp = parent_dmemcs(dmemcs); pp; p = pp, pp = parent_dmemcs(p)) { + if (pool->inited) + break; + + /* ppool was created if it didn't exist by above loop. */ + ppool = find_cg_pool_locked(pp, region); + + /* Fix up parent links, mark as inited. */ + pool->cnt.parent = &ppool->cnt; + pool->inited = true; + + pool = ppool; + } + + return retpool; +} + +static void dmemcg_free_rcu(struct rcu_head *rcu) +{ + struct dmem_cgroup_region *region = container_of(rcu, typeof(*region), rcu); + struct dmem_cgroup_pool_state *pool, *next; + + list_for_each_entry_safe(pool, next, ®ion->pools, region_node) + free_cg_pool(pool); + kfree(region->name); + kfree(region); +} + +static void dmemcg_free_region(struct kref *ref) +{ + struct dmem_cgroup_region *cgregion = container_of(ref, typeof(*cgregion), ref); + + call_rcu(&cgregion->rcu, dmemcg_free_rcu); +} + +/** + * dmem_cgroup_unregister_region() - Unregister a previously registered region. + * @region: The region to unregister. + * + * This function undoes dmem_cgroup_register_region. + */ +void dmem_cgroup_unregister_region(struct dmem_cgroup_region *region) +{ + struct list_head *entry; + + if (!region) + return; + + spin_lock(&dmemcg_lock); + + /* Remove from global region list */ + list_del_rcu(®ion->region_node); + + list_for_each_rcu(entry, ®ion->pools) { + struct dmem_cgroup_pool_state *pool = + container_of(entry, typeof(*pool), region_node); + + list_del_rcu(&pool->css_node); + } + + /* + * Ensure any RCU based lookups fail. Additionally, + * no new pools should be added to the dead region + * by get_cg_pool_unlocked. + */ + region->unregistered = true; + spin_unlock(&dmemcg_lock); + + kref_put(®ion->ref, dmemcg_free_region); +} +EXPORT_SYMBOL_GPL(dmem_cgroup_unregister_region); + +/** + * dmem_cgroup_register_region() - Register a regions for dev cgroup. + * @size: Size of region to register, in bytes. + * @fmt: Region parameters to register + * + * This function registers a node in the dmem cgroup with the + * name given. After calling this function, the region can be + * used for allocations. + * + * Return: NULL or a struct on success, PTR_ERR on failure. + */ +struct dmem_cgroup_region *dmem_cgroup_register_region(u64 size, const char *fmt, ...) +{ + struct dmem_cgroup_region *ret; + char *region_name; + va_list ap; + + if (!size) + return NULL; + + va_start(ap, fmt); + region_name = kvasprintf(GFP_KERNEL, fmt, ap); + va_end(ap); + if (!region_name) + return ERR_PTR(-ENOMEM); + + ret = kzalloc(sizeof(*ret), GFP_KERNEL); + if (!ret) { + kfree(region_name); + return ERR_PTR(-ENOMEM); + } + + INIT_LIST_HEAD(&ret->pools); + ret->name = region_name; + ret->size = size; + kref_init(&ret->ref); + + spin_lock(&dmemcg_lock); + list_add_tail_rcu(&ret->region_node, &dmem_cgroup_regions); + spin_unlock(&dmemcg_lock); + + return ret; +} +EXPORT_SYMBOL_GPL(dmem_cgroup_register_region); + +static struct dmem_cgroup_region *dmemcg_get_region_by_name(const char *name) +{ + struct dmem_cgroup_region *region; + + list_for_each_entry_rcu(region, &dmem_cgroup_regions, region_node, spin_is_locked(&dmemcg_lock)) + if (!strcmp(name, region->name) && + kref_get_unless_zero(®ion->ref)) + return region; + + return NULL; +} + +/** + * dmem_cgroup_pool_state_put() - Drop a reference to a dmem_cgroup_pool_state + * @pool: &dmem_cgroup_pool_state + * + * Called to drop a reference to the limiting pool returned by + * dmem_cgroup_try_charge(). + */ +void dmem_cgroup_pool_state_put(struct dmem_cgroup_pool_state *pool) +{ + if (pool) + css_put(&pool->cs->css); +} +EXPORT_SYMBOL_GPL(dmem_cgroup_pool_state_put); + +static struct dmem_cgroup_pool_state * +get_cg_pool_unlocked(struct dmemcg_state *cg, struct dmem_cgroup_region *region) +{ + struct dmem_cgroup_pool_state *pool, *allocpool = NULL; + + /* fastpath lookup? */ + rcu_read_lock(); + pool = find_cg_pool_locked(cg, region); + if (pool && !READ_ONCE(pool->inited)) + pool = NULL; + rcu_read_unlock(); + + while (!pool) { + spin_lock(&dmemcg_lock); + if (!region->unregistered) + pool = get_cg_pool_locked(cg, region, &allocpool); + else + pool = ERR_PTR(-ENODEV); + spin_unlock(&dmemcg_lock); + + if (pool == ERR_PTR(-ENOMEM)) { + pool = NULL; + if (WARN_ON(allocpool)) + continue; + + allocpool = kzalloc(sizeof(*allocpool), GFP_KERNEL); + if (allocpool) { + pool = NULL; + continue; + } + } + } + + kfree(allocpool); + return pool; +} + +/** + * dmem_cgroup_uncharge() - Uncharge a pool. + * @pool: Pool to uncharge. + * @size: Size to uncharge. + * + * Undoes the effects of dmem_cgroup_try_charge. + * Must be called with the returned pool as argument, + * and same @index and @size. + */ +void dmem_cgroup_uncharge(struct dmem_cgroup_pool_state *pool, u64 size) +{ + if (!pool) + return; + + page_counter_uncharge(&pool->cnt, size); + css_put(&pool->cs->css); +} +EXPORT_SYMBOL_GPL(dmem_cgroup_uncharge); + +/** + * dmem_cgroup_try_charge() - Try charging a new allocation to a region. + * @region: dmem region to charge + * @size: Size (in bytes) to charge. + * @ret_pool: On succesfull allocation, the pool that is charged. + * @ret_limit_pool: On a failed allocation, the limiting pool. + * + * This function charges the @region region for a size of @size bytes. + * + * If the function succeeds, @ret_pool is set, which must be passed to + * dmem_cgroup_uncharge() when undoing the allocation. + * + * When this function fails with -EAGAIN and @ret_limit_pool is non-null, it + * will be set to the pool for which the limit is hit. This can be used for + * eviction as argument to dmem_cgroup_evict_valuable(). This reference must be freed + * with @dmem_cgroup_pool_state_put(). + * + * Return: 0 on success, -EAGAIN on hitting a limit, or a negative errno on failure. + */ +int dmem_cgroup_try_charge(struct dmem_cgroup_region *region, u64 size, + struct dmem_cgroup_pool_state **ret_pool, + struct dmem_cgroup_pool_state **ret_limit_pool) +{ + struct dmemcg_state *cg; + struct dmem_cgroup_pool_state *pool; + struct page_counter *fail; + int ret; + + *ret_pool = NULL; + if (ret_limit_pool) + *ret_limit_pool = NULL; + + /* + * hold on to css, as cgroup can be removed but resource + * accounting happens on css. + */ + cg = get_current_dmemcs(); + + pool = get_cg_pool_unlocked(cg, region); + if (IS_ERR(pool)) { + ret = PTR_ERR(pool); + goto err; + } + + if (!page_counter_try_charge(&pool->cnt, size, &fail)) { + if (ret_limit_pool) { + *ret_limit_pool = container_of(fail, struct dmem_cgroup_pool_state, cnt); + css_get(&(*ret_limit_pool)->cs->css); + } + ret = -EAGAIN; + goto err; + } + + /* On success, reference from get_current_dmemcs is transferred to *ret_pool */ + *ret_pool = pool; + return 0; + +err: + css_put(&cg->css); + return ret; +} +EXPORT_SYMBOL_GPL(dmem_cgroup_try_charge); + +static int dmem_cgroup_region_capacity_show(struct seq_file *sf, void *v) +{ + struct dmem_cgroup_region *region; + + rcu_read_lock(); + list_for_each_entry_rcu(region, &dmem_cgroup_regions, region_node) { + seq_puts(sf, region->name); + seq_printf(sf, " %llu\n", region->size); + } + rcu_read_unlock(); + return 0; +} + +static int dmemcg_parse_limit(char *options, struct dmem_cgroup_region *region, + u64 *new_limit) +{ + char *end; + + if (!strcmp(options, "max")) { + *new_limit = PAGE_COUNTER_MAX; + return 0; + } + + *new_limit = memparse(options, &end); + if (*end != '\0') + return -EINVAL; + + return 0; +} + +static ssize_t dmemcg_limit_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off, + void (*apply)(struct dmem_cgroup_pool_state *, u64)) +{ + struct dmemcg_state *dmemcs = css_to_dmemcs(of_css(of)); + int err = 0; + + while (buf && !err) { + struct dmem_cgroup_pool_state *pool = NULL; + char *options, *region_name; + struct dmem_cgroup_region *region; + u64 new_limit; + + options = buf; + buf = strchr(buf, '\n'); + if (buf) + *buf++ = '\0'; + + options = strstrip(options); + + /* eat empty lines */ + if (!options[0]) + continue; + + region_name = strsep(&options, " \t"); + if (!region_name[0]) + continue; + + rcu_read_lock(); + region = dmemcg_get_region_by_name(region_name); + rcu_read_unlock(); + + if (!region) + return -EINVAL; + + err = dmemcg_parse_limit(options, region, &new_limit); + if (err < 0) + goto out_put; + + pool = get_cg_pool_unlocked(dmemcs, region); + if (IS_ERR(pool)) { + err = PTR_ERR(pool); + goto out_put; + } + + /* And commit */ + apply(pool, new_limit); + +out_put: + kref_put(®ion->ref, dmemcg_free_region); + } + + + return err ?: nbytes; +} + +static int dmemcg_limit_show(struct seq_file *sf, void *v, + u64 (*fn)(struct dmem_cgroup_pool_state *)) +{ + struct dmemcg_state *dmemcs = css_to_dmemcs(seq_css(sf)); + struct dmem_cgroup_region *region; + + rcu_read_lock(); + list_for_each_entry_rcu(region, &dmem_cgroup_regions, region_node) { + struct dmem_cgroup_pool_state *pool = find_cg_pool_locked(dmemcs, region); + u64 val; + + seq_puts(sf, region->name); + + val = fn(pool); + if (val < PAGE_COUNTER_MAX) + seq_printf(sf, " %lld\n", val); + else + seq_puts(sf, " max\n"); + } + rcu_read_unlock(); + + return 0; +} + +static int dmem_cgroup_region_current_show(struct seq_file *sf, void *v) +{ + return dmemcg_limit_show(sf, v, get_resource_current); +} + +static int dmem_cgroup_region_min_show(struct seq_file *sf, void *v) +{ + return dmemcg_limit_show(sf, v, get_resource_min); +} + +static ssize_t dmem_cgroup_region_min_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + return dmemcg_limit_write(of, buf, nbytes, off, set_resource_min); +} + +static int dmem_cgroup_region_low_show(struct seq_file *sf, void *v) +{ + return dmemcg_limit_show(sf, v, get_resource_low); +} + +static ssize_t dmem_cgroup_region_low_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + return dmemcg_limit_write(of, buf, nbytes, off, set_resource_low); +} + +static int dmem_cgroup_region_max_show(struct seq_file *sf, void *v) +{ + return dmemcg_limit_show(sf, v, get_resource_max); +} + +static ssize_t dmem_cgroup_region_max_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + return dmemcg_limit_write(of, buf, nbytes, off, set_resource_max); +} + +static struct cftype files[] = { + { + .name = "capacity", + .seq_show = dmem_cgroup_region_capacity_show, + .flags = CFTYPE_ONLY_ON_ROOT, + }, + { + .name = "current", + .seq_show = dmem_cgroup_region_current_show, + }, + { + .name = "min", + .write = dmem_cgroup_region_min_write, + .seq_show = dmem_cgroup_region_min_show, + .flags = CFTYPE_NOT_ON_ROOT, + }, + { + .name = "low", + .write = dmem_cgroup_region_low_write, + .seq_show = dmem_cgroup_region_low_show, + .flags = CFTYPE_NOT_ON_ROOT, + }, + { + .name = "max", + .write = dmem_cgroup_region_max_write, + .seq_show = dmem_cgroup_region_max_show, + .flags = CFTYPE_NOT_ON_ROOT, + }, + { } /* Zero entry terminates. */ +}; + +struct cgroup_subsys dmem_cgrp_subsys = { + .css_alloc = dmemcs_alloc, + .css_free = dmemcs_free, + .css_offline = dmemcs_offline, + .legacy_cftypes = files, + .dfl_cftypes = files, +}; diff --git a/kernel/cgroup/freezer.c b/kernel/cgroup/freezer.c index 1b72d56edce5..6c18854bff34 100644 --- a/kernel/cgroup/freezer.c +++ b/kernel/cgroup/freezer.c @@ -1,481 +1,326 @@ -/* - * cgroup_freezer.c - control group freezer subsystem - * - * Copyright IBM Corporation, 2007 - * - * Author : Cedric Le Goater <clg@fr.ibm.com> - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of version 2.1 of the GNU Lesser General Public License - * as published by the Free Software Foundation. - * - * This program is distributed in the hope that it would be useful, but - * WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - */ - -#include <linux/export.h> -#include <linux/slab.h> +// SPDX-License-Identifier: GPL-2.0 #include <linux/cgroup.h> -#include <linux/fs.h> -#include <linux/uaccess.h> -#include <linux/freezer.h> -#include <linux/seq_file.h> -#include <linux/mutex.h> +#include <linux/sched.h> +#include <linux/sched/task.h> +#include <linux/sched/signal.h> + +#include "cgroup-internal.h" + +#include <trace/events/cgroup.h> /* - * A cgroup is freezing if any FREEZING flags are set. FREEZING_SELF is - * set if "FROZEN" is written to freezer.state cgroupfs file, and cleared - * for "THAWED". FREEZING_PARENT is set if the parent freezer is FREEZING - * for whatever reason. IOW, a cgroup has FREEZING_PARENT set if one of - * its ancestors has FREEZING_SELF set. + * Update CGRP_FROZEN of cgroup.flag + * Return true if flags is updated; false if flags has no change */ -enum freezer_state_flags { - CGROUP_FREEZER_ONLINE = (1 << 0), /* freezer is fully online */ - CGROUP_FREEZING_SELF = (1 << 1), /* this freezer is freezing */ - CGROUP_FREEZING_PARENT = (1 << 2), /* the parent freezer is freezing */ - CGROUP_FROZEN = (1 << 3), /* this and its descendants frozen */ - - /* mask for all FREEZING flags */ - CGROUP_FREEZING = CGROUP_FREEZING_SELF | CGROUP_FREEZING_PARENT, -}; +static bool cgroup_update_frozen_flag(struct cgroup *cgrp, bool frozen) +{ + lockdep_assert_held(&css_set_lock); -struct freezer { - struct cgroup_subsys_state css; - unsigned int state; -}; + /* Already there? */ + if (test_bit(CGRP_FROZEN, &cgrp->flags) == frozen) + return false; -static DEFINE_MUTEX(freezer_mutex); + if (frozen) + set_bit(CGRP_FROZEN, &cgrp->flags); + else + clear_bit(CGRP_FROZEN, &cgrp->flags); -static inline struct freezer *css_freezer(struct cgroup_subsys_state *css) -{ - return css ? container_of(css, struct freezer, css) : NULL; + cgroup_file_notify(&cgrp->events_file); + TRACE_CGROUP_PATH(notify_frozen, cgrp, frozen); + return true; } -static inline struct freezer *task_freezer(struct task_struct *task) +/* + * Propagate the cgroup frozen state upwards by the cgroup tree. + */ +static void cgroup_propagate_frozen(struct cgroup *cgrp, bool frozen) { - return css_freezer(task_css(task, freezer_cgrp_id)); -} + int desc = 1; -static struct freezer *parent_freezer(struct freezer *freezer) -{ - return css_freezer(freezer->css.parent); + /* + * If the new state is frozen, some freezing ancestor cgroups may change + * their state too, depending on if all their descendants are frozen. + * + * Otherwise, all ancestor cgroups are forced into the non-frozen state. + */ + while ((cgrp = cgroup_parent(cgrp))) { + if (frozen) { + cgrp->freezer.nr_frozen_descendants += desc; + if (!test_bit(CGRP_FREEZE, &cgrp->flags) || + (cgrp->freezer.nr_frozen_descendants != + cgrp->nr_descendants)) + continue; + } else { + cgrp->freezer.nr_frozen_descendants -= desc; + } + + if (cgroup_update_frozen_flag(cgrp, frozen)) + desc++; + } } -bool cgroup_freezing(struct task_struct *task) +/* + * Revisit the cgroup frozen state. + * Checks if the cgroup is really frozen and perform all state transitions. + */ +void cgroup_update_frozen(struct cgroup *cgrp) { - bool ret; + bool frozen; - rcu_read_lock(); - ret = task_freezer(task)->state & CGROUP_FREEZING; - rcu_read_unlock(); + /* + * If the cgroup has to be frozen (CGRP_FREEZE bit set), + * and all tasks are frozen and/or stopped, let's consider + * the cgroup frozen. Otherwise it's not frozen. + */ + frozen = test_bit(CGRP_FREEZE, &cgrp->flags) && + cgrp->freezer.nr_frozen_tasks == __cgroup_task_count(cgrp); - return ret; + /* If flags is updated, update the state of ancestor cgroups. */ + if (cgroup_update_frozen_flag(cgrp, frozen)) + cgroup_propagate_frozen(cgrp, frozen); } -static const char *freezer_state_strs(unsigned int state) -{ - if (state & CGROUP_FROZEN) - return "FROZEN"; - if (state & CGROUP_FREEZING) - return "FREEZING"; - return "THAWED"; -}; - -static struct cgroup_subsys_state * -freezer_css_alloc(struct cgroup_subsys_state *parent_css) +/* + * Increment cgroup's nr_frozen_tasks. + */ +static void cgroup_inc_frozen_cnt(struct cgroup *cgrp) { - struct freezer *freezer; - - freezer = kzalloc(sizeof(struct freezer), GFP_KERNEL); - if (!freezer) - return ERR_PTR(-ENOMEM); - - return &freezer->css; + cgrp->freezer.nr_frozen_tasks++; } -/** - * freezer_css_online - commit creation of a freezer css - * @css: css being created - * - * We're committing to creation of @css. Mark it online and inherit - * parent's freezing state while holding both parent's and our - * freezer->lock. +/* + * Decrement cgroup's nr_frozen_tasks. */ -static int freezer_css_online(struct cgroup_subsys_state *css) +static void cgroup_dec_frozen_cnt(struct cgroup *cgrp) { - struct freezer *freezer = css_freezer(css); - struct freezer *parent = parent_freezer(freezer); - - mutex_lock(&freezer_mutex); - - freezer->state |= CGROUP_FREEZER_ONLINE; - - if (parent && (parent->state & CGROUP_FREEZING)) { - freezer->state |= CGROUP_FREEZING_PARENT | CGROUP_FROZEN; - atomic_inc(&system_freezing_cnt); - } - - mutex_unlock(&freezer_mutex); - return 0; + cgrp->freezer.nr_frozen_tasks--; + WARN_ON_ONCE(cgrp->freezer.nr_frozen_tasks < 0); } -/** - * freezer_css_offline - initiate destruction of a freezer css - * @css: css being destroyed - * - * @css is going away. Mark it dead and decrement system_freezing_count if - * it was holding one. +/* + * Enter frozen/stopped state, if not yet there. Update cgroup's counters, + * and revisit the state of the cgroup, if necessary. */ -static void freezer_css_offline(struct cgroup_subsys_state *css) +void cgroup_enter_frozen(void) { - struct freezer *freezer = css_freezer(css); - - mutex_lock(&freezer_mutex); - - if (freezer->state & CGROUP_FREEZING) - atomic_dec(&system_freezing_cnt); - - freezer->state = 0; + struct cgroup *cgrp; - mutex_unlock(&freezer_mutex); -} + if (current->frozen) + return; -static void freezer_css_free(struct cgroup_subsys_state *css) -{ - kfree(css_freezer(css)); + spin_lock_irq(&css_set_lock); + current->frozen = true; + cgrp = task_dfl_cgroup(current); + cgroup_inc_frozen_cnt(cgrp); + cgroup_update_frozen(cgrp); + spin_unlock_irq(&css_set_lock); } /* - * Tasks can be migrated into a different freezer anytime regardless of its - * current state. freezer_attach() is responsible for making new tasks - * conform to the current state. + * Conditionally leave frozen/stopped state. Update cgroup's counters, + * and revisit the state of the cgroup, if necessary. * - * Freezer state changes and task migration are synchronized via - * @freezer->lock. freezer_attach() makes the new tasks conform to the - * current state and all following state changes can see the new tasks. + * If always_leave is not set, and the cgroup is freezing, + * we're racing with the cgroup freezing. In this case, we don't + * drop the frozen counter to avoid a transient switch to + * the unfrozen state. */ -static void freezer_attach(struct cgroup_taskset *tset) +void cgroup_leave_frozen(bool always_leave) { - struct task_struct *task; - struct cgroup_subsys_state *new_css; - - mutex_lock(&freezer_mutex); - - /* - * Make the new tasks conform to the current state of @new_css. - * For simplicity, when migrating any task to a FROZEN cgroup, we - * revert it to FREEZING and let update_if_frozen() determine the - * correct state later. - * - * Tasks in @tset are on @new_css but may not conform to its - * current state before executing the following - !frozen tasks may - * be visible in a FROZEN cgroup and frozen tasks in a THAWED one. - */ - cgroup_taskset_for_each(task, new_css, tset) { - struct freezer *freezer = css_freezer(new_css); - - if (!(freezer->state & CGROUP_FREEZING)) { - __thaw_task(task); - } else { - freeze_task(task); - /* clear FROZEN and propagate upwards */ - while (freezer && (freezer->state & CGROUP_FROZEN)) { - freezer->state &= ~CGROUP_FROZEN; - freezer = parent_freezer(freezer); - } - } + struct cgroup *cgrp; + + spin_lock_irq(&css_set_lock); + cgrp = task_dfl_cgroup(current); + if (always_leave || !test_bit(CGRP_FREEZE, &cgrp->flags)) { + cgroup_dec_frozen_cnt(cgrp); + cgroup_update_frozen(cgrp); + WARN_ON_ONCE(!current->frozen); + current->frozen = false; + } else if (!(current->jobctl & JOBCTL_TRAP_FREEZE)) { + spin_lock(¤t->sighand->siglock); + current->jobctl |= JOBCTL_TRAP_FREEZE; + set_thread_flag(TIF_SIGPENDING); + spin_unlock(¤t->sighand->siglock); } - - mutex_unlock(&freezer_mutex); + spin_unlock_irq(&css_set_lock); } -/** - * freezer_fork - cgroup post fork callback - * @task: a task which has just been forked - * - * @task has just been created and should conform to the current state of - * the cgroup_freezer it belongs to. This function may race against - * freezer_attach(). Losing to freezer_attach() means that we don't have - * to do anything as freezer_attach() will put @task into the appropriate - * state. +/* + * Freeze or unfreeze the task by setting or clearing the JOBCTL_TRAP_FREEZE + * jobctl bit. */ -static void freezer_fork(struct task_struct *task) +static void cgroup_freeze_task(struct task_struct *task, bool freeze) { - struct freezer *freezer; + unsigned long flags; - /* - * The root cgroup is non-freezable, so we can skip locking the - * freezer. This is safe regardless of race with task migration. - * If we didn't race or won, skipping is obviously the right thing - * to do. If we lost and root is the new cgroup, noop is still the - * right thing to do. - */ - if (task_css_is_root(task, freezer_cgrp_id)) + /* If the task is about to die, don't bother with freezing it. */ + if (!lock_task_sighand(task, &flags)) return; - mutex_lock(&freezer_mutex); - rcu_read_lock(); - - freezer = task_freezer(task); - if (freezer->state & CGROUP_FREEZING) - freeze_task(task); + if (freeze) { + task->jobctl |= JOBCTL_TRAP_FREEZE; + signal_wake_up(task, false); + } else { + task->jobctl &= ~JOBCTL_TRAP_FREEZE; + wake_up_process(task); + } - rcu_read_unlock(); - mutex_unlock(&freezer_mutex); + unlock_task_sighand(task, &flags); } -/** - * update_if_frozen - update whether a cgroup finished freezing - * @css: css of interest - * - * Once FREEZING is initiated, transition to FROZEN is lazily updated by - * calling this function. If the current state is FREEZING but not FROZEN, - * this function checks whether all tasks of this cgroup and the descendant - * cgroups finished freezing and, if so, sets FROZEN. - * - * The caller is responsible for grabbing RCU read lock and calling - * update_if_frozen() on all descendants prior to invoking this function. - * - * Task states and freezer state might disagree while tasks are being - * migrated into or out of @css, so we can't verify task states against - * @freezer state here. See freezer_attach() for details. +/* + * Freeze or unfreeze all tasks in the given cgroup. */ -static void update_if_frozen(struct cgroup_subsys_state *css) +static void cgroup_do_freeze(struct cgroup *cgrp, bool freeze, u64 ts_nsec) { - struct freezer *freezer = css_freezer(css); - struct cgroup_subsys_state *pos; struct css_task_iter it; struct task_struct *task; - lockdep_assert_held(&freezer_mutex); - - if (!(freezer->state & CGROUP_FREEZING) || - (freezer->state & CGROUP_FROZEN)) - return; - - /* are all (live) children frozen? */ - rcu_read_lock(); - css_for_each_child(pos, css) { - struct freezer *child = css_freezer(pos); + lockdep_assert_held(&cgroup_mutex); - if ((child->state & CGROUP_FREEZER_ONLINE) && - !