diff options
Diffstat (limited to 'kernel/sched/core.c')
| -rw-r--r-- | kernel/sched/core.c | 2682 |
1 files changed, 1404 insertions, 1278 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 95e40895a519..41ba0be16911 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -7,6 +7,8 @@ * Copyright (C) 1991-2002 Linus Torvalds * Copyright (C) 1998-2024 Ingo Molnar, Red Hat */ +#define INSTANTIATE_EXPORTED_MIGRATE_DISABLE +#include <linux/sched.h> #include <linux/highmem.h> #include <linux/hrtimer_api.h> #include <linux/ktime_api.h> @@ -66,10 +68,11 @@ #include <linux/vtime.h> #include <linux/wait_api.h> #include <linux/workqueue_api.h> +#include <linux/livepatch_sched.h> #ifdef CONFIG_PREEMPT_DYNAMIC -# ifdef CONFIG_GENERIC_ENTRY -# include <linux/entry-common.h> +# ifdef CONFIG_GENERIC_IRQ_ENTRY +# include <linux/irq-entry-common.h> # endif #endif @@ -91,11 +94,11 @@ #include "autogroup.h" #include "pelt.h" #include "smp.h" -#include "stats.h" #include "../workqueue_internal.h" #include "../../io_uring/io-wq.h" #include "../smpboot.h" +#include "../locking/mutex.h" EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); @@ -118,8 +121,37 @@ EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); +DEFINE_PER_CPU(struct rnd_state, sched_rnd_state); + +#ifdef CONFIG_SCHED_PROXY_EXEC +DEFINE_STATIC_KEY_TRUE(__sched_proxy_exec); +static int __init setup_proxy_exec(char *str) +{ + bool proxy_enable = true; + + if (*str && kstrtobool(str + 1, &proxy_enable)) { + pr_warn("Unable to parse sched_proxy_exec=\n"); + return 0; + } + + if (proxy_enable) { + pr_info("sched_proxy_exec enabled via boot arg\n"); + static_branch_enable(&__sched_proxy_exec); + } else { + pr_info("sched_proxy_exec disabled via boot arg\n"); + static_branch_disable(&__sched_proxy_exec); + } + return 1; +} +#else +static int __init setup_proxy_exec(char *str) +{ + pr_warn("CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n"); + return 0; +} +#endif +__setup("sched_proxy_exec", setup_proxy_exec); -#ifdef CONFIG_SCHED_DEBUG /* * Debugging: various feature bits * @@ -129,7 +161,7 @@ DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); */ #define SCHED_FEAT(name, enabled) \ (1UL << __SCHED_FEAT_##name) * enabled | -const_debug unsigned int sysctl_sched_features = +__read_mostly unsigned int sysctl_sched_features = #include "features.h" 0; #undef SCHED_FEAT @@ -143,13 +175,12 @@ const_debug unsigned int sysctl_sched_features = */ __read_mostly int sysctl_resched_latency_warn_ms = 100; __read_mostly int sysctl_resched_latency_warn_once = 1; -#endif /* CONFIG_SCHED_DEBUG */ /* * Number of tasks to iterate in a single balance run. * Limited because this is done with IRQs disabled. */ -const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; +__read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; __read_mostly int scheduler_running; @@ -483,13 +514,23 @@ void sched_core_put(void) schedule_work(&_work); } -#else /* !CONFIG_SCHED_CORE */ +#else /* !CONFIG_SCHED_CORE: */ static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } -#endif /* CONFIG_SCHED_CORE */ +#endif /* !CONFIG_SCHED_CORE */ + +/* need a wrapper since we may need to trace from modules */ +EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); + +/* Call via the helper macro trace_set_current_state. */ +void __trace_set_current_state(int state_value) +{ + trace_sched_set_state_tp(current, state_value); +} +EXPORT_SYMBOL(__trace_set_current_state); /* * Serialization rules: @@ -543,8 +584,8 @@ sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } * * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: * - * is set by activate_task() and cleared by deactivate_task(), under - * rq->lock. Non-zero indicates the task is runnable, the special + * is set by activate_task() and cleared by deactivate_task()/block_task(), + * under rq->lock. Non-zero indicates the task is runnable, the special * ON_RQ_MIGRATING state is used for migration without holding both * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). * @@ -642,7 +683,6 @@ void raw_spin_rq_unlock(struct rq *rq) raw_spin_unlock(rq_lockp(rq)); } -#ifdef CONFIG_SMP /* * double_rq_lock - safely lock two runqueues */ @@ -659,7 +699,6 @@ void double_rq_lock(struct rq *rq1, struct rq *rq2) double_rq_clock_clear_update(rq1, rq2); } -#endif /* * __task_rq_lock - lock the rq @p resides on. @@ -740,39 +779,43 @@ static void update_rq_clock_task(struct rq *rq, s64 delta) s64 __maybe_unused steal = 0, irq_delta = 0; #ifdef CONFIG_IRQ_TIME_ACCOUNTING - irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; + if (irqtime_enabled()) { + irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; - /* - * Since irq_time is only updated on {soft,}irq_exit, we might run into - * this case when a previous update_rq_clock() happened inside a - * {soft,}IRQ region. - * - * When this happens, we stop ->clock_task and only update the - * prev_irq_time stamp to account for the part that fit, so that a next - * update will consume the rest. This ensures ->clock_task is - * monotonic. - * - * It does however cause some slight miss-attribution of {soft,}IRQ - * time, a more accurate solution would be to update the irq_time using - * the current rq->clock timestamp, except that would require using - * atomic ops. - */ - if (irq_delta > delta) - irq_delta = delta; + /* + * Since irq_time is only updated on {soft,}irq_exit, we might run into + * this case when a previous update_rq_clock() happened inside a + * {soft,}IRQ region. + * + * When this happens, we stop ->clock_task and only update the + * prev_irq_time stamp to account for the part that fit, so that a next + * update will consume the rest. This ensures ->clock_task is + * monotonic. + * + * It does however cause some slight miss-attribution of {soft,}IRQ + * time, a more accurate solution would be to update the irq_time using + * the current rq->clock timestamp, except that would require using + * atomic ops. + */ + if (irq_delta > delta) + irq_delta = delta; - rq->prev_irq_time += irq_delta; - delta -= irq_delta; - delayacct_irq(rq->curr, irq_delta); + rq->prev_irq_time += irq_delta; + delta -= irq_delta; + delayacct_irq(rq->curr, irq_delta); + } #endif #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING if (static_key_false((¶virt_steal_rq_enabled))) { - steal = paravirt_steal_clock(cpu_of(rq)); + u64 prev_steal; + + steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); steal -= rq->prev_steal_time_rq; if (unlikely(steal > delta)) steal = delta; - rq->prev_steal_time_rq += steal; + rq->prev_steal_time_rq = prev_steal; delta -= steal; } #endif @@ -789,22 +832,25 @@ static void update_rq_clock_task(struct rq *rq, s64 delta) void update_rq_clock(struct rq *rq) { s64 delta; + u64 clock; lockdep_assert_rq_held(rq); if (rq->clock_update_flags & RQCF_ACT_SKIP) return; -#ifdef CONFIG_SCHED_DEBUG if (sched_feat(WARN_DOUBLE_CLOCK)) - SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); + WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); rq->clock_update_flags |= RQCF_UPDATED; -#endif - delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; + clock = sched_clock_cpu(cpu_of(rq)); + scx_rq_clock_update(rq, clock); + + delta = clock - rq->clock; if (delta < 0) return; rq->clock += delta; + update_rq_clock_task(rq, delta); } @@ -832,14 +878,12 @@ static enum hrtimer_restart hrtick(struct hrtimer *timer) rq_lock(rq, &rf); update_rq_clock(rq); - rq->donor->sched_class->task_tick(rq, rq->curr, 1); + rq->donor->sched_class->task_tick(rq, rq->donor, 1); rq_unlock(rq, &rf); return HRTIMER_NORESTART; } -#ifdef CONFIG_SMP - static void __hrtick_restart(struct rq *rq) { struct hrtimer *timer = &rq->hrtick_timer; @@ -876,7 +920,7 @@ void hrtick_start(struct rq *rq, u64 delay) * doesn't make sense and can cause timer DoS. */ delta = max_t(s64, delay, 10000LL); - rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); + rq->hrtick_time = ktime_add_ns(hrtimer_cb_get_time(timer), delta); if (rq == this_rq()) __hrtick_restart(rq); @@ -884,34 +928,12 @@ void hrtick_start(struct rq *rq, u64 delay) smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); } -#else -/* - * Called to set the hrtick timer state. - * - * called with rq->lock held and IRQs disabled - */ -void hrtick_start(struct rq *rq, u64 delay) -{ - /* - * Don't schedule slices shorter than 10000ns, that just - * doesn't make sense. Rely on vruntime for fairness. - */ - delay = max_t(u64, delay, 10000LL); - hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), - HRTIMER_MODE_REL_PINNED_HARD); -} - -#endif /* CONFIG_SMP */ - static void hrtick_rq_init(struct rq *rq) { -#ifdef CONFIG_SMP INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); -#endif - hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); - rq->hrtick_timer.function = hrtick; + hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); } -#else /* CONFIG_SCHED_HRTICK */ +#else /* !CONFIG_SCHED_HRTICK: */ static inline void hrtick_clear(struct rq *rq) { } @@ -919,7 +941,7 @@ static inline void hrtick_clear(struct rq *rq) static inline void hrtick_rq_init(struct rq *rq) { } -#endif /* CONFIG_SCHED_HRTICK */ +#endif /* !CONFIG_SCHED_HRTICK */ /* * try_cmpxchg based fetch_or() macro so it works for different integer types: @@ -935,7 +957,7 @@ static inline void hrtick_rq_init(struct rq *rq) _val; \ }) -#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) +#ifdef TIF_POLLING_NRFLAG /* * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, * this avoids any races wrt polling state changes and thereby avoids @@ -974,13 +996,11 @@ static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) return true; } -#ifdef CONFIG_SMP static inline bool set_nr_if_polling(struct task_struct *p) { return false; } #endif -#endif static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) { @@ -1055,9 +1075,10 @@ void wake_up_q(struct wake_q_head *head) struct task_struct *task; task = container_of(node, struct task_struct, wake_q); - /* Task can safely be re-inserted now: */ node = node->next; - task->wake_q.next = NULL; + /* pairs with cmpxchg_relaxed() in __wake_q_add() */ + WRITE_ONCE(task->wake_q.next, NULL); + /* Task can safely be re-inserted now. */ /* * wake_up_process() executes a full barrier, which pairs with @@ -1095,6 +1116,7 @@ static void __resched_curr(struct rq *rq, int tif) cpu = cpu_of(rq); + trace_sched_set_need_resched_tp(curr, cpu, tif); if (cpu == smp_processor_id()) { set_ti_thread_flag(cti, tif); if (tif == TIF_NEED_RESCHED) @@ -1110,6 +1132,11 @@ static void __resched_curr(struct rq *rq, int tif) } } +void __trace_set_need_resched(struct task_struct *curr, int tif) +{ + trace_sched_set_need_resched_tp(curr, smp_processor_id(), tif); +} + void resched_curr(struct rq *rq) { __resched_curr(rq, TIF_NEED_RESCHED); @@ -1152,7 +1179,6 @@ void resched_cpu(int cpu) raw_spin_rq_unlock_irqrestore(rq, flags); } -#ifdef CONFIG_SMP #ifdef CONFIG_NO_HZ_COMMON /* * In the semi idle case, use the nearest busy CPU for migrating timers @@ -1168,13 +1194,13 @@ int get_nohz_timer_target(void) struct sched_domain *sd; const struct cpumask *hk_mask; - if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { + if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { if (!idle_cpu(cpu)) return cpu; default_cpu = cpu; } - hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); + hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); guard(rcu)(); @@ -1189,7 +1215,7 @@ int get_nohz_timer_target(void) } if (default_cpu == -1) - default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); + default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); return default_cpu; } @@ -1283,9 +1309,9 @@ static void nohz_csd_func(void *info) WARN_ON(!(flags & NOHZ_KICK_MASK)); rq->idle_balance = idle_cpu(cpu); - if (rq->idle_balance && !need_resched()) { + if (rq->idle_balance) { rq->nohz_idle_balance = flags; - raise_softirq_irqoff(SCHED_SOFTIRQ); + __raise_softirq_irqoff(SCHED_SOFTIRQ); } } @@ -1341,7 +1367,7 @@ bool sched_can_stop_tick(struct rq *rq) if (scx_enabled() && !scx_can_stop_tick(rq)) return false; - if (rq->cfs.nr_running > 1) + if (rq->cfs.h_nr_queued > 1) return false; /* @@ -1359,10 +1385,8 @@ bool sched_can_stop_tick(struct rq *rq) return true; } #endif /* CONFIG_NO_HZ_FULL */ -#endif /* CONFIG_SMP */ -#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ - (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) +#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED) /* * Iterate task_group tree rooted at *from, calling @down when first entering a * node and @up when leaving it for the final time. @@ -1711,7 +1735,7 @@ static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, bucket = &uc_rq->bucket[uc_se->bucket_id]; - SCHED_WARN_ON(!bucket->tasks); + WARN_ON_ONCE(!bucket->tasks); if (likely(bucket->tasks)) bucket->tasks--; @@ -1731,14 +1755,14 @@ static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, * Defensive programming: this should never happen. If it happens, * e.g. due to future modification, warn and fix up the expected value. */ - SCHED_WARN_ON(bucket->value > rq_clamp); + WARN_ON_ONCE(bucket->value > rq_clamp); if (bucket->value >= rq_clamp) { bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); uclamp_rq_set(rq, clamp_id, bkt_clamp); } } -static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) +static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { enum uclamp_id clamp_id; @@ -1748,13 +1772,14 @@ static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) * The condition is constructed such that a NOP is generated when * sched_uclamp_used is disabled. */ - if (!static_branch_unlikely(&sched_uclamp_used)) + if (!uclamp_is_used()) return; if (unlikely(!p->sched_class->uclamp_enabled)) return; - if (p->se.sched_delayed) + /* Only inc the delayed task which being woken up. */ + if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED)) return; for_each_clamp_id(clamp_id) @@ -1775,7 +1800,7 @@ static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) * The condition is constructed such that a NOP is generated when * sched_uclamp_used is disabled. */ - if (!static_branch_unlikely(&sched_uclamp_used)) + if (!uclamp_is_used()) return; if (unlikely(!p->sched_class->uclamp_enabled)) @@ -1933,12 +1958,12 @@ static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, } if (update_root_tg) { - static_branch_enable(&sched_uclamp_used); + sched_uclamp_enable(); uclamp_update_root_tg(); } if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { - static_branch_enable(&sched_uclamp_used); + sched_uclamp_enable(); uclamp_sync_util_min_rt_default(); } @@ -1955,7 +1980,7 @@ undo: sysctl_sched_uclamp_util_min_rt_default = old_min_rt; return result; } -#endif +#endif /* CONFIG_SYSCTL */ static void uclamp_fork(struct task_struct *p) { @@ -2021,13 +2046,13 @@ static void __init init_uclamp(void) } } -#else /* !CONFIG_UCLAMP_TASK */ -static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } +#else /* !CONFIG_UCLAMP_TASK: */ +static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { } static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } static inline void uclamp_fork(struct task_struct *p) { } static inline void uclamp_post_fork(struct task_struct *p) { } static inline void init_uclamp(void) { } -#endif /* CONFIG_UCLAMP_TASK */ +#endif /* !CONFIG_UCLAMP_TASK */ bool sched_task_on_rq(struct task_struct *p) { @@ -2058,12 +2083,15 @@ void enqueue_task(struct rq *rq, struct task_struct *p, int flags) if (!