summaryrefslogtreecommitdiff
path: root/kernel/sched
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched')
-rw-r--r--kernel/sched/Makefile5
-rw-r--r--kernel/sched/autogroup.c19
-rw-r--r--kernel/sched/autogroup.h6
-rw-r--r--kernel/sched/build_policy.c8
-rw-r--r--kernel/sched/build_utility.c13
-rw-r--r--kernel/sched/clock.c7
-rw-r--r--kernel/sched/completion.c5
-rw-r--r--kernel/sched/core.c2682
-rw-r--r--kernel/sched/core_sched.c4
-rw-r--r--kernel/sched/cpuacct.c2
-rw-r--r--kernel/sched/cpudeadline.c35
-rw-r--r--kernel/sched/cpudeadline.h8
-rw-r--r--kernel/sched/cpufreq.c1
-rw-r--r--kernel/sched/cpufreq_schedutil.c103
-rw-r--r--kernel/sched/cpupri.c1
-rw-r--r--kernel/sched/cpupri.h5
-rw-r--r--kernel/sched/cputime.c47
-rw-r--r--kernel/sched/deadline.c848
-rw-r--r--kernel/sched/debug.c107
-rw-r--r--kernel/sched/ext.c5037
-rw-r--r--kernel/sched/ext.h22
-rw-r--r--kernel/sched/ext_idle.c1435
-rw-r--r--kernel/sched/ext_idle.h24
-rw-r--r--kernel/sched/ext_internal.h1101
-rw-r--r--kernel/sched/fair.c2227
-rw-r--r--kernel/sched/features.h16
-rw-r--r--kernel/sched/idle.c61
-rw-r--r--kernel/sched/isolation.c49
-rw-r--r--kernel/sched/loadavg.c8
-rw-r--r--kernel/sched/membarrier.c10
-rw-r--r--kernel/sched/pelt.c9
-rw-r--r--kernel/sched/pelt.h71
-rw-r--r--kernel/sched/psi.c142
-rw-r--r--kernel/sched/rq-offsets.c12
-rw-r--r--kernel/sched/rt.c246
-rw-r--r--kernel/sched/sched-pelt.h1
-rw-r--r--kernel/sched/sched.h1182
-rw-r--r--kernel/sched/smp.h7
-rw-r--r--kernel/sched/stats.c16
-rw-r--r--kernel/sched/stats.h34
-rw-r--r--kernel/sched/stop_task.c18
-rw-r--r--kernel/sched/swait.c1
-rw-r--r--kernel/sched/syscalls.c159
-rw-r--r--kernel/sched/topology.c425
-rw-r--r--kernel/sched/wait.c23
-rw-r--r--kernel/sched/wait_bit.c3
46 files changed, 9703 insertions, 6542 deletions
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index 976092b7bd45..8ae86371ddcd 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -22,6 +22,11 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer
endif
+# Branch profiling isn't noinstr-safe
+ifdef CONFIG_TRACE_BRANCH_PROFILING
+CFLAGS_build_policy.o += -DDISABLE_BRANCH_PROFILING
+CFLAGS_build_utility.o += -DDISABLE_BRANCH_PROFILING
+endif
#
# Build efficiency:
#
diff --git a/kernel/sched/autogroup.c b/kernel/sched/autogroup.c
index db68a964e34e..954137775f38 100644
--- a/kernel/sched/autogroup.c
+++ b/kernel/sched/autogroup.c
@@ -4,12 +4,15 @@
* Auto-group scheduling implementation:
*/
+#include "autogroup.h"
+#include "sched.h"
+
unsigned int __read_mostly sysctl_sched_autogroup_enabled = 1;
static struct autogroup autogroup_default;
static atomic_t autogroup_seq_nr;
#ifdef CONFIG_SYSCTL
-static struct ctl_table sched_autogroup_sysctls[] = {
+static const struct ctl_table sched_autogroup_sysctls[] = {
{
.procname = "sched_autogroup_enabled",
.data = &sysctl_sched_autogroup_enabled,
@@ -25,9 +28,9 @@ static void __init sched_autogroup_sysctl_init(void)
{
register_sysctl_init("kernel", sched_autogroup_sysctls);
}
-#else
+#else /* !CONFIG_SYSCTL: */
#define sched_autogroup_sysctl_init() do { } while (0)
-#endif
+#endif /* !CONFIG_SYSCTL */
void __init autogroup_init(struct task_struct *init_task)
{
@@ -108,7 +111,7 @@ static inline struct autogroup *autogroup_create(void)
free_rt_sched_group(tg);
tg->rt_se = root_task_group.rt_se;
tg->rt_rq = root_task_group.rt_rq;
-#endif
+#endif /* CONFIG_RT_GROUP_SCHED */
tg->autogroup = ag;
sched_online_group(tg, &root_task_group);
@@ -150,7 +153,7 @@ void sched_autogroup_exit_task(struct task_struct *p)
* see this thread after that: we can no longer use signal->autogroup.
* See the PF_EXITING check in task_wants_autogroup().
*/
- sched_move_task(p);
+ sched_move_task(p, true);
}
static void
@@ -175,14 +178,14 @@ autogroup_move_group(struct task_struct *p, struct autogroup *ag)
* this process can already run with task_group() == prev->tg or we can
* race with cgroup code which can read autogroup = prev under rq->lock.
* In the latter case for_each_thread() can not miss a migrating thread,
- * cpu_cgroup_attach() must not be possible after cgroup_exit() and it
- * can't be removed from thread list, we hold ->siglock.
+ * cpu_cgroup_attach() must not be possible after cgroup_task_exit()
+ * and it can't be removed from thread list, we hold ->siglock.
*
* If an exiting thread was already removed from thread list we rely on
* sched_autogroup_exit_task().
*/
for_each_thread(p, t)
- sched_move_task(t);
+ sched_move_task(t, true);
unlock_task_sighand(p, &flags);
autogroup_kref_put(prev);
diff --git a/kernel/sched/autogroup.h b/kernel/sched/autogroup.h
index 90d69f2c5eaf..06c82b2bdfb5 100644
--- a/kernel/sched/autogroup.h
+++ b/kernel/sched/autogroup.h
@@ -2,6 +2,8 @@
#ifndef _KERNEL_SCHED_AUTOGROUP_H
#define _KERNEL_SCHED_AUTOGROUP_H
+#include "sched.h"
+
#ifdef CONFIG_SCHED_AUTOGROUP
struct autogroup {
@@ -41,7 +43,7 @@ autogroup_task_group(struct task_struct *p, struct task_group *tg)
extern int autogroup_path(struct task_group *tg, char *buf, int buflen);
-#else /* !CONFIG_SCHED_AUTOGROUP */
+#else /* !CONFIG_SCHED_AUTOGROUP: */
static inline void autogroup_init(struct task_struct *init_task) { }
static inline void autogroup_free(struct task_group *tg) { }
@@ -61,6 +63,6 @@ static inline int autogroup_path(struct task_group *tg, char *buf, int buflen)
return 0;
}
-#endif /* CONFIG_SCHED_AUTOGROUP */
+#endif /* !CONFIG_SCHED_AUTOGROUP */
#endif /* _KERNEL_SCHED_AUTOGROUP_H */
diff --git a/kernel/sched/build_policy.c b/kernel/sched/build_policy.c
index fae1f5c921eb..755883faf751 100644
--- a/kernel/sched/build_policy.c
+++ b/kernel/sched/build_policy.c
@@ -50,17 +50,17 @@
#include "idle.c"
#include "rt.c"
+#include "cpudeadline.c"
-#ifdef CONFIG_SMP
-# include "cpudeadline.c"
-# include "pelt.c"
-#endif
+#include "pelt.c"
#include "cputime.c"
#include "deadline.c"
#ifdef CONFIG_SCHED_CLASS_EXT
+# include "ext_internal.h"
# include "ext.c"
+# include "ext_idle.c"
#endif
#include "syscalls.c"
diff --git a/kernel/sched/build_utility.c b/kernel/sched/build_utility.c
index 80a3df49ab47..e2cf3b08d4e9 100644
--- a/kernel/sched/build_utility.c
+++ b/kernel/sched/build_utility.c
@@ -68,9 +68,7 @@
# include "cpufreq_schedutil.c"
#endif
-#ifdef CONFIG_SCHED_DEBUG
-# include "debug.c"
-#endif
+#include "debug.c"
#ifdef CONFIG_SCHEDSTATS
# include "stats.c"
@@ -82,11 +80,10 @@
#include "wait_bit.c"
#include "wait.c"
-#ifdef CONFIG_SMP
-# include "cpupri.c"
-# include "stop_task.c"
-# include "topology.c"
-#endif
+#include "cpupri.c"
+#include "stop_task.c"
+
+#include "topology.c"
#ifdef CONFIG_SCHED_CORE
# include "core_sched.c"
diff --git a/kernel/sched/clock.c b/kernel/sched/clock.c
index a09655b48140..f5e6dd6a6b3a 100644
--- a/kernel/sched/clock.c
+++ b/kernel/sched/clock.c
@@ -54,6 +54,9 @@
*
*/
+#include <linux/sched/clock.h>
+#include "sched.h"
+
/*
* Scheduler clock - returns current time in nanosec units.
* This is default implementation.
@@ -471,7 +474,7 @@ notrace void sched_clock_idle_wakeup_event(void)
}
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
-#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
+#else /* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK: */
void __init sched_clock_init(void)
{
@@ -489,7 +492,7 @@ notrace u64 sched_clock_cpu(int cpu)
return sched_clock();
}
-#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
+#endif /* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
/*
* Running clock - returns the time that has elapsed while a guest has been
diff --git a/kernel/sched/completion.c b/kernel/sched/completion.c
index 3561ab533dd4..19ee702273c0 100644
--- a/kernel/sched/completion.c
+++ b/kernel/sched/completion.c
@@ -13,6 +13,11 @@
* Waiting for completion is a typically sync point, but not an exclusion point.
*/
+#include <linux/linkage.h>
+#include <linux/sched/debug.h>
+#include <linux/completion.h>
+#include "sched.h"
+
static void complete_with_flags(struct completion *x, int wake_flags)
{
unsigned long flags;
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 95e40895a519..41ba0be16911 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -7,6 +7,8 @@
* Copyright (C) 1991-2002 Linus Torvalds
* Copyright (C) 1998-2024 Ingo Molnar, Red Hat
*/
+#define INSTANTIATE_EXPORTED_MIGRATE_DISABLE
+#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/hrtimer_api.h>
#include <linux/ktime_api.h>
@@ -66,10 +68,11 @@
#include <linux/vtime.h>
#include <linux/wait_api.h>
#include <linux/workqueue_api.h>
+#include <linux/livepatch_sched.h>
#ifdef CONFIG_PREEMPT_DYNAMIC
-# ifdef CONFIG_GENERIC_ENTRY
-# include <linux/entry-common.h>
+# ifdef CONFIG_GENERIC_IRQ_ENTRY
+# include <linux/irq-entry-common.h>
# endif
#endif
@@ -91,11 +94,11 @@
#include "autogroup.h"
#include "pelt.h"
#include "smp.h"
-#include "stats.h"
#include "../workqueue_internal.h"
#include "../../io_uring/io-wq.h"
#include "../smpboot.h"
+#include "../locking/mutex.h"
EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
@@ -118,8 +121,37 @@ EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
+DEFINE_PER_CPU(struct rnd_state, sched_rnd_state);
+
+#ifdef CONFIG_SCHED_PROXY_EXEC
+DEFINE_STATIC_KEY_TRUE(__sched_proxy_exec);
+static int __init setup_proxy_exec(char *str)
+{
+ bool proxy_enable = true;
+
+ if (*str && kstrtobool(str + 1, &proxy_enable)) {
+ pr_warn("Unable to parse sched_proxy_exec=\n");
+ return 0;
+ }
+
+ if (proxy_enable) {
+ pr_info("sched_proxy_exec enabled via boot arg\n");
+ static_branch_enable(&__sched_proxy_exec);
+ } else {
+ pr_info("sched_proxy_exec disabled via boot arg\n");
+ static_branch_disable(&__sched_proxy_exec);
+ }
+ return 1;
+}
+#else
+static int __init setup_proxy_exec(char *str)
+{
+ pr_warn("CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n");
+ return 0;
+}
+#endif
+__setup("sched_proxy_exec", setup_proxy_exec);
-#ifdef CONFIG_SCHED_DEBUG
/*
* Debugging: various feature bits
*
@@ -129,7 +161,7 @@ DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
*/
#define SCHED_FEAT(name, enabled) \
(1UL << __SCHED_FEAT_##name) * enabled |
-const_debug unsigned int sysctl_sched_features =
+__read_mostly unsigned int sysctl_sched_features =
#include "features.h"
0;
#undef SCHED_FEAT
@@ -143,13 +175,12 @@ const_debug unsigned int sysctl_sched_features =
*/
__read_mostly int sysctl_resched_latency_warn_ms = 100;
__read_mostly int sysctl_resched_latency_warn_once = 1;
-#endif /* CONFIG_SCHED_DEBUG */
/*
* Number of tasks to iterate in a single balance run.
* Limited because this is done with IRQs disabled.
*/
-const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
+__read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
__read_mostly int scheduler_running;
@@ -483,13 +514,23 @@ void sched_core_put(void)
schedule_work(&_work);
}
-#else /* !CONFIG_SCHED_CORE */
+#else /* !CONFIG_SCHED_CORE: */
static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
static inline void
sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
-#endif /* CONFIG_SCHED_CORE */
+#endif /* !CONFIG_SCHED_CORE */
+
+/* need a wrapper since we may need to trace from modules */
+EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp);
+
+/* Call via the helper macro trace_set_current_state. */
+void __trace_set_current_state(int state_value)
+{
+ trace_sched_set_state_tp(current, state_value);
+}
+EXPORT_SYMBOL(__trace_set_current_state);
/*
* Serialization rules:
@@ -543,8 +584,8 @@ sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
*
* p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
*
- * is set by activate_task() and cleared by deactivate_task(), under
- * rq->lock. Non-zero indicates the task is runnable, the special
+ * is set by activate_task() and cleared by deactivate_task()/block_task(),
+ * under rq->lock. Non-zero indicates the task is runnable, the special
* ON_RQ_MIGRATING state is used for migration without holding both
* rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
*
@@ -642,7 +683,6 @@ void raw_spin_rq_unlock(struct rq *rq)
raw_spin_unlock(rq_lockp(rq));
}
-#ifdef CONFIG_SMP
/*
* double_rq_lock - safely lock two runqueues
*/
@@ -659,7 +699,6 @@ void double_rq_lock(struct rq *rq1, struct rq *rq2)
double_rq_clock_clear_update(rq1, rq2);
}
-#endif
/*
* __task_rq_lock - lock the rq @p resides on.
@@ -740,39 +779,43 @@ static void update_rq_clock_task(struct rq *rq, s64 delta)
s64 __maybe_unused steal = 0, irq_delta = 0;
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
- irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
+ if (irqtime_enabled()) {
+ irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
- /*
- * Since irq_time is only updated on {soft,}irq_exit, we might run into
- * this case when a previous update_rq_clock() happened inside a
- * {soft,}IRQ region.
- *
- * When this happens, we stop ->clock_task and only update the
- * prev_irq_time stamp to account for the part that fit, so that a next
- * update will consume the rest. This ensures ->clock_task is
- * monotonic.
- *
- * It does however cause some slight miss-attribution of {soft,}IRQ
- * time, a more accurate solution would be to update the irq_time using
- * the current rq->clock timestamp, except that would require using
- * atomic ops.
- */
- if (irq_delta > delta)
- irq_delta = delta;
+ /*
+ * Since irq_time is only updated on {soft,}irq_exit, we might run into
+ * this case when a previous update_rq_clock() happened inside a
+ * {soft,}IRQ region.
+ *
+ * When this happens, we stop ->clock_task and only update the
+ * prev_irq_time stamp to account for the part that fit, so that a next
+ * update will consume the rest. This ensures ->clock_task is
+ * monotonic.
+ *
+ * It does however cause some slight miss-attribution of {soft,}IRQ
+ * time, a more accurate solution would be to update the irq_time using
+ * the current rq->clock timestamp, except that would require using
+ * atomic ops.
+ */
+ if (irq_delta > delta)
+ irq_delta = delta;
- rq->prev_irq_time += irq_delta;
- delta -= irq_delta;
- delayacct_irq(rq->curr, irq_delta);
+ rq->prev_irq_time += irq_delta;
+ delta -= irq_delta;
+ delayacct_irq(rq->curr, irq_delta);
+ }
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
if (static_key_false((&paravirt_steal_rq_enabled))) {
- steal = paravirt_steal_clock(cpu_of(rq));
+ u64 prev_steal;
+
+ steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
steal -= rq->prev_steal_time_rq;
if (unlikely(steal > delta))
steal = delta;
- rq->prev_steal_time_rq += steal;
+ rq->prev_steal_time_rq = prev_steal;
delta -= steal;
}
#endif
@@ -789,22 +832,25 @@ static void update_rq_clock_task(struct rq *rq, s64 delta)
void update_rq_clock(struct rq *rq)
{
s64 delta;
+ u64 clock;
lockdep_assert_rq_held(rq);
if (rq->clock_update_flags & RQCF_ACT_SKIP)
return;
-#ifdef CONFIG_SCHED_DEBUG
if (sched_feat(WARN_DOUBLE_CLOCK))
- SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
+ WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED);
rq->clock_update_flags |= RQCF_UPDATED;
-#endif
- delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
+ clock = sched_clock_cpu(cpu_of(rq));
+ scx_rq_clock_update(rq, clock);
+
+ delta = clock - rq->clock;
if (delta < 0)
return;
rq->clock += delta;
+
update_rq_clock_task(rq, delta);
}
@@ -832,14 +878,12 @@ static enum hrtimer_restart hrtick(struct hrtimer *timer)
rq_lock(rq, &rf);
update_rq_clock(rq);
- rq->donor->sched_class->task_tick(rq, rq->curr, 1);
+ rq->donor->sched_class->task_tick(rq, rq->donor, 1);
rq_unlock(rq, &rf);
return HRTIMER_NORESTART;
}
-#ifdef CONFIG_SMP
-
static void __hrtick_restart(struct rq *rq)
{
struct hrtimer *timer = &rq->hrtick_timer;
@@ -876,7 +920,7 @@ void hrtick_start(struct rq *rq, u64 delay)
* doesn't make sense and can cause timer DoS.