(child->state & CGROUP_FROZEN)) { - rcu_read_unlock(); - return; - } + spin_lock_irq(&css_set_lock); + write_seqcount_begin(&cgrp->freezer.freeze_seq); + if (freeze) { + set_bit(CGRP_FREEZE, &cgrp->flags); + cgrp->freezer.freeze_start_nsec = ts_nsec; + } else { + clear_bit(CGRP_FREEZE, &cgrp->flags); + cgrp->freezer.frozen_nsec += (ts_nsec - + cgrp->freezer.freeze_start_nsec); } - rcu_read_unlock(); + write_seqcount_end(&cgrp->freezer.freeze_seq); + spin_unlock_irq(&css_set_lock); - /* are all tasks frozen? */ - css_task_iter_start(css, &it); + if (freeze) + TRACE_CGROUP_PATH(freeze, cgrp); + else + TRACE_CGROUP_PATH(unfreeze, cgrp); + css_task_iter_start(&cgrp->self, 0, &it); while ((task = css_task_iter_next(&it))) { - if (freezing(task)) { - /* - * freezer_should_skip() indicates that the task - * should be skipped when determining freezing - * completion. Consider it frozen in addition to - * the usual frozen condition. - */ - if (!frozen(task) && !freezer_should_skip(task)) - goto out_iter_end; - } - } - - freezer->state |= CGROUP_FROZEN; -out_iter_end: - css_task_iter_end(&it); -} - -static int freezer_read(struct seq_file *m, void *v) -{ - struct cgroup_subsys_state *css = seq_css(m), *pos; - - mutex_lock(&freezer_mutex); - rcu_read_lock(); - - /* update states bottom-up */ - css_for_each_descendant_post(pos, css) { - if (!css_tryget_online(pos)) + /* + * Ignore kernel threads here. Freezing cgroups containing + * kthreads isn't supported. + */ + if (task->flags & PF_KTHREAD) continue; - rcu_read_unlock(); - - update_if_frozen(pos); - - rcu_read_lock(); - css_put(pos); + cgroup_freeze_task(task, freeze); } - - rcu_read_unlock(); - mutex_unlock(&freezer_mutex); - - seq_puts(m, freezer_state_strs(css_freezer(css)->state)); - seq_putc(m, '\n'); - return 0; -} - -static void freeze_cgroup(struct freezer *freezer) -{ - struct css_task_iter it; - struct task_struct *task; - - css_task_iter_start(&freezer->css, &it); - while ((task = css_task_iter_next(&it))) - freeze_task(task); css_task_iter_end(&it); -} - -static void unfreeze_cgroup(struct freezer *freezer) -{ - struct css_task_iter it; - struct task_struct *task; - css_task_iter_start(&freezer->css, &it); - while ((task = css_task_iter_next(&it))) - __thaw_task(task); - css_task_iter_end(&it); + /* + * Cgroup state should be revisited here to cover empty leaf cgroups + * and cgroups which descendants are already in the desired state. + */ + spin_lock_irq(&css_set_lock); + if (cgrp->nr_descendants == cgrp->freezer.nr_frozen_descendants) + cgroup_update_frozen(cgrp); + spin_unlock_irq(&css_set_lock); } -/** - * freezer_apply_state - apply state change to a single cgroup_freezer - * @freezer: freezer to apply state change to - * @freeze: whether to freeze or unfreeze - * @state: CGROUP_FREEZING_* flag to set or clear - * - * Set or clear @state on @cgroup according to @freeze, and perform - * freezing or thawing as necessary. +/* + * Adjust the task state (freeze or unfreeze) and revisit the state of + * source and destination cgroups. */ -static void freezer_apply_state(struct freezer *freezer, bool freeze, - unsigned int state) +void cgroup_freezer_migrate_task(struct task_struct *task, + struct cgroup *src, struct cgroup *dst) { - /* also synchronizes against task migration, see freezer_attach() */ - lockdep_assert_held(&freezer_mutex); + lockdep_assert_held(&css_set_lock); - if (!(freezer->state & CGROUP_FREEZER_ONLINE)) + /* + * Kernel threads are not supposed to be frozen at all. + */ + if (task->flags & PF_KTHREAD) return; - if (freeze) { - if (!(freezer->state & CGROUP_FREEZING)) - atomic_inc(&system_freezing_cnt); - freezer->state |= state; - freeze_cgroup(freezer); - } else { - bool was_freezing = freezer->state & CGROUP_FREEZING; - - freezer->state &= ~state; + /* + * It's not necessary to do changes if both of the src and dst cgroups + * are not freezing and task is not frozen. + */ + if (!test_bit(CGRP_FREEZE, &src->flags) && + !test_bit(CGRP_FREEZE, &dst->flags) && + !task->frozen) + return; - if (!(freezer->state & CGROUP_FREEZING)) { - if (was_freezing) - atomic_dec(&system_freezing_cnt); - freezer->state &= ~CGROUP_FROZEN; - unfreeze_cgroup(freezer); - } + /* + * Adjust counters of freezing and frozen tasks. + * Note, that if the task is frozen, but the destination cgroup is not + * frozen, we bump both counters to keep them balanced. + */ + if (task->frozen) { + cgroup_inc_frozen_cnt(dst); + cgroup_dec_frozen_cnt(src); } -} - -/** - * freezer_change_state - change the freezing state of a cgroup_freezer - * @freezer: freezer of interest - * @freeze: whether to freeze or thaw - * - * Freeze or thaw @freezer according to @freeze. The operations are - * recursive - all descendants of @freezer will be affected. - */ -static void freezer_change_state(struct freezer *freezer, bool freeze) -{ - struct cgroup_subsys_state *pos; + cgroup_update_frozen(dst); + cgroup_update_frozen(src); /* - * Update all its descendants in pre-order traversal. Each - * descendant will try to inherit its parent's FREEZING state as - * CGROUP_FREEZING_PARENT. + * Force the task to the desired state. */ - mutex_lock(&freezer_mutex); - rcu_read_lock(); - css_for_each_descendant_pre(pos, &freezer->css) { - struct freezer *pos_f = css_freezer(pos); - struct freezer *parent = parent_freezer(pos_f); - - if (!css_tryget_online(pos)) - continue; - rcu_read_unlock(); - - if (pos_f == freezer) - freezer_apply_state(pos_f, freeze, - CGROUP_FREEZING_SELF); - else - freezer_apply_state(pos_f, - parent->state & CGROUP_FREEZING, - CGROUP_FREEZING_PARENT); - - rcu_read_lock(); - css_put(pos); - } - rcu_read_unlock(); - mutex_unlock(&freezer_mutex); + cgroup_freeze_task(task, test_bit(CGRP_FREEZE, &dst->flags)); } -static ssize_t freezer_write(struct kernfs_open_file *of, - char *buf, size_t nbytes, loff_t off) +void cgroup_freeze(struct cgroup *cgrp, bool freeze) { - bool freeze; + struct cgroup_subsys_state *css; + struct cgroup *parent; + struct cgroup *dsct; + bool applied = false; + u64 ts_nsec; + bool old_e; - buf = strstrip(buf); + lockdep_assert_held(&cgroup_mutex); - if (strcmp(buf, freezer_state_strs(0)) == 0) - freeze = false; - else if (strcmp(buf, freezer_state_strs(CGROUP_FROZEN)) == 0) - freeze = true; - else - return -EINVAL; + /* + * Nothing changed? Just exit. + */ + if (cgrp->freezer.freeze == freeze) + return; - freezer_change_state(css_freezer(of_css(of)), freeze); - return nbytes; -} + cgrp->freezer.freeze = freeze; + ts_nsec = ktime_get_ns(); -static u64 freezer_self_freezing_read(struct cgroup_subsys_state *css, - struct cftype *cft) -{ - struct freezer *freezer = css_freezer(css); + /* + * Propagate changes downwards the cgroup tree. + */ + css_for_each_descendant_pre(css, &cgrp->self) { + dsct = css->cgroup; - return (bool)(freezer->state & CGROUP_FREEZING_SELF); -} + if (cgroup_is_dead(dsct)) + continue; -static u64 freezer_parent_freezing_read(struct cgroup_subsys_state *css, - struct cftype *cft) -{ - struct freezer *freezer = css_freezer(css); + /* + * e_freeze is affected by parent's e_freeze and dst's freeze. + * If old e_freeze eq new e_freeze, no change, its children + * will not be affected. So do nothing and skip the subtree + */ + old_e = dsct->freezer.e_freeze; + parent = cgroup_parent(dsct); + dsct->freezer.e_freeze = (dsct->freezer.freeze || + parent->freezer.e_freeze); + if (dsct->freezer.e_freeze == old_e) { + css = css_rightmost_descendant(css); + continue; + } - return (bool)(freezer->state & CGROUP_FREEZING_PARENT); -} + /* + * Do change actual state: freeze or unfreeze. + */ + cgroup_do_freeze(dsct, freeze, ts_nsec); + applied = true; + } -static struct cftype files[] = { - { - .name = "state", - .flags = CFTYPE_NOT_ON_ROOT, - .seq_show = freezer_read, - .write = freezer_write, - }, - { - .name = "self_freezing", - .flags = CFTYPE_NOT_ON_ROOT, - .read_u64 = freezer_self_freezing_read, - }, - { - .name = "parent_freezing", - .flags = CFTYPE_NOT_ON_ROOT, - .read_u64 = freezer_parent_freezing_read, - }, - { } /* terminate */ -}; - -struct cgroup_subsys freezer_cgrp_subsys = { - .css_alloc = freezer_css_alloc, - .css_online = freezer_css_online, - .css_offline = freezer_css_offline, - .css_free = freezer_css_free, - .attach = freezer_attach, - .fork = freezer_fork, - .legacy_cftypes = files, -}; + /* + * Even if the actual state hasn't changed, let's notify a user. + * The state can be enforced by an ancestor cgroup: the cgroup + * can already be in the desired state or it can be locked in the + * opposite state, so that the transition will never happen. + * In both cases it's better to notify a user, that there is + * nothing to wait for. + */ + if (!applied) { + TRACE_CGROUP_PATH(notify_frozen, cgrp, + test_bit(CGRP_FROZEN, &cgrp->flags)); + cgroup_file_notify(&cgrp->events_file); + } +} diff --git a/kernel/cgroup/legacy_freezer.c b/kernel/cgroup/legacy_freezer.c new file mode 100644 index 000000000000..915b02f65980 --- /dev/null +++ b/kernel/cgroup/legacy_freezer.c @@ -0,0 +1,481 @@ +/* + * cgroup_freezer.c - control group freezer subsystem + * + * Copyright IBM Corporation, 2007 + * + * Author : Cedric Le Goater <clg@fr.ibm.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of version 2.1 of the GNU Lesser General Public License + * as published by the Free Software Foundation. + * + * This program is distributed in the hope that it would be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + */ + +#include <linux/export.h> +#include <linux/slab.h> +#include <linux/cgroup.h> +#include <linux/fs.h> +#include <linux/uaccess.h> +#include <linux/freezer.h> +#include <linux/seq_file.h> +#include <linux/mutex.h> +#include <linux/cpu.h> + +/* + * A cgroup is freezing if any FREEZING flags are set. FREEZING_SELF is + * set if "FROZEN" is written to freezer.state cgroupfs file, and cleared + * for "THAWED". FREEZING_PARENT is set if the parent freezer is FREEZING + * for whatever reason. IOW, a cgroup has FREEZING_PARENT set if one of + * its ancestors has FREEZING_SELF set. + */ +enum freezer_state_flags { + CGROUP_FREEZER_ONLINE = (1 << 0), /* freezer is fully online */ + CGROUP_FREEZING_SELF = (1 << 1), /* this freezer is freezing */ + CGROUP_FREEZING_PARENT = (1 << 2), /* the parent freezer is freezing */ + CGROUP_FROZEN = (1 << 3), /* this and its descendants frozen */ + + /* mask for all FREEZING flags */ + CGROUP_FREEZING = CGROUP_FREEZING_SELF | CGROUP_FREEZING_PARENT, +}; + +struct freezer { + struct cgroup_subsys_state css; + unsigned int state; +}; + +static DEFINE_MUTEX(freezer_mutex); + +static inline struct freezer *css_freezer(struct cgroup_subsys_state *css) +{ + return css ? container_of(css, struct freezer, css) : NULL; +} + +static inline struct freezer *task_freezer(struct task_struct *task) +{ + return css_freezer(task_css(task, freezer_cgrp_id)); +} + +static struct freezer *parent_freezer(struct freezer *freezer) +{ + return css_freezer(freezer->css.parent); +} + +bool cgroup1_freezing(struct task_struct *task) +{ + bool ret; + + rcu_read_lock(); + ret = task_freezer(task)->state & CGROUP_FREEZING; + rcu_read_unlock(); + + return ret; +} + +static const char *freezer_state_strs(unsigned int state) +{ + if (state & CGROUP_FROZEN) + return "FROZEN"; + if (state & CGROUP_FREEZING) + return "FREEZING"; + return "THAWED"; +}; + +static struct cgroup_subsys_state * +freezer_css_alloc(struct cgroup_subsys_state *parent_css) +{ + struct freezer *freezer; + + freezer = kzalloc(sizeof(struct freezer), GFP_KERNEL); + if (!freezer) + return ERR_PTR(-ENOMEM); + + return &freezer->css; +} + +/** + * freezer_css_online - commit creation of a freezer css + * @css: css being created + * + * We're committing to creation of @css. Mark it online and inherit + * parent's freezing state while holding cpus read lock and freezer_mutex. + */ +static int freezer_css_online(struct cgroup_subsys_state *css) +{ + struct freezer *freezer = css_freezer(css); + struct freezer *parent = parent_freezer(freezer); + + cpus_read_lock(); + mutex_lock(&freezer_mutex); + + freezer->state |= CGROUP_FREEZER_ONLINE; + + if (parent && (parent->state & CGROUP_FREEZING)) { + freezer->state |= CGROUP_FREEZING_PARENT | CGROUP_FROZEN; + static_branch_inc_cpuslocked(&freezer_active); + } + + mutex_unlock(&freezer_mutex); + cpus_read_unlock(); + return 