(flags & ENQUEUE_NOCLOCK)) update_rq_clock(rq); - p->sched_class->enqueue_task(rq, p, flags); /* - * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear - * ->sched_delayed. + * Can be before ->enqueue_task() because uclamp considers the + * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared + * in ->enqueue_task(). */ - uclamp_rq_inc(rq, p); + uclamp_rq_inc(rq, p, flags); + + rq->queue_mask |= p->sched_class->queue_mask; + p->sched_class->enqueue_task(rq, p, flags); psi_enqueue(p, flags); @@ -2095,6 +2123,7 @@ inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) * and mark the task ->sched_delayed. */ uclamp_rq_dec(rq, p); + rq->queue_mask |= p->sched_class->queue_mask; return p->sched_class->dequeue_task(rq, p, flags); } @@ -2102,8 +2131,6 @@ void activate_task(struct rq *rq, struct task_struct *p, int flags) { if (task_on_rq_migrating(p)) flags |= ENQUEUE_MIGRATED; - if (flags & ENQUEUE_MIGRATED) - sched_mm_cid_migrate_to(rq, p); enqueue_task(rq, p, flags); @@ -2113,7 +2140,7 @@ void activate_task(struct rq *rq, struct task_struct *p, int flags) void deactivate_task(struct rq *rq, struct task_struct *p, int flags) { - SCHED_WARN_ON(flags & DEQUEUE_SLEEP); + WARN_ON_ONCE(flags & DEQUEUE_SLEEP); WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); ASSERT_EXCLUSIVE_WRITER(p->on_rq); @@ -2143,37 +2170,6 @@ inline int task_curr(const struct task_struct *p) return cpu_curr(task_cpu(p)) == p; } -/* - * ->switching_to() is called with the pi_lock and rq_lock held and must not - * mess with locking. - */ -void check_class_changing(struct rq *rq, struct task_struct *p, - const struct sched_class *prev_class) -{ - if (prev_class != p->sched_class && p->sched_class->switching_to) - p->sched_class->switching_to(rq, p); -} - -/* - * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, - * use the balance_callback list if you want balancing. - * - * this means any call to check_class_changed() must be followed by a call to - * balance_callback(). - */ -void check_class_changed(struct rq *rq, struct task_struct *p, - const struct sched_class *prev_class, - int oldprio) -{ - if (prev_class != p->sched_class) { - if (prev_class->switched_from) - prev_class->switched_from(rq, p); - - p->sched_class->switched_to(rq, p); - } else if (oldprio != p->prio || dl_task(p)) - p->sched_class->prio_changed(rq, p, oldprio); -} - void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) { struct task_struct *donor = rq->donor; @@ -2269,6 +2265,12 @@ unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state * just go back and repeat. */ rq = task_rq_lock(p, &rf); + /* + * If task is sched_delayed, force dequeue it, to avoid always + * hitting the tick timeout in the queued case + */ + if (p->se.sched_delayed) + dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); trace_sched_wait_task(p); running = task_on_cpu(rq, p); queued = task_on_rq_queued(p); @@ -2329,10 +2331,8 @@ unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state return ncsw; } -#ifdef CONFIG_SMP - static void -__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); +do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); static void migrate_disable_switch(struct rq *rq, struct task_struct *p) { @@ -2347,34 +2347,11 @@ static void migrate_disable_switch(struct rq *rq, struct task_struct *p) if (p->cpus_ptr != &p->cpus_mask) return; - /* - * Violates locking rules! See comment in __do_set_cpus_allowed(). - */ - __do_set_cpus_allowed(p, &ac); + scoped_guard (task_rq_lock, p) + do_set_cpus_allowed(p, &ac); } -void migrate_disable(void) -{ - struct task_struct *p = current; - - if (p->migration_disabled) { -#ifdef CONFIG_DEBUG_PREEMPT - /* - *Warn about overflow half-way through the range. - */ - WARN_ON_ONCE((s16)p->migration_disabled < 0); -#endif - p->migration_disabled++; - return; - } - - guard(preempt)(); - this_rq()->nr_pinned++; - p->migration_disabled = 1; -} -EXPORT_SYMBOL_GPL(migrate_disable); - -void migrate_enable(void) +void ___migrate_enable(void) { struct task_struct *p = current; struct affinity_context ac = { @@ -2382,35 +2359,19 @@ void migrate_enable(void) .flags = SCA_MIGRATE_ENABLE, }; -#ifdef CONFIG_DEBUG_PREEMPT - /* - * Check both overflow from migrate_disable() and superfluous - * migrate_enable(). - */ - if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) - return; -#endif + __set_cpus_allowed_ptr(p, &ac); +} +EXPORT_SYMBOL_GPL(___migrate_enable); - if (p->migration_disabled > 1) { - p->migration_disabled--; - return; - } +void migrate_disable(void) +{ + __migrate_disable(); +} +EXPORT_SYMBOL_GPL(migrate_disable); - /* - * Ensure stop_task runs either before or after this, and that - * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). - */ - guard(preempt)(); - if (p->cpus_ptr != &p->cpus_mask) - __set_cpus_allowed_ptr(p, &ac); - /* - * Mustn't clear migration_disabled() until cpus_ptr points back at the - * regular cpus_mask, otherwise things that race (eg. - * select_fallback_rq) get confused. - */ - barrier(); - p->migration_disabled = 0; - this_rq()->nr_pinned--; +void migrate_enable(void) +{ + __migrate_enable(); } EXPORT_SYMBOL_GPL(migrate_enable); @@ -2620,7 +2581,8 @@ static int migration_cpu_stop(void *data) */ WARN_ON_ONCE(!pending->stop_pending); preempt_disable(); - task_rq_unlock(rq, p, &rf); + rq_unlock(rq, &rf); + raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, &pending->arg, &pending->stop_work); preempt_enable(); @@ -2629,7 +2591,8 @@ static int migration_cpu_stop(void *data) out: if (pending) pending->stop_pending = false; - task_rq_unlock(rq, p, &rf); + rq_unlock(rq, &rf); + raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); if (complete) complete_all(&pending->done); @@ -2678,6 +2641,8 @@ out_unlock: return 0; } +static inline void mm_update_cpus_allowed(struct mm_struct *mm, const cpumask_t *affmask); + /* * sched_class::set_cpus_allowed must do the below, but is not required to * actually call this function. @@ -2691,6 +2656,7 @@ void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx cpumask_copy(&p->cpus_mask, ctx->new_mask); p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); + mm_update_cpus_allowed(p->mm, ctx->new_mask); /* * Swap in a new user_cpus_ptr if SCA_USER flag set @@ -2700,56 +2666,17 @@ void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx } static void -__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) +do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) { - struct rq *rq = task_rq(p); - bool queued, running; - - /* - * This here violates the locking rules for affinity, since we're only - * supposed to change these variables while holding both rq->lock and - * p->pi_lock. - * - * HOWEVER, it magically works, because ttwu() is the only code that - * accesses these variables under p->pi_lock and only does so after - * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() - * before finish_task(). - * - * XXX do further audits, this smells like something putrid. - */ - if (ctx->flags & SCA_MIGRATE_DISABLE) - SCHED_WARN_ON(!p->on_cpu); - else - lockdep_assert_held(&p->pi_lock); - - queued = task_on_rq_queued(p); - running = task_current_donor(rq, p); - - if (queued) { - /* - * Because __kthread_bind() calls this on blocked tasks without - * holding rq->lock. - */ - lockdep_assert_rq_held(rq); - dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); - } - if (running) - put_prev_task(rq, p); - - p->sched_class->set_cpus_allowed(p, ctx); - mm_set_cpus_allowed(p->mm, ctx->new_mask); - - if (queued) - enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); - if (running) - set_next_task(rq, p); + scoped_guard (sched_change, p, DEQUEUE_SAVE) + p->sched_class->set_cpus_allowed(p, ctx); } /* * Used for kthread_bind() and select_fallback_rq(), in both cases the user * affinity (if any) should be destroyed too. */ -void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) +void set_cpus_allowed_force(struct task_struct *p, const struct cpumask *new_mask) { struct affinity_context ac = { .new_mask = new_mask, @@ -2761,7 +2688,8 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) struct rcu_head rcu; }; - __do_set_cpus_allowed(p, &ac); + scoped_guard (__task_rq_lock, p) + do_set_cpus_allowed(p, &ac); /* * Because this is called with p->pi_lock held, it is not possible @@ -2799,7 +2727,7 @@ int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, * Use pi_lock to protect content of user_cpus_ptr * * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent - * do_set_cpus_allowed(). + * set_cpus_allowed_force(). */ raw_spin_lock_irqsave(&src->pi_lock, flags); if (src->user_cpus_ptr) { @@ -2912,8 +2840,15 @@ static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flag struct set_affinity_pending my_pending = { }, *pending = NULL; bool stop_pending, complete = false; - /* Can the task run on the task's current CPU? If so, we're done */ - if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { + /* + * Can the task run on the task's current CPU? If so, we're done + * + * We are also done if the task is the current donor, boosting a lock- + * holding proxy, (and potentially has been migrated outside its + * current or previous affinity mask) + */ + if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask) || + (task_current_donor(rq, p) && !task_current(rq, p))) { struct task_struct *push_task = NULL; if ((flags & SCA_MIGRATE_ENABLE) && @@ -3064,8 +2999,6 @@ static int __set_cpus_allowed_ptr_locked(struct task_struct *p, unsigned int dest_cpu; int ret = 0; - update_rq_clock(rq); - if (kthread || is_migration_disabled(p)) { /* * Kernel threads are allowed on online && !active CPUs, @@ -3120,7 +3053,7 @@ static int __set_cpus_allowed_ptr_locked(struct task_struct *p, goto out; } - __do_set_cpus_allowed(p, ctx); + do_set_cpus_allowed(p, ctx); return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); @@ -3281,9 +3214,10 @@ void relax_compatible_cpus_allowed_ptr(struct task_struct *p) WARN_ON_ONCE(ret); } +#ifdef CONFIG_SMP + void set_task_cpu(struct task_struct *p, unsigned int new_cpu) { -#ifdef CONFIG_SCHED_DEBUG unsigned int state = READ_ONCE(p->__state); /* @@ -3321,7 +3255,6 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) WARN_ON_ONCE(!cpu_online(new_cpu)); WARN_ON_ONCE(is_migration_disabled(p)); -#endif trace_sched_migrate_task(p, new_cpu); @@ -3329,13 +3262,12 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) if (p->sched_class->migrate_task_rq) p->sched_class->migrate_task_rq(p, new_cpu); p->se.nr_migrations++; - rseq_migrate(p); - sched_mm_cid_migrate_from(p); perf_event_task_migrate(p); } __set_task_cpu(p, new_cpu); } +#endif /* CONFIG_SMP */ #ifdef CONFIG_NUMA_BALANCING static void __migrate_swap_task(struct task_struct *p, int cpu) @@ -3528,13 +3460,7 @@ static int select_fallback_rq(int cpu, struct task_struct *p) } fallthrough; case possible: - /* - * XXX When called from select_task_rq() we only - * hold p->pi_lock and again violate locking order. - * - * More yuck to audit. - */ - do_set_cpus_allowed(p, task_cpu_possible_mask(p)); + set_cpus_allowed_force(p, task_cpu_fallback_mask(p)); state = fail; break; case fail: @@ -3635,17 +3561,6 @@ void sched_set_stop_task(int cpu, struct task_struct *stop) } } -#else /* CONFIG_SMP */ - -static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } - -static inline bool rq_has_pinned_tasks(struct rq *rq) -{ - return false; -} - -#endif /* !CONFIG_SMP */ - static void ttwu_stat(struct task_struct *p, int cpu, int wake_flags) { @@ -3656,7 +3571,6 @@ ttwu_stat(struct task_struct *p, int cpu, int wake_flags) rq = this_rq(); -#ifdef CONFIG_SMP if (cpu == rq->cpu) { __schedstat_inc(rq->ttwu_local); __schedstat_inc(p->stats.nr_wakeups_local); @@ -3676,7 +3590,6 @@ ttwu_stat(struct task_struct *p, int cpu, int wake_flags) if (wake_flags & WF_MIGRATED) __schedstat_inc(p->stats.nr_wakeups_migrate); -#endif /* CONFIG_SMP */ __schedstat_inc(rq->ttwu_count); __schedstat_inc(p->stats.nr_wakeups); @@ -3705,13 +3618,11 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, if (p->sched_contributes_to_load) rq->nr_uninterruptible--; -#ifdef CONFIG_SMP if (wake_flags & WF_RQ_SELECTED) en_flags |= ENQUEUE_RQ_SELECTED; if (wake_flags & WF_MIGRATED) en_flags |= ENQUEUE_MIGRATED; else -#endif if (p->in_iowait) { delayacct_blkio_end(p); atomic_dec(&task_rq(p)->nr_iowait); @@ -3722,7 +3633,6 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, ttwu_do_wakeup(p); -#ifdef CONFIG_SMP if (p->sched_class->task_woken) { /* * Our task @p is fully woken up and running; so it's safe to @@ -3744,7 +3654,6 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, rq->idle_stamp = 0; } -#endif } /* @@ -3793,12 +3702,11 @@ static int ttwu_runnable(struct task_struct *p, int wake_flags) ttwu_do_wakeup(p); ret = 1; } - __task_rq_unlock(rq, &rf); + __task_rq_unlock(rq, p, &rf); return ret; } -#ifdef CONFIG_SMP void sched_ttwu_pending(void *arg) { struct llist_node *llist = arg; @@ -3865,7 +3773,9 @@ static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); WRITE_ONCE(rq->ttwu_pending, 1); +#ifdef CONFIG_SMP __smp_call_single_queue(cpu, &p->wake_entry.llist); +#endif } void wake_up_if_idle(int cpu) @@ -3913,15 +3823,15 @@ bool cpus_share_resources(int this_cpu, int that_cpu) static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) { - /* - * The BPF scheduler may depend on select_task_rq() being invoked during - * wakeups. In addition, @p may end up executing on a different CPU - * regardless of what happens in the wakeup path making the ttwu_queue - * optimization less meaningful. Skip if on SCX. - */ - if (task_on_scx(p)) + /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ + if (!scx_allow_ttwu_queue(p)) return false; +#ifdef CONFIG_SMP + if (p->sched_class == &stop_sched_class) + return false; +#endif + /* * Do not complicate things with the async wake_list while the CPU is * in hotplug state. @@ -3971,15 +3881,6 @@ static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) return false; } -#else /* !CONFIG_SMP */ - -static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) -{ - return false; -} - -#endif /* CONFIG_SMP */ - static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) { struct rq *rq = cpu_rq(cpu); @@ -4187,7 +4088,7 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) * - we're serialized against set_special_state() by virtue of * it disabling IRQs (this allows not taking ->pi_lock). */ - SCHED_WARN_ON(p->se.sched_delayed); + WARN_ON_ONCE(p->se.sched_delayed); if (!ttwu_state_match(p, state, &success)) goto out; @@ -4235,7 +4136,6 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) break; -#ifdef CONFIG_SMP /* * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be * possible to, falsely, observe p->on_cpu == 0. @@ -4256,7 +4156,7 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) * __schedule(). See the comment for smp_mb__after_spinlock(). * * Form a control-dep-acquire with p->on_rq == 0 above, to ensure - * schedule()'s deactivate_task() has 'happened' and p will no longer + * schedule()'s block_task() has 'happened' and p will no longer * care about it's own p->state. See the comment in __schedule(). */ smp_acquire__after_ctrl_dep(); @@ -4314,9 +4214,6 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) psi_ttwu_dequeue(p); set_task_cpu(p, cpu); } -#else - cpu = task_cpu(p); -#endif /* CONFIG_SMP */ ttwu_queue(p, cpu, wake_flags); } @@ -4349,14 +4246,12 @@ static bool __task_needs_rq_lock(struct task_struct *p) if (p->on_rq) return true; -#ifdef CONFIG_SMP /* * Ensure the task has finished __schedule() and will not be referenced * anymore. Again, see try_to_wake_up() for a longer comment. */ smp_rmb(); smp_cond_load_acquire(&p->on_cpu, !VAL); -#endif return false; } @@ -4400,7 +4295,7 @@ int task_call_func(struct task_struct *p, task_call_f func, void *arg) ret = func(p, arg); if (rq) - rq_unlock(rq, &rf); + __task_rq_unlock(rq, p, &rf); raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); return ret; @@ -4467,7 +4362,7 @@ int wake_up_state(struct task_struct *p, unsigned int state) * __sched_fork() is basic setup which is also used by sched_init() to * initialize the boot CPU's idle task. */ -static void __sched_fork(unsigned long clone_flags, struct task_struct *p) +static void __sched_fork(u64 clone_flags, struct task_struct *p) { p->on_rq = 0; @@ -4481,10 +4376,13 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) INIT_LIST_HEAD(&p->se.group_node); /* A delayed task cannot be in clone(). */ - SCHED_WARN_ON(p->se.sched_delayed); + WARN_ON_ONCE(p->se.sched_delayed); #ifdef CONFIG_FAIR_GROUP_SCHED p->se.cfs_rq = NULL; +#ifdef CONFIG_CFS_BANDWIDTH + init_cfs_throttle_work(p); +#endif #endif #ifdef CONFIG_SCHEDSTATS @@ -4512,11 +4410,8 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) p->capture_control = NULL; #endif init_numa_balancing(clone_flags, p); -#ifdef CONFIG_SMP p->wake_entry.u_flags = CSD_TYPE_TTWU; p->migration_pending = NULL; -#endif - init_sched_mm_cid(p); } DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); @@ -4578,8 +4473,8 @@ static int sysctl_numa_balancing(const struct ctl_table *table, int write, } return err; } -#endif -#endif +#endif /* CONFIG_PROC_SYSCTL */ +#endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_SCHEDSTATS @@ -4646,7 +4541,7 @@ static int sysctl_schedstats(const struct ctl_table *table, int write, void *buf #endif /* CONFIG_SCHEDSTATS */ #ifdef CONFIG_SYSCTL -static struct ctl_table sched_core_sysctls[] = { +static const struct ctl_table sched_core_sysctls[] = { #ifdef CONFIG_SCHEDSTATS { .procname = "sched_schedstats", @@ -4704,7 +4599,7 @@ late_initcall(sched_core_sysctl_init); /* * fork()/clone()-time setup: */ -int sched_fork(unsigned long clone_flags, struct task_struct *p) +int sched_fork(u64 clone_flags, struct task_struct *p) { __sched_fork(clone_flags, p); /* @@ -4766,14 +4661,11 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p) if (likely(sched_info_on())) memset(&p->sched_info, 0, sizeof(p->sched_info)); #endif -#if defined(CONFIG_SMP) p->on_cpu = 0; -#endif init_task_preempt_count(p); -#ifdef CONFIG_SMP plist_node_init(&p->pushable_tasks, MAX_PRIO); RB_CLEAR_NODE(&p->pushable_dl_tasks); -#endif + return 0; } @@ -4795,7 +4687,6 @@ int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) p->sched_task_group = tg; } #endif - rseq_migrate(p); /* * We're setting the CPU for the first time, we don't migrate, * so use __set_task_cpu(). @@ -4850,7 +4741,6 @@ void wake_up_new_task(struct task_struct *p) raw_spin_lock_irqsave(&p->pi_lock, rf.flags); WRITE_ONCE(p->__state, TASK_RUNNING); -#ifdef CONFIG_SMP /* * Fork balancing, do it here and not earlier because: * - cpus_ptr can change in the fork path @@ -4860,9 +4750,7 @@ void wake_up_new_task(struct task_struct *p) * as we're not fully set-up yet. */ p->recent_used_cpu = task_cpu(p); - rseq_migrate(p); __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); -#endif rq = __task_rq_lock(p, &rf); update_rq_clock(rq); post_init_entity_util_avg(p); @@ -4870,7 +4758,6 @@ void wake_up_new_task(struct task_struct *p) activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); trace_sched_wakeup_new(p); wakeup_preempt(rq, p, wake_flags); -#ifdef CONFIG_SMP if (p->sched_class->task_woken) { /* * Nothing relies on rq->lock after this, so it's fine to @@ -4880,7 +4767,6 @@ void wake_up_new_task(struct task_struct *p) p->sched_class->task_woken(rq, p); rq_repin_lock(rq, &rf); } -#endif task_rq_unlock(rq, p, &rf); } @@ -4957,7 +4843,7 @@ fire_sched_out_preempt_notifiers(struct task_struct *curr, __fire_sched_out_preempt_notifiers(curr, next); } -#else /* !CONFIG_PREEMPT_NOTIFIERS */ +#else /* !CONFIG_PREEMPT_NOTIFIERS: */ static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) { @@ -4969,11 +4855,10 @@ fire_sched_out_preempt_notifiers(struct task_struct *curr, { } -#endif /* CONFIG_PREEMPT_NOTIFIERS */ +#endif /* !CONFIG_PREEMPT_NOTIFIERS */ static inline void prepare_task(struct task_struct *next) { -#ifdef CONFIG_SMP /* * Claim the task as running, we do this before switching to it * such that any running task will have this set. @@ -4982,12 +4867,10 @@ static inline void prepare_task(struct task_struct *next) * its ordering comment. */ WRITE_ONCE(next->on_cpu, 1); -#endif } static inline void finish_task(struct task_struct *prev) { -#ifdef CONFIG_SMP /* * This must be the very last reference to @prev from this CPU. After * p->on_cpu is cleared, the task can be moved to a different CPU. We @@ -5000,11 +4883,8 @@ static inline void finish_task(struct task_struct *prev) * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). */ smp_store_release(&prev->on_cpu, 0); -#endif } -#ifdef CONFIG_SMP - static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) { void (*func)(struct rq *rq); @@ -5086,14 +4966,6 @@ void balance_callbacks(struct rq *rq, struct balance_callback *head) } } -#else - -static inline void __balance_callbacks(struct rq *rq) -{ -} - -#endif - static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) { @@ -5171,7 +5043,6 @@ prepare_task_switch(struct rq *rq, struct task_struct *prev, kcov_prepare_switch(prev); sched_info_switch(rq, prev, next); perf_event_task_sched_out(prev, next); - rseq_preempt(prev); fire_sched_out_preempt_notifiers(prev, next); kmap_local_sched_out(); prepare_task(next); @@ -5272,6 +5143,14 @@ static struct rq *finish_task_switch(struct task_struct *prev) if (prev->sched_class->task_dead) prev->sched_class->task_dead(prev); + /* + * sched_ext_dead() must come before cgroup_task_dead() to + * prevent cgroups from being removed while its member tasks are + * visible to SCX schedulers. + */ + sched_ext_dead(prev); + cgroup_task_dead(prev); + /* Task is done with its stack. */ put_task_stack(prev); @@ -5298,6 +5177,12 @@ asmlinkage __visible void schedule_tail(struct task_struct *prev) */ finish_task_switch(prev); + /* + * This is a special case: the newly created task has just + * switched the context for the first time. It is returning from + * schedule for the first time in this path. + */ + trace_sched_exit_tp(true); preempt_enable(); if (current->set_child_tid) @@ -5328,19 +5213,16 @@ context_switch(struct rq *rq, struct task_struct *prev, * * kernel -> user switch + mmdrop_lazy_tlb() active * user -> user switch - * - * switch_mm_cid() needs to be updated if the barriers provided - * by context_switch() are modified. */ - if (!next->mm) { // to kernel + if (!next->mm) { // to kernel enter_lazy_tlb(prev->active_mm, next); next->active_mm = prev->active_mm; - if (prev->mm) // from user + if (prev->mm) // from user mmgrab_lazy_tlb(prev->active_mm); else prev->active_mm = NULL; - } else { // to user + } else { // to user membarrier_switch_mm(rq, prev->active_mm, next->mm); /* * sys_membarrier() requires an smp_mb() between setting @@ -5353,15 +5235,20 @@ context_switch(struct rq *rq, struct task_struct *prev, switch_mm_irqs_off(prev->active_mm, next->mm, next); lru_gen_use_mm(next->mm); - if (!prev->mm) { // from kernel + if (!prev->mm) { // from kernel /* will mmdrop_lazy_tlb() in finish_task_switch(). */ rq->prev_mm = prev->active_mm; prev->active_mm = NULL; } } - /* switch_mm_cid() requires the memory barriers above. */ - switch_mm_cid(rq, prev, next); + mm_cid_switch_to(prev, next); + + /* + * Tell rseq that the task was scheduled in. Must be after + * switch_mm_cid() to get the TIF flag set. + */ + rseq_sched_switch_event(next); prepare_lock_switch(rq, next, rf); @@ -5475,8 +5362,6 @@ unsigned int nr_iowait(void) return sum; } -#ifdef CONFIG_SMP - /* * sched_exec - execve() is a valuable balancing opportunity, because at * this point the task has the smallest effective memory and cache footprint. @@ -5500,8 +5385,6 @@ void sched_exec(void) stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); } -#endif - DEFINE_PER_CPU(struct kernel_stat, kstat); DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); @@ -5536,7 +5419,7 @@ unsigned long long task_sched_runtime(struct task_struct *p) struct rq *rq; u64 ns; -#if defined(CONFIG_64BIT) && defined(CONFIG_SMP) +#ifdef CONFIG_64BIT /* * 64-bit doesn't need locks to atomically read a 64-bit value. * So we have a optimization chance when the task's delta_exec is 0. @@ -5569,7 +5452,6 @@ unsigned long long task_sched_runtime(struct task_struct *p) return ns; } -#ifdef CONFIG_SCHED_DEBUG static u64 cpu_resched_latency(struct rq *rq) { int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); @@ -5614,9 +5496,6 @@ static int __init setup_resched_latency_warn_ms(char *str) return 1; } __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); -#else -static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } -#endif /* CONFIG_SCHED_DEBUG */ /* * This function gets called by the timer code, with HZ frequency. @@ -5632,7 +5511,7 @@ void sched_tick(void) unsigned long hw_pressure; u64 resched_latency; - if (housekeeping_cpu(cpu, HK_TYPE_TICK)) + if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) arch_scale_freq_tick(); sched_clock_tick(); @@ -5654,7 +5533,6 @@ void sched_tick(void) resched_latency = cpu_resched_latency(rq); calc_global_load_tick(rq); sched_core_tick(rq); - task_tick_mm_cid(rq, donor); scx_tick(rq); rq_unlock(rq, &rf); @@ -5667,12 +5545,10 @@ void sched_tick(void) if (donor->flags & PF_WQ_WORKER) wq_worker_tick(donor); -#ifdef CONFIG_SMP if (!scx_switched_all()) { rq->idle_balance = idle_cpu(cpu); sched_balance_trigger(rq); } -#endif } #ifdef CONFIG_NO_HZ_FULL @@ -5737,7 +5613,7 @@ static void sched_tick_remote(struct work_struct *work) * we are always sure that there is no proxy (only a * single task is running). */ - SCHED_WARN_ON(rq->curr != rq->donor); + WARN_ON_ONCE(rq->curr != rq->donor); update_rq_clock(rq); if (!is_idle_task(curr)) { @@ -5746,7 +5622,7 @@ static void sched_tick_remote(struct work_struct *work) * reasonable amount of time. */ u64 delta = rq_clock_task(rq) - curr->se.exec_start; - WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); + WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 30); } curr->sched_class->task_tick(rq, curr, 0); @@ -5771,7 +5647,7 @@ static void sched_tick_start(int cpu) int os; struct tick_work *twork; - if (housekeeping_cpu(cpu, HK_TYPE_TICK)) + if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) return; WARN_ON_ONCE(!tick_work_cpu); @@ -5792,7 +5668,7 @@ static void sched_tick_stop(int cpu) struct tick_work *twork; int os; - if (housekeeping_cpu(cpu, HK_TYPE_TICK)) + if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) return; WARN_ON_ONCE(!tick_work_cpu); @@ -5812,10 +5688,10 @@ int __init sched_tick_offload_init(void) return 0; } -#else /* !CONFIG_NO_HZ_FULL */ +#else /* !CONFIG_NO_HZ_FULL: */ static inline void sched_tick_start(int cpu) { } static inline void sched_tick_stop(int cpu) { } -#endif +#endif /* !CONFIG_NO_HZ_FULL */ #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ defined(CONFIG_TRACE_PREEMPT_TOGGLE)) @@ -5957,7 +5833,7 @@ static inline void schedule_debug(struct task_struct *prev, bool preempt) preempt_count_set(PREEMPT_DISABLED); } rcu_sleep_check(); - SCHED_WARN_ON(ct_state() == CT_STATE_USER); + WARN_ON_ONCE(ct_state() == CT_STATE_USER); profile_hit(SCHED_PROFILING, __builtin_return_address(0)); @@ -5970,19 +5846,6 @@ static void prev_balance(struct rq *rq, struct task_struct *prev, const struct sched_class *start_class = prev->sched_class; const struct sched_class *class; -#ifdef CONFIG_SCHED_CLASS_EXT - /* - * SCX requires a balance() call before every pick_task() including when - * waking up from SCHED_IDLE. If @start_class is below SCX, start from - * SCX instead. Also, set a flag to detect missing balance() call. - */ - if (scx_enabled()) { - rq->scx.flags |= SCX_RQ_BAL_PENDING; - if (sched_class_above(&ext_sched_class, start_class)) - start_class = &ext_sched_class; - } -#endif - /* * We must do the balancing pass before put_prev_task(), such * that when we release the rq->lock the task is in the same @@ -6018,7 +5881,7 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) * opportunity to pull in more work from other CPUs. */ if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && - rq->nr_running == rq->cfs.h_nr_running)) { + rq->nr_running == rq->cfs.h_nr_queued)) { p = pick_next_task_fair(rq, prev, rf); if (unlikely(p == RETRY_TASK)) @@ -6026,7 +5889,7 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) /* Assume the next prioritized class is idle_sched_class */ if (!p) { - p = pick_task_idle(rq); + p = pick_task_idle(rq, rf); put_prev_set_next_task(rq, prev, p); } @@ -6038,11 +5901,15 @@ restart: for_each_active_class(class) { if (class->pick_next_task) { - p = class->pick_next_task(rq, prev); + p = class->pick_next_task(rq, prev, rf); + if (unlikely(p == RETRY_TASK)) + goto restart; if (p) return p; } else { - p = class->pick_task(rq); + p = class->pick_task(rq, rf); + if (unlikely(p == RETRY_TASK)) + goto restart; if (p) { put_prev_set_next_task(rq, prev, p); return p; @@ -6072,7 +5939,11 @@ static inline bool cookie_match(struct task_struct *a, struct task_struct *b) return a->core_cookie == b->core_cookie; } -static inline struct task_struct *pick_task(struct rq *rq) +/* + * Careful; this can return RETRY_TASK, it does not include the retry-loop + * itself due to the whole SMT pick retry thing below. + */ +static inline struct task_struct *pick_task(struct rq *rq, struct rq_flags *rf) { const struct sched_class *class; struct task_struct *p; @@ -6080,7 +5951,7 @@ static inline struct task_struct *pick_task(struct rq *rq) rq->dl_server = NULL; for_each_active_class(class) { - p = class->pick_task(rq); + p = class->pick_task(rq, rf); if (p) return p; } @@ -6095,7 +5966,7 @@ static void queue_core_balance(struct rq *rq); static struct task_struct * pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) { - struct task_struct *next, *p, *max = NULL; + struct task_struct *next, *p, *max; const struct cpumask *smt_mask; bool fi_before = false; bool core_clock_updated = (rq == rq->core); @@ -6180,7 +6051,10 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) * and there are no cookied tasks running on siblings. */ if (!need_sync) { - next = pick_task(rq); +restart_single: + next = pick_task(rq, rf); + if (unlikely(next == RETRY_TASK)) + goto restart_single; if (!next->core_cookie) { rq->core_pick = NULL; rq->core_dl_server = NULL; @@ -6200,6 +6074,8 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) * * Tie-break prio towards the current CPU */ +restart_multi: + max = NULL; for_each_cpu_wrap(i, smt_mask, cpu) { rq_i = cpu_rq(i); @@ -6211,7 +6087,11 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) if (i != cpu && (rq_i != rq->core || !core_clock_updated)) update_rq_clock(rq_i); - rq_i->core_pick = p = pick_task(rq_i); + p = pick_task(rq_i, rf); + if (unlikely(p == RETRY_TASK)) + goto restart_multi; + + rq_i->core_pick = p; rq_i->core_dl_server = rq_i->dl_server; if (!max || prio_less(max, p, fi_before)) @@ -6233,7 +6113,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) if (cookie) p = sched_core_find(rq_i, cookie); if (!p) - p = idle_sched_class.pick_task(rq_i); + p = idle_sched_class.pick_task(rq_i, rf); } rq_i->core_pick = p; @@ -6530,7 +6410,7 @@ static inline void sched_core_cpu_dying(unsigned int cpu) rq->core = rq; } -#else /* !CONFIG_SCHED_CORE */ +#else /* !CONFIG_SCHED_CORE: */ static inline void sched_core_cpu_starting(unsigned int cpu) {} static inline void sched_core_cpu_deactivate(unsigned int cpu) {} @@ -6542,7 +6422,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) return __pick_next_task(rq, prev, rf); } -#endif /* CONFIG_SCHED_CORE */ +#endif /* !CONFIG_SCHED_CORE */ /* * Constants for the sched_mode argument of __schedule(). @@ -6558,19 +6438,33 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) /* * Helper function for __schedule() * - * If a task does not have signals pending, deactivate it - * Otherwise marks the task's __state as RUNNING + * Tries to deactivate the task, unless the should_block arg + * is false or if a signal is pending. In the case a signal + * is pending, marks the task's __state as RUNNING (and clear + * blocked_on). */ static bool try_to_block_task(struct rq *rq, struct task_struct *p, - unsigned long task_state) + unsigned long *task_state_p, bool should_block) { + unsigned long task_state = *task_state_p; int flags = DEQUEUE_NOCLOCK; if (signal_pending_state(task_state, p)) { WRITE_ONCE(p->__state, TASK_RUNNING); + *task_state_p = TASK_RUNNING; return false; } + /* + * We check should_block after signal_pending because we + * will want to wake the task in that case. But if + * should_block is false, its likely due to the task being + * blocked on a mutex, and we want to keep it on the runqueue + * to be selectable for proxy-execution. + */ + if (!should_block) + return false; + p->sched_contributes_to_load = (task_state & TASK_UNINTERRUPTIBLE) && !(task_state & TASK_NOLOAD) && @@ -6594,6 +6488,194 @@ static bool try_to_block_task(struct rq *rq, struct task_struct *p, return true; } +#ifdef CONFIG_SCHED_PROXY_EXEC +static inline struct task_struct *proxy_resched_idle(struct rq *rq) +{ + put_prev_set_next_task(rq, rq->donor, rq->idle); + rq_set_donor(rq, rq->idle); + set_tsk_need_resched(rq->idle); + return rq->idle; +} + +static bool __proxy_deactivate(struct rq *rq, struct task_struct *donor) +{ + unsigned long state = READ_ONCE(donor->__state); + + /* Don't deactivate if the state has been changed to TASK_RUNNING */ + if (state == TASK_RUNNING) + return false; + /* + * Because we got donor from pick_next_task(), it is *crucial* + * that we call proxy_resched_idle() before we deactivate it. + * As once we deactivate donor, donor->on_rq is set to zero, + * which allows ttwu() to immediately try to wake the task on + * another rq. So we cannot use *any* references to donor + * after that point. So things like cfs_rq->curr or rq->donor + * need to be changed from next *before* we deactivate. + */ + proxy_resched_idle(rq); + return try_to_block_task(rq, donor, &state, true); +} + +static struct task_struct *proxy_deactivate(struct rq *rq, struct task_struct *donor) +{ + if (!