*/
delta = max_t(s64, delay, 10000LL);
- rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
+ rq->hrtick_time = ktime_add_ns(hrtimer_cb_get_time(timer), delta);
if (rq == this_rq())
__hrtick_restart(rq);
@@ -884,34 +928,12 @@ void hrtick_start(struct rq *rq, u64 delay)
smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
}
-#else
-/*
- * Called to set the hrtick timer state.
- *
- * called with rq->lock held and IRQs disabled
- */
-void hrtick_start(struct rq *rq, u64 delay)
-{
- /*
- * Don't schedule slices shorter than 10000ns, that just
- * doesn't make sense. Rely on vruntime for fairness.
- */
- delay = max_t(u64, delay, 10000LL);
- hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
- HRTIMER_MODE_REL_PINNED_HARD);
-}
-
-#endif /* CONFIG_SMP */
-
static void hrtick_rq_init(struct rq *rq)
{
-#ifdef CONFIG_SMP
INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
-#endif
- hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
- rq->hrtick_timer.function = hrtick;
+ hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
}
-#else /* CONFIG_SCHED_HRTICK */
+#else /* !CONFIG_SCHED_HRTICK: */
static inline void hrtick_clear(struct rq *rq)
{
}
@@ -919,7 +941,7 @@ static inline void hrtick_clear(struct rq *rq)
static inline void hrtick_rq_init(struct rq *rq)
{
}
-#endif /* CONFIG_SCHED_HRTICK */
+#endif /* !CONFIG_SCHED_HRTICK */
/*
* try_cmpxchg based fetch_or() macro so it works for different integer types:
@@ -935,7 +957,7 @@ static inline void hrtick_rq_init(struct rq *rq)
_val; \
})
-#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
+#ifdef TIF_POLLING_NRFLAG
/*
* Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
* this avoids any races wrt polling state changes and thereby avoids
@@ -974,13 +996,11 @@ static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
return true;
}
-#ifdef CONFIG_SMP
static inline bool set_nr_if_polling(struct task_struct *p)
{
return false;
}
#endif
-#endif
static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
@@ -1055,9 +1075,10 @@ void wake_up_q(struct wake_q_head *head)
struct task_struct *task;
task = container_of(node, struct task_struct, wake_q);
- /* Task can safely be re-inserted now: */
node = node->next;
- task->wake_q.next = NULL;
+ /* pairs with cmpxchg_relaxed() in __wake_q_add() */
+ WRITE_ONCE(task->wake_q.next, NULL);
+ /* Task can safely be re-inserted now. */
/*
* wake_up_process() executes a full barrier, which pairs with
@@ -1095,6 +1116,7 @@ static void __resched_curr(struct rq *rq, int tif)
cpu = cpu_of(rq);
+ trace_sched_set_need_resched_tp(curr, cpu, tif);
if (cpu == smp_processor_id()) {
set_ti_thread_flag(cti, tif);
if (tif == TIF_NEED_RESCHED)
@@ -1110,6 +1132,11 @@ static void __resched_curr(struct rq *rq, int tif)
}
}
+void __trace_set_need_resched(struct task_struct *curr, int tif)
+{
+ trace_sched_set_need_resched_tp(curr, smp_processor_id(), tif);
+}
+
void resched_curr(struct rq *rq)
{
__resched_curr(rq, TIF_NEED_RESCHED);
@@ -1152,7 +1179,6 @@ void resched_cpu(int cpu)
raw_spin_rq_unlock_irqrestore(rq, flags);
}
-#ifdef CONFIG_SMP
#ifdef CONFIG_NO_HZ_COMMON
/*
* In the semi idle case, use the nearest busy CPU for migrating timers
@@ -1168,13 +1194,13 @@ int get_nohz_timer_target(void)
struct sched_domain *sd;
const struct cpumask *hk_mask;
- if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
+ if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
if (!idle_cpu(cpu))
return cpu;
default_cpu = cpu;
}
- hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
+ hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
guard(rcu)();
@@ -1189,7 +1215,7 @@ int get_nohz_timer_target(void)
}
if (default_cpu == -1)
- default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
+ default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
return default_cpu;
}
@@ -1283,9 +1309,9 @@ static void nohz_csd_func(void *info)
WARN_ON(!(flags & NOHZ_KICK_MASK));
rq->idle_balance = idle_cpu(cpu);
- if (rq->idle_balance && !need_resched()) {
+ if (rq->idle_balance) {
rq->nohz_idle_balance = flags;
- raise_softirq_irqoff(SCHED_SOFTIRQ);
+ __raise_softirq_irqoff(SCHED_SOFTIRQ);
}
}
@@ -1341,7 +1367,7 @@ bool sched_can_stop_tick(struct rq *rq)
if (scx_enabled() && !scx_can_stop_tick(rq))
return false;
- if (rq->cfs.nr_running > 1)
+ if (rq->cfs.h_nr_queued > 1)
return false;
/*
@@ -1359,10 +1385,8 @@ bool sched_can_stop_tick(struct rq *rq)
return true;
}
#endif /* CONFIG_NO_HZ_FULL */
-#endif /* CONFIG_SMP */
-#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
- (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
+#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED)
/*
* Iterate task_group tree rooted at *from, calling @down when first entering a
* node and @up when leaving it for the final time.
@@ -1711,7 +1735,7 @@ static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
bucket = &uc_rq->bucket[uc_se->bucket_id];
- SCHED_WARN_ON(!bucket->tasks);
+ WARN_ON_ONCE(!bucket->tasks);
if (likely(bucket->tasks))
bucket->tasks--;
@@ -1731,14 +1755,14 @@ static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
* Defensive programming: this should never happen. If it happens,
* e.g. due to future modification, warn and fix up the expected value.
*/
- SCHED_WARN_ON(bucket->value > rq_clamp);
+ WARN_ON_ONCE(bucket->value > rq_clamp);
if (bucket->value >= rq_clamp) {
bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
uclamp_rq_set(rq, clamp_id, bkt_clamp);
}
}
-static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
+static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags)
{
enum uclamp_id clamp_id;
@@ -1748,13 +1772,14 @@ static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
* The condition is constructed such that a NOP is generated when
* sched_uclamp_used is disabled.
*/
- if (!static_branch_unlikely(&sched_uclamp_used))
+ if (!uclamp_is_used())
return;
if (unlikely(!p->sched_class->uclamp_enabled))
return;
- if (p->se.sched_delayed)
+ /* Only inc the delayed task which being woken up. */
+ if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED))
return;
for_each_clamp_id(clamp_id)
@@ -1775,7 +1800,7 @@ static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
* The condition is constructed such that a NOP is generated when
* sched_uclamp_used is disabled.
*/
- if (!static_branch_unlikely(&sched_uclamp_used))
+ if (!uclamp_is_used())
return;
if (unlikely(!p->sched_class->uclamp_enabled))
@@ -1933,12 +1958,12 @@ static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
}
if (update_root_tg) {
- static_branch_enable(&sched_uclamp_used);
+ sched_uclamp_enable();
uclamp_update_root_tg();
}
if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
- static_branch_enable(&sched_uclamp_used);
+ sched_uclamp_enable();
uclamp_sync_util_min_rt_default();
}
@@ -1955,7 +1980,7 @@ undo:
sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
return result;
}
-#endif
+#endif /* CONFIG_SYSCTL */
static void uclamp_fork(struct task_struct *p)
{
@@ -2021,13 +2046,13 @@ static void __init init_uclamp(void)
}
}
-#else /* !CONFIG_UCLAMP_TASK */
-static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
+#else /* !CONFIG_UCLAMP_TASK: */
+static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { }
static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
static inline void uclamp_fork(struct task_struct *p) { }
static inline void uclamp_post_fork(struct task_struct *p) { }
static inline void init_uclamp(void) { }
-#endif /* CONFIG_UCLAMP_TASK */
+#endif /* !CONFIG_UCLAMP_TASK */
bool sched_task_on_rq(struct task_struct *p)
{
@@ -2058,12 +2083,15 @@ void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
if (!(flags & ENQUEUE_NOCLOCK))
update_rq_clock(rq);
- p->sched_class->enqueue_task(rq, p, flags);
/*
- * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
- * ->sched_delayed.
+ * Can be before ->enqueue_task() because uclamp considers the
+ * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared
+ * in ->enqueue_task().
*/
- uclamp_rq_inc(rq, p);
+ uclamp_rq_inc(rq, p, flags);
+
+ rq->queue_mask |= p->sched_class->queue_mask;
+ p->sched_class->enqueue_task(rq, p, flags);
psi_enqueue(p, flags);
@@ -2095,6 +2123,7 @@ inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
* and mark the task ->sched_delayed.
*/
uclamp_rq_dec(rq, p);
+ rq->queue_mask |= p->sched_class->queue_mask;
return p->sched_class->dequeue_task(rq, p, flags);
}
@@ -2102,8 +2131,6 @@ void activate_task(struct rq *rq, struct task_struct *p, int flags)
{
if (task_on_rq_migrating(p))
flags |= ENQUEUE_MIGRATED;
- if (flags & ENQUEUE_MIGRATED)
- sched_mm_cid_migrate_to(rq, p);
enqueue_task(rq, p, flags);
@@ -2113,7 +2140,7 @@ void activate_task(struct rq *rq, struct task_struct *p, int flags)
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
{
- SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
+ WARN_ON_ONCE(flags & DEQUEUE_SLEEP);
WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
ASSERT_EXCLUSIVE_WRITER(p->on_rq);
@@ -2143,37 +2170,6 @@ inline int task_curr(const struct task_struct *p)
return cpu_curr(task_cpu(p)) == p;
}
-/*
- * ->switching_to() is called with the pi_lock and rq_lock held and must not
- * mess with locking.
- */
-void check_class_changing(struct rq *rq, struct task_struct *p,
- const struct sched_class *prev_class)
-{
- if (prev_class != p->sched_class && p->sched_class->switching_to)
- p->sched_class->switching_to(rq, p);
-}
-
-/*
- * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
- * use the balance_callback list if you want balancing.
- *
- * this means any call to check_class_changed() must be followed by a call to
- * balance_callback().
- */
-void check_class_changed(struct rq *rq, struct task_struct *p,
- const struct sched_class *prev_class,
- int oldprio)
-{
- if (prev_class != p->sched_class) {
- if (prev_class->switched_from)
- prev_class->switched_from(rq, p);
-
- p->sched_class->switched_to(rq, p);
- } else if (oldprio != p->prio || dl_task(p))
- p->sched_class->prio_changed(rq, p, oldprio);
-}
-
void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
{
struct task_struct *donor = rq->donor;
@@ -2269,6 +2265,12 @@ unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state
* just go back and repeat.
*/
rq = task_rq_lock(p, &rf);
+ /*
+ * If task is sched_delayed, force dequeue it, to avoid always
+ * hitting the tick timeout in the queued case
+ */
+ if (p->se.sched_delayed)
+ dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
trace_sched_wait_task(p);
running = task_on_cpu(rq, p);
queued = task_on_rq_queued(p);
@@ -2329,10 +2331,8 @@ unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state
return ncsw;
}
-#ifdef CONFIG_SMP
-
static void
-__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
+do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
{
@@ -2347,34 +2347,11 @@ static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
if (p->cpus_ptr != &p->cpus_mask)
return;
- /*
- * Violates locking rules! See comment in __do_set_cpus_allowed().
- */
- __do_set_cpus_allowed(p, &ac);
+ scoped_guard (task_rq_lock, p)
+ do_set_cpus_allowed(p, &ac);
}
-void migrate_disable(void)
-{
- struct task_struct *p = current;
-
- if (p->migration_disabled) {
-#ifdef CONFIG_DEBUG_PREEMPT
- /*
- *Warn about overflow half-way through the range.
- */
- WARN_ON_ONCE((s16)p->migration_disabled < 0);
-#endif
- p->migration_disabled++;
- return;
- }
-
- guard(preempt)();
- this_rq()->nr_pinned++;
- p->migration_disabled = 1;
-}
-EXPORT_SYMBOL_GPL(migrate_disable);
-
-void migrate_enable(void)
+void ___migrate_enable(void)
{
struct task_struct *p = current;
struct affinity_context ac = {
@@ -2382,35 +2359,19 @@ void migrate_enable(void)
.flags = SCA_MIGRATE_ENABLE,
};
-#ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Check both overflow from migrate_disable() and superfluous
- * migrate_enable().
- */
- if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
- return;
-#endif
+ __set_cpus_allowed_ptr(p, &ac);
+}
+EXPORT_SYMBOL_GPL(___migrate_enable);
- if (p->migration_disabled > 1) {
- p->migration_disabled--;
- return;
- }
+void migrate_disable(void)
+{
+ __migrate_disable();
+}
+EXPORT_SYMBOL_GPL(migrate_disable);
- /*
- * Ensure stop_task runs either before or after this, and that
- * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
- */
- guard(preempt)();
- if (p->cpus_ptr != &p->cpus_mask)
- __set_cpus_allowed_ptr(p, &ac);
- /*
- * Mustn't clear migration_disabled() until cpus_ptr points back at the
- * regular cpus_mask, otherwise things that race (eg.
- * select_fallback_rq) get confused.
- */
- barrier();
- p->migration_disabled = 0;
- this_rq()->nr_pinned--;
+void migrate_enable(void)
+{
+ __migrate_enable();
}
EXPORT_SYMBOL_GPL(migrate_enable);
@@ -2620,7 +2581,8 @@ static int migration_cpu_stop(void *data)
*/
WARN_ON_ONCE(!pending->stop_pending);
preempt_disable();
- task_rq_unlock(rq, p, &rf);
+ rq_unlock(rq, &rf);
+ raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
&pending->arg, &pending->stop_work);
preempt_enable();
@@ -2629,7 +2591,8 @@ static int migration_cpu_stop(void *data)
out:
if (pending)
pending->stop_pending = false;
- task_rq_unlock(rq, p, &rf);
+ rq_unlock(rq, &rf);
+ raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
if (complete)
complete_all(&pending->done);
@@ -2678,6 +2641,8 @@ out_unlock:
return 0;
}
+static inline void mm_update_cpus_allowed(struct mm_struct *mm, const cpumask_t *affmask);
+
/*
* sched_class::set_cpus_allowed must do the below, but is not required to
* actually call this function.
@@ -2691,6 +2656,7 @@ void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx
cpumask_copy(&p->cpus_mask, ctx->new_mask);
p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
+ mm_update_cpus_allowed(p->mm, ctx->new_mask);
/*
* Swap in a new user_cpus_ptr if SCA_USER flag set
@@ -2700,56 +2666,17 @@ void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx
}
static void
-__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
+do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
{
- struct rq *rq = task_rq(p);
- bool queued, running;
-
- /*
- * This here violates the locking rules for affinity, since we're only
- * supposed to change these variables while holding both rq->lock and
- * p->pi_lock.
- *
- * HOWEVER, it magically works, because ttwu() is the only code that
- * accesses these variables under p->pi_lock and only does so after
- * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
- * before finish_task().
- *
- * XXX do further audits, this smells like something putrid.
- */
- if (ctx->flags & SCA_MIGRATE_DISABLE)
- SCHED_WARN_ON(!p->on_cpu);
- else
- lockdep_assert_held(&p->pi_lock);
-
- queued = task_on_rq_queued(p);
- running = task_current_donor(rq, p);
-
- if (queued) {
- /*
- * Because __kthread_bind() calls this on blocked tasks without
- * holding rq->lock.
- */
- lockdep_assert_rq_held(rq);
- dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
- }
- if (running)
- put_prev_task(rq, p);
-
- p->sched_class->set_cpus_allowed(p, ctx);
- mm_set_cpus_allowed(p->mm, ctx->new_mask);
-
- if (queued)
- enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
- if (running)
- set_next_task(rq, p);
+ scoped_guard (sched_change, p, DEQUEUE_SAVE)
+ p->sched_class->set_cpus_allowed(p, ctx);
}
/*
* Used for kthread_bind() and select_fallback_rq(), in both cases the user
* affinity (if any) should be destroyed too.
*/
-void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+void set_cpus_allowed_force(struct task_struct *p, const struct cpumask *new_mask)
{
struct affinity_context ac = {
.new_mask = new_mask,
@@ -2761,7 +2688,8 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
struct rcu_head rcu;
};
- __do_set_cpus_allowed(p, &ac);
+ scoped_guard (__task_rq_lock, p)
+ do_set_cpus_allowed(p, &ac);
/*
* Because this is called with p->pi_lock held, it is not possible
@@ -2799,7 +2727,7 @@ int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
* Use pi_lock to protect content of user_cpus_ptr
*
* Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
- * do_set_cpus_allowed().