0; +} + +/** + * freezer_css_offline - initiate destruction of a freezer css + * @css: css being destroyed + * + * @css is going away. Mark it dead and decrement freezer_active if + * it was holding one. + */ +static void freezer_css_offline(struct cgroup_subsys_state *css) +{ + struct freezer *freezer = css_freezer(css); + + cpus_read_lock(); + mutex_lock(&freezer_mutex); + + if (freezer->state & CGROUP_FREEZING) + static_branch_dec_cpuslocked(&freezer_active); + + freezer->state = 0; + + mutex_unlock(&freezer_mutex); + cpus_read_unlock(); +} + +static void freezer_css_free(struct cgroup_subsys_state *css) +{ + kfree(css_freezer(css)); +} + +/* + * Tasks can be migrated into a different freezer anytime regardless of its + * current state. freezer_attach() is responsible for making new tasks + * conform to the current state. + * + * Freezer state changes and task migration are synchronized via + * @freezer->lock. freezer_attach() makes the new tasks conform to the + * current state and all following state changes can see the new tasks. + */ +static void freezer_attach(struct cgroup_taskset *tset) +{ + struct task_struct *task; + struct cgroup_subsys_state *new_css; + + mutex_lock(&freezer_mutex); + + /* + * Make the new tasks conform to the current state of @new_css. + * For simplicity, when migrating any task to a FROZEN cgroup, we + * revert it to FREEZING and let update_if_frozen() determine the + * correct state later. + * + * Tasks in @tset are on @new_css but may not conform to its + * current state before executing the following - !frozen tasks may + * be visible in a FROZEN cgroup and frozen tasks in a THAWED one. + */ + cgroup_taskset_for_each(task, new_css, tset) { + struct freezer *freezer = css_freezer(new_css); + + if (!(freezer->state & CGROUP_FREEZING)) { + __thaw_task(task); + } else { + /* clear FROZEN and propagate upwards */ + while (freezer && (freezer->state & CGROUP_FROZEN)) { + freezer->state &= ~CGROUP_FROZEN; + freezer = parent_freezer(freezer); + } + freeze_task(task); + } + } + + mutex_unlock(&freezer_mutex); +} + +/** + * freezer_fork - cgroup post fork callback + * @task: a task which has just been forked + * + * @task has just been created and should conform to the current state of + * the cgroup_freezer it belongs to. This function may race against + * freezer_attach(). Losing to freezer_attach() means that we don't have + * to do anything as freezer_attach() will put @task into the appropriate + * state. + */ +static void freezer_fork(struct task_struct *task) +{ + struct freezer *freezer; + + /* + * The root cgroup is non-freezable, so we can skip locking the + * freezer. This is safe regardless of race with task migration. + * If we didn't race or won, skipping is obviously the right thing + * to do. If we lost and root is the new cgroup, noop is still the + * right thing to do. + */ + if (task_css_is_root(task, freezer_cgrp_id)) + return; + + mutex_lock(&freezer_mutex); + rcu_read_lock(); + + freezer = task_freezer(task); + if (freezer->state & CGROUP_FREEZING) + freeze_task(task); + + rcu_read_unlock(); + mutex_unlock(&freezer_mutex); +} + +/** + * update_if_frozen - update whether a cgroup finished freezing + * @css: css of interest + * + * Once FREEZING is initiated, transition to FROZEN is lazily updated by + * calling this function. If the current state is FREEZING but not FROZEN, + * this function checks whether all tasks of this cgroup and the descendant + * cgroups finished freezing and, if so, sets FROZEN. + * + * The caller is responsible for grabbing RCU read lock and calling + * update_if_frozen() on all descendants prior to invoking this function. + * + * Task states and freezer state might disagree while tasks are being + * migrated into or out of @css, so we can't verify task states against + * @freezer state here. See freezer_attach() for details. + */ +static void update_if_frozen(struct cgroup_subsys_state *css) +{ + struct freezer *freezer = css_freezer(css); + struct cgroup_subsys_state *pos; + struct css_task_iter it; + struct task_struct *task; + + lockdep_assert_held(&freezer_mutex); + + if (!(freezer->state & CGROUP_FREEZING) || + (freezer->state & CGROUP_FROZEN)) + return; + + /* are all (live) children frozen? */ + rcu_read_lock(); + css_for_each_child(pos, css) { + struct freezer *child = css_freezer(pos); + + if ((child->state & CGROUP_FREEZER_ONLINE) && + !(child->state & CGROUP_FROZEN)) { + rcu_read_unlock(); + return; + } + } + rcu_read_unlock(); + + /* are all tasks frozen? */ + css_task_iter_start(css, 0, &it); + + while ((task = css_task_iter_next(&it))) { + if (freezing(task) && !frozen(task)) + goto out_iter_end; + } + + freezer->state |= CGROUP_FROZEN; +out_iter_end: + css_task_iter_end(&it); +} + +static int freezer_read(struct seq_file *m, void *v) +{ + struct cgroup_subsys_state *css = seq_css(m), *pos; + + mutex_lock(&freezer_mutex); + rcu_read_lock(); + + /* update states bottom-up */ + css_for_each_descendant_post(pos, css) { + if (!css_tryget_online(pos)) + continue; + rcu_read_unlock(); + + update_if_frozen(pos); + + rcu_read_lock(); + css_put(pos); + } + + rcu_read_unlock(); + mutex_unlock(&freezer_mutex); + + seq_puts(m, freezer_state_strs(css_freezer(css)->state)); + seq_putc(m, '\n'); + return 0; +} + +static void freeze_cgroup(struct freezer *freezer) +{ + struct css_task_iter it; + struct task_struct *task; + + css_task_iter_start(&freezer->css, 0, &it); + while ((task = css_task_iter_next(&it))) + freeze_task(task); + css_task_iter_end(&it); +} + +static void unfreeze_cgroup(struct freezer *freezer) +{ + struct css_task_iter it; + struct task_struct *task; + + css_task_iter_start(&freezer->css, 0, &it); + while ((task = css_task_iter_next(&it))) + __thaw_task(task); + css_task_iter_end(&it); +} + +/** + * freezer_apply_state - apply state change to a single cgroup_freezer + * @freezer: freezer to apply state change to + * @freeze: whether to freeze or unfreeze + * @state: CGROUP_FREEZING_* flag to set or clear + * + * Set or clear @state on @cgroup according to @freeze, and perform + * freezing or thawing as necessary. + */ +static void freezer_apply_state(struct freezer *freezer, bool freeze, + unsigned int state) +{ + /* also synchronizes against task migration, see freezer_attach() */ + lockdep_assert_held(&freezer_mutex); + + if (!(freezer->state & CGROUP_FREEZER_ONLINE)) + return; + + if (freeze) { + if (!(freezer->state & CGROUP_FREEZING)) + static_branch_inc_cpuslocked(&freezer_active); + freezer->state |= state; + freeze_cgroup(freezer); + } else { + bool was_freezing = freezer->state & CGROUP_FREEZING; + + freezer->state &= ~state; + + if (!(freezer->state & CGROUP_FREEZING)) { + freezer->state &= ~CGROUP_FROZEN; + if (was_freezing) + static_branch_dec_cpuslocked(&freezer_active); + unfreeze_cgroup(freezer); + } + } +} + +/** + * freezer_change_state - change the freezing state of a cgroup_freezer + * @freezer: freezer of interest + * @freeze: whether to freeze or thaw + * + * Freeze or thaw @freezer according to @freeze. The operations are + * recursive - all descendants of @freezer will be affected. + */ +static void freezer_change_state(struct freezer *freezer, bool freeze) +{ + struct cgroup_subsys_state *pos; + + cpus_read_lock(); + /* + * Update all its descendants in pre-order traversal. Each + * descendant will try to inherit its parent's FREEZING state as + * CGROUP_FREEZING_PARENT. + */ + mutex_lock(&freezer_mutex); + rcu_read_lock(); + css_for_each_descendant_pre(pos, &freezer->css) { + struct freezer *pos_f = css_freezer(pos); + struct freezer *parent = parent_freezer(pos_f); + + if (!css_tryget_online(pos)) + continue; + rcu_read_unlock(); + + if (pos_f == freezer) + freezer_apply_state(pos_f, freeze, + CGROUP_FREEZING_SELF); + else + freezer_apply_state(pos_f, + parent->state & CGROUP_FREEZING, + CGROUP_FREEZING_PARENT); + + rcu_read_lock(); + css_put(pos); + } + rcu_read_unlock(); + mutex_unlock(&freezer_mutex); + cpus_read_unlock(); +} + +static ssize_t freezer_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + bool freeze; + + buf = strstrip(buf); + + if (strcmp(buf, freezer_state_strs(0)) == 0) + freeze = false; + else if (strcmp(buf, freezer_state_strs(CGROUP_FROZEN)) == 0) { + pr_info_once("Freezing with imperfect legacy cgroup freezer. " + "See cgroup.freeze of cgroup v2\n"); + freeze = true; + } else + return -EINVAL; + + freezer_change_state(css_freezer(of_css(of)), freeze); + return nbytes; +} + +static u64 freezer_self_freezing_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + struct freezer *freezer = css_freezer(css); + + return (bool)(freezer->state & CGROUP_FREEZING_SELF); +} + +static u64 freezer_parent_freezing_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + struct freezer *freezer = css_freezer(css); + + return (bool)(freezer->state & CGROUP_FREEZING_PARENT); +} + +static struct cftype files[] = { + { + .name = "state", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = freezer_read, + .write = freezer_write, + }, + { + .name = "self_freezing", + .flags = CFTYPE_NOT_ON_ROOT, + .read_u64 = freezer_self_freezing_read, + }, + { + .name = "parent_freezing", + .flags = CFTYPE_NOT_ON_ROOT, + .read_u64 = freezer_parent_freezing_read, + }, + { } /* terminate */ +}; + +struct cgroup_subsys freezer_cgrp_subsys = { + .css_alloc = freezer_css_alloc, + .css_online = freezer_css_online, + .css_offline = freezer_css_offline, + .css_free = freezer_css_free, + .attach = freezer_attach, + .fork = freezer_fork, + .legacy_cftypes = files, +}; diff --git a/kernel/cgroup/misc.c b/kernel/cgroup/misc.c new file mode 100644 index 000000000000..6a01d91ea4cb --- /dev/null +++ b/kernel/cgroup/misc.c @@ -0,0 +1,478 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Miscellaneous cgroup controller + * + * Copyright 2020 Google LLC + * Author: Vipin Sharma <vipinsh@google.com> + */ + +#include <linux/limits.h> +#include <linux/cgroup.h> +#include <linux/errno.h> +#include <linux/atomic.h> +#include <linux/slab.h> +#include <linux/misc_cgroup.h> + +#define MAX_STR "max" +#define MAX_NUM U64_MAX + +/* Miscellaneous res name, keep it in sync with enum misc_res_type */ +static const char *const misc_res_name[] = { +#ifdef CONFIG_KVM_AMD_SEV + /* AMD SEV ASIDs resource */ + "sev", + /* AMD SEV-ES ASIDs resource */ + "sev_es", +#endif +#ifdef CONFIG_INTEL_TDX_HOST + /* Intel TDX HKIDs resource */ + "tdx", +#endif +}; + +/* Root misc cgroup */ +static struct misc_cg root_cg; + +/* + * Miscellaneous resources capacity for the entire machine. 