__proxy_deactivate(rq, donor)) { + /* + * XXX: For now, if deactivation failed, set donor + * as unblocked, as we aren't doing proxy-migrations + * yet (more logic will be needed then). + */ + donor->blocked_on = NULL; + } + return NULL; +} + +/* + * Find runnable lock owner to proxy for mutex blocked donor + * + * Follow the blocked-on relation: + * task->blocked_on -> mutex->owner -> task... + * + * Lock order: + * + * p->pi_lock + * rq->lock + * mutex->wait_lock + * + * Returns the task that is going to be used as execution context (the one + * that is actually going to be run on cpu_of(rq)). + */ +static struct task_struct * +find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) +{ + struct task_struct *owner = NULL; + int this_cpu = cpu_of(rq); + struct task_struct *p; + struct mutex *mutex; + + /* Follow blocked_on chain. */ + for (p = donor; task_is_blocked(p); p = owner) { + mutex = p->blocked_on; + /* Something changed in the chain, so pick again */ + if (!mutex) + return NULL; + /* + * By taking mutex->wait_lock we hold off concurrent mutex_unlock() + * and ensure @owner sticks around. + */ + guard(raw_spinlock)(&mutex->wait_lock); + + /* Check again that p is blocked with wait_lock held */ + if (mutex != __get_task_blocked_on(p)) { + /* + * Something changed in the blocked_on chain and + * we don't know if only at this level. So, let's + * just bail out completely and let __schedule() + * figure things out (pick_again loop). + */ + return NULL; + } + + owner = __mutex_owner(mutex); + if (!owner) { + __clear_task_blocked_on(p, mutex); + return p; + } + + if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) { + /* XXX Don't handle blocked owners/delayed dequeue yet */ + return proxy_deactivate(rq, donor); + } + + if (task_cpu(owner) != this_cpu) { + /* XXX Don't handle migrations yet */ + return proxy_deactivate(rq, donor); + } + + if (task_on_rq_migrating(owner)) { + /* + * One of the chain of mutex owners is currently migrating to this + * CPU, but has not yet been enqueued because we are holding the + * rq lock. As a simple solution, just schedule rq->idle to give + * the migration a chance to complete. Much like the migrate_task + * case we should end up back in find_proxy_task(), this time + * hopefully with all relevant tasks already enqueued. + */ + return proxy_resched_idle(rq); + } + + /* + * Its possible to race where after we check owner->on_rq + * but before we check (owner_cpu != this_cpu) that the + * task on another cpu was migrated back to this cpu. In + * that case it could slip by our checks. So double check + * we are still on this cpu and not migrating. If we get + * inconsistent results, try again. + */ + if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu) + return NULL; + + if (owner == p) { + /* + * It's possible we interleave with mutex_unlock like: + * + * lock(&rq->lock); + * find_proxy_task() + * mutex_unlock() + * lock(&wait_lock); + * donor(owner) = current->blocked_donor; + * unlock(&wait_lock); + * + * wake_up_q(); + * ... + * ttwu_runnable() + * __task_rq_lock() + * lock(&wait_lock); + * owner == p + * + * Which leaves us to finish the ttwu_runnable() and make it go. + * + * So schedule rq->idle so that ttwu_runnable() can get the rq + * lock and mark owner as running. + */ + return proxy_resched_idle(rq); + } + /* + * OK, now we're absolutely sure @owner is on this + * rq, therefore holding @rq->lock is sufficient to + * guarantee its existence, as per ttwu_remote(). + */ + } + + WARN_ON_ONCE(owner && !owner->on_rq); + return owner; +} +#else /* SCHED_PROXY_EXEC */ +static struct task_struct * +find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) +{ + WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n"); + return donor; +} +#endif /* SCHED_PROXY_EXEC */ + +static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner) +{ + if (!sched_proxy_exec()) + return; + /* + * pick_next_task() calls set_next_task() on the chosen task + * at some point, which ensures it is not push/pullable. + * However, the chosen/donor task *and* the mutex owner form an + * atomic pair wrt push/pull. + * + * Make sure owner we run is not pushable. Unfortunately we can + * only deal with that by means of a dequeue/enqueue cycle. :-/ + */ + dequeue_task(rq, owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE); + enqueue_task(rq, owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE); +} + /* * __schedule() is the main scheduler function. * @@ -6641,13 +6723,16 @@ static void __sched notrace __schedule(int sched_mode) * as a preemption by schedule_debug() and RCU. */ bool preempt = sched_mode > SM_NONE; - bool block = false; + bool is_switch = false; unsigned long *switch_count; unsigned long prev_state; struct rq_flags rf; struct rq *rq; int cpu; + /* Trace preemptions consistently with task switches */ + trace_sched_entry_tp(sched_mode == SM_PREEMPT); + cpu = smp_processor_id(); rq = cpu_rq(cpu); prev = rq->curr; @@ -6657,8 +6742,11 @@ static void __sched notrace __schedule(int sched_mode) if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) hrtick_clear(rq); + klp_sched_try_switch(prev); + local_irq_disable(); rcu_note_context_switch(preempt); + migrate_disable_switch(rq, prev); /* * Make sure that signal_pending_state()->signal_pending() below @@ -6702,26 +6790,45 @@ static void __sched notrace __schedule(int sched_mode) goto picked; } } else if (!preempt && prev_state) { - block = try_to_block_task(rq, prev, prev_state); + /* + * We pass task_is_blocked() as the should_block arg + * in order to keep mutex-blocked tasks on the runqueue + * for slection with proxy-exec (without proxy-exec + * task_is_blocked() will always be false). + */ + try_to_block_task(rq, prev, &prev_state, + !task_is_blocked(prev)); switch_count = &prev->nvcsw; } - next = pick_next_task(rq, prev, &rf); +pick_again: + next = pick_next_task(rq, rq->donor, &rf); rq_set_donor(rq, next); + if (unlikely(task_is_blocked(next))) { + next = find_proxy_task(rq, next, &rf); + if (!next) + goto pick_again; + if (next == rq->idle) + goto keep_resched; + } picked: clear_tsk_need_resched(prev); clear_preempt_need_resched(); -#ifdef CONFIG_SCHED_DEBUG +keep_resched: rq->last_seen_need_resched_ns = 0; -#endif - if (likely(prev != next)) { + is_switch = prev != next; + if (likely(is_switch)) { rq->nr_switches++; /* * RCU users of rcu_dereference(rq->curr) may not see * changes to task_struct made by pick_next_task(). */ RCU_INIT_POINTER(rq->curr, next); + + if (!task_current_donor(rq, next)) + proxy_tag_curr(rq, next); + /* * The membarrier system call requires each architecture * to have a full memory barrier after updating @@ -6746,19 +6853,24 @@ picked: */ ++*switch_count; - migrate_disable_switch(rq, prev); psi_account_irqtime(rq, prev, next); - psi_sched_switch(prev, next, block); + psi_sched_switch(prev, next, !task_on_rq_queued(prev) || + prev->se.sched_delayed); trace_sched_switch(preempt, prev, next, prev_state); /* Also unlocks the rq: */ rq = context_switch(rq, prev, next, &rf); } else { + /* In case next was already curr but just got blocked_donor */ + if (!task_current_donor(rq, next)) + proxy_tag_curr(rq, next); + rq_unpin_lock(rq, &rf); __balance_callbacks(rq); raw_spin_rq_unlock_irq(rq); } + trace_sched_exit_tp(is_switch); } void __noreturn do_task_dead(void) @@ -6803,7 +6915,7 @@ static inline void sched_submit_work(struct task_struct *tsk) * deadlock if the callback attempts to acquire a lock which is * already acquired. */ - SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); + WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); /* * If we are going to sleep and we have plugged IO queued, @@ -6962,14 +7074,14 @@ NOKPROBE_SYMBOL(preempt_schedule); EXPORT_SYMBOL(preempt_schedule); #ifdef CONFIG_PREEMPT_DYNAMIC -#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) -#ifndef preempt_schedule_dynamic_enabled -#define preempt_schedule_dynamic_enabled preempt_schedule -#define preempt_schedule_dynamic_disabled NULL -#endif +# ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL +# ifndef preempt_schedule_dynamic_enabled +# define preempt_schedule_dynamic_enabled preempt_schedule +# define preempt_schedule_dynamic_disabled NULL +# endif DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); EXPORT_STATIC_CALL_TRAMP(preempt_schedule); -#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) +# elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); void __sched notrace dynamic_preempt_schedule(void) { @@ -6979,8 +7091,8 @@ void __sched notrace dynamic_preempt_schedule(void) } NOKPROBE_SYMBOL(dynamic_preempt_schedule); EXPORT_SYMBOL(dynamic_preempt_schedule); -#endif -#endif +# endif +#endif /* CONFIG_PREEMPT_DYNAMIC */ /** * preempt_schedule_notrace - preempt_schedule called by tracing @@ -7035,14 +7147,14 @@ asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) EXPORT_SYMBOL_GPL(preempt_schedule_notrace); #ifdef CONFIG_PREEMPT_DYNAMIC -#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) -#ifndef preempt_schedule_notrace_dynamic_enabled -#define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace -#define preempt_schedule_notrace_dynamic_disabled NULL -#endif +# if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) +# ifndef preempt_schedule_notrace_dynamic_enabled +# define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace +# define preempt_schedule_notrace_dynamic_disabled NULL +# endif DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); -#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) +# elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); void __sched notrace dynamic_preempt_schedule_notrace(void) { @@ -7052,7 +7164,7 @@ void __sched notrace dynamic_preempt_schedule_notrace(void) } NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); -#endif +# endif #endif #endif /* CONFIG_PREEMPTION */ @@ -7086,7 +7198,7 @@ asmlinkage __visible void __sched preempt_schedule_irq(void) int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, void *key) { - WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); + WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); return try_to_wake_up(curr->private, mode, wake_flags); } EXPORT_SYMBOL(default_wake_function); @@ -7148,7 +7260,7 @@ void rt_mutex_post_schedule(void) */ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) { - int prio, oldprio, queued, running, queue_flag = + int prio, oldprio, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; const struct sched_class *prev_class, *next_class; struct rq_flags rf; @@ -7210,78 +7322,62 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) prev_class = p->sched_class; next_class = __setscheduler_class(p->policy, prio); - if (prev_class != next_class && p->se.sched_delayed) - dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); + if (prev_class != next_class) + queue_flag |= DEQUEUE_CLASS; - queued = task_on_rq_queued(p); - running = task_current_donor(rq, p); - if (queued) - dequeue_task(rq, p, queue_flag); - if (running) - put_prev_task(rq, p); - - /* - * Boosting condition are: - * 1. -rt task is running and holds mutex A - * --> -dl task blocks on mutex A - * - * 2. -dl task is running and holds mutex A - * --> -dl task blocks on mutex A and could preempt the - * running task - */ - if (dl_prio(prio)) { - if (!dl_prio(p->normal_prio) || - (pi_task && dl_prio(pi_task->prio) && - dl_entity_preempt(&pi_task->dl, &p->dl))) { - p->dl.pi_se = pi_task->dl.pi_se; - queue_flag |= ENQUEUE_REPLENISH; + scoped_guard (sched_change, p, queue_flag) { + /* + * Boosting condition are: + * 1. -rt task is running and holds mutex A + * --> -dl task blocks on mutex A + * + * 2. -dl task is running and holds mutex A + * --> -dl task blocks on mutex A and could preempt the + * running task + */ + if (dl_prio(prio)) { + if (!dl_prio(p->normal_prio) || + (pi_task && dl_prio(pi_task->prio) && + dl_entity_preempt(&pi_task->dl, &p->dl))) { + p->dl.pi_se = pi_task->dl.pi_se; + scope->flags |= ENQUEUE_REPLENISH; + } else { + p->dl.pi_se = &p->dl; + } + } else if (rt_prio(prio)) { + if (dl_prio(oldprio)) + p->dl.pi_se = &p->dl; + if (oldprio < prio) + scope->flags |= ENQUEUE_HEAD; } else { - p->dl.pi_se = &p->dl; + if (dl_prio(oldprio)) + p->dl.pi_se = &p->dl; + if (rt_prio(oldprio)) + p->rt.timeout = 0; } - } else if (rt_prio(prio)) { - if (dl_prio(oldprio)) - p->dl.pi_se = &p->dl; - if (oldprio < prio) - queue_flag |= ENQUEUE_HEAD; - } else { - if (dl_prio(oldprio)) - p->dl.pi_se = &p->dl; - if (rt_prio(oldprio)) - p->rt.timeout = 0; - } - - p->sched_class = next_class; - p->prio = prio; - check_class_changing(rq, p, prev_class); - - if (queued) - enqueue_task(rq, p, queue_flag); - if (running) - set_next_task(rq, p); - - check_class_changed(rq, p, prev_class, oldprio); + p->sched_class = next_class; + p->prio = prio; + } out_unlock: - /* Avoid rq from going away on us: */ - preempt_disable(); + /* Caller holds task_struct::pi_lock, IRQs are still disabled */ rq_unpin_lock(rq, &rf); __balance_callbacks(rq); - raw_spin_rq_unlock(rq); - - preempt_enable(); + rq_repin_lock(rq, &rf); + __task_rq_unlock(rq, p, &rf); } -#endif +#endif /* CONFIG_RT_MUTEXES */ #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) int __sched __cond_resched(void) { - if (should_resched(0)) { + if (should_resched(0) && !irqs_disabled()) { preempt_schedule_common(); return 1; } /* - * In preemptible kernels, ->rcu_read_lock_nesting tells the tick + * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick * whether the current CPU is in an RCU read-side critical section, * so the tick can report quiescent states even for CPUs looping * in kernel context. In contrast, in non-preemptible kernels, @@ -7290,6 +7386,8 @@ int __sched __cond_resched(void) * RCU quiescent state. Therefore, the following code causes * cond_resched() to report a quiescent state, but only when RCU * is in urgent need of one. + * A third case, preemptible, but non-PREEMPT_RCU provides for + * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). */ #ifndef CONFIG_PREEMPT_RCU rcu_all_qs(); @@ -7300,21 +7398,20 @@ EXPORT_SYMBOL(__cond_resched); #endif #ifdef CONFIG_PREEMPT_DYNAMIC -#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) -#define cond_resched_dynamic_enabled __cond_resched -#define cond_resched_dynamic_disabled ((void *)&__static_call_return0) +# ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL +# define cond_resched_dynamic_enabled __cond_resched +# define cond_resched_dynamic_disabled ((void *)&__static_call_return0) DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); EXPORT_STATIC_CALL_TRAMP(cond_resched); -#define might_resched_dynamic_enabled __cond_resched -#define might_resched_dynamic_disabled ((void *)&__static_call_return0) +# define might_resched_dynamic_enabled __cond_resched +# define might_resched_dynamic_disabled ((void *)&__static_call_return0) DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); EXPORT_STATIC_CALL_TRAMP(might_resched); -#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) +# elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); int __sched dynamic_cond_resched(void) { - klp_sched_try_switch(); if (!static_branch_unlikely(&sk_dynamic_cond_resched)) return 0; return __cond_resched(); @@ -7329,8 +7426,8 @@ int __sched dynamic_might_resched(void) return __cond_resched(); } EXPORT_SYMBOL(dynamic_might_resched); -#endif -#endif +# endif +#endif /* CONFIG_PREEMPT_DYNAMIC */ /* * __cond_resched_lock() - if a reschedule is pending, drop the given lock, @@ -7396,9 +7493,9 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write); #ifdef CONFIG_PREEMPT_DYNAMIC -#ifdef CONFIG_GENERIC_ENTRY -#include <linux/entry-common.h> -#endif +# ifdef CONFIG_GENERIC_IRQ_ENTRY +# include <linux/irq-entry-common.h> +# endif /* * SC:cond_resched @@ -7453,40 +7550,39 @@ int preempt_dynamic_mode = preempt_dynamic_undefined; int sched_dynamic_mode(const char *str) { -#ifndef CONFIG_PREEMPT_RT +# ifndef CONFIG_PREEMPT_RT if (!strcmp(str, "none")) return preempt_dynamic_none; if (!strcmp(str, "voluntary")) return preempt_dynamic_voluntary; -#endif +# endif if (!strcmp(str, "full")) return preempt_dynamic_full; -#ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY +# ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY if (!strcmp(str, "lazy")) return preempt_dynamic_lazy; -#endif +# endif return -EINVAL; } -#define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) -#define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) +# define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) +# define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) -#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) -#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) -#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) -#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) -#define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) -#define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) -#else -#error "Unsupported PREEMPT_DYNAMIC mechanism" -#endif +# if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) +# define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) +# define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) +# elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) +# define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) +# define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) +# else +# error "Unsupported PREEMPT_DYNAMIC mechanism" +# endif static DEFINE_MUTEX(sched_dynamic_mutex); -static bool klp_override; static void __sched_dynamic_update(int mode) { @@ -7494,8 +7590,7 @@ static void __sched_dynamic_update(int mode) * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in * the ZERO state, which is invalid. */ - if (!klp_override) - preempt_dynamic_enable(cond_resched); + preempt_dynamic_enable(cond_resched); preempt_dynamic_enable(might_resched); preempt_dynamic_enable(preempt_schedule); preempt_dynamic_enable(preempt_schedule_notrace); @@ -7504,8 +7599,7 @@ static void __sched_dynamic_update(int mode) switch (mode) { case preempt_dynamic_none: - if (!klp_override) - preempt_dynamic_enable(cond_resched); + preempt_dynamic_enable(cond_resched); preempt_dynamic_disable(might_resched); preempt_dynamic_disable(preempt_schedule); preempt_dynamic_disable(preempt_schedule_notrace); @@ -7516,8 +7610,7 @@ static void __sched_dynamic_update(int mode) break; case preempt_dynamic_voluntary: - if (!klp_override) - preempt_dynamic_enable(cond_resched); + preempt_dynamic_enable(cond_resched); preempt_dynamic_enable(might_resched); preempt_dynamic_disable(preempt_schedule); preempt_dynamic_disable(preempt_schedule_notrace); @@ -7528,8 +7621,7 @@ static void __sched_dynamic_update(int mode) break; case preempt_dynamic_full: - if (!klp_override) - preempt_dynamic_disable(cond_resched); + preempt_dynamic_disable(cond_resched); preempt_dynamic_disable(might_resched); preempt_dynamic_enable(preempt_schedule); preempt_dynamic_enable(preempt_schedule_notrace); @@ -7540,8 +7632,7 @@ static void __sched_dynamic_update(int mode) break; case preempt_dynamic_lazy: - if (!klp_override) - preempt_dynamic_disable(cond_resched); + preempt_dynamic_disable(cond_resched); preempt_dynamic_disable(might_resched); preempt_dynamic_enable(preempt_schedule); preempt_dynamic_enable(preempt_schedule_notrace); @@ -7562,36 +7653,6 @@ void sched_dynamic_update(int mode) mutex_unlock(&sched_dynamic_mutex); } -#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL - -static int klp_cond_resched(void) -{ - __klp_sched_try_switch(); - return __cond_resched(); -} - -void sched_dynamic_klp_enable(void) -{ - mutex_lock(&sched_dynamic_mutex); - - klp_override = true; - static_call_update(cond_resched, klp_cond_resched); - - mutex_unlock(&sched_dynamic_mutex); -} - -void sched_dynamic_klp_disable(void) -{ - mutex_lock(&sched_dynamic_mutex); - - klp_override = false; - __sched_dynamic_update(preempt_dynamic_mode); - - mutex_unlock(&sched_dynamic_mutex); -} - -#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ - static int __init setup_preempt_mode(char *str) { int mode = sched_dynamic_mode(str); @@ -7623,7 +7684,7 @@ static void __init preempt_dynamic_init(void) } } -#define PREEMPT_MODEL_ACCESSOR(mode) \ +# define PREEMPT_MODEL_ACCESSOR(mode) \ bool preempt_model_##mode(void) \ { \ WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ @@ -7638,10 +7699,57 @@ PREEMPT_MODEL_ACCESSOR(lazy); #else /* !CONFIG_PREEMPT_DYNAMIC: */ +#define preempt_dynamic_mode -1 + static inline void preempt_dynamic_init(void) { } #endif /* CONFIG_PREEMPT_DYNAMIC */ +const char *preempt_modes[] = { + "none", "voluntary", "full", "lazy", NULL, +}; + +const char *preempt_model_str(void) +{ + bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && + (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || + IS_ENABLED(CONFIG_PREEMPT_LAZY)); + static char buf[128]; + + if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { + struct seq_buf s; + + seq_buf_init(&s, buf, sizeof(buf)); + seq_buf_puts(&s, "PREEMPT"); + + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + seq_buf_printf(&s, "%sRT%s", + brace ? "_{" : "_", + brace ? "," : ""); + + if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { + seq_buf_printf(&s, "(%s)%s", + preempt_dynamic_mode >= 0 ? + preempt_modes[preempt_dynamic_mode] : "undef", + brace ? "}" : ""); + return seq_buf_str(&s); + } + + if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { + seq_buf_printf(&s, "LAZY%s", + brace ? "}" : ""); + return seq_buf_str(&s); + } + + return seq_buf_str(&s); + } + + if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) + return "VOLUNTARY"; + + return "NONE"; +} + int io_schedule_prepare(void) { int old_iowait = current->in_iowait; @@ -7701,9 +7809,9 @@ void sched_show_task(struct task_struct *p) if (pid_alive(p)) ppid = task_pid_nr(rcu_dereference(p->real_parent)); rcu_read_unlock(); - pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", + pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", free, task_pid_nr(p), task_tgid_nr(p), - ppid, read_task_thread_flags(p)); + ppid, p->flags, read_task_thread_flags(p)); print_worker_info(KERN_INFO, p); print_stop_info(KERN_INFO, p); @@ -7756,10 +7864,9 @@ void show_state_filter(unsigned int state_filter) sched_show_task(p); } -#ifdef CONFIG_SCHED_DEBUG if (!state_filter) sysrq_sched_debug_show(); -#endif + rcu_read_unlock(); /* * Only show locks if all tasks are dumped: @@ -7778,12 +7885,10 @@ void show_state_filter(unsigned int state_filter) */ void __init init_idle(struct task_struct *idle, int cpu) { -#ifdef CONFIG_SMP struct affinity_context ac = (struct affinity_context) { .new_mask = cpumask_of(cpu), .flags = 0, }; -#endif struct rq *rq = cpu_rq(cpu); unsigned long flags; @@ -7799,13 +7904,11 @@ void __init init_idle(struct task_struct *idle, int cpu) idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; kthread_set_per_cpu(idle, cpu); -#ifdef CONFIG_SMP /* * No validation and serialization required at boot time and for * setting up the idle tasks of not yet online CPUs. */ set_cpus_allowed_common(idle, &ac); -#endif /* * We're having a chicken and egg problem, even though we are * holding rq->lock, the CPU isn't yet set to this CPU so the @@ -7824,9 +7927,7 @@ void __init init_idle(struct task_struct *idle, int cpu) rq_set_donor(rq, idle); rcu_assign_pointer(rq->curr, idle); idle->on_rq = TASK_ON_RQ_QUEUED; -#ifdef CONFIG_SMP idle->on_cpu = 1; -#endif raw_spin_rq_unlock(rq); raw_spin_unlock_irqrestore(&idle->pi_lock, flags); @@ -7839,13 +7940,9 @@ void __init init_idle(struct task_struct *idle, int cpu) idle->sched_class = &idle_sched_class; ftrace_graph_init_idle_task(idle, cpu); vtime_init_idle(idle, cpu); -#ifdef CONFIG_SMP sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); -#endif } -#ifdef CONFIG_SMP - int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial) { @@ -7905,44 +8002,34 @@ int migrate_task_to(struct task_struct *p, int target_cpu) */ void sched_setnuma(struct task_struct *p, int nid) { - bool queued, running; - struct rq_flags rf; - struct rq *rq; - - rq = task_rq_lock(p, &rf); - queued = task_on_rq_queued(p); - running = task_current_donor(rq, p); - - if (queued) - dequeue_task(rq, p, DEQUEUE_SAVE); - if (running) - put_prev_task(rq, p); - - p->numa_preferred_nid = nid; - - if (queued) - enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); - if (running) - set_next_task(rq, p); - task_rq_unlock(rq, p, &rf); + guard(task_rq_lock)(p); + scoped_guard (sched_change, p, DEQUEUE_SAVE) + p->numa_preferred_nid = nid; } #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_HOTPLUG_CPU /* - * Ensure that the idle task is using init_mm right before its CPU goes - * offline. + * Invoked on the outgoing CPU in context of the CPU hotplug thread + * after ensuring that there are no user space tasks left on the CPU. + * + * If there is a lazy mm in use on the hotplug thread, drop it and + * switch to init_mm. + * + * The reference count on init_mm is dropped in finish_cpu(). */ -void idle_task_exit(void) +static void sched_force_init_mm(void) { struct mm_struct *mm = current->active_mm; - BUG_ON(cpu_online(smp_processor_id())); - BUG_ON(current != this_rq()->idle); - if (mm != &init_mm) { - switch_mm(mm, &init_mm, current); + mmgrab_lazy_tlb(&init_mm); + local_irq_disable(); + current->active_mm = &init_mm; + switch_mm_irqs_off(mm, &init_mm, current); + local_irq_enable(); finish_arch_post_lock_switch(); + mmdrop_lazy_tlb(mm); } /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ @@ -7955,18 +8042,15 @@ static int __balance_push_cpu_stop(void *arg) struct rq_flags rf; int cpu; - raw_spin_lock_irq(&p->pi_lock); - rq_lock(rq, &rf); - - update_rq_clock(rq); - - if (task_rq(p) == rq && task_on_rq_queued(p)) { + scoped_guard (raw_spinlock_irq, &p->pi_lock) { cpu = select_fallback_rq(rq->cpu, p); - rq = __migrate_task(rq, &rf, p, cpu); - } - rq_unlock(rq, &rf); - raw_spin_unlock_irq(&p->pi_lock); + rq_lock(rq, &rf); + update_rq_clock(rq); + if (task_rq(p) == rq && task_on_rq_queued(p)) + rq = __migrate_task(rq, &rf, p, cpu); + rq_unlock(rq, &rf); + } put_task_struct(p); @@ -8074,7 +8158,7 @@ static void balance_hotplug_wait(void) TASK_UNINTERRUPTIBLE); } -#else +#else /* !CONFIG_HOTPLUG_CPU: */ static inline void balance_push(struct rq *rq) { @@ -8088,7 +8172,7 @@ static inline void balance_hotplug_wait(void) { } -#endif /* CONFIG_HOTPLUG_CPU */ +#endif /* !CONFIG_HOTPLUG_CPU */ void set_rq_online(struct rq *rq) { @@ -8167,7 +8251,7 @@ static void cpuset_cpu_active(void) * operation in the resume sequence, just build a single sched * domain, ignoring cpusets. */ - partition_sched_domains(1, NULL, NULL); + cpuset_reset_sched_domains(); if (--num_cpus_frozen) return; /* @@ -8180,19 +8264,14 @@ static void cpuset_cpu_active(void) cpuset_update_active_cpus(); } -static int cpuset_cpu_inactive(unsigned int cpu) +static void cpuset_cpu_inactive(unsigned int cpu) { if (!cpuhp_tasks_frozen) { - int ret = dl_bw_check_overflow(cpu); - - if (ret) - return ret; cpuset_update_active_cpus(); } else { num_cpus_frozen++; - partition_sched_domains(1, NULL, NULL); + cpuset_reset_sched_domains(); } - return 0; } static inline void sched_smt_present_inc(int cpu) @@ -8254,6 +8333,11 @@ int sched_cpu_deactivate(unsigned int cpu) struct rq *rq = cpu_rq(cpu); int ret; + ret = dl_bw_deactivate(cpu); + + if (ret) + return ret; + /* * Remove CPU from nohz.idle_cpus_mask to prevent participating in * load balancing when not active @@ -8299,15 +8383,7 @@ int sched_cpu_deactivate(unsigned int cpu) return 0; sched_update_numa(cpu, false); - ret = cpuset_cpu_inactive(cpu); - if (ret) { - sched_smt_present_inc(cpu); - sched_set_rq_online(rq, cpu); - balance_push_set(cpu, false); - set_cpu_active(cpu, true); - sched_update_numa(cpu, true); - return ret; - } + cpuset_cpu_inactive(cpu); sched_domains_numa_masks_clear(cpu); return 0; } @@ -8344,6 +8420,7 @@ int sched_cpu_starting(unsigned int cpu) int sched_cpu_wait_empty(unsigned int cpu) { balance_hotplug_wait(); + sched_force_init_mm(); return 0; } @@ -8392,10 +8469,12 @@ int sched_cpu_dying(unsigned int cpu) sched_tick_stop(cpu); rq_lock_irqsave(rq, &rf); + update_rq_clock(rq); if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { WARN(true, "Dying CPU not properly vacated!"); dump_rq_tasks(rq, KERN_WARNING); } + dl_server_stop(&rq->fair_server); rq_unlock_irqrestore(rq, &rf); calc_load_migrate(rq); @@ -8404,20 +8483,22 @@ int sched_cpu_dying(unsigned int cpu) sched_core_cpu_dying(cpu); return 0; } -#endif +#endif /* CONFIG_HOTPLUG_CPU */ void __init sched_init_smp(void) { sched_init_numa(NUMA_NO_NODE); + prandom_init_once(&sched_rnd_state); + /* * There's no userspace yet to cause hotplug operations; hence all the * CPU masks are stable and all blatant races in the below code cannot * happen. */ - mutex_lock(&sched_domains_mutex); + sched_domains_mutex_lock(); sched_init_domains(cpu_active_mask); - mutex_unlock(&sched_domains_mutex); + sched_domains_mutex_unlock(); /* Move init over to a non-isolated CPU */ if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) @@ -8428,6 +8509,8 @@ void __init sched_init_smp(void) init_sched_rt_class(); init_sched_dl_class(); + sched_init_dl_servers(); + sched_smp_initialized = true; } @@ -8438,13 +8521,6 @@ static int __init migration_init(void) } early_initcall(migration_init); -#else -void __init sched_init_smp(void) -{ - sched_init_granularity(); -} -#endif /* CONFIG_SMP */ - int in_sched_functions(unsigned long addr) { return in_lock_functions(addr) || @@ -8470,9 +8546,7 @@ void __init sched_init(void) int i; /* Make sure the linker didn't screw up */ -#ifdef CONFIG_SMP BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); -#endif BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); @@ -8503,7 +8577,7 @@ void __init sched_init(void) init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_EXT_GROUP_SCHED - root_task_group.scx_weight = CGROUP_WEIGHT_DFL; + scx_tg_init(&root_task_group); #endif /* CONFIG_EXT_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED root_task_group.rt_se = (struct sched_rt_entity **)ptr; @@ -8515,9 +8589,7 @@ void __init sched_init(void) #endif /* CONFIG_RT_GROUP_SCHED */ } -#ifdef CONFIG_SMP init_defrootdomain(); -#endif #ifdef CONFIG_RT_GROUP_SCHED init_rt_bandwidth(&root_task_group.rt_bandwidth, @@ -8578,7 +8650,6 @@ void __init sched_init(void) rq->rt.rt_runtime = global_rt_runtime(); init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); #endif -#ifdef CONFIG_SMP rq->sd = NULL; rq->rd = NULL; rq->cpu_capacity = SCHED_CAPACITY_SCALE; @@ -8604,7 +8675,6 @@ void __init sched_init(void) #ifdef CONFIG_HOTPLUG_CPU rcuwait_init(&rq->hotplug_wait); #endif -#endif /* CONFIG_SMP */ hrtick_rq_init(rq); atomic_set(&rq->nr_iowait, 0); fair_server_init(rq); @@ -8652,10 +8722,9 @@ void __init sched_init(void) calc_load_update = jiffies + LOAD_FREQ; -#ifdef CONFIG_SMP idle_thread_set_boot_cpu(); + balance_push_set(smp_processor_id(), false); -#endif init_sched_fair_class(); init_sched_ext_class(); @@ -8788,7 +8857,7 @@ void __cant_sleep(const char *file, int line, int preempt_offset) } EXPORT_SYMBOL_GPL(__cant_sleep); -#ifdef CONFIG_SMP +# ifdef CONFIG_SMP void __cant_migrate(const char *file, int line) { static unsigned long prev_jiffy; @@ -8819,8 +8888,8 @@ void __cant_migrate(const char *file, int line) add_taint(TAINT_WARN, LOCKDEP_STILL_OK); } EXPORT_SYMBOL_GPL(__cant_migrate); -#endif -#endif +# endif /* CONFIG_SMP */ +#endif /* CONFIG_DEBUG_ATOMIC_SLEEP */ #ifdef CONFIG_MAGIC_SYSRQ void normalize_rt_tasks(void) @@ -8860,7 +8929,7 @@ void normalize_rt_tasks(void) #endif /* CONFIG_MAGIC_SYSRQ */ -#if defined(CONFIG_KGDB_KDB) +#ifdef CONFIG_KGDB_KDB /* * These functions are only useful for KDB. * @@ -8884,7 +8953,7 @@ struct task_struct *curr_task(int cpu) return cpu_curr(cpu); } -#endif /* defined(CONFIG_KGDB_KDB) */ +#endif /* CONFIG_KGDB_KDB */ #ifdef CONFIG_CGROUP_SCHED /* task_group_lock serializes the addition/removal of task groups */ @@ -8943,7 +9012,7 @@ struct task_group *sched_create_group(struct task_group *parent) if (!alloc_rt_sched_group(tg, parent)) goto err; - scx_group_set_weight(tg, CGROUP_WEIGHT_DFL); + scx_tg_init(tg); alloc_uclamp_sched_group(tg, parent); return tg; @@ -8958,7 +9027,7 @@ void sched_online_group(struct task_group *tg, struct task_group *parent) unsigned long flags; spin_lock_irqsave(&task_group_lock, flags); - list_add_rcu(&tg->list, &task_groups); + list_add_tail_rcu(&tg->list, &task_groups); /* Root should already exist: */ WARN_ON(!parent); @@ -9007,7 +9076,7 @@ void sched_release_group(struct task_group *tg) spin_unlock_irqrestore(&task_group_lock, flags); } -static struct task_group *sched_get_task_group(struct task_struct *tsk) +static void sched_change_group(struct task_struct *tsk) { struct task_group *tg; @@ -9019,13 +9088,7 @@ static struct task_group *sched_get_task_group(struct task_struct *tsk) tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), struct task_group, css); tg = autogroup_task_group(tsk, tg); - - return tg; -} - -static void sched_change_group(struct task_struct *tsk, struct task_group *group) -{ - tsk->sched_task_group = group; + tsk->sched_task_group = tg; #ifdef CONFIG_FAIR_GROUP_SCHED if (tsk->sched_class->task_change_group) @@ -9042,48 +9105,25 @@ static void sched_change_group(struct task_struct *tsk, struct task_group *group * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect * its new group. */ -void sched_move_task(struct task_struct *tsk) +void sched_move_task(struct task_struct *tsk, bool for_autogroup) { - int queued, running, queue_flags = - DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; - struct task_group *group; + unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; + bool resched = false; struct rq *rq; CLASS(task_rq_lock, rq_guard)(tsk); rq = rq_guard.rq; - /* - * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous - * group changes. - */ - group = sched_get_task_group(tsk); - if (group == tsk->sched_task_group) - return; - - update_rq_clock(rq); - - running = task_current_donor(rq, tsk); - queued = task_on_rq_queued(tsk); - - if (queued) - dequeue_task(rq, tsk, queue_flags); - if (running) - put_prev_task(rq, tsk); - - sched_change_group(tsk, group); - scx_move_task(tsk); + scoped_guard (sched_change, tsk, queue_flags) { + sched_change_group(tsk); + if (!for_autogroup) + scx_cgroup_move_task(tsk); + if (scope->running) + resched = true; + } - if (queued) - enqueue_task(rq, tsk, queue_flags); - if (running) { - set_next_task(rq, tsk); - /* - * After changing group, the running task may have joined a - * throttled one but it's still the running task. Trigger a - * resched to make sure that task can still run. - */ + if (resched) resched_curr(rq); - } } static struct cgroup_subsys_state * @@ -9158,11 +9198,15 @@ static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) struct task_struct *task; struct cgroup_subsys_state *css; + if (!rt_group_sched_enabled()) + goto scx_check; + cgroup_taskset_for_each(task, css, tset) { if (!sched_rt_can_attach(css_tg(css), task)) return -EINVAL; } -#endif +scx_check: +#endif /* CONFIG_RT_GROUP_SCHED */ return scx_cgroup_can_attach(tset); } @@ -9172,9 +9216,7 @@ static void cpu_cgroup_attach(struct cgroup_taskset *tset) struct cgroup_subsys_state *css; cgroup_taskset_for_each(task, css, tset) - sched_move_task(task); - - scx_cgroup_finish_attach(); + sched_move_task(task, false); } static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) @@ -9193,7 +9235,7 @@ static void cpu_util_update_eff(struct cgroup_subsys_state *css) unsigned int clamps; lockdep_assert_held(&uclamp_mutex); - SCHED_WARN_ON(!rcu_read_lock_held()); + WARN_ON_ONCE(!rcu_read_lock_held()); css_for_each_descendant_pre(css, top_css) { uc_parent = css_tg(css)->parent @@ -9285,7 +9327,7 @@ static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, if (req.ret) return req.ret; - static_branch_enable(&sched_uclamp_used); + sched_uclamp_enable(); guard(mutex)(&uclamp_mutex); guard(rcu)(); @@ -9362,7 +9404,7 @@ static unsigned long tg_weight(struct task_group *tg) #ifdef CONFIG_FAIR_GROUP_SCHED return scale_load_down(tg->shares); #else - return sched_weight_from_cgroup(tg->scx_weight); + return sched_weight_from_cgroup(tg->scx.weight); #endif } @@ -9390,47 +9432,23 @@ static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, #ifdef CONFIG_CFS_BANDWIDTH static DEFINE_MUTEX(cfs_constraints_mutex); -const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ -static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ -/* More than 203 days if BW_SHIFT equals 20. */ -static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; - static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); -static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, - u64 burst) +static int tg_set_cfs_bandwidth(struct task_group *tg, + u64 period_us, u64 quota_us, u64 burst_us) { int i, ret = 0, runtime_enabled, runtime_was_enabled; struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; + u64 period, quota, burst; - if (tg == &root_task_group) - return -EINVAL; + period = (u64)period_us * NSEC_PER_USEC; - /* - * Ensure we have at some amount of bandwidth every period. This is - * to prevent reaching a state of large arrears when throttled via - * entity_tick() resulting in prolonged exit starvation. - */ - if (quota < min_cfs_quota_period || period < min_cfs_quota_period) - return -EINVAL; - - /* - * Likewise, bound things on the other side by preventing insane quota - * periods. This also allows us to normalize in computing quota - * feasibility. - */ - if (period > max_cfs_quota_period) - return -EINVAL; - - /* - * Bound quota to defend quota against overflow during bandwidth shift. - */ - if (quota != RUNTIME_INF && quota > max_cfs_runtime) - return -EINVAL; + if (quota_us == RUNTIME_INF) + quota = RUNTIME_INF; + else + quota = (u64)quota_us * NSEC_PER_USEC; - if (quota != RUNTIME_INF && (burst > quota || - burst + quota > max_cfs_runtime)) - return -EINVAL; + burst = (u64)burst_us * NSEC_PER_USEC; /* * Prevent race between setting of cfs_rq->runtime_enabled and @@ -9473,7 +9491,7 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, guard(rq_lock_irq)(rq); cfs_rq->runtime_enabled = runtime_enabled; - cfs_rq->runtime_remaining = 0; + cfs_rq->runtime_remaining = 1; if (cfs_rq->throttled) unthrottle_cfs_rq(cfs_rq); @@ -9485,28 +9503,22 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, return 0; } -static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) +static u64 tg_get_cfs_period(struct task_group *tg) { - u64 quota, period, burst; + u64 cfs_period_us; - period = ktime_to_ns(tg->cfs_bandwidth.period); - burst = tg->cfs_bandwidth.burst; - if (cfs_quota_us < 0) - quota = RUNTIME_INF; - else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) - quota = (u64)cfs_quota_us * NSEC_PER_USEC; - else - return -EINVAL; + cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); + do_div(cfs_period_us, NSEC_PER_USEC); - return tg_set_cfs_bandwidth(tg, period, quota, burst); + return cfs_period_us; } -static long tg_get_cfs_quota(struct task_group *tg) +static u64 tg_get_cfs_quota(struct task_group *tg) { u64 quota_us; if (tg->cfs_bandwidth.quota == RUNTIME_INF) - return -1; + return RUNTIME_INF; quota_us = tg->cfs_bandwidth.quota; do_div(quota_us, NSEC_PER_USEC); @@ -9514,45 +9526,7 @@ static long tg_get_cfs_quota(struct task_group *tg) return quota_us; } -static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) -{ - u64 quota, period, burst; - - if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) - return -EINVAL; - - period = (u64)cfs_period_us * NSEC_PER_USEC; - quota = tg->cfs_bandwidth.quota; - burst = tg->cfs_bandwidth.burst; - - return tg_set_cfs_bandwidth(tg, period, quota, burst); -} - -static long tg_get_cfs_period(struct task_group *tg) -{ - u64 cfs_period_us; - - cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); - do_div(cfs_period_us, NSEC_PER_USEC); - - return cfs_period_us; -} - -static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) -{ - u64 quota, period, burst; - - if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) - return -EINVAL; - - burst = (u64)cfs_burst_us * NSEC_PER_USEC; - period = ktime_to_ns(tg->cfs_bandwidth.period); - quota = tg->cfs_bandwidth.quota; - - return tg_set_cfs_bandwidth(tg, period, quota, burst); -} - -static long tg_get_cfs_burst(struct task_group *tg) +static u64 tg_get_cfs_burst(struct task_group *tg) { u64 burst_us; @@ -9562,42 +9536,6 @@ static long tg_get_cfs_burst(struct task_group *tg) return burst_us; } -static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, - struct cftype *cft) -{ - return tg_get_cfs_quota(css_tg(css)); -} - -static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, - struct cftype *cftype, s64 cfs_quota_us) -{ - return tg_set_cfs_quota(css_tg(css), cfs_quota_us); -} - -static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, - struct cftype *cft) -{ - return tg_get_cfs_period(css_tg(css)); -} - -static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, - struct cftype *cftype, u64 cfs_period_us) -{ - return tg_set_cfs_period(css_tg(css), cfs_period_us); -} - -static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, - struct cftype *cft) -{ - return tg_get_cfs_burst(css_tg(css)); -} - -static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, - struct cftype *cftype, u64 cfs_burst_us) -{ - return tg_set_cfs_burst(css_tg(css), cfs_burst_us); -} - struct cfs_schedulable_data { struct task_group *tg; u64 period, quota; @@ -9732,6 +9670,143 @@ static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) } #endif /* CONFIG_CFS_BANDWIDTH */ +#ifdef CONFIG_GROUP_SCHED_BANDWIDTH +const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */ +static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */ +/* More than 203 days if BW_SHIFT equals 20. */ +static const u64 max_bw_runtime_us = MAX_BW; + +static void tg_bandwidth(struct task_group *tg, + u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p) +{ +#ifdef CONFIG_CFS_BANDWIDTH + if (period_us_p) + *period_us_p = tg_get_cfs_period(tg); + if (quota_us_p) + *quota_us_p = tg_get_cfs_quota(tg); + if (burst_us_p) + *burst_us_p = tg_get_cfs_burst(tg); +#else /* !CONFIG_CFS_BANDWIDTH */ + if (period_us_p) + *period_us_p = tg->scx.bw_period_us; + if (quota_us_p) + *quota_us_p = tg->scx.bw_quota_us; + if (burst_us_p) + *burst_us_p = tg->scx.bw_burst_us; +#endif /* CONFIG_CFS_BANDWIDTH */ +} + +static u64 cpu_period_read_u64(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + u64 period_us; + + tg_bandwidth(css_tg(css), &period_us, NULL, NULL); + return period_us; +} + +static int tg_set_bandwidth(struct task_group *tg, + u64 period_us, u64 quota_us, u64 burst_us) +{ + const u64 max_usec = U64_MAX / NSEC_PER_USEC; + int ret = 0; + + if (tg == &root_task_group) + return -EINVAL; + + /* Values should survive translation to nsec */ + if (period_us > max_usec || + (quota_us != RUNTIME_INF && quota_us > max_usec) || + burst_us > max_usec) + return -EINVAL; + + /* + * Ensure we have some amount of bandwidth every period. This is to + * prevent reaching a state of large arrears when throttled via + * entity_tick() resulting in prolonged exit starvation. + */ + if (quota_us < min_bw_quota_period_us || + period_us < min_bw_quota_period_us) + return -EINVAL; + + /* + * Likewise, bound things on the other side by preventing insane quota + * periods. This also allows us to normalize in computing quota + * feasibility. + */ + if (period_us > max_bw_quota_period_us) + return -EINVAL; + + /* + * Bound quota to defend quota against overflow during bandwidth shift. + */ + if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us) + return -EINVAL; + + if (quota_us != RUNTIME_INF && (burst_us > quota_us || + burst_us + quota_us > max_bw_runtime_us)) + return -EINVAL; + +#ifdef CONFIG_CFS_BANDWIDTH + ret = tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us); +#endif /* CONFIG_CFS_BANDWIDTH */ + if (!ret) + scx_group_set_bandwidth(tg, period_us, quota_us, burst_us); + return ret; +} + +static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + u64 quota_us; + + tg_bandwidth(css_tg(css), NULL, "a_us, NULL); + return quota_us; /* (s64)RUNTIME_INF becomes -1 */ +} + +static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + u64 burst_us; + + tg_bandwidth(css_tg(css), NULL, NULL, &burst_us); + return burst_us; +} + +static int cpu_period_write_u64(struct cgroup_subsys_state *css, + struct cftype *cftype, u64 period_us) +{ + struct task_group *tg = css_tg(css); + u64 quota_us, burst_us; + + tg_bandwidth(tg, NULL, "a_us, &burst_us); + return tg_set_bandwidth(tg, period_us, quota_us, burst_us); +} + +static int cpu_quota_write_s64(struct cgroup_subsys_state *css, + struct cftype *cftype, s64 quota_us) +{ + struct task_group *tg = css_tg(css); + u64 period_us, burst_us; + + if (quota_us < 0) + quota_us = RUNTIME_INF; + + tg_bandwidth(tg, &period_us, NULL, &burst_us); + return tg_set_bandwidth(tg, period_us, quota_us, burst_us); +} + +static int cpu_burst_write_u64(struct cgroup_subsys_state *css, + struct cftype *cftype, u64 burst_us) +{ + struct task_group *tg = css_tg(css); + u64 period_us, quota_us; + + tg_bandwidth(tg, &period_us, "a_us, NULL); + return tg_set_bandwidth(tg, period_us, quota_us, burst_us); +} +#endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ + #ifdef CONFIG_RT_GROUP_SCHED static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, struct cftype *cft, s64 val) @@ -9775,7 +9850,7 @@ static int cpu_idle_write_s64(struct cgroup_subsys_state *css, scx_group_set_idle(css_tg(css), idle); return ret; } -#endif +#endif /* CONFIG_GROUP_SCHED_WEIGHT */ static struct cftype cpu_legacy_files[] = { #ifdef CONFIG_GROUP_SCHED_WEIGHT @@ -9790,22 +9865,24 @@ static struct cftype cpu_legacy_files[] = { .write_s64 = cpu_idle_write_s64, }, #endif -#ifdef CONFIG_CFS_BANDWIDTH +#ifdef CONFIG_GROUP_SCHED_BANDWIDTH { - .name = "cfs_quota_us", - .read_s64 = cpu_cfs_quota_read_s64, - .write_s64 = cpu_cfs_quota_write_s64, + .name = "cfs_period_us", + .read_u64 = cpu_period_read_u64, + .write_u64 = cpu_period_write_u64, }, { - .name = "cfs_period_us", - .read_u64 = cpu_cfs_period_read_u64, - .write_u64 = cpu_cfs_period_write_u64, + .name = "cfs_quota_us", + .read_s64 = cpu_quota_read_s64, + .write_s64 = cpu_quota_write_s64, }, { .name = "cfs_burst_us", - .read_u64 = cpu_cfs_burst_read_u64, - .write_u64 = cpu_cfs_burst_write_u64, + .read_u64 = cpu_burst_read_u64, + .write_u64 = cpu_burst_write_u64, }, +#endif +#ifdef CONFIG_CFS_BANDWIDTH { .name = "stat", .seq_show = cpu_cfs_stat_show, @@ -9815,18 +9892,6 @@ static struct cftype cpu_legacy_files[] = { .seq_show = cpu_cfs_local_stat_show, }, #endif -#ifdef CONFIG_RT_GROUP_SCHED - { - .name = "rt_runtime_us", - .read_s64 = cpu_rt_runtime_read, - .write_s64 = cpu_rt_runtime_write, - }, - { - .name = "rt_period_us", - .read_u64 = cpu_rt_period_read_uint, - .write_u64 = cpu_rt_period_write_uint, - }, -#endif #ifdef CONFIG_UCLAMP_TASK_GROUP { .name = "uclamp.min", @@ -9844,6 +9909,55 @@ static struct cftype cpu_legacy_files[] = { { } /* Terminate */ }; +#ifdef CONFIG_RT_GROUP_SCHED +static struct cftype rt_group_files[] = { + { + .name = "rt_runtime_us", + .read_s64 = cpu_rt_runtime_read, + .write_s64 = cpu_rt_runtime_write, + }, + { + .name = "rt_period_us", + .read_u64 = cpu_rt_period_read_uint, + .write_u64 = cpu_rt_period_write_uint, + }, + { } /* Terminate */ +}; + +# ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED +DEFINE_STATIC_KEY_FALSE(rt_group_sched); +# else +DEFINE_STATIC_KEY_TRUE(rt_group_sched); +# endif + +static int __init setup_rt_group_sched(char *str) +{ + long val; + + if (kstrtol(str, 0, &val) || val < 0 || val > 1) { + pr_warn("Unable to set rt_group_sched\n"); + return 1; + } + if (val) + static_branch_enable(&rt_group_sched); + else + static_branch_disable(&rt_group_sched); + + return 1; +} +__setup("rt_group_sched=", setup_rt_group_sched); + +static int __init cpu_rt_group_init(void) +{ + if (!rt_group_sched_enabled()) + return 0; + + WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files)); + return 0; +} +subsys_initcall(cpu_rt_group_init); +#endif /* CONFIG_RT_GROUP_SCHED */ + static int cpu_extra_stat_show(struct seq_file *sf, struct cgroup_subsys_state *css) { @@ -9866,7 +9980,7 @@ static int cpu_extra_stat_show(struct seq_file *sf, cfs_b->nr_periods, cfs_b->nr_throttled, throttled_usec, cfs_b->nr_burst, burst_usec); } -#endif +#endif /* CONFIG_CFS_BANDWIDTH */ return 0; } @@ -9964,32 +10078,32 @@ static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, } /* caller should put the current value in *@periodp before calling */ -static int __maybe_unused cpu_period_quota_parse(char *buf, - u64 *periodp, u64 *quotap) +static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p, + u64 *quota_us_p) { char tok[21]; /* U64_MAX */ - if (sscanf(buf, "%20s %llu", tok, periodp) < 1) + if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1) return -EINVAL; - *periodp *= NSEC_PER_USEC; - - if (sscanf(tok, "%llu", quotap)) - *quotap *= NSEC_PER_USEC; - else if (!strcmp(tok, "max")) - *quotap = RUNTIME_INF; - else - return -EINVAL; + if (sscanf(tok, "%llu", quota_us_p) < 1) { + if (!strcmp(tok, "max")) + *quota_us_p = RUNTIME_INF; + else + return -EINVAL; + } return 0; } -#ifdef CONFIG_CFS_BANDWIDTH +#ifdef CONFIG_GROUP_SCHED_BANDWIDTH static int cpu_max_show(struct seq_file *sf, void *v) { struct task_group *tg = css_tg(seq_css(sf)); + u64 period_us, quota_us; - cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); + tg_bandwidth(tg, &period_us, "a_us, NULL); + cpu_period_quota_print(sf, period_us, quota_us); return 0; } @@ -9997,17 +10111,16 @@ static ssize_t cpu_max_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct task_group *tg = css_tg(of_css(of)); - u64 period = tg_get_cfs_period(tg); - u64 burst = tg->cfs_bandwidth.burst; - u64 quota; + u64 period_us, quota_us, burst_us; int ret; - ret = cpu_period_quota_parse(buf, &period, "a); + tg_bandwidth(tg, &period_us, NULL, &burst_us); + ret = cpu_period_quota_parse(buf, &period_us, "a_us); if (!ret) - ret = tg_set_cfs_bandwidth(tg, period, quota, burst); + ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us); return ret ?: nbytes; } -#endif +#endif /* CONFIG_CFS_BANDWIDTH */ static struct cftype cpu_files[] = { #ifdef CONFIG_GROUP_SCHED_WEIGHT @@ -10030,7 +10143,7 @@ static struct cftype cpu_files[] = { .write_s64 = cpu_idle_write_s64, }, #endif -#ifdef CONFIG_CFS_BANDWIDTH +#ifdef CONFIG_GROUP_SCHED_BANDWIDTH { .name = "max", .flags = CFTYPE_NOT_ON_ROOT, @@ -10040,10 +10153,10 @@ static struct cftype cpu_files[] = { { .name = "max.burst", .flags = CFTYPE_NOT_ON_ROOT, - .read_u64 = cpu_cfs_burst_read_u64, - .write_u64 = cpu_cfs_burst_write_u64, + .read_u64 = cpu_burst_read_u64, + .write_u64 = cpu_burst_write_u64, }, -#endif +#endif /* CONFIG_CFS_BANDWIDTH */ #ifdef CONFIG_UCLAMP_TASK_GROUP { .name = "uclamp.min", @@ -10057,7 +10170,7 @@ static struct cftype cpu_files[] = { .seq_show = cpu_uclamp_max_show, .write = cpu_uclamp_max_write, }, -#endif +#endif /* CONFIG_UCLAMP_TASK_GROUP */ { } /* terminate */ }; @@ -10078,7 +10191,7 @@ struct cgroup_subsys cpu_cgrp_subsys = { .threaded = true, }; -#endif /* CONFIG_CGROUP_SCHED */ +#endif /* CONFIG_CGROUP_SCHED */ void dump_cpu_task(int cpu) { @@ -10146,558 +10259,571 @@ void call_trace_sched_update_nr_running(struct rq *rq, int count) } #ifdef CONFIG_SCHED_MM_CID - -/* - * @cid_lock: Guarantee forward-progress of cid allocation. - * - * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock - * is only used when contention is detected by the lock-free allocation so - * forward progress can be guaranteed. - */ -DEFINE_RAW_SPINLOCK(cid_lock); - -/* - * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. - * - * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is - * detected, it is set to 1 to ensure that all newly coming allocations are - * serialized by @cid_lock until the allocation which detected contention - * completes and sets @use_cid_lock back to 0. This guarantees forward progress - * of a cid allocation. - */ -int use_cid_lock; - /* - * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid - * concurrently with respect to the execution of the source runqueue context - * switch. + * Concurrency IDentifier management * - * There is one basic properties we want to guarantee here: - * - * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively - * used by a task. That would lead to concurrent allocation of the cid and - * userspace corruption. - * - * Provide this guarantee by introducing a Dekker memory ordering to guarantee - * that a pair of loads observe at least one of a pair of stores, which can be - * shown as: + * Serialization rules: * - * X = Y = 0 + * mm::mm_cid::mutex: Serializes fork() and exit() and therefore + * protects mm::mm_cid::users. * - * w[X]=1 w[Y]=1 - * MB MB - * r[Y]=y r[X]=x + * mm::mm_cid::lock: Serializes mm_update_max_cids() and + * mm_update_cpus_allowed(). Nests in mm_cid::mutex + * and runqueue lock. * - * Which guarantees that x==0 && y==0 is impossible. But rather than using - * values 0 and 1, this algorithm cares about specific state transitions of the - * runqueue current task (as updated by the scheduler context switch), and the - * per-mm/cpu cid value. + * The mm_cidmask bitmap is not protected by any of the mm::mm_cid locks + * and can only be modified with atomic operations. * - * Let's introduce task (Y) which has task->mm == mm and task (N) which has - * task->mm != mm for the rest of the discussion. There are two scheduler state - * transitions on context switch we care about: + * The mm::mm_cid:pcpu per CPU storage is protected by the CPUs runqueue + * lock. * - * (TSA) Store to rq->curr with transition from (N) to (Y) + * CID ownership: * - * (TSB) Store to rq->curr with transition from (Y) to (N) + * A CID is either owned by a task (stored in task_struct::mm_cid.cid) or + * by a CPU (stored in mm::mm_cid.pcpu::cid). CIDs owned by CPUs have the + * MM_CID_ONCPU bit set. During transition from CPU to task ownership mode, + * MM_CID_TRANSIT is set on the per task CIDs. When this bit is set the + * task needs to drop the CID into the pool when scheduling out. Both bits + * (ONCPU and TRANSIT) are filtered out by task_cid() when the CID is + * actually handed over to user space in the RSEQ memory. * - * On the remote-clear side, there is one transition we care about: + * Mode switching: * - * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag + * Switching to per CPU mode happens when the user count becomes greater + * than the maximum number of CIDs, which is calculated by: * - * There is also a transition to UNSET state which can be performed from all - * sides (scheduler, remote-clear). It is always performed with a cmpxchg which - * guarantees that only a single thread will succeed: + * opt_cids = min(mm_cid::nr_cpus_allowed, mm_cid::users); + * max_cids = min(1.25 * opt_cids, num_possible_cpus()); * - * (TMB) cmpxchg to *pcpu_cid to mark UNSET + * The +25% allowance is useful for tight CPU masks in scenarios where only + * a few threads are created and destroyed to avoid frequent mode + * switches. Though this allowance shrinks, the closer opt_cids becomes to + * num_possible_cpus(), which is the (unfortunate) hard ABI limit. * - * Just to be clear, what we do _not_ want to happen is a transition to UNSET - * when a thread is actively using the cid (property (1)). + * At the point of switching to per CPU mode the new user is not yet + * visible in the system, so the task which initiated the fork() runs the + * fixup function: mm_cid_fixup_tasks_to_cpu() walks the thread list and + * either transfers each tasks owned CID to the CPU the task runs on or + * drops it into the CID pool if a task is not on a CPU at that point in + * time. Tasks which schedule in before the task walk reaches them do the + * handover in mm_cid_schedin(). When mm_cid_fixup_tasks_to_cpus() completes + * it's guaranteed that no task related to that MM owns a CID anymore. * - * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. + * Switching back to task mode happens when the user count goes below the + * threshold which was recorded on the per CPU mode switch: * - * Scenario A) (TSA)+(TMA) (from next task perspective) + * pcpu_thrs = min(opt_cids - (opt_cids / 4), num_possible_cpus() / 2); * - * CPU0 CPU1 + * This threshold is updated when a affinity change increases the number of + * allowed CPUs for the MM, which might cause a switch back to per task + * mode. * - * Context switch CS-1 Remote-clear - * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) - * (implied barrier after cmpxchg) - * - switch_mm_cid() - * - memory barrier (see switch_mm_cid() - * comment explaining how this barrier - * is combined with other scheduler - * barriers) - * - mm_cid_get (next) - * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) + * If the switch back was initiated by a exiting task, then that task runs + * the fixup function. If it was initiated by a affinity change, then it's + * run either in the deferred update function in context of a workqueue or + * by a task which forks a new one or by a task which exits. Whatever + * happens first. mm_cid_fixup_cpus_to_task() walks through the possible + * CPUs and either transfers the CPU owned CIDs to a related task which + * runs on the CPU or drops it into the pool. Tasks which schedule in on a + * CPU which the walk did not cover yet do the handover themself. * - * This Dekker ensures that either task (Y) is observed by the - * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are - * observed. + * This transition from CPU to per task ownership happens in two phases: * - * If task (Y) store is observed by rcu_dereference(), it means that there is - * still an active task on the cpu. Remote-clear will therefore not transition - * to UNSET, which fulfills property (1). + * 1) mm:mm_cid.transit contains MM_CID_TRANSIT This is OR'ed on the task + * CID and denotes that the CID is only temporarily owned by the + * task. When it schedules out the task drops the CID back into the + * pool if this bit is set. * - * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), - * it will move its state to UNSET, which clears the percpu cid perhaps - * uselessly (which is not an issue for correctness). Because task (Y) is not - * observed, CPU1 can move ahead to set the state to UNSET. Because moving - * state to UNSET is done with a cmpxchg expecting that the old state has the - * LAZY flag set, only one thread will successfully UNSET. + * 2) The initiating context walks the per CPU space and after completion + * clears mm:mm_cid.transit. So after that point the CIDs are strictly + * task owned again. * - * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 - * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and - * CPU1 will observe task (Y) and do nothing more, which is fine. + * This two phase transition is required to prevent CID space exhaustion + * during the transition as a direct transfer of ownership would fail if + * two tasks are scheduled in on the same CPU before the fixup freed per + * CPU CIDs. * - * What we are effectively preventing with this Dekker is a scenario where - * neither LAZY flag nor store (Y) are observed, which would fail property (1) - * because this would UNSET a cid which is actively used. + * When mm_cid_fixup_cpus_to_tasks() completes it's guaranteed that no CID + * related to that MM is owned by a CPU anymore. */ -void sched_mm_cid_migrate_from(struct task_struct *t) -{ - t->migrate_from_cpu = task_cpu(t); -} - -static -int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, - struct task_struct *t, - struct mm_cid *src_pcpu_cid) +/* + * Update the CID range properties when the constraints change. Invoked via + * fork(), exit() and affinity changes + */ +static void __mm_update_max_cids(struct mm_mm_cid *mc) { - struct mm_struct *mm = t->mm; - struct task_struct *src_task; - int src_cid, last_mm_cid; + unsigned int opt_cids, max_cids; - if (!mm) - return -1; + /* Calculate the new optimal constraint */ + opt_cids = min(mc->nr_cpus_allowed, mc->users); - last_mm_cid = t->last_mm_cid; - /* - * If the migrated task has no last cid, or if the current - * task on src rq uses the cid, it means the source cid does not need - * to be moved to the destination cpu. - */ - if (last_mm_cid == -1) - return -1; - src_cid = READ_ONCE(src_pcpu_cid->cid); - if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) - return -1; + /* Adjust the maximum CIDs to +25% limited by the number of possible CPUs */ + max_cids = min(opt_cids + (opt_cids / 4), num_possible_cpus()); + WRITE_ONCE(mc->max_cids, max_cids); +} - /* - * If we observe an active task using the mm on this rq, it means we - * are not the last task to be migrated from this cpu for this mm, so - * there is no need to move src_cid to the destination cpu. - */ - guard(rcu)(); - src_task = rcu_dereference(src_rq->curr); - if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { - t->last_mm_cid = -1; - return -1; - } +static inline unsigned int mm_cid_calc_pcpu_thrs(struct mm_mm_cid *mc) +{ + unsigned int opt_cids; - return src_cid; + opt_cids = min(mc->nr_cpus_allowed, mc->users); + /* Has to be at least 1 because 0 indicates PCPU mode off */ + return max(min(opt_cids - opt_cids / 4, num_possible_cpus() / 2), 1); } -static -int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, - struct task_struct *t, - struct mm_cid *src_pcpu_cid, - int src_cid) +static bool mm_update_max_cids(struct mm_struct *mm) { - struct task_struct *src_task; - struct mm_struct *mm = t->mm; - int lazy_cid; + struct mm_mm_cid *mc = &mm->mm_cid; - if (src_cid == -1) - return -1; + lockdep_assert_held(&mm->mm_cid.lock); - /* - * Attempt to clear the source cpu cid to move it to the destination - * cpu. - */ - lazy_cid = mm_cid_set_lazy_put(src_cid); - if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) - return -1; + /* Clear deferred mode switch flag. A change is handled by the caller */ + mc->update_deferred = false; + __mm_update_max_cids(mc); - /* - * The implicit barrier after cmpxchg per-mm/cpu cid before loading - * rq->curr->mm matches the scheduler barrier in context_switch() - * between store to rq->curr and load of prev and next task's - * per-mm/cpu cid. - * - * The implicit barrier after cmpxchg per-mm/cpu cid before loading - * rq->curr->mm_cid_active matches the barrier in - * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and - * sched_mm_cid_after_execve() between store to t->mm_cid_active and - * load of per-mm/cpu cid. - */ - - /* - * If we observe an active task using the mm on this rq after setting - * the lazy-put flag, this task will be responsible for transitioning - * from lazy-put flag set to MM_CID_UNSET. - */ - scoped_guard (rcu) { - src_task = rcu_dereference(src_rq->curr); - if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { - /* - * We observed an active task for this mm, there is therefore - * no point in moving this cid to the destination cpu. - */ - t->last_mm_cid = -1; - return -1; - } + /* Check whether owner mode must be changed */ + if (!mc->percpu) { + /* Enable per CPU mode when the number of users is above max_cids */ + if (mc->users > mc->max_cids) + mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc); + } else { + /* Switch back to per task if user count under threshold */ + if (mc->users < mc->pcpu_thrs) + mc->pcpu_thrs = 0; } - /* - * The src_cid is unused, so it can be unset. - */ - if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) - return -1; - WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); - return src_cid; + /* Mode change required? */ + if (!!mc->percpu == !!mc->pcpu_thrs) + return false; + /* When switching back to per TASK mode, set the transition flag */ + if (!mc->pcpu_thrs) + WRITE_ONCE(mc->transit, MM_CID_TRANSIT); + WRITE_ONCE(mc->percpu, !!mc->pcpu_thrs); + return true; } -/* - * Migration to dst cpu. Called with dst_rq lock held. - * Interrupts are disabled, which keeps the window of cid ownership without the - * source rq lock held small. - */ -void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) +static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk) { - struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; - struct mm_struct *mm = t->mm; - int src_cid, src_cpu; - bool dst_cid_is_set; - struct rq *src_rq; + struct cpumask *mm_allowed; + struct mm_mm_cid *mc; + unsigned int weight; - lockdep_assert_rq_held(dst_rq); - - if (!mm) - return; - src_cpu = t->migrate_from_cpu; - if (src_cpu == -1) { - t->last_mm_cid = -1; + if (!mm || !READ_ONCE(mm->mm_cid.users)) return; - } /* - * Move the src cid if the dst cid is unset. This keeps id - * allocation closest to 0 in cases where few threads migrate around - * many CPUs. - * - * If destination cid or recent cid is already set, we may have - * to just clear the src cid to ensure compactness in frequent - * migrations scenarios. - * - * It is not useful to clear the src cid when the number of threads is - * greater or equal to the number of allowed CPUs, because user-space - * can expect that the number of allowed cids can reach the number of - * allowed CPUs. - */ - dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); - dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || - !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); - if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) + * mm::mm_cid::mm_cpus_allowed is the superset of each threads + * allowed CPUs mask which means it can only grow. + */ + mc = &mm->mm_cid; + guard(raw_spinlock)(&mc->lock); + mm_allowed = mm_cpus_allowed(mm); + weight = cpumask_weighted_or(mm_allowed, mm_allowed, affmsk); + if (weight == mc->nr_cpus_allowed) return; - src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); - src_rq = cpu_rq(src_cpu); - src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); - if (src_cid == -1) + + WRITE_ONCE(mc->nr_cpus_allowed, weight); + __mm_update_max_cids(mc); + if (!mc->percpu) return; - src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, - src_cid); - if (src_cid == -1) + + /* Adjust the threshold to the wider set */ + mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc); + /* Switch back to per task mode? */ + if (mc->users >= mc->pcpu_thrs) return; - if (dst_cid_is_set) { - __mm_cid_put(mm, src_cid); + + /* Don't queue twice */ + if (mc->update_deferred) return; - } - /* Move src_cid to dst cpu. */ - mm_cid_snapshot_time(dst_rq, mm); - WRITE_ONCE(dst_pcpu_cid->cid, src_cid); - WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); + + /* Queue the irq work, which schedules the real work */ + mc->update_deferred = true; + irq_work_queue(&mc->irq_work); } -static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, - int cpu) +static inline void mm_cid_transit_to_task(struct task_struct *t, struct mm_cid_pcpu *pcp) { - struct rq *rq = cpu_rq(cpu); - struct task_struct *t; - int cid, lazy_cid; + if (cid_on_cpu(t->mm_cid.cid)) { + unsigned int cid = cpu_cid_to_cid(t->mm_cid.cid); - cid = READ_ONCE(pcpu_cid->cid); - if (!mm_cid_is_valid(cid)) - return; + t->mm_cid.cid = cid_to_transit_cid(cid); + pcp->cid = t->mm_cid.cid; + } +} - /* - * Clear the cpu cid if it is set to keep cid allocation compact. If - * there happens to be other tasks left on the source cpu using this - * mm, the next task using this mm will reallocate its cid on context - * switch. - */ - lazy_cid = mm_cid_set_lazy_put(cid); - if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) - return; +static void mm_cid_fixup_cpus_to_tasks(struct mm_struct *mm) +{ + unsigned int cpu; - /* - * The implicit barrier after cmpxchg per-mm/cpu cid before loading - * rq->curr->mm matches the scheduler barrier in context_switch() - * between store to rq->curr and load of prev and next task's - * per-mm/cpu cid. - * - * The implicit barrier after cmpxchg per-mm/cpu cid before loading - * rq->curr->mm_cid_active matches the barrier in - * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and - * sched_mm_cid_after_execve() between store to t->mm_cid_active and - * load of per-mm/cpu cid. - */ + /* Walk the CPUs and fixup all stale CIDs */ + for_each_possible_cpu(cpu) { + struct mm_cid_pcpu *pcp = per_cpu_ptr(mm->mm_cid.pcpu, cpu); + struct rq *rq = cpu_rq(cpu); - /* - * If we observe an active task using the mm on this rq after setting - * the lazy-put flag, that task will be responsible for transitioning - * from lazy-put flag set to MM_CID_UNSET. - */ - scoped_guard (rcu) { - t = rcu_dereference(rq->curr); - if (READ_ONCE(t->mm_cid_active) && t->mm == mm) - return; + /* Remote access to mm::mm_cid::pcpu requires rq_lock */ + guard(rq_lock_irq)(rq); + /* Is the CID still owned by the CPU? */ + if (cid_on_cpu(pcp->cid)) { + /* + * If rq->curr has @mm, transfer it with the + * transition bit set. Otherwise drop it. + */ + if (rq->curr->mm == mm && rq->curr->mm_cid.active) + mm_cid_transit_to_task(rq->curr, pcp); + else + mm_drop_cid_on_cpu(mm, pcp); + + } else if (rq->curr->mm == mm && rq->curr->mm_cid.active) { + unsigned int cid = rq->curr->mm_cid.cid; + + /* Ensure it has the transition bit set */ + if (!cid_in_transit(cid)) { + cid = cid_to_transit_cid(cid); + rq->curr->mm_cid.cid = cid; + pcp->cid = cid; + } + } } + /* Clear the transition bit */ + WRITE_ONCE(mm->mm_cid.transit, 0); +} - /* - * The cid is unused, so it can be unset. - * Disable interrupts to keep the window of cid ownership without rq - * lock small. - */ - scoped_guard (irqsave) { - if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) - __mm_cid_put(mm, cid); +static inline void mm_cid_transfer_to_cpu(struct task_struct *t, struct mm_cid_pcpu *pcp) +{ + if (cid_on_task(t->mm_cid.cid)) { + t->mm_cid.cid = cid_to_cpu_cid(t->mm_cid.cid); + pcp->cid = t->mm_cid.cid; } } -static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) +static bool mm_cid_fixup_task_to_cpu(struct task_struct *t, struct mm_struct *mm) { - struct rq *rq = cpu_rq(cpu); - struct mm_cid *pcpu_cid; - struct task_struct *curr; - u64 rq_clock; + /* Remote access to mm::mm_cid::pcpu requires rq_lock */ + guard(task_rq_lock)(t); + /* If the task is not active it is not in the users count */ + if (!t->mm_cid.active) + return false; + if (cid_on_task(t->mm_cid.cid)) { + /* If running on the CPU, transfer the CID, otherwise drop it */ + if (task_rq(t)->curr == t) + mm_cid_transfer_to_cpu(t, per_cpu_ptr(mm->mm_cid.pcpu, task_cpu(t))); + else + mm_unset_cid_on_task(t); + } + return true; +} - /* - * rq->clock load is racy on 32-bit but one spurious clear once in a - * while is irrelevant. - */ - rq_clock = READ_ONCE(rq->clock); - pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); +static void mm_cid_fixup_tasks_to_cpus(void) +{ + struct mm_struct *mm = current->mm; + struct task_struct *p, *t; + unsigned int users; /* - * In order to take care of infrequently scheduled tasks, bump the time - * snapshot associated with this cid if an active task using the mm is - * observed on this rq. + * This can obviously race with a concurrent affinity change, which + * increases the number of allowed CPUs for this mm, but that does + * not affect the mode and only changes the CID constraints. A + * possible switch back to per task mode happens either in the + * deferred handler function or in the next fork()/exit(). + * + * The caller has already transferred. The newly incoming task is + * already accounted for, but not yet visible. */ - scoped_guard (rcu) { - curr = rcu_dereference(rq->curr); - if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { - WRITE_ONCE(pcpu_cid->time, rq_clock); - return; - } + users = mm->mm_cid.users - 2; + if (!users) + return; + + guard(rcu)(); + for_other_threads(current, t) { + if (mm_cid_fixup_task_to_cpu(t, mm)) + users--; } - if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) + if (!users) return; - sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); + + /* Happens only for VM_CLONE processes. */ + for_each_process_thread(p, t) { + if (t == current || t->mm != mm) + continue; + if (mm_cid_fixup_task_to_cpu(t, mm)) { + if (--users == 0) + return; + } + } } -static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, - int weight) +static bool sched_mm_cid_add_user(struct task_struct *t, struct mm_struct *mm) { - struct mm_cid *pcpu_cid; - int cid; - - pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); - cid = READ_ONCE(pcpu_cid->cid); - if (!mm_cid_is_valid(cid) || cid < weight) - return; - sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); + t->mm_cid.active = 1; + mm->mm_cid.users++; + return mm_update_max_cids(mm); } -static void task_mm_cid_work(struct callback_head *work) +void sched_mm_cid_fork(struct task_struct *t) { - unsigned long now = jiffies, old_scan, next_scan; - struct task_struct *t = current; - struct cpumask *cidmask; - struct mm_struct *mm; - int weight, cpu; + struct mm_struct *mm = t->mm; + bool percpu; - SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); + WARN_ON_ONCE(!mm || t->mm_cid.cid != MM_CID_UNSET); - work->next = work; /* Prevent double-add */ - if (t->flags & PF_EXITING) - return; - mm = t->mm; - if (!mm) - return; - old_scan = READ_ONCE(mm->mm_cid_next_scan); - next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); - if (!old_scan) { - unsigned long res; - - res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); - if (res != old_scan) - old_scan = res; + guard(mutex)(&mm->mm_cid.mutex); + scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { + struct mm_cid_pcpu *pcp = this_cpu_ptr(mm->mm_cid.pcpu); + + /* First user ? */ + if (!mm->mm_cid.users) { + sched_mm_cid_add_user(t, mm); + t->mm_cid.cid = mm_get_cid(mm); + /* Required for execve() */ + pcp->cid = t->mm_cid.cid; + return; + } + + if (!sched_mm_cid_add_user(t, mm)) { + if (!mm->mm_cid.percpu) + t->mm_cid.cid = mm_get_cid(mm); + return; + } + + /* Handle the mode change and transfer current's CID */ + percpu = !!mm->mm_cid.percpu; + if (!percpu) + mm_cid_transit_to_task(current, pcp); else - old_scan = next_scan; + mm_cid_transfer_to_cpu(current, pcp); } - if (time_before(now, old_scan)) - return; - if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) - return; - cidmask = mm_cidmask(mm); - /* Clear cids that were not recently used. */ - for_each_possible_cpu(cpu) - sched_mm_cid_remote_clear_old(mm, cpu); - weight = cpumask_weight(cidmask); - /* - * Clear cids that are greater or equal to the cidmask weight to - * recompact it. - */ - for_each_possible_cpu(cpu) - sched_mm_cid_remote_clear_weight(mm, cpu, weight); -} -void init_sched_mm_cid(struct task_struct *t) -{ - struct mm_struct *mm = t->mm; - int mm_users = 0; - - if (mm) { - mm_users = atomic_read(&mm->mm_users); - if (mm_users == 1) - mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); + if (percpu) { + mm_cid_fixup_tasks_to_cpus(); + } else { + mm_cid_fixup_cpus_to_tasks(mm); + t->mm_cid.cid = mm_get_cid(mm); } - t->cid_work.next = &t->cid_work; /* Protect against double add */ - init_task_work(&t->cid_work, task_mm_cid_work); } -void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) +static bool sched_mm_cid_remove_user(struct task_struct *t) { - struct callback_head *work = &curr->cid_work; - unsigned long now = jiffies; - - if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || - work->next != work) - return; - if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) - return; - - /* No page allocation under rq lock */ - task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC); + t->mm_cid.active = 0; + scoped_guard(preempt) { + /* Clear the transition bit */ + t->mm_cid.cid = cid_from_transit_cid(t->mm_cid.cid); + mm_unset_cid_on_task(t); + } + t->mm->mm_cid.users--; + return mm_update_max_cids(t->mm); } -void sched_mm_cid_exit_signals(struct task_struct *t) +static bool __sched_mm_cid_exit(struct task_struct *t) { struct mm_struct *mm = t->mm; - struct rq *rq; - if (!mm) - return; - - preempt_disable(); - rq = this_rq(); - guard(rq_lock_irqsave)(rq); - preempt_enable_no_resched(); /* holding spinlock */ - WRITE_ONCE(t->mm_cid_active, 0); + if (!sched_mm_cid_remove_user(t)) + return false; + /* + * Contrary to fork() this only deals with a switch back to per + * task mode either because the above decreased users or an + * affinity change increased the number of allowed CPUs and the + * deferred fixup did not run yet. + */ + if (WARN_ON_ONCE(mm->mm_cid.percpu)) + return false; /* - * Store t->mm_cid_active before loading per-mm/cpu cid. - * Matches barrier in sched_mm_cid_remote_clear_old(). + * A failed fork(2) cleanup never gets here, so @current must have + * the same MM as @t. That's true for exit() and the failed + * pthread_create() cleanup case. */ - smp_mb(); - mm_cid_put(mm); - t->last_mm_cid = t->mm_cid = -1; + if (WARN_ON_ONCE(current->mm != mm)) + return false; + return true; } -void sched_mm_cid_before_execve(struct task_struct *t) +/* + * When a task exits, the MM CID held by the task is not longer required as + * the task cannot return to user space. + */ +void sched_mm_cid_exit(struct task_struct *t) { struct mm_struct *mm = t->mm; - struct rq *rq; - if (!mm) + if (!mm || !t->mm_cid.active) return; + /* + * Ensure that only one instance is doing MM CID operations within + * a MM. The common case is uncontended. The rare fixup case adds + * some overhead. + */ + scoped_guard(mutex, &mm->mm_cid.mutex) { + /* mm_cid::mutex is sufficient to protect mm_cid::users */ + if (likely(mm->mm_cid.users > 1)) { + scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { + if (!__sched_mm_cid_exit(t)) + return; + /* Mode change required. Transfer currents CID */ + mm_cid_transit_to_task(current, this_cpu_ptr(mm->mm_cid.pcpu)); + } + mm_cid_fixup_cpus_to_tasks(mm); + return; + } + /* Last user */ + scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { + /* Required across execve() */ + if (t == current) + mm_cid_transit_to_task(t, this_cpu_ptr(mm->mm_cid.pcpu)); + /* Ignore mode change. There is nothing to do. */ + sched_mm_cid_remove_user(t); + } + } - preempt_disable(); - rq = this_rq(); - guard(rq_lock_irqsave)(rq); - preempt_enable_no_resched(); /* holding spinlock */ - WRITE_ONCE(t->mm_cid_active, 0); /* - * Store t->mm_cid_active before loading per-mm/cpu cid. - * Matches barrier in sched_mm_cid_remote_clear_old(). + * As this is the last user (execve(), process exit or failed + * fork(2)) there is no concurrency anymore. + * + * Synchronize eventually pending work to ensure that there are no + * dangling references left. @t->mm_cid.users is zero so nothing + * can queue this work anymore. */ - smp_mb(); - mm_cid_put(mm); - t->last_mm_cid = t->mm_cid = -1; + irq_work_sync(&mm->mm_cid.irq_work); + cancel_work_sync(&mm->mm_cid.work); +} + +/* Deactivate MM CID allocation across execve() */ +void sched_mm_cid_before_execve(struct task_struct *t) +{ + sched_mm_cid_exit(t); } +/* Reactivate MM CID after successful execve() */ void sched_mm_cid_after_execve(struct task_struct *t) { - struct mm_struct *mm = t->mm; - struct rq *rq; + sched_mm_cid_fork(t); +} - if (!mm) +static void mm_cid_work_fn(struct work_struct *work) +{ + struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.work); + + guard(mutex)(&mm->mm_cid.mutex); + /* Did the last user task exit already? */ + if (!mm->mm_cid.users) return; - preempt_disable(); - rq = this_rq(); - scoped_guard (rq_lock_irqsave, rq) { - preempt_enable_no_resched(); /* holding spinlock */ - WRITE_ONCE(t->mm_cid_active, 1); - /* - * Store t->mm_cid_active before loading per-mm/cpu cid. - * Matches barrier in sched_mm_cid_remote_clear_old(). - */ - smp_mb(); - t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); + scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { + /* Have fork() or exit() handled it already? */ + if (!mm->mm_cid.update_deferred) + return; + /* This clears mm_cid::update_deferred */ + if (!mm_update_max_cids(mm)) + return; + /* Affinity changes can only switch back to task mode */ + if (WARN_ON_ONCE(mm->mm_cid.percpu)) + return; } - rseq_set_notify_resume(t); + mm_cid_fixup_cpus_to_tasks(mm); } -void sched_mm_cid_fork(struct task_struct *t) +static void mm_cid_irq_work(struct irq_work *work) { - WARN_ON_ONCE(!t->mm || t->mm_cid != -1); - t->mm_cid_active = 1; + struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.irq_work); + + /* + * Needs to be unconditional because mm_cid::lock cannot be held + * when scheduling work as mm_update_cpus_allowed() nests inside + * rq::lock and schedule_work() might end up in wakeup... + */ + schedule_work(&mm->mm_cid.work); } -#endif -#ifdef CONFIG_SCHED_CLASS_EXT -void sched_deq_and_put_task(struct task_struct *p, int queue_flags, - struct sched_enq_and_set_ctx *ctx) +void mm_init_cid(struct mm_struct *mm, struct task_struct *p) +{ + mm->mm_cid.max_cids = 0; + mm->mm_cid.percpu = 0; + mm->mm_cid.transit = 0; + mm->mm_cid.nr_cpus_allowed = p->nr_cpus_allowed; + mm->mm_cid.users = 0; + mm->mm_cid.pcpu_thrs = 0; + mm->mm_cid.update_deferred = 0; + raw_spin_lock_init(&mm->mm_cid.lock); + mutex_init(&mm->mm_cid.mutex); + mm->mm_cid.irq_work = IRQ_WORK_INIT_HARD(mm_cid_irq_work); + INIT_WORK(&mm->mm_cid.work, mm_cid_work_fn); + cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask); + bitmap_zero(mm_cidmask(mm), num_possible_cpus()); +} +#else /* CONFIG_SCHED_MM_CID */ +static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk) { } +#endif /* !CONFIG_SCHED_MM_CID */ + +static DEFINE_PER_CPU(struct sched_change_ctx, sched_change_ctx); + +struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags) { + struct sched_change_ctx *ctx = this_cpu_ptr(&sched_change_ctx); struct rq *rq = task_rq(p); + /* + * Must exclusively use matched flags since this is both dequeue and + * enqueue. + */ + WARN_ON_ONCE(flags & 0xFFFF0000); + lockdep_assert_rq_held(rq); - *ctx = (struct sched_enq_and_set_ctx){ + if (!(flags & DEQUEUE_NOCLOCK)) { + update_rq_clock(rq); + flags |= DEQUEUE_NOCLOCK; + } + + if (flags & DEQUEUE_CLASS) { + if (p->sched_class->switching_from) + p->sched_class->switching_from(rq, p); + } + + *ctx = (struct sched_change_ctx){ .p = p, - .queue_flags = queue_flags, + .flags = flags, .queued = task_on_rq_queued(p), - .running = task_current(rq, p), + .running = task_current_donor(rq, p), }; - update_rq_clock(rq); + if (!(flags & DEQUEUE_CLASS)) { + if (p->sched_class->get_prio) + ctx->prio = p->sched_class->get_prio(rq, p); + else + ctx->prio = p->prio; + } + if (ctx->queued) - dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); + dequeue_task(rq, p, flags); if (ctx->running) put_prev_task(rq, p); + + if ((flags & DEQUEUE_CLASS) && p->sched_class->switched_from) + p->sched_class->switched_from(rq, p); + + return ctx; } -void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) +void sched_change_end(struct sched_change_ctx *ctx) { - struct rq *rq = task_rq(ctx->p); + struct task_struct *p = ctx->p; + struct rq *rq = task_rq(p); lockdep_assert_rq_held(rq); + if ((ctx->flags & ENQUEUE_CLASS) && p->sched_class->switching_to) + p->sched_class->switching_to(rq, p); + if (ctx->queued) - enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); + enqueue_task(rq, p, ctx->flags); if (ctx->running) - set_next_task(rq, ctx->p); + set_next_task(rq, p); + + if (ctx->flags & ENQUEUE_CLASS) { + if (p->sched_class->switched_to) + p->sched_class->switched_to(rq, p); + } else { + p->sched_class->prio_changed(rq, p, ctx->prio); + } } -#endif /* CONFIG_SCHED_CLASS_EXT */ |