+ * set_cpus_allowed_force().
*/
raw_spin_lock_irqsave(&src->pi_lock, flags);
if (src->user_cpus_ptr) {
@@ -2912,8 +2840,15 @@ static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flag
struct set_affinity_pending my_pending = { }, *pending = NULL;
bool stop_pending, complete = false;
- /* Can the task run on the task's current CPU? If so, we're done */
- if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
+ /*
+ * Can the task run on the task's current CPU? If so, we're done
+ *
+ * We are also done if the task is the current donor, boosting a lock-
+ * holding proxy, (and potentially has been migrated outside its
+ * current or previous affinity mask)
+ */
+ if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask) ||
+ (task_current_donor(rq, p) && !task_current(rq, p))) {
struct task_struct *push_task = NULL;
if ((flags & SCA_MIGRATE_ENABLE) &&
@@ -3064,8 +2999,6 @@ static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
unsigned int dest_cpu;
int ret = 0;
- update_rq_clock(rq);
-
if (kthread || is_migration_disabled(p)) {
/*
* Kernel threads are allowed on online && !active CPUs,
@@ -3120,7 +3053,7 @@ static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
goto out;
}
- __do_set_cpus_allowed(p, ctx);
+ do_set_cpus_allowed(p, ctx);
return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
@@ -3281,9 +3214,10 @@ void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
WARN_ON_ONCE(ret);
}
+#ifdef CONFIG_SMP
+
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
{
-#ifdef CONFIG_SCHED_DEBUG
unsigned int state = READ_ONCE(p->__state);
/*
@@ -3321,7 +3255,6 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
WARN_ON_ONCE(!cpu_online(new_cpu));
WARN_ON_ONCE(is_migration_disabled(p));
-#endif
trace_sched_migrate_task(p, new_cpu);
@@ -3329,13 +3262,12 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
if (p->sched_class->migrate_task_rq)
p->sched_class->migrate_task_rq(p, new_cpu);
p->se.nr_migrations++;
- rseq_migrate(p);
- sched_mm_cid_migrate_from(p);
perf_event_task_migrate(p);
}
__set_task_cpu(p, new_cpu);
}
+#endif /* CONFIG_SMP */
#ifdef CONFIG_NUMA_BALANCING
static void __migrate_swap_task(struct task_struct *p, int cpu)
@@ -3528,13 +3460,7 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
}
fallthrough;
case possible:
- /*
- * XXX When called from select_task_rq() we only
- * hold p->pi_lock and again violate locking order.
- *
- * More yuck to audit.
- */
- do_set_cpus_allowed(p, task_cpu_possible_mask(p));
+ set_cpus_allowed_force(p, task_cpu_fallback_mask(p));
state = fail;
break;
case fail:
@@ -3635,17 +3561,6 @@ void sched_set_stop_task(int cpu, struct task_struct *stop)
}
}
-#else /* CONFIG_SMP */
-
-static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
-
-static inline bool rq_has_pinned_tasks(struct rq *rq)
-{
- return false;
-}
-
-#endif /* !CONFIG_SMP */
-
static void
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
{
@@ -3656,7 +3571,6 @@ ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
rq = this_rq();
-#ifdef CONFIG_SMP
if (cpu == rq->cpu) {
__schedstat_inc(rq->ttwu_local);
__schedstat_inc(p->stats.nr_wakeups_local);
@@ -3676,7 +3590,6 @@ ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
if (wake_flags & WF_MIGRATED)
__schedstat_inc(p->stats.nr_wakeups_migrate);
-#endif /* CONFIG_SMP */
__schedstat_inc(rq->ttwu_count);
__schedstat_inc(p->stats.nr_wakeups);
@@ -3705,13 +3618,11 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
if (p->sched_contributes_to_load)
rq->nr_uninterruptible--;
-#ifdef CONFIG_SMP
if (wake_flags & WF_RQ_SELECTED)
en_flags |= ENQUEUE_RQ_SELECTED;
if (wake_flags & WF_MIGRATED)
en_flags |= ENQUEUE_MIGRATED;
else
-#endif
if (p->in_iowait) {
delayacct_blkio_end(p);
atomic_dec(&task_rq(p)->nr_iowait);
@@ -3722,7 +3633,6 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
ttwu_do_wakeup(p);
-#ifdef CONFIG_SMP
if (p->sched_class->task_woken) {
/*
* Our task @p is fully woken up and running; so it's safe to
@@ -3744,7 +3654,6 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
rq->idle_stamp = 0;
}
-#endif
}
/*
@@ -3793,12 +3702,11 @@ static int ttwu_runnable(struct task_struct *p, int wake_flags)
ttwu_do_wakeup(p);
ret = 1;
}
- __task_rq_unlock(rq, &rf);
+ __task_rq_unlock(rq, p, &rf);
return ret;
}
-#ifdef CONFIG_SMP
void sched_ttwu_pending(void *arg)
{
struct llist_node *llist = arg;
@@ -3865,7 +3773,9 @@ static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags
p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
WRITE_ONCE(rq->ttwu_pending, 1);
+#ifdef CONFIG_SMP
__smp_call_single_queue(cpu, &p->wake_entry.llist);
+#endif
}
void wake_up_if_idle(int cpu)
@@ -3913,15 +3823,15 @@ bool cpus_share_resources(int this_cpu, int that_cpu)
static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
{
- /*
- * The BPF scheduler may depend on select_task_rq() being invoked during
- * wakeups. In addition, @p may end up executing on a different CPU
- * regardless of what happens in the wakeup path making the ttwu_queue
- * optimization less meaningful. Skip if on SCX.
- */
- if (task_on_scx(p))
+ /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */
+ if (!scx_allow_ttwu_queue(p))
return false;
+#ifdef CONFIG_SMP
+ if (p->sched_class == &stop_sched_class)
+ return false;
+#endif
+
/*
* Do not complicate things with the async wake_list while the CPU is
* in hotplug state.
@@ -3971,15 +3881,6 @@ static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
return false;
}
-#else /* !CONFIG_SMP */
-
-static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
-{
- return false;
-}
-
-#endif /* CONFIG_SMP */
-
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
{
struct rq *rq = cpu_rq(cpu);
@@ -4187,7 +4088,7 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
* - we're serialized against set_special_state() by virtue of
* it disabling IRQs (this allows not taking ->pi_lock).
*/
- SCHED_WARN_ON(p->se.sched_delayed);
+ WARN_ON_ONCE(p->se.sched_delayed);
if (!ttwu_state_match(p, state, &success))
goto out;
@@ -4235,7 +4136,6 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
break;
-#ifdef CONFIG_SMP
/*
* Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
* possible to, falsely, observe p->on_cpu == 0.
@@ -4256,7 +4156,7 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
* __schedule(). See the comment for smp_mb__after_spinlock().
*
* Form a control-dep-acquire with p->on_rq == 0 above, to ensure
- * schedule()'s deactivate_task() has 'happened' and p will no longer
+ * schedule()'s block_task() has 'happened' and p will no longer
* care about it's own p->state. See the comment in __schedule().
*/
smp_acquire__after_ctrl_dep();
@@ -4314,9 +4214,6 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
psi_ttwu_dequeue(p);
set_task_cpu(p, cpu);
}
-#else
- cpu = task_cpu(p);
-#endif /* CONFIG_SMP */
ttwu_queue(p, cpu, wake_flags);
}
@@ -4349,14 +4246,12 @@ static bool __task_needs_rq_lock(struct task_struct *p)
if (p->on_rq)
return true;
-#ifdef CONFIG_SMP
/*
* Ensure the task has finished __schedule() and will not be referenced
* anymore. Again, see try_to_wake_up() for a longer comment.
*/
smp_rmb();
smp_cond_load_acquire(&p->on_cpu, !VAL);
-#endif
return false;
}
@@ -4400,7 +4295,7 @@ int task_call_func(struct task_struct *p, task_call_f func, void *arg)
ret = func(p, arg);
if (rq)
- rq_unlock(rq, &rf);
+ __task_rq_unlock(rq, p, &rf);
raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
return ret;
@@ -4467,7 +4362,7 @@ int wake_up_state(struct task_struct *p, unsigned int state)
* __sched_fork() is basic setup which is also used by sched_init() to
* initialize the boot CPU's idle task.
*/
-static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
+static void __sched_fork(u64 clone_flags, struct task_struct *p)
{
p->on_rq = 0;
@@ -4481,10 +4376,13 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
INIT_LIST_HEAD(&p->se.group_node);
/* A delayed task cannot be in clone(). */
- SCHED_WARN_ON(p->se.sched_delayed);
+ WARN_ON_ONCE(p->se.sched_delayed);
#ifdef CONFIG_FAIR_GROUP_SCHED
p->se.cfs_rq = NULL;
+#ifdef CONFIG_CFS_BANDWIDTH
+ init_cfs_throttle_work(p);
+#endif
#endif
#ifdef CONFIG_SCHEDSTATS
@@ -4512,11 +4410,8 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
p->capture_control = NULL;
#endif
init_numa_balancing(clone_flags, p);
-#ifdef CONFIG_SMP
p->wake_entry.u_flags = CSD_TYPE_TTWU;
p->migration_pending = NULL;
-#endif
- init_sched_mm_cid(p);
}
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
@@ -4578,8 +4473,8 @@ static int sysctl_numa_balancing(const struct ctl_table *table, int write,
}
return err;
}
-#endif
-#endif
+#endif /* CONFIG_PROC_SYSCTL */
+#endif /* CONFIG_NUMA_BALANCING */
#ifdef CONFIG_SCHEDSTATS
@@ -4646,7 +4541,7 @@ static int sysctl_schedstats(const struct ctl_table *table, int write, void *buf
#endif /* CONFIG_SCHEDSTATS */
#ifdef CONFIG_SYSCTL
-static struct ctl_table sched_core_sysctls[] = {
+static const struct ctl_table sched_core_sysctls[] = {
#ifdef CONFIG_SCHEDSTATS
{
.procname = "sched_schedstats",
@@ -4704,7 +4599,7 @@ late_initcall(sched_core_sysctl_init);
/*
* fork()/clone()-time setup:
*/
-int sched_fork(unsigned long clone_flags, struct task_struct *p)
+int sched_fork(u64 clone_flags, struct task_struct *p)
{
__sched_fork(clone_flags, p);
/*
@@ -4766,14 +4661,11 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p)
if (likely(sched_info_on()))
memset(&p->sched_info, 0, sizeof(p->sched_info));
#endif
-#if defined(CONFIG_SMP)
p->on_cpu = 0;
-#endif
init_task_preempt_count(p);
-#ifdef CONFIG_SMP
plist_node_init(&p->pushable_tasks, MAX_PRIO);
RB_CLEAR_NODE(&p->pushable_dl_tasks);
-#endif
+
return 0;
}
@@ -4795,7 +4687,6 @@ int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
p->sched_task_group = tg;
}
#endif
- rseq_migrate(p);
/*
* We're setting the CPU for the first time, we don't migrate,
* so use __set_task_cpu().
@@ -4850,7 +4741,6 @@ void wake_up_new_task(struct task_struct *p)
raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
WRITE_ONCE(p->__state, TASK_RUNNING);
-#ifdef CONFIG_SMP
/*
* Fork balancing, do it here and not earlier because:
* - cpus_ptr can change in the fork path
@@ -4860,9 +4750,7 @@ void wake_up_new_task(struct task_struct *p)
* as we're not fully set-up yet.
*/
p->recent_used_cpu = task_cpu(p);
- rseq_migrate(p);
__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
-#endif
rq = __task_rq_lock(p, &rf);
update_rq_clock(rq);
post_init_entity_util_avg(p);
@@ -4870,7 +4758,6 @@ void wake_up_new_task(struct task_struct *p)
activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
trace_sched_wakeup_new(p);
wakeup_preempt(rq, p, wake_flags);
-#ifdef CONFIG_SMP
if (p->sched_class->task_woken) {
/*
* Nothing relies on rq->lock after this, so it's fine to
@@ -4880,7 +4767,6 @@ void wake_up_new_task(struct task_struct *p)
p->sched_class->task_woken(rq, p);
rq_repin_lock(rq, &rf);
}
-#endif
task_rq_unlock(rq, p, &rf);
}
@@ -4957,7 +4843,7 @@ fire_sched_out_preempt_notifiers(struct task_struct *curr,
__fire_sched_out_preempt_notifiers(curr, next);
}
-#else /* !CONFIG_PREEMPT_NOTIFIERS */
+#else /* !CONFIG_PREEMPT_NOTIFIERS: */
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
@@ -4969,11 +4855,10 @@ fire_sched_out_preempt_notifiers(struct task_struct *curr,
{
}
-#endif /* CONFIG_PREEMPT_NOTIFIERS */
+#endif /* !CONFIG_PREEMPT_NOTIFIERS */
static inline void prepare_task(struct task_struct *next)
{
-#ifdef CONFIG_SMP
/*
* Claim the task as running, we do this before switching to it
* such that any running task will have this set.
@@ -4982,12 +4867,10 @@ static inline void prepare_task(struct task_struct *next)
* its ordering comment.
*/
WRITE_ONCE(next->on_cpu, 1);
-#endif
}
static inline void finish_task(struct task_struct *prev)
{
-#ifdef CONFIG_SMP
/*
* This must be the very last reference to @prev from this CPU. After
* p->on_cpu is cleared, the task can be moved to a different CPU. We
@@ -5000,11 +4883,8 @@ static inline void finish_task(struct task_struct *prev)
* Pairs with the smp_cond_load_acquire() in try_to_wake_up().
*/
smp_store_release(&prev->on_cpu, 0);
-#endif
}
-#ifdef CONFIG_SMP
-
static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
{
void (*func)(struct rq *rq);
@@ -5086,14 +4966,6 @@ void balance_callbacks(struct rq *rq, struct balance_callback *head)
}
}
-#else
-
-static inline void __balance_callbacks(struct rq *rq)
-{
-}
-
-#endif
-
static inline void
prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
{
@@ -5171,7 +5043,6 @@ prepare_task_switch(struct rq *rq, struct task_struct *prev,
kcov_prepare_switch(prev);
sched_info_switch(rq, prev, next);
perf_event_task_sched_out(prev, next);
- rseq_preempt(prev);
fire_sched_out_preempt_notifiers(prev, next);
kmap_local_sched_out();
prepare_task(next);
@@ -5272,6 +5143,14 @@ static struct rq *finish_task_switch(struct task_struct *prev)
if (prev->sched_class->task_dead)
prev->sched_class->task_dead(prev);
+ /*
+ * sched_ext_dead() must come before cgroup_task_dead() to
+ * prevent cgroups from being removed while its member tasks are
+ * visible to SCX schedulers.
+ */
+ sched_ext_dead(prev);
+ cgroup_task_dead(prev);
+
/* Task is done with its stack. */
put_task_stack(prev);
@@ -5298,6 +5177,12 @@ asmlinkage __visible void schedule_tail(struct task_struct *prev)
*/
finish_task_switch(prev);
+ /*
+ * This is a special case: the newly created task has just
+ * switched the context for the first time. It is returning from
+ * schedule for the first time in this path.
+ */
+ trace_sched_exit_tp(true);
preempt_enable();
if (current->set_child_tid)
@@ -5328,19 +5213,16 @@ context_switch(struct rq *rq, struct task_struct *prev,
*
* kernel -> user switch + mmdrop_lazy_tlb() active
* user -> user switch
- *
- * switch_mm_cid() needs to be updated if the barriers provided
- * by context_switch() are modified.
*/
- if (!next->mm) { // to kernel
+ if (!next->mm) { // to kernel
enter_lazy_tlb(prev->active_mm, next);
next->active_mm = prev->active_mm;
- if (prev->mm) // from user
+ if (prev->mm) // from user
mmgrab_lazy_tlb(prev->active_mm);
else
prev->active_mm = NULL;
- } else { // to user
+ } else { // to user
membarrier_switch_mm(rq, prev->active_mm, next->mm);
/*
* sys_membarrier() requires an smp_mb() between setting
@@ -5353,15 +5235,20 @@ context_switch(struct rq *rq, struct task_struct *prev,
switch_mm_irqs_off(prev->active_mm, next->mm, next);
lru_gen_use_mm(next->mm);
- if (!prev->mm) { // from kernel
+ if (!prev->mm) { // from kernel
/* will mmdrop_lazy_tlb() in finish_task_switch(). */
rq->prev_mm = prev->active_mm;
prev->active_mm = NULL;
}
}
- /* switch_mm_cid() requires the memory barriers above. */
- switch_mm_cid(rq, prev, next);
+ mm_cid_switch_to(prev, next);
+
+ /*
+ * Tell rseq that the task was scheduled in. Must be after
+ * switch_mm_cid() to get the TIF flag set.
+ */
+ rseq_sched_switch_event(next);
prepare_lock_switch(rq, next, rf);
@@ -5475,8 +5362,6 @@ unsigned int nr_iowait(void)
return sum;
}
-#ifdef CONFIG_SMP
-
/*
* sched_exec - execve() is a valuable balancing opportunity, because at
* this point the task has the smallest effective memory and cache footprint.