0 capacity means + * resource is not initialized or not present in the host. + * + * root_cg.max and capacity are independent of each other. root_cg.max can be + * more than the actual capacity. We are using Limits resource distribution + * model of cgroup for miscellaneous controller. + */ +static u64 misc_res_capacity[MISC_CG_RES_TYPES]; + +/** + * parent_misc() - Get the parent of the passed misc cgroup. + * @cgroup: cgroup whose parent needs to be fetched. + * + * Context: Any context. + * Return: + * * struct misc_cg* - Parent of the @cgroup. + * * %NULL - If @cgroup is null or the passed cgroup does not have a parent. + */ +static struct misc_cg *parent_misc(struct misc_cg *cgroup) +{ + return cgroup ? css_misc(cgroup->css.parent) : NULL; +} + +/** + * valid_type() - Check if @type is valid or not. + * @type: misc res type. + * + * Context: Any context. + * Return: + * * true - If valid type. + * * false - If not valid type. + */ +static inline bool valid_type(enum misc_res_type type) +{ + return type >= 0 && type < MISC_CG_RES_TYPES; +} + +/** + * misc_cg_set_capacity() - Set the capacity of the misc cgroup res. + * @type: Type of the misc res. + * @capacity: Supported capacity of the misc res on the host. + * + * If capacity is 0 then the charging a misc cgroup fails for that type. + * + * Context: Any context. + * Return: + * * %0 - Successfully registered the capacity. + * * %-EINVAL - If @type is invalid. + */ +int misc_cg_set_capacity(enum misc_res_type type, u64 capacity) +{ + if (!valid_type(type)) + return -EINVAL; + + WRITE_ONCE(misc_res_capacity[type], capacity); + return 0; +} +EXPORT_SYMBOL_GPL(misc_cg_set_capacity); + +/** + * misc_cg_cancel_charge() - Cancel the charge from the misc cgroup. + * @type: Misc res type in misc cg to cancel the charge from. + * @cg: Misc cgroup to cancel charge from. + * @amount: Amount to cancel. + * + * Context: Any context. + */ +static void misc_cg_cancel_charge(enum misc_res_type type, struct misc_cg *cg, + u64 amount) +{ + WARN_ONCE(atomic64_add_negative(-amount, &cg->res[type].usage), + "misc cgroup resource %s became less than 0", + misc_res_name[type]); +} + +static void misc_cg_update_watermark(struct misc_res *res, u64 new_usage) +{ + u64 old; + + while (true) { + old = atomic64_read(&res->watermark); + if (new_usage <= old) + break; + if (atomic64_cmpxchg(&res->watermark, old, new_usage) == old) + break; + } +} + +static void misc_cg_event(enum misc_res_type type, struct misc_cg *cg) +{ + atomic64_inc(&cg->res[type].events_local); + cgroup_file_notify(&cg->events_local_file); + + for (; parent_misc(cg); cg = parent_misc(cg)) { + atomic64_inc(&cg->res[type].events); + cgroup_file_notify(&cg->events_file); + } +} + +/** + * misc_cg_try_charge() - Try charging the misc cgroup. + * @type: Misc res type to charge. + * @cg: Misc cgroup which will be charged. + * @amount: Amount to charge. + * + * Charge @amount to the misc cgroup. Caller must use the same cgroup during + * the uncharge call. + * + * Context: Any context. + * Return: + * * %0 - If successfully charged. + * * -EINVAL - If @type is invalid or misc res has 0 capacity. + * * -EBUSY - If max limit will be crossed or total usage will be more than the + * capacity. + */ +int misc_cg_try_charge(enum misc_res_type type, struct misc_cg *cg, u64 amount) +{ + struct misc_cg *i, *j; + int ret; + struct misc_res *res; + u64 new_usage; + + if (!(valid_type(type) && cg && READ_ONCE(misc_res_capacity[type]))) + return -EINVAL; + + if (!amount) + return 0; + + for (i = cg; i; i = parent_misc(i)) { + res = &i->res[type]; + + new_usage = atomic64_add_return(amount, &res->usage); + if (new_usage > READ_ONCE(res->max) || + new_usage > READ_ONCE(misc_res_capacity[type])) { + ret = -EBUSY; + goto err_charge; + } + misc_cg_update_watermark(res, new_usage); + } + return 0; + +err_charge: + misc_cg_event(type, i); + + for (j = cg; j != i; j = parent_misc(j)) + misc_cg_cancel_charge(type, j, amount); + misc_cg_cancel_charge(type, i, amount); + return ret; +} +EXPORT_SYMBOL_GPL(misc_cg_try_charge); + +/** + * misc_cg_uncharge() - Uncharge the misc cgroup. + * @type: Misc res type which was charged. + * @cg: Misc cgroup which will be uncharged. + * @amount: Charged amount. + * + * Context: Any context. + */ +void misc_cg_uncharge(enum misc_res_type type, struct misc_cg *cg, u64 amount) +{ + struct misc_cg *i; + + if (!(amount && valid_type(type) && cg)) + return; + + for (i = cg; i; i = parent_misc(i)) + misc_cg_cancel_charge(type, i, amount); +} +EXPORT_SYMBOL_GPL(misc_cg_uncharge); + +/** + * misc_cg_max_show() - Show the misc cgroup max limit. + * @sf: Interface file + * @v: Arguments passed + * + * Context: Any context. + * Return: 0 to denote successful print. + */ +static int misc_cg_max_show(struct seq_file *sf, void *v) +{ + int i; + struct misc_cg *cg = css_misc(seq_css(sf)); + u64 max; + + for (i = 0; i < MISC_CG_RES_TYPES; i++) { + if (READ_ONCE(misc_res_capacity[i])) { + max = READ_ONCE(cg->res[i].max); + if (max == MAX_NUM) + seq_printf(sf, "%s max\n", misc_res_name[i]); + else + seq_printf(sf, "%s %llu\n", misc_res_name[i], + max); + } + } + + return 0; +} + +/** + * misc_cg_max_write() - Update the maximum limit of the cgroup. + * @of: Handler for the file. + * @buf: Data from the user. It should be either "max", 0, or a positive + * integer. + * @nbytes: Number of bytes of the data. + * @off: Offset in the file. + * + * User can pass data like: + * echo sev 23 > misc.max, OR + * echo sev max > misc.max + * + * Context: Any context. + * Return: + * * >= 0 - Number of bytes processed in the input. + * * -EINVAL - If buf is not valid. + * * -ERANGE - If number is bigger than the u64 capacity. + */ +static ssize_t misc_cg_max_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) +{ + struct misc_cg *cg; + u64 max; + int ret = 0, i; + enum misc_res_type type = MISC_CG_RES_TYPES; + char *token; + + buf = strstrip(buf); + token = strsep(&buf, " "); + + if (!token || !buf) + return -EINVAL; + + for (i = 0; i < MISC_CG_RES_TYPES; i++) { + if (!strcmp(misc_res_name[i], token)) { + type = i; + break; + } + } + + if (type == MISC_CG_RES_TYPES) + return -EINVAL; + + if (!strcmp(MAX_STR, buf)) { + max = MAX_NUM; + } else { + ret = kstrtou64(buf, 0, &max); + if (ret) + return ret; + } + + cg = css_misc(of_css(of)); + + if (READ_ONCE(misc_res_capacity[type])) + WRITE_ONCE(cg->res[type].max, max); + else + ret = -EINVAL; + + return ret ? ret : nbytes; +} + +/** + * misc_cg_current_show() - Show the current usage of the misc cgroup. + * @sf: Interface file + * @v: Arguments passed + * + * Context: Any context. + * Return: 0 to denote successful print. + */ +static int misc_cg_current_show(struct seq_file *sf, void *v) +{ + int i; + u64 usage; + struct misc_cg *cg = css_misc(seq_css(sf)); + + for (i = 0; i < MISC_CG_RES_TYPES; i++) { + usage = atomic64_read(&cg->res[i].usage); + if (READ_ONCE(misc_res_capacity[i]) || usage) + seq_printf(sf, "%s %llu\n", misc_res_name[i], usage); + } + + return 0; +} + +/** + * misc_cg_peak_show() - Show the peak usage of the misc cgroup. + * @sf: Interface file + * @v: Arguments passed + * + * Context: Any context. + * Return: 0 to denote successful print. + */ +static int misc_cg_peak_show(struct seq_file *sf, void *v) +{ + int i; + u64 watermark; + struct misc_cg *cg = css_misc(seq_css(sf)); + + for (i = 0; i < MISC_CG_RES_TYPES; i++) { + watermark = atomic64_read(&cg->res[i].watermark); + if (READ_ONCE(misc_res_capacity[i]) || watermark) + seq_printf(sf, "%s %llu\n", misc_res_name[i], watermark); + } + + return 0; +} + +/** + * misc_cg_capacity_show() - Show the total capacity of misc res on the host. + * @sf: Interface file + * @v: Arguments passed + * + * Only present in the root cgroup directory. + * + * Context: Any context. + * Return: 0 to denote successful print. + */ +static int misc_cg_capacity_show(struct seq_file *sf, void *v) +{ + int i; + u64 cap; + + for (i = 0; i < MISC_CG_RES_TYPES; i++) { + cap = READ_ONCE(misc_res_capacity[i]); + if (cap) + seq_printf(sf, "%s %llu\n", misc_res_name[i], cap); + } + + return 0; +} + +static int __misc_events_show(struct seq_file *sf, bool local) +{ + struct misc_cg *cg = css_misc(seq_css(sf)); + u64 events; + int i; + + for (i = 0; i < MISC_CG_RES_TYPES; i++) { + if (local) + events = atomic64_read(&cg->res[i].events_local); + else + events = atomic64_read(&cg->res[i].events); + if (READ_ONCE(misc_res_capacity[i]) || events) + seq_printf(sf, "%s.max %llu\n", misc_res_name[i], events); + } + return 0; +} + +static int misc_events_show(struct seq_file *sf, void *v) +{ + return __misc_events_show(sf, false); +} + +static int misc_events_local_show(struct seq_file *sf, void *v) +{ + return __misc_events_show(sf, true); +} + +/* Misc cgroup interface files */ +static struct cftype misc_cg_files[] = { + { + .name = "max", + .write = misc_cg_max_write, + .seq_show = misc_cg_max_show, + .flags = CFTYPE_NOT_ON_ROOT, + }, + { + .name = "current", + .seq_show = misc_cg_current_show, + }, + { + .name = "peak", + .seq_show = misc_cg_peak_show, + }, + { + .name = "capacity", + .seq_show = misc_cg_capacity_show, + .flags = CFTYPE_ONLY_ON_ROOT, + }, + { + .name = "events", + .flags = CFTYPE_NOT_ON_ROOT, + .file_offset = offsetof(struct misc_cg, events_file), + .seq_show = misc_events_show, + }, + { + .name = "events.local", + .flags = CFTYPE_NOT_ON_ROOT, + .file_offset = offsetof(struct misc_cg, events_local_file), + .seq_show = misc_events_local_show, + }, + {} +}; + +/** + * misc_cg_alloc() - Allocate misc cgroup. + * @parent_css: Parent cgroup. + * + * Context: Process context. + * Return: + * * struct cgroup_subsys_state* - css of the allocated cgroup. + * * ERR_PTR(-ENOMEM) - No memory available to allocate. + */ +static struct cgroup_subsys_state * +misc_cg_alloc(struct cgroup_subsys_state *parent_css) +{ + enum misc_res_type i; + struct misc_cg *cg; + + if (!parent_css) { + cg = &root_cg; + } else { + cg = kzalloc(sizeof(*cg), GFP_KERNEL); + if (!cg) + return ERR_PTR(-ENOMEM); + } + + for (i = 0; i < MISC_CG_RES_TYPES; i++) { + WRITE_ONCE(cg->res[i].max, MAX_NUM); + atomic64_set(&cg->res[i].usage, 0); + } + + return &cg->css; +} + +/** + * misc_cg_free() - Free the misc cgroup. + * @css: cgroup subsys object. + * + * Context: Any context. + */ +static void misc_cg_free(struct cgroup_subsys_state *css) +{ + kfree(css_misc(css)); +} + +/* Cgroup controller callbacks */ +struct cgroup_subsys misc_cgrp_subsys = { + .css_alloc = misc_cg_alloc, + .css_free = misc_cg_free, + .legacy_cftypes = misc_cg_files, + .dfl_cftypes = misc_cg_files, +}; diff --git a/kernel/cgroup/namespace.c b/kernel/cgroup/namespace.c index 66129eb4371d..db9617556dd7 100644 --- a/kernel/cgroup/namespace.c +++ b/kernel/cgroup/namespace.c @@ -1,10 +1,11 @@ +// SPDX-License-Identifier: GPL-2.0 #include "cgroup-internal.h" #include <linux/sched/task.h> #include <linux/slab.h> #include <linux/nsproxy.h> #include <linux/proc_ns.h> - +#include <linux/nstree.h> /* cgroup namespaces */ @@ -20,33 +21,31 @@ static void dec_cgroup_namespaces(struct ucounts *ucounts) static struct cgroup_namespace *alloc_cgroup_ns(void) { - struct cgroup_namespace *new_ns; + struct cgroup_namespace *new_ns __free(kfree) = NULL; int ret; - new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL); + new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL_ACCOUNT); if (!new_ns) return ERR_PTR(-ENOMEM); - ret = ns_alloc_inum(&new_ns->ns); - if (ret) { - kfree(new_ns); + ret = ns_common_init(new_ns); + if (ret) return ERR_PTR(ret); - } - refcount_set(&new_ns->count, 1); - new_ns->ns.ops = &cgroupns_operations; - return new_ns; + return no_free_ptr(new_ns); } void free_cgroup_ns(struct cgroup_namespace *ns) { + ns_tree_remove(ns); put_css_set(ns->root_cset); dec_cgroup_namespaces(ns->ucounts); put_user_ns(ns->user_ns); - ns_free_inum(&ns->ns); - kfree(ns); + ns_common_free(ns); + /* Concurrent nstree traversal depends on a grace period. */ + kfree_rcu(ns, ns.ns_rcu); } EXPORT_SYMBOL(free_cgroup_ns); -struct cgroup_namespace *copy_cgroup_ns(unsigned long flags, +struct cgroup_namespace *copy_cgroup_ns(u64 flags, struct user_namespace *user_ns, struct cgroup_namespace *old_ns) { @@ -86,19 +85,16 @@ struct cgroup_namespace *copy_cgroup_ns(unsigned long flags, new_ns->ucounts = ucounts; new_ns->root_cset = cset; + ns_tree_add(new_ns); return new_ns; } -static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns) -{ - return container_of(ns, struct cgroup_namespace, ns); -} - -static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns) +static int cgroupns_install(struct nsset *nsset, struct ns_common *ns) { + struct nsproxy *nsproxy = nsset->nsproxy; struct cgroup_namespace *cgroup_ns = to_cg_ns(ns); - if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) || + if (!ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN) || !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN)) return -EPERM; @@ -141,15 +137,8 @@ static struct user_namespace *cgroupns_owner(struct ns_common *ns) const struct proc_ns_operations cgroupns_operations = { .name = "cgroup", - .type = CLONE_NEWCGROUP, .get = cgroupns_get, .put = cgroupns_put, .install = cgroupns_install, .owner = cgroupns_owner, }; - -static __init int cgroup_namespaces_init(void) -{ - return 0; -} -subsys_initcall(cgroup_namespaces_init); diff --git a/kernel/cgroup/pids.c b/kernel/cgroup/pids.c index 2237201d66d5..8f61114c36dd 100644 --- a/kernel/cgroup/pids.c +++ b/kernel/cgroup/pids.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * Process number limiting controller for cgroups. * @@ -25,10 +26,6 @@ * a superset of parent/child/pids.current. * * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com> - * - * This file is subject to the terms and conditions of version 2 of the GNU - * General Public License. See the file COPYING in the main directory of the - * Linux distribution for more details. */ #include <linux/kernel.h> @@ -36,10 +33,19 @@ #include <linux/atomic.h> #include <linux/cgroup.h> #include <linux/slab.h> +#include <linux/sched/task.h> #define PIDS_MAX (PID_MAX_LIMIT + 1ULL) #define PIDS_MAX_STR "max" +enum pidcg_event { + /* Fork failed in subtree because this pids_cgroup limit was hit. */ + PIDCG_MAX, + /* Fork failed in this pids_cgroup because ancestor limit was hit. */ + PIDCG_FORKFAIL, + NR_PIDCG_EVENTS, +}; + struct pids_cgroup { struct cgroup_subsys_state css; @@ -48,13 +54,15 @@ struct pids_cgroup { * %PIDS_MAX = (%PID_MAX_LIMIT + 1). */ atomic64_t counter; - int64_t limit; + atomic64_t limit; + int64_t watermark; - /* Handle for "pids.events" */ + /* Handles for pids.events[.local] */ struct cgroup_file events_file; + struct cgroup_file events_local_file; - /* Number of times fork failed because limit was hit. */ - atomic64_t events_limit; + atomic64_t events[NR_PIDCG_EVENTS]; + atomic64_t events_local[NR_PIDCG_EVENTS]; }; static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css) @@ -76,9 +84,7 @@ pids_css_alloc(struct cgroup_subsys_state *parent) if (!pids) return ERR_PTR(-ENOMEM); - pids->limit = PIDS_MAX; - atomic64_set(&pids->counter, 0); - atomic64_set(&pids->events_limit, 0); + atomic64_set(&pids->limit, PIDS_MAX); return &pids->css; } @@ -87,6 +93,16 @@ static void pids_css_free(struct cgroup_subsys_state *css) kfree(css_pids(css)); } +static void pids_update_watermark(struct pids_cgroup *p, int64_t nr_pids) +{ + /* + * This is racy, but we don't need perfectly accurate tallying of + * the watermark, and this lets us avoid extra atomic overhead. + */ + if (nr_pids > READ_ONCE(p->watermark)) + WRITE_ONCE(p->watermark, nr_pids); +} + /** * pids_cancel - uncharge the local pid count * @pids: the pid cgroup state @@ -130,33 +146,45 @@ static void pids_charge(struct pids_cgroup *pids, int num) { struct pids_cgroup *p; - for (p = pids; parent_pids(p); p = parent_pids(p)) - atomic64_add(num, &p->counter); + for (p = pids; parent_pids(p); p = parent_pids(p)) { + int64_t new = atomic64_add_return(num, &p->counter); + + pids_update_watermark(p, new); + } } /** * pids_try_charge - hierarchically try to charge the pid count * @pids: the pid cgroup state * @num: the number of pids to charge + * @fail: storage of pid cgroup causing the fail * * This function follows the set limit. It will fail if the charge would cause * the new value to exceed the hierarchical limit. Returns 0 if the charge * succeeded, otherwise -EAGAIN. */ -static int pids_try_charge(struct pids_cgroup *pids, int num) +static int pids_try_charge(struct pids_cgroup *pids, int num, struct pids_cgroup **fail) { struct pids_cgroup *p, *q; for (p = pids; parent_pids(p); p = parent_pids(p)) { int64_t new = atomic64_add_return(num, &p->counter); + int64_t limit = atomic64_read(&p->limit); /* * Since new is capped to the maximum number of pid_t, if * p->limit is %PIDS_MAX then we know that this test will never * fail. */ - if (new > p->limit) + if (new > limit) { + *fail = p; goto revert; + } + /* + * Not technically accurate if we go over limit somewhere up + * the hierarchy, but that's tolerable for the watermark. + */ + pids_update_watermark(p, new); } return 0; @@ -212,42 +240,58 @@ static void pids_cancel_attach(struct cgroup_taskset *tset) } } +static void pids_event(struct pids_cgroup *pids_forking, + struct pids_cgroup *pids_over_limit) +{ + struct pids_cgroup *p = pids_forking; + + /* Only log the first time limit is hit. */ + if (atomic64_inc_return(&p->events_local[PIDCG_FORKFAIL]) == 1) { + pr_info("cgroup: fork rejected by pids controller in "); + pr_cont_cgroup_path(p->css.cgroup); + pr_cont("\n"); + } + if (!cgroup_subsys_on_dfl(pids_cgrp_subsys) || + cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) { + cgroup_file_notify(&p->events_local_file); + return; + } + + atomic64_inc(&pids_over_limit->events_local[PIDCG_MAX]); + cgroup_file_notify(&pids_over_limit->events_local_file); + + for (p = pids_over_limit; parent_pids(p); p = parent_pids(p)) { + atomic64_inc(&p->events[PIDCG_MAX]); + cgroup_file_notify(&p->events_file); + } +} + /* * task_css_check(true) in pids_can_fork() and pids_cancel_fork() relies * on cgroup_threadgroup_change_begin() held by the copy_process(). */ -static int pids_can_fork(struct task_struct *task) +static int pids_can_fork(struct task_struct *task, struct css_set *cset) { - struct cgroup_subsys_state *css; - struct pids_cgroup *pids; + struct pids_cgroup *pids, *pids_over_limit; int err; - css = task_css_check(current, pids_cgrp_id, true); - pids = css_pids(css); - err = pids_try_charge(pids, 1); - if (err) { - /* Only log the first time events_limit is incremented. */ - if (atomic64_inc_return(&pids->events_limit) == 1) { - pr_info("cgroup: fork rejected by pids controller in "); - pr_cont_cgroup_path(css->cgroup); - pr_cont("\n"); - } - cgroup_file_notify(&pids->events_file); - } + pids = css_pids(cset->subsys[pids_cgrp_id]); + err = pids_try_charge(pids, 1, &pids_over_limit); + if (err) + pids_event(pids, pids_over_limit); + return err; } -static void pids_cancel_fork(struct task_struct *task) +static void pids_cancel_fork(struct task_struct *task, struct css_set *cset) { - struct cgroup_subsys_state *css; struct pids_cgroup *pids; - css = task_css_check(current, pids_cgrp_id, true); - pids = css_pids(css); + pids = css_pids(cset->subsys[pids_cgrp_id]); pids_uncharge(pids, 1); } -static void pids_free(struct task_struct *task) +static void pids_release(struct task_struct *task) { struct pids_cgroup *pids = css_pids(task_css(task, pids_cgrp_id)); @@ -280,7 +324,7 @@ set_limit: * Limit updates don't need to be mutex'd, since it isn't * critical that any racing fork()s follow the new limit. */ - pids->limit = limit; + atomic64_set(&pids->limit, limit); return nbytes; } @@ -288,7 +332,7 @@ static int pids_max_show(struct seq_file *sf, void *v) { struct cgroup_subsys_state *css = seq_css(sf); struct pids_cgroup *pids = css_pids(css); - int64_t limit = pids->limit; + int64_t limit = atomic64_read(&pids->limit); if (limit >= PIDS_MAX) seq_printf(sf, "%s\n", PIDS_MAX_STR); @@ -306,11 +350,40 @@ static s64 pids_current_read(struct cgroup_subsys_state *css, return atomic64_read(&pids->counter); } -static int pids_events_show(struct seq_file *sf, void *v) +static s64 pids_peak_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + struct pids_cgroup *pids = css_pids(css); + + return READ_ONCE(pids->watermark); +} + +static int __pids_events_show(struct seq_file *sf, bool local) { struct pids_cgroup *pids = css_pids(seq_css(sf)); + enum pidcg_event pe = PIDCG_MAX; + atomic64_t *events; + + if (!cgroup_subsys_on_dfl(pids_cgrp_subsys) || + cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) { + pe = PIDCG_FORKFAIL; + local = true; + } + events = local ? pids->events_local : pids->events; - seq_printf(sf, "max %lld\n", (s64)atomic64_read(&pids->events_limit)); + seq_printf(sf, "max %lld\n", (s64)atomic64_read(&events[pe])); + return 0; +} + +static int pids_events_show(struct seq_file *sf, void *v) +{ + __pids_events_show(sf, false); + return 0; +} + +static int pids_events_local_show(struct seq_file *sf, void *v) +{ + __pids_events_show(sf, true); return 0; } @@ -327,6 +400,43 @@ static struct cftype pids_files[] = { .flags = CFTYPE_NOT_ON_ROOT, }, { + .name = "peak", + .flags = CFTYPE_NOT_ON_ROOT, + .read_s64 = pids_peak_read, + }, + { + .name = "events", + .seq_show = pids_events_show, + .file_offset = offsetof(struct pids_cgroup, events_file), + .flags = CFTYPE_NOT_ON_ROOT, + }, + { + .name = "events.local", + .seq_show = pids_events_local_show, + .file_offset = offsetof(struct pids_cgroup, events_local_file), + .flags = CFTYPE_NOT_ON_ROOT, + }, + { } /* terminate */ +}; + +static struct cftype pids_files_legacy[] = { + { + .name = "max", + .write = pids_max_write, + .seq_show = pids_max_show, + .flags = CFTYPE_NOT_ON_ROOT, + }, + { + .name = "current", + .read_s64 = pids_current_read, + .flags = CFTYPE_NOT_ON_ROOT, + }, + { + .name = "peak", + .flags = CFTYPE_NOT_ON_ROOT, + .read_s64 = pids_peak_read, + }, + { .name = "events", .seq_show = pids_events_show, .file_offset = offsetof(struct pids_cgroup, events_file), @@ -335,6 +445,7 @@ static struct cftype pids_files[] = { { } /* terminate */ }; + struct cgroup_subsys pids_cgrp_subsys = { .css_alloc = pids_css_alloc, .css_free = pids_css_free, @@ -342,7 +453,8 @@ struct cgroup_subsys pids_cgrp_subsys = { .cancel_attach = pids_cancel_attach, .can_fork = pids_can_fork, .cancel_fork = pids_cancel_fork, - .free = pids_free, - .legacy_cftypes = pids_files, + .release = pids_release, + .legacy_cftypes = pids_files_legacy, .dfl_cftypes = pids_files, + .threaded = true, }; diff --git a/kernel/cgroup/rdma.c b/kernel/cgroup/rdma.c index defad3c5e7dc..ef5878fb2005 100644 --- a/kernel/cgroup/rdma.c +++ b/kernel/cgroup/rdma.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * RDMA resource limiting controller for cgroups. * @@ -5,10 +6,6 @@ * additional RDMA resources after a certain limit is reached. * * Copyright (C) 2016 Parav Pandit <pandit.parav@gmail.com> - * - * This file is subject to the terms and conditions of version 2 of the GNU - * General Public License. See the file COPYING in the main directory of the - * Linux distribution for more details. */ #include <linux/bitops.h> @@ -200,6 +197,7 @@ uncharge_cg_locked(struct rdma_cgroup *cg, /** * rdmacg_uncharge_hierarchy - hierarchically uncharge rdma resource count + * @cg: pointer to cg to uncharge and all parents in hierarchy * @device: pointer to rdmacg device * @stop_cg: while traversing hirerchy, when meet with stop_cg cgroup * stop uncharging @@ -224,6 +222,7 @@ static void rdmacg_uncharge_hierarchy(struct rdma_cgroup *cg, /** * rdmacg_uncharge - hierarchically uncharge rdma resource count + * @cg: pointer to cg to uncharge and all parents in hierarchy * @device: pointer to rdmacg device * @index: index of the resource to uncharge in cgroup in given resource pool */ @@ -247,7 +246,7 @@ EXPORT_SYMBOL(rdmacg_uncharge); * This function follows charging resource in hierarchical way. * It will fail if the charge would cause the new value to exceed the * hierarchical limit. - * Returns 0 if the charge succeded, otherwise -EAGAIN, -ENOMEM or -EINVAL. + * Returns 0 if the charge succeeded, otherwise -EAGAIN, -ENOMEM or -EINVAL. * Returns pointer to rdmacg for this resource when charging is successful. * * Charger needs to account resources on two criteria. @@ -313,10 +312,8 @@ EXPORT_SYMBOL(rdmacg_try_charge); * If IB stack wish a device to participate in rdma cgroup resource * tracking, it must invoke this API to register with rdma cgroup before * any user space application can start using the RDMA resources. - * Returns 0 on success or EINVAL when table length given is beyond - * supported size. */ -int rdmacg_register_device(struct