@@ -5500,8 +5385,6 @@ void sched_exec(void)
stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
}
-#endif
-
DEFINE_PER_CPU(struct kernel_stat, kstat);
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
@@ -5536,7 +5419,7 @@ unsigned long long task_sched_runtime(struct task_struct *p)
struct rq *rq;
u64 ns;
-#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
+#ifdef CONFIG_64BIT
/*
* 64-bit doesn't need locks to atomically read a 64-bit value.
* So we have a optimization chance when the task's delta_exec is 0.
@@ -5569,7 +5452,6 @@ unsigned long long task_sched_runtime(struct task_struct *p)
return ns;
}
-#ifdef CONFIG_SCHED_DEBUG
static u64 cpu_resched_latency(struct rq *rq)
{
int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
@@ -5614,9 +5496,6 @@ static int __init setup_resched_latency_warn_ms(char *str)
return 1;
}
__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
-#else
-static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
-#endif /* CONFIG_SCHED_DEBUG */
/*
* This function gets called by the timer code, with HZ frequency.
@@ -5632,7 +5511,7 @@ void sched_tick(void)
unsigned long hw_pressure;
u64 resched_latency;
- if (housekeeping_cpu(cpu, HK_TYPE_TICK))
+ if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
arch_scale_freq_tick();
sched_clock_tick();
@@ -5654,7 +5533,6 @@ void sched_tick(void)
resched_latency = cpu_resched_latency(rq);
calc_global_load_tick(rq);
sched_core_tick(rq);
- task_tick_mm_cid(rq, donor);
scx_tick(rq);
rq_unlock(rq, &rf);
@@ -5667,12 +5545,10 @@ void sched_tick(void)
if (donor->flags & PF_WQ_WORKER)
wq_worker_tick(donor);
-#ifdef CONFIG_SMP
if (!scx_switched_all()) {
rq->idle_balance = idle_cpu(cpu);
sched_balance_trigger(rq);
}
-#endif
}
#ifdef CONFIG_NO_HZ_FULL
@@ -5737,7 +5613,7 @@ static void sched_tick_remote(struct work_struct *work)
* we are always sure that there is no proxy (only a
* single task is running).
*/
- SCHED_WARN_ON(rq->curr != rq->donor);
+ WARN_ON_ONCE(rq->curr != rq->donor);
update_rq_clock(rq);
if (!is_idle_task(curr)) {
@@ -5746,7 +5622,7 @@ static void sched_tick_remote(struct work_struct *work)
* reasonable amount of time.
*/
u64 delta = rq_clock_task(rq) - curr->se.exec_start;
- WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
+ WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 30);
}
curr->sched_class->task_tick(rq, curr, 0);
@@ -5771,7 +5647,7 @@ static void sched_tick_start(int cpu)
int os;
struct tick_work *twork;
- if (housekeeping_cpu(cpu, HK_TYPE_TICK))
+ if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
return;
WARN_ON_ONCE(!tick_work_cpu);
@@ -5792,7 +5668,7 @@ static void sched_tick_stop(int cpu)
struct tick_work *twork;
int os;
- if (housekeeping_cpu(cpu, HK_TYPE_TICK))
+ if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
return;
WARN_ON_ONCE(!tick_work_cpu);
@@ -5812,10 +5688,10 @@ int __init sched_tick_offload_init(void)
return 0;
}
-#else /* !CONFIG_NO_HZ_FULL */
+#else /* !CONFIG_NO_HZ_FULL: */
static inline void sched_tick_start(int cpu) { }
static inline void sched_tick_stop(int cpu) { }
-#endif
+#endif /* !CONFIG_NO_HZ_FULL */
#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
defined(CONFIG_TRACE_PREEMPT_TOGGLE))
@@ -5957,7 +5833,7 @@ static inline void schedule_debug(struct task_struct *prev, bool preempt)
preempt_count_set(PREEMPT_DISABLED);
}
rcu_sleep_check();
- SCHED_WARN_ON(ct_state() == CT_STATE_USER);
+ WARN_ON_ONCE(ct_state() == CT_STATE_USER);
profile_hit(SCHED_PROFILING, __builtin_return_address(0));
@@ -5970,19 +5846,6 @@ static void prev_balance(struct rq *rq, struct task_struct *prev,
const struct sched_class *start_class = prev->sched_class;
const struct sched_class *class;
-#ifdef CONFIG_SCHED_CLASS_EXT
- /*
- * SCX requires a balance() call before every pick_task() including when
- * waking up from SCHED_IDLE. If @start_class is below SCX, start from
- * SCX instead. Also, set a flag to detect missing balance() call.
- */
- if (scx_enabled()) {
- rq->scx.flags |= SCX_RQ_BAL_PENDING;
- if (sched_class_above(&ext_sched_class, start_class))
- start_class = &ext_sched_class;
- }
-#endif
-
/*
* We must do the balancing pass before put_prev_task(), such
* that when we release the rq->lock the task is in the same
@@ -6018,7 +5881,7 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
* opportunity to pull in more work from other CPUs.
*/
if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
- rq->nr_running == rq->cfs.h_nr_running)) {
+ rq->nr_running == rq->cfs.h_nr_queued)) {
p = pick_next_task_fair(rq, prev, rf);
if (unlikely(p == RETRY_TASK))
@@ -6026,7 +5889,7 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
/* Assume the next prioritized class is idle_sched_class */
if (!p) {
- p = pick_task_idle(rq);
+ p = pick_task_idle(rq, rf);
put_prev_set_next_task(rq, prev, p);
}
@@ -6038,11 +5901,15 @@ restart:
for_each_active_class(class) {
if (class->pick_next_task) {
- p = class->pick_next_task(rq, prev);
+ p = class->pick_next_task(rq, prev, rf);
+ if (unlikely(p == RETRY_TASK))
+ goto restart;
if (p)
return p;
} else {
- p = class->pick_task(rq);
+ p = class->pick_task(rq, rf);
+ if (unlikely(p == RETRY_TASK))
+ goto restart;
if (p) {
put_prev_set_next_task(rq, prev, p);
return p;
@@ -6072,7 +5939,11 @@ static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
return a->core_cookie == b->core_cookie;
}
-static inline struct task_struct *pick_task(struct rq *rq)
+/*
+ * Careful; this can return RETRY_TASK, it does not include the retry-loop
+ * itself due to the whole SMT pick retry thing below.
+ */
+static inline struct task_struct *pick_task(struct rq *rq, struct rq_flags *rf)
{
const struct sched_class *class;
struct task_struct *p;
@@ -6080,7 +5951,7 @@ static inline struct task_struct *pick_task(struct rq *rq)
rq->dl_server = NULL;
for_each_active_class(class) {
- p = class->pick_task(rq);
+ p = class->pick_task(rq, rf);
if (p)
return p;
}
@@ -6095,7 +5966,7 @@ static void queue_core_balance(struct rq *rq);
static struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
- struct task_struct *next, *p, *max = NULL;
+ struct task_struct *next, *p, *max;
const struct cpumask *smt_mask;
bool fi_before = false;
bool core_clock_updated = (rq == rq->core);
@@ -6180,7 +6051,10 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
* and there are no cookied tasks running on siblings.
*/
if (!need_sync) {
- next = pick_task(rq);
+restart_single:
+ next = pick_task(rq, rf);
+ if (unlikely(next == RETRY_TASK))
+ goto restart_single;
if (!next->core_cookie) {
rq->core_pick = NULL;
rq->core_dl_server = NULL;
@@ -6200,6 +6074,8 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
*
* Tie-break prio towards the current CPU
*/
+restart_multi:
+ max = NULL;
for_each_cpu_wrap(i, smt_mask, cpu) {
rq_i = cpu_rq(i);
@@ -6211,7 +6087,11 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
if (i != cpu && (rq_i != rq->core || !core_clock_updated))
update_rq_clock(rq_i);
- rq_i->core_pick = p = pick_task(rq_i);
+ p = pick_task(rq_i, rf);
+ if (unlikely(p == RETRY_TASK))
+ goto restart_multi;
+
+ rq_i->core_pick = p;
rq_i->core_dl_server = rq_i->dl_server;
if (!max || prio_less(max, p, fi_before))
@@ -6233,7 +6113,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
if (cookie)
p = sched_core_find(rq_i, cookie);
if (!p)
- p = idle_sched_class.pick_task(rq_i);
+ p = idle_sched_class.pick_task(rq_i, rf);
}
rq_i->core_pick = p;
@@ -6530,7 +6410,7 @@ static inline void sched_core_cpu_dying(unsigned int cpu)
rq->core = rq;
}
-#else /* !CONFIG_SCHED_CORE */
+#else /* !CONFIG_SCHED_CORE: */
static inline void sched_core_cpu_starting(unsigned int cpu) {}
static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
@@ -6542,7 +6422,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
return __pick_next_task(rq, prev, rf);
}
-#endif /* CONFIG_SCHED_CORE */
+#endif /* !CONFIG_SCHED_CORE */
/*
* Constants for the sched_mode argument of __schedule().
@@ -6558,19 +6438,33 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
/*
* Helper function for __schedule()
*
- * If a task does not have signals pending, deactivate it
- * Otherwise marks the task's __state as RUNNING
+ * Tries to deactivate the task, unless the should_block arg
+ * is false or if a signal is pending. In the case a signal
+ * is pending, marks the task's __state as RUNNING (and clear
+ * blocked_on).
*/
static bool try_to_block_task(struct rq *rq, struct task_struct *p,
- unsigned long task_state)
+ unsigned long *task_state_p, bool should_block)
{
+ unsigned long task_state = *task_state_p;
int flags = DEQUEUE_NOCLOCK;
if (signal_pending_state(task_state, p)) {
WRITE_ONCE(p->__state, TASK_RUNNING);
+ *task_state_p = TASK_RUNNING;
return false;
}
+ /*
+ * We check should_block after signal_pending because we
+ * will want to wake the task in that case. But if
+ * should_block is false, its likely due to the task being
+ * blocked on a mutex, and we want to keep it on the runqueue
+ * to be selectable for proxy-execution.
+ */
+ if (!should_block)
+ return false;
+
p->sched_contributes_to_load =
(task_state & TASK_UNINTERRUPTIBLE) &&
!(task_state & TASK_NOLOAD) &&
@@ -6594,6 +6488,194 @@ static bool try_to_block_task(struct rq *rq, struct task_struct *p,
return true;
}
+#ifdef CONFIG_SCHED_PROXY_EXEC
+static inline struct task_struct *proxy_resched_idle(struct rq *rq)
+{
+ put_prev_set_next_task(rq, rq->donor, rq->idle);
+ rq_set_donor(rq, rq->idle);
+ set_tsk_need_resched(rq->idle);
+ return rq->idle;
+}
+
+static bool __proxy_deactivate(struct rq *rq, struct task_struct *donor)
+{
+ unsigned long state = READ_ONCE(donor->__state);
+
+ /* Don't deactivate if the state has been changed to TASK_RUNNING */
+ if (state == TASK_RUNNING)
+ return false;
+ /*
+ * Because we got donor from pick_next_task(), it is *crucial*
+ * that we call proxy_resched_idle() before we deactivate it.
+ * As once we deactivate donor, donor->on_rq is set to zero,
+ * which allows ttwu() to immediately try to wake the task on
+ * another rq. So we cannot use *any* references to donor
+ * after that point. So things like cfs_rq->curr or rq->donor
+ * need to be changed from next *before* we deactivate.
+ */
+ proxy_resched_idle(rq);
+ return try_to_block_task(rq, donor, &state, true);
+}
+
+static struct task_struct *proxy_deactivate(struct rq *rq, struct task_struct *donor)
+{
+ if (!__proxy_deactivate(rq, donor)) {
+ /*
+ * XXX: For now, if deactivation failed, set donor
+ * as unblocked, as we aren't doing proxy-migrations
+ * yet (more logic will be needed then).
+ */
+ donor->blocked_on = NULL;
+ }
+ return NULL;
+}
+
+/*
+ * Find runnable lock owner to proxy for mutex blocked donor
+ *
+ * Follow the blocked-on relation:
+ * task->blocked_on -> mutex->owner -> task...
+ *
+ * Lock order:
+ *
+ * p->pi_lock
+ * rq->lock
+ * mutex->wait_lock
+ *
+ * Returns the task that is going to be used as execution context (the one
+ * that is actually going to be run on cpu_of(rq)).
+ */
+static struct task_struct *
+find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf)
+{
+ struct task_struct *owner = NULL;
+ int this_cpu = cpu_of(rq);
+ struct task_struct *p;
+ struct mutex *mutex;
+
+ /* Follow blocked_on chain. */
+ for (p = donor; task_is_blocked(p); p = owner) {
+ mutex = p->blocked_on;
+ /* Something changed in the chain, so pick again */
+ if (!mutex)
+ return NULL;
+ /*
+ * By taking mutex->wait_lock we hold off concurrent mutex_unlock()
+ * and ensure @owner sticks around.
+ */
+ guard(raw_spinlock)(&mutex->wait_lock);
+
+ /* Check again that p is blocked with wait_lock held */
+ if (mutex != __get_task_blocked_on(p)) {
+ /*
+ * Something changed in the blocked_on chain and
+ * we don't know if only at this level. So, let's
+ * just bail out completely and let __schedule()
+ * figure things out (pick_again loop).
+ */
+ return NULL;
+ }
+
+ owner = __mutex_owner(mutex);
+ if (!owner) {
+ __clear_task_blocked_on(p, mutex);
+ return p;
+ }
+
+ if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) {
+ /* XXX Don't handle blocked owners/delayed dequeue yet */
+ return proxy_deactivate(rq, donor);
+ }
+
+ if (task_cpu(owner) != this_cpu) {
+ /* XXX Don't handle migrations yet */
+ return proxy_deactivate(rq, donor);
+ }
+
+ if (task_on_rq_migrating(owner)) {
+ /*
+ * One of the chain of mutex owners is currently migrating to this
+ * CPU, but has not yet been enqueued because we are holding the
+ * rq lock. As a simple solution, just schedule rq->idle to give
+ * the migration a chance to complete. Much like the migrate_task
+ * case we should end up back in find_proxy_task(), this time
+ * hopefully with all relevant tasks already enqueued.
+ */
+ return proxy_resched_idle(rq);
+ }
+
+ /*
+ * Its possible to race where after we check owner->on_rq
+ * but before we check (owner_cpu != this_cpu) that the
+ * task on another cpu was migrated back to this cpu. In
+ * that case it could slip by our checks. So double check
+ * we are still on this cpu and not migrating. If we get
+ * inconsistent results, try again.
+ */
+ if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu)
+ return NULL;
+
+ if (owner == p) {
+ /*
+ * It's possible we interleave with mutex_unlock like:
+ *
+ * lock(&rq->lock);
+ * find_proxy_task()
+ * mutex_unlock()
+ * lock(&wait_lock);
+ * donor(owner) = current->blocked_donor;
+ * unlock(&wait_lock);
+ *
+ * wake_up_q();
+ * ...
+ * ttwu_runnable()
+ * __task_rq_lock()
+ * lock(&wait_lock);
+ * owner == p
+ *
+ * Which leaves us to finish the ttwu_runnable() and make it go.
+ *
+ * So schedule rq->idle so that ttwu_runnable() can get the rq
+ * lock and mark owner as running.
+ */
+ return proxy_resched_idle(rq);
+ }
+ /*
+ * OK, now we're absolutely sure @owner is on this
+ * rq, therefore holding @rq->lock is sufficient to
+ * guarantee its existence, as per ttwu_remote().
+ */
+ }
+
+ WARN_ON_ONCE(owner && !owner->on_rq);
+ return owner;
+}
+#else /* SCHED_PROXY_EXEC */
+static struct task_struct *
+find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf)
+{
+ WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n");
+ return donor;
+}
+#endif /* SCHED_PROXY_EXEC */
+
+static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner)
+{
+ if (!sched_proxy_exec())
+ return;
+ /*
+ * pick_next_task() calls set_next_task() on the chosen task
+ * at some point, which ensures it is not push/pullable.
+ * However, the chosen/donor task *and* the mutex owner form an
+ * atomic pair wrt push/pull.
+ *
+ * Make sure owner we run is not pushable. Unfortunately we can
+ * only deal with that by means of a dequeue/enqueue cycle. :-/
+ */
+ dequeue_task(rq, owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE);
+ enqueue_task(rq, owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE);
+}
+
/*
* __schedule() is the main scheduler function.
*
@@ -6641,13 +6723,16 @@ static void __sched notrace __schedule(int sched_mode)
* as a preemption by schedule_debug() and RCU.
*/
bool preempt = sched_mode > SM_NONE;
- bool block = false;
+ bool is_switch = false;
unsigned long *switch_count;
unsigned long prev_state;
struct rq_flags rf;
struct rq *rq;
int cpu;
+ /* Trace preemptions consistently with task switches */
+ trace_sched_entry_tp(sched_mode == SM_PREEMPT);
+
cpu = smp_processor_id();
rq = cpu_rq(cpu);
prev = rq->curr;
@@ -6657,8 +6742,11 @@ static void __sched notrace __schedule(int sched_mode)
if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
hrtick_clear(rq);
+ klp_sched_try_switch(prev);
+
local_irq_disable();
rcu_note_context_switch(preempt);
+ migrate_disable_switch(rq, prev);
/*
* Make sure that signal_pending_state()->signal_pending() below
@@ -6702,26 +6790,45 @@ static void __sched notrace __schedule(int sched_mode)
goto picked;
}
} else if (!preempt && prev_state) {
- block = try_to_block_task(rq, prev, prev_state);
+ /*
+ * We pass task_is_blocked() as the should_block arg
+ * in order to keep mutex-blocked tasks on the runqueue
+ * for slection with proxy-exec (without proxy-exec
+ * task_is_blocked() will always be false).