rdmacg_device *device) +void rdmacg_register_device(struct rdmacg_device *device) { INIT_LIST_HEAD(&device->dev_node); INIT_LIST_HEAD(&device->rpools); @@ -324,7 +321,6 @@ int rdmacg_register_device(struct rdmacg_device *device) mutex_lock(&rdmacg_mutex); list_add_tail(&device->dev_node, &rdmacg_devices); mutex_unlock(&rdmacg_mutex); - return 0; } EXPORT_SYMBOL(rdmacg_register_device); @@ -362,35 +358,32 @@ EXPORT_SYMBOL(rdmacg_unregister_device); static int parse_resource(char *c, int *intval) { substring_t argstr; - const char **table = &rdmacg_resource_names[0]; char *name, *value = c; size_t len; - int ret, i = 0; + int ret, i; name = strsep(&value, "="); if (!name || !value) return -EINVAL; - len = strlen(value); + i = match_string(rdmacg_resource_names, RDMACG_RESOURCE_MAX, name); + if (i < 0) + return i; - for (i = 0; i < RDMACG_RESOURCE_MAX; i++) { - if (strcmp(table[i], name)) - continue; + len = strlen(value); - argstr.from = value; - argstr.to = value + len; + argstr.from = value; + argstr.to = value + len; - ret = match_int(&argstr, intval); - if (ret >= 0) { - if (*intval < 0) - break; - return i; - } - if (strncmp(value, RDMACG_MAX_STR, len) == 0) { - *intval = S32_MAX; - return i; - } - break; + ret = match_int(&argstr, intval); + if (ret >= 0) { + if (*intval < 0) + return -EINVAL; + return i; + } + if (strncmp(value, RDMACG_MAX_STR, len) == 0) { + *intval = S32_MAX; + return i; } return -EINVAL; } diff --git a/kernel/cgroup/rstat.c b/kernel/cgroup/rstat.c new file mode 100644 index 000000000000..a198e40c799b --- /dev/null +++ b/kernel/cgroup/rstat.c @@ -0,0 +1,759 @@ +// SPDX-License-Identifier: GPL-2.0-only +#include "cgroup-internal.h" + +#include <linux/sched/cputime.h> + +#include <linux/bpf.h> +#include <linux/btf.h> +#include <linux/btf_ids.h> + +#include <trace/events/cgroup.h> + +static DEFINE_SPINLOCK(rstat_base_lock); +static DEFINE_PER_CPU(struct llist_head, rstat_backlog_list); + +static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); + +/* + * Determines whether a given css can participate in rstat. + * css's that are cgroup::self use rstat for base stats. + * Other css's associated with a subsystem use rstat only when + * they define the ss->css_rstat_flush callback. + */ +static inline bool css_uses_rstat(struct cgroup_subsys_state *css) +{ + return css_is_self(css) || css->ss->css_rstat_flush != NULL; +} + +static struct css_rstat_cpu *css_rstat_cpu( + struct cgroup_subsys_state *css, int cpu) +{ + return per_cpu_ptr(css->rstat_cpu, cpu); +} + +static struct cgroup_rstat_base_cpu *cgroup_rstat_base_cpu( + struct cgroup *cgrp, int cpu) +{ + return per_cpu_ptr(cgrp->rstat_base_cpu, cpu); +} + +static spinlock_t *ss_rstat_lock(struct cgroup_subsys *ss) +{ + if (ss) + return &ss->rstat_ss_lock; + + return &rstat_base_lock; +} + +static inline struct llist_head *ss_lhead_cpu(struct cgroup_subsys *ss, int cpu) +{ + if (ss) + return per_cpu_ptr(ss->lhead, cpu); + return per_cpu_ptr(&rstat_backlog_list, cpu); +} + +/** + * css_rstat_updated - keep track of updated rstat_cpu + * @css: target cgroup subsystem state + * @cpu: cpu on which rstat_cpu was updated + * + * Atomically inserts the css in the ss's llist for the given cpu. This is + * reentrant safe i.e. safe against softirq, hardirq and nmi. The ss's llist + * will be processed at the flush time to create the update tree. + * + * NOTE: if the user needs the guarantee that the updater either add itself in + * the lockless list or the concurrent flusher flushes its updated stats, a + * memory barrier is needed before the call to css_rstat_updated() i.e. a + * barrier after updating the per-cpu stats and before calling + * css_rstat_updated(). + */ +__bpf_kfunc void css_rstat_updated(struct cgroup_subsys_state *css, int cpu) +{ + struct llist_head *lhead; + struct css_rstat_cpu *rstatc; + struct css_rstat_cpu __percpu *rstatc_pcpu; + struct llist_node *self; + + /* + * Since bpf programs can call this function, prevent access to + * uninitialized rstat pointers. + */ + if (!css_uses_rstat(css)) + return; + + lockdep_assert_preemption_disabled(); + + /* + * For archs withnot nmi safe cmpxchg or percpu ops support, ignore + * the requests from nmi context. + */ + if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) || + !IS_ENABLED(CONFIG_ARCH_HAS_NMI_SAFE_THIS_CPU_OPS)) && in_nmi()) + return; + + rstatc = css_rstat_cpu(css, cpu); + /* + * If already on list return. This check is racy and smp_mb() is needed + * to pair it with the smp_mb() in css_process_update_tree() if the + * guarantee that the updated stats are visible to concurrent flusher is + * needed. + */ + if (llist_on_list(&rstatc->lnode)) + return; + + /* + * This function can be renentered by irqs and nmis for the same cgroup + * and may try to insert the same per-cpu lnode into the llist. Note + * that llist_add() does not protect against such scenarios. + * + * To protect against such stacked contexts of irqs/nmis, we use the + * fact that lnode points to itself when not on a list and then use + * this_cpu_cmpxchg() to atomically set to NULL to select the winner + * which will call llist_add(). The losers can assume the insertion is + * successful and the winner will eventually add the per-cpu lnode to + * the llist. + */ + self = &rstatc->lnode; + rstatc_pcpu = css->rstat_cpu; + if (this_cpu_cmpxchg(rstatc_pcpu->lnode.next, self, NULL) != self) + return; + + lhead = ss_lhead_cpu(css->ss, cpu); + llist_add(&rstatc->lnode, lhead); +} + +static void __css_process_update_tree(struct cgroup_subsys_state *css, int cpu) +{ + /* put @css and all ancestors on the corresponding updated lists */ + while (true) { + struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); + struct cgroup_subsys_state *parent = css->parent; + struct css_rstat_cpu *prstatc; + + /* + * Both additions and removals are bottom-up. If a cgroup + * is already in the tree, all ancestors are. + */ + if (rstatc->updated_next) + break; + + /* Root has no parent to link it to, but mark it busy */ + if (!parent) { + rstatc->updated_next = css; + break; + } + + prstatc = css_rstat_cpu(parent, cpu); + rstatc->updated_next = prstatc->updated_children; + prstatc->updated_children = css; + + css = parent; + } +} + +static void css_process_update_tree(struct cgroup_subsys *ss, int cpu) +{ + struct llist_head *lhead = ss_lhead_cpu(ss, cpu); + struct llist_node *lnode; + + while ((lnode = llist_del_first_init(lhead))) { + struct css_rstat_cpu *rstatc; + + /* + * smp_mb() is needed here (more specifically in between + * init_llist_node() and per-cpu stats flushing) if the + * guarantee is required by a rstat user where etiher the + * updater should add itself on the lockless list or the + * flusher flush the stats updated by the updater who have + * observed that they are already on the list. The + * corresponding barrier pair for this one should be before + * css_rstat_updated() by the user. + * + * For now, there aren't any such user, so not adding the + * barrier here but if such a use-case arise, please add + * smp_mb() here. + */ + + rstatc = container_of(lnode, struct css_rstat_cpu, lnode); + __css_process_update_tree(rstatc->owner, cpu); + } +} + +/** + * css_rstat_push_children - push children css's into the given list + * @head: current head of the list (= subtree root) + * @child: first child of the root + * @cpu: target cpu + * Return: A new singly linked list of css's to be flushed + * + * Iteratively traverse down the css_rstat_cpu updated tree level by + * level and push all the parents first before their next level children + * into a singly linked list via the rstat_flush_next pointer built from the + * tail backward like "pushing" css's into a stack. The root is pushed by + * the caller. + */ +static struct cgroup_subsys_state *css_rstat_push_children( + struct cgroup_subsys_state *head, + struct cgroup_subsys_state *child, int cpu) +{ + struct cgroup_subsys_state *cnext = child; /* Next head of child css level */ + struct cgroup_subsys_state *ghead = NULL; /* Head of grandchild css level */ + struct cgroup_subsys_state *parent, *grandchild; + struct css_rstat_cpu *crstatc; + + child->rstat_flush_next = NULL; + + /* + * The subsystem rstat lock must be held for the whole duration from + * here as the rstat_flush_next list is being constructed to when + * it is consumed later in css_rstat_flush(). + */ + lockdep_assert_held(ss_rstat_lock(head->ss)); + + /* + * Notation: -> updated_next pointer + * => rstat_flush_next pointer + * + * Assuming the following sample updated_children lists: + * P: C1 -> C2 -> P + * C1: G11 -> G12 -> C1 + * C2: G21 -> G22 -> C2 + * + * After 1st iteration: + * head => C2 => C1 => NULL + * ghead => G21 => G11 => NULL + * + * After 2nd iteration: + * head => G12 => G11 => G22 => G21 => C2 => C1 => NULL + */ +next_level: + while (cnext) { + child = cnext; + cnext = child->rstat_flush_next; + parent = child->parent; + + /* updated_next is parent cgroup terminated if !NULL */ + while (child != parent) { + child->rstat_flush_next = head; + head = child; + crstatc = css_rstat_cpu(child, cpu); + grandchild = crstatc->updated_children; + if (grandchild != child) { + /* Push the grand child to the next level */ + crstatc->updated_children = child; + grandchild->rstat_flush_next = ghead; + ghead = grandchild; + } + child = crstatc->updated_next; + crstatc->updated_next = NULL; + } + } + + if (ghead) { + cnext = ghead; + ghead = NULL; + goto next_level; + } + return head; +} + +/** + * css_rstat_updated_list - build a list of updated css's to be flushed + * @root: root of the css subtree to traverse + * @cpu: target cpu + * Return: A singly linked list of css's to be flushed + * + * Walks the updated rstat_cpu tree on @cpu from @root. During traversal, + * each returned css is unlinked from the updated tree. + * + * The only ordering guarantee is that, for a parent and a child pair + * covered by a given traversal, the child is before its parent in + * the list. + * + * Note that updated_children is self terminated and points to a list of + * child css's if not empty. Whereas updated_next is like a sibling link + * within the children list and terminated by the parent css. An exception + * here is the css root whose updated_next can be self terminated. + */ +static struct cgroup_subsys_state *css_rstat_updated_list( + struct cgroup_subsys_state *root, int cpu) +{ + struct css_rstat_cpu *rstatc = css_rstat_cpu(root, cpu); + struct cgroup_subsys_state *head = NULL, *parent, *child; + + css_process_update_tree(root->ss, cpu); + + /* Return NULL if this subtree is not on-list */ + if (!rstatc->updated_next) + return NULL; + + /* + * Unlink @root from its parent. As the updated_children list is + * singly linked, we have to walk it to find the removal point. + */ + parent = root->parent; + if (parent) { + struct css_rstat_cpu *prstatc; + struct cgroup_subsys_state **nextp; + + prstatc = css_rstat_cpu(parent, cpu); + nextp = &prstatc->updated_children; + while (*nextp != root) { + struct css_rstat_cpu *nrstatc; + + nrstatc = css_rstat_cpu(*nextp, cpu); + WARN_ON_ONCE(*nextp == parent); + nextp = &nrstatc->updated_next; + } + *nextp = rstatc->updated_next; + } + + rstatc->updated_next = NULL; + + /* Push @root to the list first before pushing the children */ + head = root; + root->rstat_flush_next = NULL; + child = rstatc->updated_children; + rstatc->updated_children = root; + if (child != root) + head = css_rstat_push_children(head, child, cpu); + + return head; +} + +/* + * A hook for bpf stat collectors to attach to and flush their stats. + * Together with providing bpf kfuncs for css_rstat_updated() and + * css_rstat_flush(), this enables a complete workflow where bpf progs that + * collect cgroup stats can integrate with rstat for efficient flushing. + * + * A static noinline declaration here could cause the compiler to optimize away + * the function. A global noinline declaration will keep the definition, but may + * optimize away the callsite. Therefore, __weak is needed to ensure that the + * call is still emitted, by telling the compiler that we don't know what the + * function might eventually be. + */ + +__bpf_hook_start(); + +__weak noinline void bpf_rstat_flush(struct cgroup *cgrp, + struct cgroup *parent, int cpu) +{ +} + +__bpf_hook_end(); + +/* + * Helper functions for locking. + * + * This makes it easier to diagnose locking issues and contention in + * production environments. The parameter @cpu_in_loop indicate lock + * was released and re-taken when collection data from the CPUs. The + * value -1 is used when obtaining the main lock else this is the CPU + * number processed last. + */ +static inline void __css_rstat_lock(struct cgroup_subsys_state *css, + int cpu_in_loop) + __acquires(ss_rstat_lock(css->ss)) +{ + struct cgroup *cgrp = css->cgroup; + spinlock_t *lock; + bool contended; + + lock = ss_rstat_lock(css->ss); + contended = !spin_trylock_irq(lock); + if (contended) { + trace_cgroup_rstat_lock_contended(cgrp, cpu_in_loop, contended); + spin_lock_irq(lock); + } + trace_cgroup_rstat_locked(cgrp, cpu_in_loop, contended); +} + +static inline void __css_rstat_unlock(struct cgroup_subsys_state *css, + int cpu_in_loop) + __releases(ss_rstat_lock(css->ss)) +{ + struct cgroup *cgrp = css->cgroup; + spinlock_t *lock; + + lock = ss_rstat_lock(css->ss); + trace_cgroup_rstat_unlock(cgrp, cpu_in_loop, false); + spin_unlock_irq(lock); +} + +/** + * css_rstat_flush - flush stats in @css's rstat subtree + * @css: target cgroup subsystem state + * + * Collect all per-cpu stats in @css's subtree into the global counters + * and propagate them upwards. After this function returns, all rstat + * nodes in the subtree have up-to-date ->stat. + * + * This also gets all rstat nodes in the subtree including @css off the + * ->updated_children lists. + * + * This function may block. + */ +__bpf_kfunc void css_rstat_flush(struct cgroup_subsys_state *css) +{ + int cpu; + bool is_self = css_is_self(css); + + /* + * Since bpf programs can call this function, prevent access to + * uninitialized rstat pointers. + */ + if (!css_uses_rstat(css)) + return; + + might_sleep(); + for_each_possible_cpu(cpu) { + struct cgroup_subsys_state *pos; + + /* Reacquire for each CPU to avoid disabling IRQs too long */ + __css_rstat_lock(css, cpu); + pos = css_rstat_updated_list(css, cpu); + for (; pos; pos = pos->rstat_flush_next) { + if (is_self) { + cgroup_base_stat_flush(pos->cgroup, cpu); + bpf_rstat_flush(pos->cgroup, + cgroup_parent(pos->cgroup), cpu); + } else + pos->ss->css_rstat_flush(pos, cpu); + } + __css_rstat_unlock(css, cpu); + if (!cond_resched()) + cpu_relax(); + } +} + +int css_rstat_init(struct cgroup_subsys_state *css) +{ + struct cgroup *cgrp = css->cgroup; + int cpu; + bool is_self = css_is_self(css); + + if (is_self) { + /* the root cgrp has rstat_base_cpu preallocated */ + if (!cgrp->rstat_base_cpu) { + cgrp->rstat_base_cpu = alloc_percpu(struct cgroup_rstat_base_cpu); + if (!cgrp->rstat_base_cpu) + return -ENOMEM; + } + } else if (css->ss->css_rstat_flush == NULL) + return 0; + + /* the root cgrp's self css has rstat_cpu preallocated */ + if (!css->rstat_cpu) { + css->rstat_cpu = alloc_percpu(struct css_rstat_cpu); + if (!css->rstat_cpu) { + if (is_self) + free_percpu(cgrp->rstat_base_cpu); + + return -ENOMEM; + } + } + + /* ->updated_children list is self terminated */ + for_each_possible_cpu(cpu) { + struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); + + rstatc->owner = rstatc->updated_children = css; + init_llist_node(&rstatc->lnode); + + if (is_self) { + struct cgroup_rstat_base_cpu *rstatbc; + + rstatbc = cgroup_rstat_base_cpu(cgrp, cpu); + u64_stats_init(&rstatbc->bsync); + } + } + + return 0; +} + +void css_rstat_exit(struct cgroup_subsys_state *css) +{ + int cpu; + + if (!css_uses_rstat(css)) + return; + + if (!css->rstat_cpu) + return; + + css_rstat_flush(css); + + /* sanity check */ + for_each_possible_cpu(cpu) { + struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); + + if (WARN_ON_ONCE(rstatc->updated_children != css) || + WARN_ON_ONCE(rstatc->updated_next)) + return; + } + + if (css_is_self(css)) { + struct cgroup *cgrp = css->cgroup; + + free_percpu(cgrp->rstat_base_cpu); + cgrp->rstat_base_cpu = NULL; + } + + free_percpu(css->rstat_cpu); + css->rstat_cpu = NULL; +} + +/** + * ss_rstat_init - subsystem-specific rstat initialization + * @ss: target subsystem + * + * If @ss is NULL, the static locks associated with the base stats + * are initialized. If @ss is non-NULL, the subsystem-specific locks + * are initialized. + */ +int __init ss_rstat_init(struct cgroup_subsys *ss) +{ + int cpu; + + if (ss) { + ss->lhead = alloc_percpu(struct llist_head); + if (!ss->lhead) + return -ENOMEM; + } + + spin_lock_init(ss_rstat_lock(ss)); + for_each_possible_cpu(cpu) + init_llist_head(ss_lhead_cpu(ss, cpu)); + + return 0; +} + +/* + * Functions for cgroup basic resource statistics implemented on top of + * rstat. + */ +static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, + struct cgroup_base_stat *src_bstat) +{ + dst_bstat->cputime.utime += src_bstat->cputime.utime; + dst_bstat->cputime.stime += src_bstat->cputime.stime; + dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; +#ifdef CONFIG_SCHED_CORE + dst_bstat->forceidle_sum += src_bstat->forceidle_sum; +#endif + dst_bstat->ntime += src_bstat->ntime; +} + +static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, + struct cgroup_base_stat *src_bstat) +{ + dst_bstat->cputime.utime -= src_bstat->cputime.utime; + dst_bstat->cputime.stime -= src_bstat->cputime.stime; + dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; +#ifdef CONFIG_SCHED_CORE + dst_bstat->forceidle_sum -= src_bstat->forceidle_sum; +#endif + dst_bstat->ntime -= src_bstat->ntime; +} + +static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) +{ + struct cgroup_rstat_base_cpu *rstatbc = cgroup_rstat_base_cpu(cgrp, cpu); + struct cgroup *parent = cgroup_parent(cgrp); + struct cgroup_rstat_base_cpu *prstatbc; + struct cgroup_base_stat delta; + unsigned seq; + + /* Root-level stats are sourced from system-wide CPU stats */ + if (!parent) + return; + + /* fetch the current per-cpu values */ + do { + seq = __u64_stats_fetch_begin(&rstatbc->bsync); + delta = rstatbc->bstat; + } while (__u64_stats_fetch_retry(&rstatbc->bsync, seq)); + + /* propagate per-cpu delta to cgroup and per-cpu global statistics */ + cgroup_base_stat_sub(&delta, &rstatbc->last_bstat); + cgroup_base_stat_add(&cgrp->bstat, &delta); + cgroup_base_stat_add(&rstatbc->last_bstat, &delta); + cgroup_base_stat_add(&rstatbc->subtree_bstat, &delta); + + /* propagate cgroup and per-cpu global delta to parent (unless that's root) */ + if (cgroup_parent(parent)) { + delta = cgrp->bstat; + cgroup_base_stat_sub(&delta, &cgrp->last_bstat); + cgroup_base_stat_add(&parent->bstat, &delta); + cgroup_base_stat_add(&cgrp->last_bstat, &delta); + + delta = rstatbc->subtree_bstat; + prstatbc = cgroup_rstat_base_cpu(parent, cpu); + cgroup_base_stat_sub(&delta, &rstatbc->last_subtree_bstat); + cgroup_base_stat_add(&prstatbc->subtree_bstat, &delta); + cgroup_base_stat_add(&rstatbc->last_subtree_bstat, &delta); + } +} + +static struct cgroup_rstat_base_cpu * +cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags) +{ + struct cgroup_rstat_base_cpu *rstatbc; + + rstatbc = get_cpu_ptr(cgrp->rstat_base_cpu); + *flags = u64_stats_update_begin_irqsave(&rstatbc->bsync); + return rstatbc; +} + +static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, + struct cgroup_rstat_base_cpu *rstatbc, + unsigned long flags) +{ + u64_stats_update_end_irqrestore(&rstatbc->bsync, flags); + css_rstat_updated(&cgrp->self, smp_processor_id()); + put_cpu_ptr(rstatbc); +} + +void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) +{ + struct cgroup_rstat_base_cpu *rstatbc; + unsigned long flags; + + rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); + rstatbc->bstat.cputime.sum_exec_runtime += delta_exec; + cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags); +} + +void __cgroup_account_cputime_field(struct cgroup *cgrp, + enum cpu_usage_stat index, u64 delta_exec) +{ + struct cgroup_rstat_base_cpu *rstatbc; + unsigned long flags; + + rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); + + switch (index) { + case CPUTIME_NICE: + rstatbc->bstat.ntime += delta_exec; + fallthrough; + case CPUTIME_USER: + rstatbc->bstat.cputime.utime += delta_exec; + break; + case CPUTIME_SYSTEM: + case CPUTIME_IRQ: + case CPUTIME_SOFTIRQ: + rstatbc->bstat.cputime.stime += delta_exec; + break; +#ifdef CONFIG_SCHED_CORE + case CPUTIME_FORCEIDLE: + rstatbc->bstat.forceidle_sum += delta_exec; + break; +#endif + default: + break; + } + + cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags); +} + +/* + * compute the cputime for the root cgroup by getting the per cpu data + * at a global level, then categorizing the fields in a manner consistent + * with how it is done by __cgroup_account_cputime_field for each bit of + * cpu time attributed to a cgroup. + */ +static void root_cgroup_cputime(struct cgroup_base_stat *bstat) +{ + struct task_cputime *cputime = &bstat->cputime; + int i; + + memset(bstat, 0, sizeof(*bstat)); + for_each_possible_cpu(i) { + struct kernel_cpustat kcpustat; + u64 *cpustat = kcpustat.cpustat; + u64 user = 0; + u64 sys = 0; + + kcpustat_cpu_fetch(&kcpustat, i); + + user += cpustat[CPUTIME_USER]; + user += cpustat[CPUTIME_NICE]; + cputime->utime += user; + + sys += cpustat[CPUTIME_SYSTEM]; + sys += cpustat[CPUTIME_IRQ]; + sys += cpustat[CPUTIME_SOFTIRQ]; + cputime->stime += sys; + + cputime->sum_exec_runtime += user; + cputime->sum_exec_runtime += sys; + +#ifdef CONFIG_SCHED_CORE + bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE]; +#endif + bstat->ntime += cpustat[CPUTIME_NICE]; + } +} + + +static void cgroup_force_idle_show(struct seq_file *seq, struct cgroup_base_stat *bstat) +{ +#ifdef CONFIG_SCHED_CORE + u64 forceidle_time = bstat->forceidle_sum; + + do_div(forceidle_time, NSEC_PER_USEC); + seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time); +#endif +} + +void cgroup_base_stat_cputime_show(struct seq_file *seq) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + struct cgroup_base_stat bstat; + + if (cgroup_parent(cgrp)) { + css_rstat_flush(&cgrp->self); + __css_rstat_lock(&cgrp->self, -1); + bstat = cgrp->bstat; + cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, + &bstat.cputime.utime, &bstat.cputime.stime); + __css_rstat_unlock(&cgrp->self, -1); + } else { + root_cgroup_cputime(&bstat); + } + + do_div(bstat.cputime.sum_exec_runtime, NSEC_PER_USEC); + do_div(bstat.cputime.utime, NSEC_PER_USEC); + do_div(bstat.cputime.stime, NSEC_PER_USEC); + do_div(bstat.ntime, NSEC_PER_USEC); + + seq_printf(seq, "usage_usec %llu\n" + "user_usec %llu\n" + "system_usec %llu\n" + "nice_usec %llu\n", + bstat.cputime.sum_exec_runtime, + bstat.cputime.utime, + bstat.cputime.stime, + bstat.ntime); + + cgroup_force_idle_show(seq, &bstat); +} + +/* Add bpf kfuncs for css_rstat_updated() and css_rstat_flush() */ +BTF_KFUNCS_START(bpf_rstat_kfunc_ids) +BTF_ID_FLAGS(func, css_rstat_updated) +BTF_ID_FLAGS(func, css_rstat_flush, KF_SLEEPABLE) +BTF_KFUNCS_END(bpf_rstat_kfunc_ids) + +static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = { + .owner = THIS_MODULE, + .set = &bpf_rstat_kfunc_ids, +}; + +static int __init bpf_rstat_kfunc_init(void) +{ + return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, + &bpf_rstat_kfunc_set); +} +late_initcall(bpf_rstat_kfunc_init); |