+ */
+ try_to_block_task(rq, prev, &prev_state,
+ !task_is_blocked(prev));
switch_count = &prev->nvcsw;
}
- next = pick_next_task(rq, prev, &rf);
+pick_again:
+ next = pick_next_task(rq, rq->donor, &rf);
rq_set_donor(rq, next);
+ if (unlikely(task_is_blocked(next))) {
+ next = find_proxy_task(rq, next, &rf);
+ if (!next)
+ goto pick_again;
+ if (next == rq->idle)
+ goto keep_resched;
+ }
picked:
clear_tsk_need_resched(prev);
clear_preempt_need_resched();
-#ifdef CONFIG_SCHED_DEBUG
+keep_resched:
rq->last_seen_need_resched_ns = 0;
-#endif
- if (likely(prev != next)) {
+ is_switch = prev != next;
+ if (likely(is_switch)) {
rq->nr_switches++;
/*
* RCU users of rcu_dereference(rq->curr) may not see
* changes to task_struct made by pick_next_task().
*/
RCU_INIT_POINTER(rq->curr, next);
+
+ if (!task_current_donor(rq, next))
+ proxy_tag_curr(rq, next);
+
/*
* The membarrier system call requires each architecture
* to have a full memory barrier after updating
@@ -6746,19 +6853,24 @@ picked:
*/
++*switch_count;
- migrate_disable_switch(rq, prev);
psi_account_irqtime(rq, prev, next);
- psi_sched_switch(prev, next, block);
+ psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
+ prev->se.sched_delayed);
trace_sched_switch(preempt, prev, next, prev_state);
/* Also unlocks the rq: */
rq = context_switch(rq, prev, next, &rf);
} else {
+ /* In case next was already curr but just got blocked_donor */
+ if (!task_current_donor(rq, next))
+ proxy_tag_curr(rq, next);
+
rq_unpin_lock(rq, &rf);
__balance_callbacks(rq);
raw_spin_rq_unlock_irq(rq);
}
+ trace_sched_exit_tp(is_switch);
}
void __noreturn do_task_dead(void)
@@ -6803,7 +6915,7 @@ static inline void sched_submit_work(struct task_struct *tsk)
* deadlock if the callback attempts to acquire a lock which is
* already acquired.
*/
- SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
+ WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT);
/*
* If we are going to sleep and we have plugged IO queued,
@@ -6962,14 +7074,14 @@ NOKPROBE_SYMBOL(preempt_schedule);
EXPORT_SYMBOL(preempt_schedule);
#ifdef CONFIG_PREEMPT_DYNAMIC
-#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
-#ifndef preempt_schedule_dynamic_enabled
-#define preempt_schedule_dynamic_enabled preempt_schedule
-#define preempt_schedule_dynamic_disabled NULL
-#endif
+# ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
+# ifndef preempt_schedule_dynamic_enabled
+# define preempt_schedule_dynamic_enabled preempt_schedule
+# define preempt_schedule_dynamic_disabled NULL
+# endif
DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
-#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
+# elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
void __sched notrace dynamic_preempt_schedule(void)
{
@@ -6979,8 +7091,8 @@ void __sched notrace dynamic_preempt_schedule(void)
}
NOKPROBE_SYMBOL(dynamic_preempt_schedule);
EXPORT_SYMBOL(dynamic_preempt_schedule);
-#endif
-#endif
+# endif
+#endif /* CONFIG_PREEMPT_DYNAMIC */
/**
* preempt_schedule_notrace - preempt_schedule called by tracing
@@ -7035,14 +7147,14 @@ asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
#ifdef CONFIG_PREEMPT_DYNAMIC
-#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
-#ifndef preempt_schedule_notrace_dynamic_enabled
-#define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
-#define preempt_schedule_notrace_dynamic_disabled NULL
-#endif
+# if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
+# ifndef preempt_schedule_notrace_dynamic_enabled
+# define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
+# define preempt_schedule_notrace_dynamic_disabled NULL
+# endif
DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
-#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
+# elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
void __sched notrace dynamic_preempt_schedule_notrace(void)
{
@@ -7052,7 +7164,7 @@ void __sched notrace dynamic_preempt_schedule_notrace(void)
}
NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
-#endif
+# endif
#endif
#endif /* CONFIG_PREEMPTION */
@@ -7086,7 +7198,7 @@ asmlinkage __visible void __sched preempt_schedule_irq(void)
int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
void *key)
{
- WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
+ WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
return try_to_wake_up(curr->private, mode, wake_flags);
}
EXPORT_SYMBOL(default_wake_function);
@@ -7148,7 +7260,7 @@ void rt_mutex_post_schedule(void)
*/
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
{
- int prio, oldprio, queued, running, queue_flag =
+ int prio, oldprio, queue_flag =
DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
const struct sched_class *prev_class, *next_class;
struct rq_flags rf;
@@ -7210,78 +7322,62 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
prev_class = p->sched_class;
next_class = __setscheduler_class(p->policy, prio);
- if (prev_class != next_class && p->se.sched_delayed)
- dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
+ if (prev_class != next_class)
+ queue_flag |= DEQUEUE_CLASS;
- queued = task_on_rq_queued(p);
- running = task_current_donor(rq, p);
- if (queued)
- dequeue_task(rq, p, queue_flag);
- if (running)
- put_prev_task(rq, p);
-
- /*
- * Boosting condition are:
- * 1. -rt task is running and holds mutex A
- * --> -dl task blocks on mutex A
- *
- * 2. -dl task is running and holds mutex A
- * --> -dl task blocks on mutex A and could preempt the
- * running task
- */
- if (dl_prio(prio)) {
- if (!dl_prio(p->normal_prio) ||
- (pi_task && dl_prio(pi_task->prio) &&
- dl_entity_preempt(&pi_task->dl, &p->dl))) {
- p->dl.pi_se = pi_task->dl.pi_se;
- queue_flag |= ENQUEUE_REPLENISH;
+ scoped_guard (sched_change, p, queue_flag) {
+ /*
+ * Boosting condition are:
+ * 1. -rt task is running and holds mutex A
+ * --> -dl task blocks on mutex A
+ *
+ * 2. -dl task is running and holds mutex A
+ * --> -dl task blocks on mutex A and could preempt the
+ * running task
+ */
+ if (dl_prio(prio)) {
+ if (!dl_prio(p->normal_prio) ||
+ (pi_task && dl_prio(pi_task->prio) &&
+ dl_entity_preempt(&pi_task->dl, &p->dl))) {
+ p->dl.pi_se = pi_task->dl.pi_se;
+ scope->flags |= ENQUEUE_REPLENISH;
+ } else {
+ p->dl.pi_se = &p->dl;
+ }
+ } else if (rt_prio(prio)) {
+ if (dl_prio(oldprio))
+ p->dl.pi_se = &p->dl;
+ if (oldprio < prio)
+ scope->flags |= ENQUEUE_HEAD;
} else {
- p->dl.pi_se = &p->dl;
+ if (dl_prio(oldprio))
+ p->dl.pi_se = &p->dl;
+ if (rt_prio(oldprio))
+ p->rt.timeout = 0;
}
- } else if (rt_prio(prio)) {
- if (dl_prio(oldprio))
- p->dl.pi_se = &p->dl;
- if (oldprio < prio)
- queue_flag |= ENQUEUE_HEAD;
- } else {
- if (dl_prio(oldprio))
- p->dl.pi_se = &p->dl;
- if (rt_prio(oldprio))
- p->rt.timeout = 0;
- }
-
- p->sched_class = next_class;
- p->prio = prio;
- check_class_changing(rq, p, prev_class);
-
- if (queued)
- enqueue_task(rq, p, queue_flag);
- if (running)
- set_next_task(rq, p);
-
- check_class_changed(rq, p, prev_class, oldprio);
+ p->sched_class = next_class;
+ p->prio = prio;
+ }
out_unlock:
- /* Avoid rq from going away on us: */
- preempt_disable();
+ /* Caller holds task_struct::pi_lock, IRQs are still disabled */
rq_unpin_lock(rq, &rf);
__balance_callbacks(rq);
- raw_spin_rq_unlock(rq);
-
- preempt_enable();
+ rq_repin_lock(rq, &rf);
+ __task_rq_unlock(rq, p, &rf);
}
-#endif
+#endif /* CONFIG_RT_MUTEXES */
#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
int __sched __cond_resched(void)
{
- if (should_resched(0)) {
+ if (should_resched(0) && !irqs_disabled()) {
preempt_schedule_common();
return 1;
}
/*
- * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
+ * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick
* whether the current CPU is in an RCU read-side critical section,
* so the tick can report quiescent states even for CPUs looping
* in kernel context. In contrast, in non-preemptible kernels,
@@ -7290,6 +7386,8 @@ int __sched __cond_resched(void)
* RCU quiescent state. Therefore, the following code causes
* cond_resched() to report a quiescent state, but only when RCU
* is in urgent need of one.
+ * A third case, preemptible, but non-PREEMPT_RCU provides for
+ * urgently needed quiescent states via rcu_flavor_sched_clock_irq().
*/
#ifndef CONFIG_PREEMPT_RCU
rcu_all_qs();
@@ -7300,21 +7398,20 @@ EXPORT_SYMBOL(__cond_resched);
#endif
#ifdef CONFIG_PREEMPT_DYNAMIC
-#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
-#define cond_resched_dynamic_enabled __cond_resched
-#define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
+# ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
+# define cond_resched_dynamic_enabled __cond_resched
+# define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
EXPORT_STATIC_CALL_TRAMP(cond_resched);
-#define might_resched_dynamic_enabled __cond_resched
-#define might_resched_dynamic_disabled ((void *)&__static_call_return0)
+# define might_resched_dynamic_enabled __cond_resched
+# define might_resched_dynamic_disabled ((void *)&__static_call_return0)
DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
EXPORT_STATIC_CALL_TRAMP(might_resched);
-#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
+# elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
int __sched dynamic_cond_resched(void)
{
- klp_sched_try_switch();
if (!static_branch_unlikely(&sk_dynamic_cond_resched))
return 0;
return __cond_resched();
@@ -7329,8 +7426,8 @@ int __sched dynamic_might_resched(void)
return __cond_resched();
}
EXPORT_SYMBOL(dynamic_might_resched);
-#endif
-#endif
+# endif
+#endif /* CONFIG_PREEMPT_DYNAMIC */
/*
* __cond_resched_lock() - if a reschedule is pending, drop the given lock,
@@ -7396,9 +7493,9 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write);
#ifdef CONFIG_PREEMPT_DYNAMIC
-#ifdef CONFIG_GENERIC_ENTRY
-#include <linux/entry-common.h>
-#endif
+# ifdef CONFIG_GENERIC_IRQ_ENTRY
+# include <linux/irq-entry-common.h>
+# endif
/*
* SC:cond_resched
@@ -7453,40 +7550,39 @@ int preempt_dynamic_mode = preempt_dynamic_undefined;
int sched_dynamic_mode(const char *str)
{
-#ifndef CONFIG_PREEMPT_RT
+# ifndef CONFIG_PREEMPT_RT
if (!strcmp(str, "none"))
return preempt_dynamic_none;
if (!strcmp(str, "voluntary"))
return preempt_dynamic_voluntary;
-#endif
+# endif
if (!strcmp(str, "full"))
return preempt_dynamic_full;
-#ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
+# ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
if (!strcmp(str, "lazy"))
return preempt_dynamic_lazy;
-#endif
+# endif
return -EINVAL;
}
-#define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key)
-#define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key)
+# define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key)
+# define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key)
-#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
-#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
-#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
-#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
-#define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f)
-#define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f)
-#else
-#error "Unsupported PREEMPT_DYNAMIC mechanism"
-#endif
+# if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
+# define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
+# define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
+# elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
+# define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f)
+# define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f)
+# else
+# error "Unsupported PREEMPT_DYNAMIC mechanism"
+# endif
static DEFINE_MUTEX(sched_dynamic_mutex);
-static bool klp_override;
static void __sched_dynamic_update(int mode)
{
@@ -7494,8 +7590,7 @@ static void __sched_dynamic_update(int mode)
* Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
* the ZERO state, which is invalid.
*/
- if (!klp_override)
- preempt_dynamic_enable(cond_resched);
+ preempt_dynamic_enable(cond_resched);
preempt_dynamic_enable(might_resched);
preempt_dynamic_enable(preempt_schedule);
preempt_dynamic_enable(preempt_schedule_notrace);
@@ -7504,8 +7599,7 @@ static void __sched_dynamic_update(int mode)
switch (mode) {
case preempt_dynamic_none:
- if (!klp_override)
- preempt_dynamic_enable(cond_resched);
+ preempt_dynamic_enable(cond_resched);
preempt_dynamic_disable(might_resched);
preempt_dynamic_disable(preempt_schedule);
preempt_dynamic_disable(preempt_schedule_notrace);
@@ -7516,8 +7610,7 @@ static void __sched_dynamic_update(int mode)
break;
case preempt_dynamic_voluntary:
- if (!klp_override)
- preempt_dynamic_enable(cond_resched);
+ preempt_dynamic_enable(cond_resched);
preempt_dynamic_enable(might_resched);
preempt_dynamic_disable(preempt_schedule);
preempt_dynamic_disable(preempt_schedule_notrace);
@@ -7528,8 +7621,7 @@ static void __sched_dynamic_update(int mode)
break;
case preempt_dynamic_full:
- if (!klp_override)
- preempt_dynamic_disable(cond_resched);
+ preempt_dynamic_disable(cond_resched);
preempt_dynamic_disable(might_resched);
preempt_dynamic_enable(preempt_schedule);
preempt_dynamic_enable(preempt_schedule_notrace);
@@ -7540,8 +7632,7 @@ static void __sched_dynamic_update(int mode)
break;
case preempt_dynamic_lazy:
- if (!klp_override)
- preempt_dynamic_disable(cond_resched);
+ preempt_dynamic_disable(cond_resched);
preempt_dynamic_disable(might_resched);
preempt_dynamic_enable(preempt_schedule);
preempt_dynamic_enable(preempt_schedule_notrace);
@@ -7562,36 +7653,6 @@ void sched_dynamic_update(int mode)
mutex_unlock(&sched_dynamic_mutex);
}
-#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
-
-static int klp_cond_resched(void)
-{
- __klp_sched_try_switch();
- return __cond_resched();
-}
-
-void sched_dynamic_klp_enable(void)
-{
- mutex_lock(&sched_dynamic_mutex);
-
- klp_override = true;
- static_call_update(cond_resched, klp_cond_resched);
-
- mutex_unlock(&sched_dynamic_mutex);
-}
-
-void sched_dynamic_klp_disable(void)
-{
- mutex_lock(&sched_dynamic_mutex);
-
- klp_override = false;
- __sched_dynamic_update(preempt_dynamic_mode);
-
- mutex_unlock(&sched_dynamic_mutex);
-}
-
-#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
-
static int __init setup_preempt_mode(char *str)
{
int mode = sched_dynamic_mode(str);
@@ -7623,7 +7684,7 @@ static void __init preempt_dynamic_init(void)
}
}
-#define PREEMPT_MODEL_ACCESSOR(mode) \
+# define PREEMPT_MODEL_ACCESSOR(mode) \
bool preempt_model_##mode(void) \
{ \
WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
@@ -7638,10 +7699,57 @@ PREEMPT_MODEL_ACCESSOR(lazy);
#else /* !CONFIG_PREEMPT_DYNAMIC: */
+#define preempt_dynamic_mode -1
+
static inline void preempt_dynamic_init(void) { }
#endif /* CONFIG_PREEMPT_DYNAMIC */
+const char *preempt_modes[] = {
+ "none", "voluntary", "full", "lazy", NULL,
+};
+
+const char *preempt_model_str(void)
+{
+ bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) &&
+ (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) ||
+ IS_ENABLED(CONFIG_PREEMPT_LAZY));
+ static char buf[128];
+
+ if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) {
+ struct seq_buf s;
+
+ seq_buf_init(&s, buf, sizeof(buf));
+ seq_buf_puts(&s, "PREEMPT");
+
+ if (IS_ENABLED(CONFIG_PREEMPT_RT))
+ seq_buf_printf(&s, "%sRT%s",
+ brace ? "_{" : "_",
+ brace ? "," : "");
+
+ if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) {
+ seq_buf_printf(&s, "(%s)%s",
+ preempt_dynamic_mode >= 0 ?
+ preempt_modes[preempt_dynamic_mode] : "undef",
+ brace ? "}" : "");
+ return seq_buf_str(&s);
+ }
+
+ if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
+ seq_buf_printf(&s, "LAZY%s",
+ brace ? "}" : "");
+ return seq_buf_str(&s);
+ }
+
+ return seq_buf_str(&s);
+ }
+
+ if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD))
+ return "VOLUNTARY";
+
+ return "NONE";
+}
+
int io_schedule_prepare(void)
{
int old_iowait = current->in_iowait;
@@ -7701,9 +7809,9 @@ void sched_show_task(struct task_struct *p)
if (pid_alive(p))
ppid = task_pid_nr(rcu_dereference(p->real_parent));
rcu_read_unlock();
- pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
+ pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
free, task_pid_nr(p), task_tgid_nr(p),
- ppid, read_task_thread_flags(p));
+ ppid, p->flags, read_task_thread_flags(p));
print_worker_info(KERN_INFO, p);
print_stop_info(KERN_INFO, p);
@@ -7756,10 +7864,9 @@ void show_state_filter(unsigned int state_filter)
sched_show_task(p);
}
-#ifdef CONFIG_SCHED_DEBUG
if (!state_filter)
sysrq_sched_debug_show();
-#endif
+
rcu_read_unlock();
/*
* Only show locks if all tasks are dumped:
@@ -7778,12 +7885,10 @@ void show_state_filter(unsigned int state_filter)
*/
void __init init_idle(struct task_struct *idle, int cpu)
{
-#ifdef CONFIG_SMP
struct affinity_context ac = (struct affinity_context) {
.new_mask = cpumask_of(cpu),
.flags = 0,
};
-#endif
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
@@ -7799,13 +7904,11 @@ void __init init_idle(struct task_struct *idle, int cpu)
idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
kthread_set_per_cpu(idle, cpu);
-#ifdef CONFIG_SMP
/*
* No validation and serialization required at boot time and for
* setting up the idle tasks of not yet online CPUs.
*/
set_cpus_allowed_common(idle, &ac);
-#endif
/*
* We're having a chicken and egg problem, even though we are
* holding rq->lock, the CPU isn't yet set to this CPU so the
@@ -7824,9 +7927,7 @@ void __init init_idle(struct task_struct *idle, int cpu)
rq_set_donor(rq, idle);
rcu_assign_pointer(rq->curr, idle);
idle->on_rq = TASK_ON_RQ_QUEUED;
-#ifdef CONFIG_SMP
idle->on_cpu = 1;
-#endif
raw_spin_rq_unlock(rq);
raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
@@ -7839,13 +7940,9 @@ void __init init_idle(struct task_struct *idle, int cpu)
idle->sched_class = &idle_sched_class;
ftrace_graph_init_idle_task(idle, cpu);
vtime_init_idle(idle, cpu);
-#ifdef CONFIG_SMP
sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
-#endif
}
-#ifdef CONFIG_SMP
-
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
const struct cpumask *trial)
{
@@ -7905,44 +8002,34 @@ int migrate_task_to(struct task_struct *p, int target_cpu)
*/
void sched_setnuma(struct task_struct *p, int nid)
{
- bool queued, running;
- struct rq_flags rf;
- struct rq *rq;
-
- rq = task_rq_lock(p, &rf);
- queued = task_on_rq_queued(p);
- running = task_current_donor(rq, p);
-
- if (queued)
- dequeue_task(rq, p, DEQUEUE_SAVE);
- if (running)
- put_prev_task(rq, p);
-
- p->numa_preferred_nid = nid;
-
- if (queued)
- enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
- if (running)
- set_next_task(rq, p);
- task_rq_unlock(rq, p, &rf);
+ guard(task_rq_lock)(p);
+ scoped_guard (sched_change, p, DEQUEUE_SAVE)
+ p->numa_preferred_nid = nid;
}
#endif /* CONFIG_NUMA_BALANCING */
#ifdef CONFIG_HOTPLUG_CPU
/*
- * Ensure that the idle task is using init_mm right before its CPU goes
- * offline.
+ * Invoked on the outgoing CPU in context of the CPU hotplug thread
+ * after ensuring that there are no user space tasks left on the CPU.
+ *
+ * If there is a lazy mm in use on the hotplug thread, drop it and
+ * switch to init_mm.
+ *
+ * The reference count on init_mm is dropped in finish_cpu().
*/
-void idle_task_exit(void)
+static void sched_force_init_mm(void)
{
struct mm_struct *mm = current->active_mm;
- BUG_ON(cpu_online(smp_processor_id()));
- BUG_ON(current != this_rq()->idle);
-
if (mm != &init_mm) {
- switch_mm(mm, &init_mm, current);
+ mmgrab_lazy_tlb(&init_mm);
+ local_irq_disable();
+ current->active_mm = &init_mm;
+ switch_mm_irqs_off(mm, &init_mm, current);
+ local_irq_enable();
finish_arch_post_lock_switch();
+ mmdrop_lazy_tlb(mm);
}
/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
@@ -7955,18 +8042,15 @@ static int __balance_push_cpu_stop(void *arg)
struct rq_flags rf;
int cpu;
- raw_spin_lock_irq(&p->pi_lock);
- rq_lock(rq, &rf);
-
- update_rq_clock(rq);
-
- if (task_rq(p) == rq && task_on_rq_queued(p)) {
+ scoped_guard (raw_spinlock_irq, &p->pi_lock) {
cpu = select_fallback_rq(rq->cpu, p);
- rq = __migrate_task(rq, &rf, p, cpu);
- }
- rq_unlock(rq, &rf);
- raw_spin_unlock_irq(&p->pi_lock);
+ rq_lock(rq, &rf);
+ update_rq_clock(rq);
+ if (task_rq(p) == rq && task_on_rq_queued(p))
+ rq = __migrate_task(rq, &rf, p, cpu);
+ rq_unlock(rq, &rf);
+ }
put_task_struct(p);
@@ -8074,7 +8158,7 @@ static void balance_hotplug_wait(void)
TASK_UNINTERRUPTIBLE);
}
-#else
+#else /* !CONFIG_HOTPLUG_CPU: */
static inline void balance_push(struct rq *rq)
{
@@ -8088,7 +8172,7 @@ static inline void balance_hotplug_wait(void)
{
}
-#endif /* CONFIG_HOTPLUG_CPU */
+#endif /* !CONFIG_HOTPLUG_CPU */
void set_rq_online(struct rq *rq)
{
@@ -8167,7 +8251,7 @@ static void cpuset_cpu_active(void)
* operation in the resume sequence, just build a single sched
* domain, ignoring cpusets.
*/
- partition_sched_domains(1, NULL, NULL);
+ cpuset_reset_sched_domains();
if (--num_cpus_frozen)
return;
/*
@@ -8180,19 +8264,14 @@ static void cpuset_cpu_active(void)
cpuset_update_active_cpus();
}
-static int cpuset_cpu_inactive(unsigned int cpu)
+static void cpuset_cpu_inactive(unsigned int cpu)
{
if (!cpuhp_tasks_frozen) {
- int ret = dl_bw_check_overflow(cpu);
-
- if (ret)
- return ret;
cpuset_update_active_cpus();
} else {
num_cpus_frozen++;
- partition_sched_domains(1, NULL, NULL);
+ cpuset_reset_sched_domains();
}
- return 0;
}
static inline void sched_smt_present_inc(int cpu)
@@ -8254,6 +8333,11 @@ int sched_cpu_deactivate(unsigned int cpu)
struct rq *rq = cpu_rq(cpu);
int ret;
+ ret = dl_bw_deactivate(cpu);
+
+ if (ret)
+ return ret;
+
/*
* Remove CPU from nohz.idle_cpus_mask to prevent participating in
* load balancing when not active
@@ -8299,15 +8383,7 @@ int sched_cpu_deactivate(unsigned int cpu)
return 0;
sched_update_numa(cpu, false);
- ret = cpuset_cpu_inactive(cpu);
- if (ret) {
- sched_smt_present_inc(cpu);
- sched_set_rq_online(rq, cpu);
- balance_push_set(cpu, false);
- set_cpu_active(cpu, true);
- sched_update_numa(cpu, true);
- return ret;
- }
+ cpuset_cpu_inactive(cpu);
sched_domains_numa_masks_clear(cpu);
return 0;
}
@@ -8344,6 +8420,7 @@ int sched_cpu_starting(unsigned int cpu)
int sched_cpu_wait_empty(unsigned int cpu)
{
balance_hotplug_wait();
+ sched_force_init_mm();
return 0;
}
@@ -8392,10 +8469,12 @@ int sched_cpu_dying(unsigned int cpu)
sched_tick_stop(cpu);
rq_lock_irqsave(rq, &rf);
+ update_rq_clock(rq);
if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
WARN(true, "Dying CPU not properly vacated!");
dump_rq_tasks(rq, KERN_WARNING);
}
+ dl_server_stop(&rq->fair_server);
rq_unlock_irqrestore(rq, &rf);
calc_load_migrate(rq);
@@ -8404,20 +8483,22 @@ int sched_cpu_dying(unsigned int cpu)
sched_core_cpu_dying(cpu);
return 0;
}
-#endif
+#endif /* CONFIG_HOTPLUG_CPU */
void __init sched_init_smp(void)
{
sched_init_numa(NUMA_NO_NODE);
+ prandom_init_once(&sched_rnd_state);
+
/*
* There's no userspace yet to cause hotplug operations; hence all the
* CPU masks are stable and all blatant races in the below code cannot
* happen.
*/
- mutex_lock(&sched_domains_mutex);
+ sched_domains_mutex_lock();
sched_init_domains(cpu_active_mask);
- mutex_unlock(&sched_domains_mutex);
+ sched_domains_mutex_unlock();
/* Move init over to a non-isolated CPU */
if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
@@ -8428,6 +8509,8 @@ void __init sched_init_smp(void)
init_sched_rt_class();
init_sched_dl_class();
+ sched_init_dl_servers();
+
sched_smp_initialized = true;
}
@@ -8438,13 +8521,6 @@ static int __init migration_init(void)
}
early_initcall(migration_init);
-#else
-void __init sched_init_smp(void)
-{
- sched_init_granularity();
-}
-#endif /* CONFIG_SMP */
-
int in_sched_functions(unsigned long addr)
{
return in_lock_functions(addr) ||
@@ -8470,9 +8546,7 @@ void __init sched_init(void)
int i;
/* Make sure the linker didn't screw up */
-#ifdef CONFIG_SMP
BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
-#endif
BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
@@ -8503,7 +8577,7 @@ void __init sched_init(void)
init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_EXT_GROUP_SCHED
- root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
+ scx_tg_init(&root_task_group);
#endif /* CONFIG_EXT_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
root_task_group.rt_se = (struct sched_rt_entity **)ptr;
@@ -8515,9 +8589,7 @@ void __init sched_init(void)
#endif /* CONFIG_RT_GROUP_SCHED */
}
-#ifdef CONFIG_SMP
init_defrootdomain();
-#endif
#ifdef CONFIG_RT_GROUP_SCHED
init_rt_bandwidth(&root_task_group.rt_bandwidth,
@@ -8578,7 +8650,6 @@ void __init sched_init(void)
rq->rt.rt_runtime = global_rt_runtime();
init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
#endif
-#ifdef CONFIG_SMP
rq->sd = NULL;
rq->rd = NULL;
rq->cpu_capacity = SCHED_CAPACITY_SCALE;
@@ -8604,7 +8675,6 @@ void __init sched_init(void)
#ifdef CONFIG_HOTPLUG_CPU
rcuwait_init(&rq->hotplug_wait);
#endif
-#endif /* CONFIG_SMP */
hrtick_rq_init(rq);
atomic_set(&rq->nr_iowait, 0);
fair_server_init(rq);
@@ -8652,10 +8722,9 @@ void __init sched_init(void)
calc_load_update = jiffies + LOAD_FREQ;
-#ifdef CONFIG_SMP
idle_thread_set_boot_cpu();
+
balance_push_set(smp_processor_id(), false);
-#endif
init_sched_fair_class();
init_sched_ext_class();
@@ -8788,7 +8857,7 @@ void __cant_sleep(const char *file, int line, int preempt_offset)
}
EXPORT_SYMBOL_GPL(__cant_sleep);
-#ifdef CONFIG_SMP
+# ifdef CONFIG_SMP
void __cant_migrate(const char *file, int line)
{
static unsigned long prev_jiffy;
@@ -8819,8 +8888,8 @@ void __cant_migrate(const char *file, int line)
add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
}
EXPORT_SYMBOL_GPL(__cant_migrate);
-#endif
-#endif
+# endif /* CONFIG_SMP */
+#endif /* CONFIG_DEBUG_ATOMIC_SLEEP */
#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
@@ -8860,7 +8929,7 @@ void normalize_rt_tasks(void)
#endif /* CONFIG_MAGIC_SYSRQ */
-#if defined(CONFIG_KGDB_KDB)
+#ifdef CONFIG_KGDB_KDB
/*
* These functions are only useful for KDB.
*
@@ -8884,7 +8953,7 @@ struct task_struct *curr_task(int cpu)
return cpu_curr(cpu);
}
-#endif /* defined(CONFIG_KGDB_KDB) */
+#endif /* CONFIG_KGDB_KDB */
#ifdef CONFIG_CGROUP_SCHED
/* task_group_lock serializes the addition/removal of task groups */
@@ -8943,7 +9012,7 @@ struct task_group *sched_create_group(struct task_group *parent)
if (!alloc_rt_sched_group(tg, parent))
goto err;
- scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
+ scx_tg_init(tg);
alloc_uclamp_sched_group(tg, parent);
return tg;
@@ -8958,7 +9027,7 @@ void sched_online_group(struct task_group *tg, struct task_group *parent)
unsigned long flags;
spin_lock_irqsave(&task_group_lock, flags);
- list_add_rcu(&tg->list, &task_groups);
+ list_add_tail_rcu(&tg->list, &task_groups);
/* Root should already exist: */
WARN_ON(!parent);
@@ -9007,7 +9076,7 @@ void sched_release_group(struct task_group *tg)
spin_unlock_irqrestore(&task_group_lock, flags);
}
-static struct task_group *sched_get_task_group(struct task_struct *tsk)
+static void sched_change_group(struct task_struct *tsk)
{
struct task_group *tg;
@@ -9019,13 +9088,7 @@ static struct task_group *sched_get_task_group(struct task_struct *tsk)
tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
struct task_group, css);
tg = autogroup_task_group(tsk, tg);
-
- return tg;
-}
-
-static void sched_change_group(struct task_struct *tsk, struct task_group *group)
-{
- tsk->sched_task_group = group;
+ tsk->sched_task_group = tg;
#ifdef CONFIG_FAIR_GROUP_SCHED
if (tsk->sched_class->task_change_group)
@@ -9042,48 +9105,25 @@ static void sched_change_group(struct task_struct *tsk, struct task_group *group
* now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
* its new group.
*/
-void sched_move_task(struct task_struct *tsk)
+void sched_move_task(struct task_struct *tsk, bool for_autogroup)
{
- int queued, running, queue_flags =
- DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
- struct task_group *group;
+ unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
+ bool resched = false;
struct rq *rq;
CLASS(task_rq_lock, rq_guard)(tsk);
rq = rq_guard.rq;
- /*
- * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
- * group changes.
- */
- group = sched_get_task_group(tsk);
- if (group == tsk->sched_task_group)
- return;
-
- update_rq_clock(rq);
-
- running = task_current_donor(rq, tsk);
- queued = task_on_rq_queued(tsk);
-
- if (queued)
- dequeue_task(rq, tsk, queue_flags);
- if (running)
- put_prev_task(rq, tsk);
-
- sched_change_group(tsk, group);
- scx_move_task(tsk);
+ scoped_guard (sched_change, tsk, queue_flags) {
+ sched_change_group(tsk);
+ if (!for_autogroup)
+ scx_cgroup_move_task(tsk);
+ if (scope->running)
+ resched = true;
+ }
- if (queued)
- enqueue_task(rq, tsk, queue_flags);
- if (running) {
- set_next_task(rq, tsk);
- /*
- * After changing group, the running task may have joined a
- * throttled one but it's still the running task. Trigger a
- * resched to make sure that task can still run.
- */
+ if (resched)
resched_curr(rq);
- }
}
static struct cgroup_subsys_state *
@@ -9158,11 +9198,15 @@ static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
struct task_struct *task;
struct cgroup_subsys_state *css;
+ if (!rt_group_sched_enabled())
+ goto scx_check;
+
cgroup_taskset_for_each(task, css, tset) {
if (!sched_rt_can_attach(css_tg(css), task))
return -EINVAL;
}
-#endif
+scx_check:
+#endif /* CONFIG_RT_GROUP_SCHED */
return scx_cgroup_can_attach(tset);
}
@@ -9172,9 +9216,7 @@ static void cpu_cgroup_attach(struct cgroup_taskset *tset)
struct cgroup_subsys_state *css;
cgroup_taskset_for_each(task, css, tset)
- sched_move_task(task);
-
- scx_cgroup_finish_attach();
+ sched_move_task(task, false);
}
static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
@@ -9193,7 +9235,7 @@ static void cpu_util_update_eff(struct cgroup_subsys_state *css)
unsigned int clamps;
lockdep_assert_held(&uclamp_mutex);
- SCHED_WARN_ON(!rcu_read_lock_held());
+ WARN_ON_ONCE(!rcu_read_lock_held());
css_for_each_descendant_pre(css, top_css) {
uc_parent = css_tg(css)->parent
@@ -9285,7 +9327,7 @@ static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
if (req.ret)
return req.ret;
- static_branch_enable(&sched_uclamp_used);
+ sched_uclamp_enable();
guard(mutex)(&uclamp_mutex);
guard(rcu)();
@@ -9362,7 +9404,7 @@ static unsigned long tg_weight(struct task_group *tg)
#ifdef CONFIG_FAIR_GROUP_SCHED
return scale_load_down(tg->shares);
#else
- return sched_weight_from_cgroup(tg->scx_weight);
+ return sched_weight_from_cgroup(tg->scx.weight);
#endif
}
@@ -9390,47 +9432,23 @@ static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
#ifdef CONFIG_CFS_BANDWIDTH
static DEFINE_MUTEX(cfs_constraints_mutex);
-const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
-static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
-/* More than 203 days if BW_SHIFT equals 20. */
-static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
-
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
-static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
- u64 burst)
+static int tg_set_cfs_bandwidth(struct task_group *tg,
+ u64 period_us, u64 quota_us, u64 burst_us)
{
int i, ret = 0, runtime_enabled, runtime_was_enabled;
struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
+ u64 period, quota, burst;
- if (tg == &root_task_group)
- return -EINVAL;
+ period = (u64)period_us * NSEC_PER_USEC;
- /*
- * Ensure we have at some amount of bandwidth every period. This is
- * to prevent reaching a state of large arrears when throttled via
- * entity_tick() resulting in prolonged exit starvation.
- */
- if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
- return -EINVAL;
-
- /*
- * Likewise, bound things on the other side by preventing insane quota
- * periods. This also allows us to normalize in computing quota
- * feasibility.
- */
- if (period > max_cfs_quota_period)
- return -EINVAL;
-
- /*
- * Bound quota to defend quota against overflow during bandwidth shift.
- */
- if (quota != RUNTIME_INF && quota > max_cfs_runtime)
- return -EINVAL;
+ if (quota_us == RUNTIME_INF)
+ quota = RUNTIME_INF;
+ else
+ quota = (u64)quota_us * NSEC_PER_USEC;
- if (quota != RUNTIME_INF && (burst > quota ||
- burst + quota > max_cfs_runtime))
- return -EINVAL;
+ burst = (u64)burst_us * NSEC_PER_USEC;
/*
* Prevent race between setting of cfs_rq->runtime_enabled and
@@ -9473,7 +9491,7 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
guard(rq_lock_irq)(rq);
cfs_rq->runtime_enabled = runtime_enabled;
- cfs_rq->runtime_remaining = 0;
+ cfs_rq->runtime_remaining = 1;
if (cfs_rq->throttled)
unthrottle_cfs_rq(cfs_rq);
@@ -9485,28 +9503,22 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
return 0;
}
-static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
+static u64 tg_get_cfs_period(struct task_group *tg)
{
- u64 quota, period, burst;
+ u64 cfs_period_us;
- period = ktime_to_ns(tg->cfs_bandwidth.period);
- burst = tg->cfs_bandwidth.burst;
- if (cfs_quota_us < 0)
- quota = RUNTIME_INF;
- else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
- quota = (u64)cfs_quota_us * NSEC_PER_USEC;
- else
- return -EINVAL;
+ cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
+ do_div(cfs_period_us, NSEC_PER_USEC);
- return tg_set_cfs_bandwidth(tg, period, quota, burst);
+ return cfs_period_us;
}
-static long tg_get_cfs_quota(struct task_group *tg)
+static u64 tg_get_cfs_quota(struct task_group *tg)
{
u64 quota_us;
if (tg->cfs_bandwidth.quota == RUNTIME_INF)
- return -1;
+ return RUNTIME_INF;
quota_us = tg->cfs_bandwidth.quota;
do_div(quota_us, NSEC_PER_USEC);
@@ -9514,45 +9526,7 @@ static long tg_get_cfs_quota(struct task_group *tg)
return quota_us;
}
-static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
-{
- u64 quota, period, burst;
-
- if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
- return -EINVAL;
-
- period = (u64)cfs_period_us * NSEC_PER_USEC;
- quota = tg->cfs_bandwidth.quota;
- burst = tg->cfs_bandwidth.burst;
-
- return tg_set_cfs_bandwidth(tg, period, quota, burst);
-}
-
-static long tg_get_cfs_period(struct task_group *tg)
-{
- u64 cfs_period_us;
-
- cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
- do_div(cfs_period_us, NSEC_PER_USEC);
-
- return cfs_period_us;
-}
-
-static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
-{
- u64 quota, period, burst;
-
- if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
- return -EINVAL;
-
- burst = (u64)cfs_burst_us * NSEC_PER_USEC;
- period = ktime_to_ns(tg->cfs_bandwidth.period);
- quota = tg->cfs_bandwidth.quota;
-
- return tg_set_cfs_bandwidth(tg, period, quota, burst);
-}
-
-static long tg_get_cfs_burst(struct task_group *tg)
+static u64 tg_get_cfs_burst(struct task_group *tg)
{
u64 burst_us;
@@ -9562,42 +9536,6 @@ static long tg_get_cfs_burst(struct task_group *tg)
return burst_us;
}
-static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
- struct cftype *cft)
-{
- return tg_get_cfs_quota(css_tg(css));
-}
-
-static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
- struct cftype *cftype, s64 cfs_quota_us)
-{
- return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
-}
-
-static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
- struct cftype *cft)
-{
- return tg_get_cfs_period(css_tg(css));
-}
-
-static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
- struct cftype *cftype, u64 cfs_period_us)
-{
- return tg_set_cfs_period(css_tg(css), cfs_period_us);
-}
-
-static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
- struct cftype *cft)
-{
- return tg_get_cfs_burst(css_tg(css));
-}
-
-static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
- struct cftype *cftype, u64 cfs_burst_us)
-{
- return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
-}
-
struct cfs_schedulable_data {
struct task_group *tg;
u64 period, quota;
@@ -9732,6 +9670,143 @@ static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
}
#endif /* CONFIG_CFS_BANDWIDTH */
+#ifdef CONFIG_GROUP_SCHED_BANDWIDTH
+const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */
+static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */
+/* More than 203 days if BW_SHIFT equals 20. */
+static const u64 max_bw_runtime_us = MAX_BW;
+
+static void tg_bandwidth(struct task_group *tg,
+ u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p)
+{
+#ifdef CONFIG_CFS_BANDWIDTH
+ if (period_us_p)
+ *period_us_p = tg_get_cfs_period(tg);
+ if (quota_us_p)
+ *quota_us_p = tg_get_cfs_quota(tg);
+ if (burst_us_p)
+ *burst_us_p = tg_get_cfs_burst(tg);
+#else /* !CONFIG_CFS_BANDWIDTH */
+ if (period_us_p)
+ *period_us_p = tg->scx.bw_period_us;
+ if (quota_us_p)
+ *quota_us_p = tg->scx.bw_quota_us;
+ if (burst_us_p)
+ *burst_us_p = tg->scx.bw_burst_us;
+#endif /* CONFIG_CFS_BANDWIDTH */
+}
+
+static u64 cpu_period_read_u64(struct cgroup_subsys_state *css,
+ struct cftype *cft)
+{
+ u64 period_us;
+
+ tg_bandwidth(css_tg(css), &period_us, NULL, NULL);
+ return period_us;
+}
+
+static int tg_set_bandwidth(struct task_group *tg,
+ u64 period_us, u64 quota_us, u64 burst_us)
+{
+ const u64 max_usec = U64_MAX / NSEC_PER_USEC;
+ int ret = 0;
+
+ if (tg == &root_task_group)
+ return -EINVAL;
+
+ /* Values should survive translation to nsec */
+ if (period_us > max_usec ||
+ (quota_us != RUNTIME_INF && quota_us > max_usec) ||
+ burst_us > max_usec)
+ return -EINVAL;
+
+ /*
+ * Ensure we have some amount of bandwidth every period. This is to
+ * prevent reaching a state of large arrears when throttled via
+ * entity_tick() resulting in prolonged exit starvation.
+ */
+ if (quota_us < min_bw_quota_period_us ||
+ period_us < min_bw_quota_period_us)
+ return -EINVAL;
+
+ /*
+ * Likewise, bound things on the other side by preventing insane quota
+ * periods. This also allows us to normalize in computing quota
+ * feasibility.
+ */
+ if (period_us > max_bw_quota_period_us)
+ return -EINVAL;
+
+ /*
+ * Bound quota to defend quota against overflow during bandwidth shift.
+ */
+ if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us)
+ return -EINVAL;
+
+ if (quota_us != RUNTIME_INF && (burst_us > quota_us ||
+ burst_us + quota_us > max_bw_runtime_us))
+ return -EINVAL;
+
+#ifdef CONFIG_CFS_BANDWIDTH
+ ret = tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us);
+#endif /* CONFIG_CFS_BANDWIDTH */
+ if (!ret)
+ scx_group_set_bandwidth(tg, period_us, quota_us, burst_us);
+ return ret;
+}
+
+static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css,
+ struct cftype *cft)
+{
+ u64 quota_us;
+
+ tg_bandwidth(css_tg(css), NULL, &quota_us, NULL);
+ return quota_us; /* (s64)RUNTIME_INF becomes -1 */
+}
+
+static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css,
+ struct cftype *cft)
+{
+ u64 burst_us;
+
+ tg_bandwidth(css_tg(css), NULL, NULL, &burst_us);
+ return burst_us;
+}
+
+static int cpu_period_write_u64(struct cgroup_subsys_state *css,
+ struct cftype *cftype, u64 period_us)
+{
+ struct task_group *tg = css_tg(css);
+ u64 quota_us, burst_us;
+
+ tg_bandwidth(tg, NULL, &quota_us, &burst_us);
+ return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
+}
+
+static int cpu_quota_write_s64(struct cgroup_subsys_state *css,
+ struct cftype *cftype, s64 quota_us)
+{
+ struct task_group *tg = css_tg(css);
+ u64 period_us, burst_us;
+
+ if (quota_us < 0)
+ quota_us = RUNTIME_INF;
+
+ tg_bandwidth(tg, &period_us, NULL, &burst_us);
+ return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
+}
+
+static int cpu_burst_write_u64(struct cgroup_subsys_state *css,
+ struct cftype *cftype, u64 burst_us)
+{
+ struct task_group *tg = css_tg(css);
+ u64 period_us, quota_us;
+
+ tg_bandwidth(tg, &period_us, &quota_us, NULL);
+ return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
+}
+#endif /* CONFIG_GROUP_SCHED_BANDWIDTH */
+
#ifdef CONFIG_RT_GROUP_SCHED
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
struct cftype *cft, s64 val)
@@ -9775,7 +9850,7 @@ static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
scx_group_set_idle(css_tg(css), idle);
return ret;
}
-#endif
+#endif /* CONFIG_GROUP_SCHED_WEIGHT */
static struct cftype cpu_legacy_files[] = {
#ifdef CONFIG_GROUP_SCHED_WEIGHT
@@ -9790,22 +9865,24 @@ static struct cftype cpu_legacy_files[] = {
.write_s64 = cpu_idle_write_s64,
},
#endif
-#ifdef CONFIG_CFS_BANDWIDTH
+#ifdef CONFIG_GROUP_SCHED_BANDWIDTH
{
- .name = "cfs_quota_us",
- .read_s64 = cpu_cfs_quota_read_s64,
- .write_s64 = cpu_cfs_quota_write_s64,
+ .name = "cfs_period_us",
+ .read_u64 = cpu_period_read_u64,
+ .write_u64 = cpu_period_write_u64,
},
{
- .name = "cfs_period_us",
- .read_u64 = cpu_cfs_period_read_u64,
- .write_u64 = cpu_cfs_period_write_u64,
+ .name = "cfs_quota_us",
+ .read_s64 = cpu_quota_read_s64,
+ .write_s64 = cpu_quota_write_s64,
},
{
.name = "cfs_burst_us",
- .read_u64 = cpu_cfs_burst_read_u64,
- .write_u64 = cpu_cfs_burst_write_u64,
+ .read_u64 = cpu_burst_read_u64,
+ .write_u64 = cpu_burst_write_u64,
},
+#endif
+#ifdef CONFIG_CFS_BANDWIDTH
{
.name = "stat",
.seq_show = cpu_cfs_stat_show,
@@ -9815,18 +9892,6 @@ static struct cftype cpu_legacy_files[] = {
.seq_show = cpu_cfs_local_stat_show,
},
#endif
-#ifdef CONFIG_RT_GROUP_SCHED
- {
- .name = "rt_runtime_us",
- .read_s64 = cpu_rt_runtime_read,
- .write_s64 = cpu_rt_runtime_write,
- },
- {
- .name = "rt_period_us",
- .read_u64 = cpu_rt_period_read_uint,
- .write_u64 = cpu_rt_period_write_uint,
- },
-#endif
#ifdef CONFIG_UCLAMP_TASK_GROUP
{
.name = "uclamp.min",
@@ -9844,6 +9909,55 @@ static struct cftype cpu_legacy_files[] = {
{ } /* Terminate */
};
+#ifdef CONFIG_RT_GROUP_SCHED
+static struct cftype rt_group_files[] = {
+ {
+ .name = "rt_runtime_us",
+ .read_s64 = cpu_rt_runtime_read,
+ .write_s64 = cpu_rt_runtime_write,
+ },
+ {
+ .name = "rt_period_us",
+ .read_u64 = cpu_rt_period_read_uint,
+ .write_u64 = cpu_rt_period_write_uint,
+ },
+ { } /* Terminate */
+};
+
+# ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
+DEFINE_STATIC_KEY_FALSE(rt_group_sched);
+# else
+DEFINE_STATIC_KEY_TRUE(rt_group_sched);
+# endif
+
+static int __init setup_rt_group_sched(char *str)
+{
+ long val;
+
+ if (kstrtol(str, 0, &val) || val < 0 || val > 1) {
+ pr_warn("Unable to set rt_group_sched\n");
+ return 1;
+ }
+ if (val)
+ static_branch_enable(&rt_group_sched);
+ else
+ static_branch_disable(&rt_group_sched);
+
+ return 1;
+}
+__setup("rt_group_sched=", setup_rt_group_sched);
+
+static int __init cpu_rt_group_init(void)
+{
+ if (!rt_group_sched_enabled())
+ return 0;
+
+ WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files));
+ return 0;
+}
+subsys_initcall(cpu_rt_group_init);
+#endif /* CONFIG_RT_GROUP_SCHED */
+
static int cpu_extra_stat_show(struct seq_file *sf,
struct cgroup_subsys_state *css)
{
@@ -9866,7 +9980,7 @@ static int cpu_extra_stat_show(struct seq_file *sf,
cfs_b->nr_periods, cfs_b->nr_throttled,
throttled_usec, cfs_b->nr_burst, burst_usec);
}
-#endif
+#endif /* CONFIG_CFS_BANDWIDTH */
return 0;
}
@@ -9964,32 +10078,32 @@ static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
}
/* caller should put the current value in *@periodp before calling */
-static int __maybe_unused cpu_period_quota_parse(char *buf,
- u64 *periodp, u64 *quotap)
+static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p,
+ u64 *quota_us_p)
{
char tok[21]; /* U64_MAX */
- if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
+ if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1)
return -EINVAL;
- *periodp *= NSEC_PER_USEC;
-
- if (sscanf(tok, "%llu", quotap))
- *quotap *= NSEC_PER_USEC;
- else if (!strcmp(tok, "max"))
- *quotap = RUNTIME_INF;
- else
- return -EINVAL;
+ if (sscanf(tok, "%llu", quota_us_p) < 1) {
+ if (!strcmp(tok, "max"))
+ *quota_us_p = RUNTIME_INF;
+ else
+ return -EINVAL;
+ }
return 0;
}
-#ifdef CONFIG_CFS_BANDWIDTH
+#ifdef CONFIG_GROUP_SCHED_BANDWIDTH
static int cpu_max_show(struct seq_file *sf, void *v)
{
struct task_group *tg = css_tg(seq_css(sf));
+ u64 period_us, quota_us;
- cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
+ tg_bandwidth(tg, &period_us, &quota_us, NULL);
+ cpu_period_quota_print(sf, period_us, quota_us);
return 0;
}
@@ -9997,17 +10111,16 @@ static ssize_t cpu_max_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct task_group *tg = css_tg(of_css(of));
- u64 period = tg_get_cfs_period(tg);
- u64 burst = tg->cfs_bandwidth.burst;
- u64 quota;
+ u64 period_us, quota_us, burst_us;
int ret;
- ret = cpu_period_quota_parse(buf, &period, &quota);
+ tg_bandwidth(tg, &period_us, NULL, &burst_us);
+ ret = cpu_period_quota_parse(buf, &period_us, &quota_us);
if (!ret)
- ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
+ ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us);
return ret ?: nbytes;
}
-#endif
+#endif /* CONFIG_CFS_BANDWIDTH */
static struct cftype cpu_files[] = {
#ifdef CONFIG_GROUP_SCHED_WEIGHT
@@ -10030,7 +10143,7 @@ static struct cftype cpu_files[] = {
.write_s64 = cpu_idle_write_s64,
},
#endif
-#ifdef CONFIG_CFS_BANDWIDTH
+#ifdef CONFIG_GROUP_SCHED_BANDWIDTH
{
.name = "max",
.flags = CFTYPE_NOT_ON_ROOT,
@@ -10040,10 +10153,10 @@ static struct cftype cpu_files[] = {
{
.name = "max.burst",
.flags = CFTYPE_NOT_ON_ROOT,
- .read_u64 = cpu_cfs_burst_read_u64,
- .write_u64 = cpu_cfs_burst_write_u64,
+ .read_u64 = cpu_burst_read_u64,
+ .write_u64 = cpu_burst_write_u64,
},
-#endif
+#endif /* CONFIG_CFS_BANDWIDTH */
#ifdef CONFIG_UCLAMP_TASK_GROUP
{
.name = "uclamp.min",
@@ -10057,7 +10170,7 @@ static struct cftype cpu_files[] = {
.seq_show = cpu_uclamp_max_show,
.write = cpu_uclamp_max_write,
},
-#endif
+#endif /* CONFIG_UCLAMP_TASK_GROUP */
{ } /* terminate */
};
@@ -10078,7 +10191,7 @@ struct cgroup_subsys cpu_cgrp_subsys = {
.threaded = true,
};
-#endif /* CONFIG_CGROUP_SCHED */
+#endif /* CONFIG_CGROUP_SCHED */
void dump_cpu_task(int cpu)
{
@@ -10146,558 +10259,571 @@ void call_trace_sched_update_nr_running(struct rq *rq, int count)
}
#ifdef CONFIG_SCHED_MM_CID
-
-/*
- * @cid_lock: Guarantee forward-progress of cid allocation.
- *
- * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
- * is only used when contention is detected by the lock-free allocation so
- * forward progress can be guaranteed.
- */
-DEFINE_RAW_SPINLOCK(cid_lock);
-
-/*
- * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
- *
- * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
- * detected, it is set to 1 to ensure that all newly coming allocations are
- * serialized by @cid_lock until the allocation which detected contention
- * completes and sets @use_cid_lock back to 0. This guarantees forward progress
- * of a cid allocation.
- */
-int use_cid_lock;
-
/*
- * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
- * concurrently with respect to the execution of the source runqueue context
- * switch.
+ * Concurrency IDentifier management
*
- * There is one basic properties we want to guarantee here:
- *
- * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
- * used by a task. That would lead to concurrent allocation of the cid and
- * userspace corruption.
- *
- * Provide this guarantee by introducing a Dekker memory ordering to guarantee
- * that a pair of loads observe at least one of a pair of stores, which can be
- * shown as:
+ * Serialization rules:
*
- * X = Y = 0
+ * mm::mm_cid::mutex: Serializes fork() and exit() and therefore
+ * protects mm::mm_cid::users.
*
- * w[X]=1 w[Y]=1
- * MB MB
- * r[Y]=y r[X]=x
+ * mm::mm_cid::lock: Serializes mm_update_max_cids() and
+ * mm_update_cpus_allowed(). Nests in mm_cid::mutex
+ * and runqueue lock.
*
- * Which guarantees that x==0 && y==0 is impossible. But rather than using
- * values 0 and 1, this algorithm cares about specific state transitions of the
- * runqueue current task (as updated by the scheduler context switch), and the
- * per-mm/cpu cid value.
+ * The mm_cidmask bitmap is not protected by any of the mm::mm_cid locks
+ * and can only be modified with atomic operations.
*
- * Let's introduce task (Y) which has task->mm == mm and task (N) which has
- * task->mm != mm for the rest of the discussion. There are two scheduler state
- * transitions on context switch we care about:
+ * The mm::mm_cid:pcpu per CPU storage is protected by the CPUs runqueue
+ * lock.
*
- * (TSA) Store to rq->curr with transition from (N) to (Y)
+ * CID ownership:
*
- * (TSB) Store to rq->curr with transition from (Y) to (N)
+ * A CID is either owned by a task (stored in task_struct::mm_cid.cid) or
+ * by a CPU (stored in mm::mm_cid.pcpu::cid). CIDs owned by CPUs have the
+ * MM_CID_ONCPU bit set. During transition from CPU to task ownership mode,
+ * MM_CID_TRANSIT is set on the per task CIDs. When this bit is set the
+ * task needs to drop the CID into the pool when scheduling out. Both bits
+ * (ONCPU and TRANSIT) are filtered out by task_cid() when the CID is
+ * actually handed over to user space in the RSEQ memory.
*
- * On the remote-clear side, there is one transition we care about:
+ * Mode switching:
*
- * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
+ * Switching to per CPU mode happens when the user count becomes greater
+ * than the maximum number of CIDs, which is calculated by:
*
- * There is also a transition to UNSET state which can be performed from all
- * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
- * guarantees that only a single thread will succeed:
+ * opt_cids = min(mm_cid::nr_cpus_allowed, mm_cid::users);
+ * max_cids = min(1.25 * opt_cids, num_possible_cpus());
*
- * (TMB) cmpxchg to *pcpu_cid to mark UNSET
+ * The +25% allowance is useful for tight CPU masks in scenarios where only
+ * a few threads are created and destroyed to avoid frequent mode
+ * switches. Though this allowance shrinks, the closer opt_cids becomes to
+ * num_possible_cpus(), which is the (unfortunate) hard ABI limit.
*
- * Just to be clear, what we do _not_ want to happen is a transition to UNSET
- * when a thread is actively using the cid (property (1)).
+ * At the point of switching to per CPU mode the new user is not yet
+ * visible in the system, so the task which initiated the fork() runs the
+ * fixup function: mm_cid_fixup_tasks_to_cpu() walks the thread list and
+ * either transfers each tasks owned CID to the CPU the task runs on or
+ * drops it into the CID pool if a task is not on a CPU at that point in
+ * time. Tasks which schedule in before the task walk reaches them do the
+ * handover in mm_cid_schedin(). When mm_cid_fixup_tasks_to_cpus() completes
+ * it's guaranteed that no task related to that MM owns a CID anymore.
*
- * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
+ * Switching back to task mode happens when the user count goes below the
+ * threshold which was recorded on the per CPU mode switch:
*
- * Scenario A) (TSA)+(TMA) (from next task perspective)
+ * pcpu_thrs = min(opt_cids - (opt_cids / 4), num_possible_cpus() / 2);
*
- * CPU0 CPU1
+ * This threshold is updated when a affinity change increases the number of
+ * allowed CPUs for the MM, which might cause a switch back to per task
+ * mode.
*
- * Context switch CS-1 Remote-clear
- * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
- * (implied barrier after cmpxchg)
- * - switch_mm_cid()
- * - memory barrier (see switch_mm_cid()
- * comment explaining how this barrier
- * is combined with other scheduler
- * barriers)
- * - mm_cid_get (next)
- * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
+ * If the switch back was initiated by a exiting task, then that task runs
+ * the fixup function. If it was initiated by a affinity change, then it's
+ * run either in the deferred update function in context of a workqueue or
+ * by a task which forks a new one or by a task which exits. Whatever
+ * happens first. mm_cid_fixup_cpus_to_task() walks through the possible
+ * CPUs and either transfers the CPU owned CIDs to a related task which
+ * runs on the CPU or drops it into the pool. Tasks which schedule in on a
+ * CPU which the walk did not cover yet do the handover themself.
*
- * This Dekker ensures that either task (Y) is observed by the
- * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
- * observed.
+ * This transition from CPU to per task ownership happens in two phases:
*
- * If task (Y) store is observed by rcu_dereference(), it means that there is
- * still an active task on the cpu. Remote-clear will therefore not transition
- * to UNSET, which fulfills property (1).
+ * 1) mm:mm_cid.transit contains MM_CID_TRANSIT This is OR'ed on the task
+ * CID and denotes that the CID is only temporarily owned by the
+ * task. When it schedules out the task drops the CID back into the
+ * pool if this bit is set.
*
- * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
- * it will move its state to UNSET, which clears the percpu cid perhaps
- * uselessly (which is not an issue for correctness). Because task (Y) is not
- * observed, CPU1 can move ahead to set the state to UNSET. Because moving
- * state to UNSET is done with a cmpxchg expecting that the old state has the
- * LAZY flag set, only one thread will successfully UNSET.
+ * 2) The initiating context walks the per CPU space and after completion
+ * clears mm:mm_cid.transit. So after that point the CIDs are strictly
+ * task owned again.
*
- * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
- * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
- * CPU1 will observe task (Y) and do nothing more, which is fine.
+ * This two phase transition is required to prevent CID space exhaustion
+ * during the transition as a direct transfer of ownership would fail if
+ * two tasks are scheduled in on the same CPU before the fixup freed per
+ * CPU CIDs.
*
- * What we are effectively preventing with this Dekker is a scenario where
- * neither LAZY flag nor store (Y) are observed, which would fail property (1)
- * because this would UNSET a cid which is actively used.
+ * When mm_cid_fixup_cpus_to_tasks() completes it's guaranteed that no CID
+ * related to that MM is owned by a CPU anymore.
*/
-void sched_mm_cid_migrate_from(struct task_struct *t)
-{
- t->migrate_from_cpu = task_cpu(t);
-}
-
-static
-int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
- struct task_struct *t,
- struct mm_cid *src_pcpu_cid)
+/*
+ * Update the CID range properties when the constraints change. Invoked via
+ * fork(), exit() and affinity changes
+ */
+static void __mm_update_max_cids(struct mm_mm_cid *mc)
{
- struct mm_struct *mm = t->mm;
- struct task_struct *src_task;
- int src_cid, last_mm_cid;
+ unsigned int opt_cids, max_cids;
- if (!mm)
- return -1;
+ /* Calculate the new optimal constraint */
+ opt_cids = min(mc->nr_cpus_allowed, mc->users);
- last_mm_cid = t->last_mm_cid;
- /*
- * If the migrated task has no last cid, or if the current
- * task on src rq uses the cid, it means the source cid does not need
- * to be moved to the destination cpu.
- */
- if (last_mm_cid == -1)
- return -1;
- src_cid = READ_ONCE(src_pcpu_cid->cid);
- if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
- return -1;
+ /* Adjust the maximum CIDs to +25% limited by the number of possible CPUs */
+ max_cids = min(opt_cids + (opt_cids / 4), num_possible_cpus());
+ WRITE_ONCE(mc->max_cids, max_cids);
+}
- /*
- * If we observe an active task using the mm on this rq, it means we
- * are not the last task to be migrated from this cpu for this mm, so
- * there is no need to move src_cid to the destination cpu.
- */
- guard(rcu)();
- src_task = rcu_dereference(src_rq->curr);
- if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
- t->last_mm_cid = -1;
- return -1;
- }
+static inline unsigned int mm_cid_calc_pcpu_thrs(struct mm_mm_cid *mc)
+{
+ unsigned int opt_cids;
- return src_cid;
+ opt_cids = min(mc->nr_cpus_allowed, mc->users);
+ /* Has to be at least 1 because 0 indicates PCPU mode off */
+ return max(min(opt_cids - opt_cids / 4, num_possible_cpus() / 2), 1);
}
-static
-int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
- struct task_struct *t,
- struct mm_cid *src_pcpu_cid,
- int src_cid)
+static bool mm_update_max_cids(struct mm_struct *mm)
{
- struct task_struct *src_task;
- struct mm_struct *mm = t->mm;
- int lazy_cid;
+ struct mm_mm_cid *mc = &mm->mm_cid;
- if (src_cid == -1)
- return -1;
+ lockdep_assert_held(&mm->mm_cid.lock);
- /*
- * Attempt to clear the source cpu cid to move it to the destination
- * cpu.
- */
- lazy_cid = mm_cid_set_lazy_put(src_cid);
- if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
- return -1;
+ /* Clear deferred mode switch flag. A change is handled by the caller */
+ mc->update_deferred = false;
+ __mm_update_max_cids(mc);
- /*
- * The implicit barrier after cmpxchg per-mm/cpu cid before loading
- * rq->curr->mm matches the scheduler barrier in context_switch()
- * between store to rq->curr and load of prev and next task's
- * per-mm/cpu cid.
- *
- * The implicit barrier after cmpxchg per-mm/cpu cid before loading
- * rq->curr->mm_cid_active matches the barrier in
- * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
- * sched_mm_cid_after_execve() between store to t->mm_cid_active and
- * load of per-mm/cpu cid.
- */
-
- /*
- * If we observe an active task using the mm on this rq after setting
- * the lazy-put flag, this task will be responsible for transitioning
- * from lazy-put flag set to MM_CID_UNSET.
- */
- scoped_guard (rcu) {
- src_task = rcu_dereference(src_rq->curr);
- if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
- /*
- * We observed an active task for this mm, there is therefore
- * no point in moving this cid to the destination cpu.
- */
- t->last_mm_cid = -1;
- return -1;
- }
+ /* Check whether owner mode must be changed */
+ if (!mc->percpu) {
+ /* Enable per CPU mode when the number of users is above max_cids */
+ if (mc->users > mc->max_cids)
+ mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc);
+ } else {
+ /* Switch back to per task if user count under threshold */
+ if (mc->users < mc->pcpu_thrs)
+ mc->pcpu_thrs = 0;
}
- /*
- * The src_cid is unused, so it can be unset.
- */
- if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
- return -1;
- WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
- return src_cid;
+ /* Mode change required? */
+ if (!!mc->percpu == !!mc->pcpu_thrs)
+ return false;
+ /* When switching back to per TASK mode, set the transition flag */
+ if (!mc->pcpu_thrs)
+ WRITE_ONCE(mc->transit, MM_CID_TRANSIT);
+ WRITE_ONCE(mc->percpu, !!mc->pcpu_thrs);
+ return true;
}
-/*
- * Migration to dst cpu. Called with dst_rq lock held.
- * Interrupts are disabled, which keeps the window of cid ownership without the
- * source rq lock held small.
- */
-void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
+static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk)
{
- struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
- struct mm_struct *mm = t->mm;
- int src_cid, src_cpu;
- bool dst_cid_is_set;
- struct rq *src_rq;
+ struct cpumask *mm_allowed;
+ struct mm_mm_cid *mc;
+ unsigned int weight;
- lockdep_assert_rq_held(dst_rq);
-
- if (!mm)
- return;
- src_cpu = t->migrate_from_cpu;
- if (src_cpu == -1) {
- t->last_mm_cid = -1;
+ if (!mm || !READ_ONCE(mm->mm_cid.users))
return;
- }
/*
- * Move the src cid if the dst cid is unset. This keeps id
- * allocation closest to 0 in cases where few threads migrate around
- * many CPUs.
- *
- * If destination cid or recent cid is already set, we may have
- * to just clear the src cid to ensure compactness in frequent
- * migrations scenarios.
- *
- * It is not useful to clear the src cid when the number of threads is
- * greater or equal to the number of allowed CPUs, because user-space
- * can expect that the number of allowed cids can reach the number of
- * allowed CPUs.
- */
- dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
- dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
- !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
- if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
+ * mm::mm_cid::mm_cpus_allowed is the superset of each threads
+ * allowed CPUs mask which means it can only grow.
+ */
+ mc = &mm->mm_cid;
+ guard(raw_spinlock)(&mc->lock);
+ mm_allowed = mm_cpus_allowed(mm);
+ weight = cpumask_weighted_or(mm_allowed, mm_allowed, affmsk);
+ if (weight == mc->nr_cpus_allowed)
return;
- src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
- src_rq = cpu_rq(src_cpu);
- src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
- if (src_cid == -1)
+
+ WRITE_ONCE(mc->nr_cpus_allowed, weight);
+ __mm_update_max_cids(mc);
+ if (!mc->percpu)
return;
- src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
- src_cid);
- if (src_cid == -1)
+
+ /* Adjust the threshold to the wider set */
+ mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc);
+ /* Switch back to per task mode? */
+ if (mc->users >= mc->pcpu_thrs)
return;
- if (dst_cid_is_set) {
- __mm_cid_put(mm, src_cid);
+
+ /* Don't queue twice */
+ if (mc->update_deferred)
return;
- }
- /* Move src_cid to dst cpu. */
- mm_cid_snapshot_time(dst_rq, mm);
- WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
- WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
+
+ /* Queue the irq work, which schedules the real work */
+ mc->update_deferred = true;
+ irq_work_queue(&mc->irq_work);
}
-static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
- int cpu)
+static inline void mm_cid_transit_to_task(struct task_struct *t, struct mm_cid_pcpu *pcp)
{
- struct rq *rq = cpu_rq(cpu);
- struct task_struct *t;
- int cid, lazy_cid;
+ if (cid_on_cpu(t->mm_cid.cid)) {
+ unsigned int cid = cpu_cid_to_cid(t->mm_cid.cid);
- cid = READ_ONCE(pcpu_cid->cid);
- if (!mm_cid_is_valid(cid))
- return;
+ t->mm_cid.cid = cid_to_transit_cid(cid);
+ pcp->cid = t->mm_cid.cid;
+ }
+}
- /*
- * Clear the cpu cid if it is set to keep cid allocation compact. If
- * there happens to be other tasks left on the source cpu using this
- * mm, the next task using this mm will reallocate its cid on context
- * switch.
- */
- lazy_cid = mm_cid_set_lazy_put(cid);
- if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
- return;
+static void mm_cid_fixup_cpus_to_tasks(struct mm_struct *mm)
+{
+ unsigned int cpu;
- /*
- * The implicit barrier after cmpxchg per-mm/cpu cid before loading
- * rq->curr->mm matches the scheduler barrier in context_switch()
- * between store to rq->curr and load of prev and next task's
- * per-mm/cpu cid.
- *
- * The implicit barrier after cmpxchg per-mm/cpu cid before loading
- * rq->curr->mm_cid_active matches the barrier in
- * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
- * sched_mm_cid_after_execve() between store to t->mm_cid_active and
- * load of per-mm/cpu cid.
- */
+ /* Walk the CPUs and fixup all stale CIDs */
+ for_each_possible_cpu(cpu) {
+ struct mm_cid_pcpu *pcp = per_cpu_ptr(mm->mm_cid.pcpu, cpu);
+ struct rq *rq = cpu_rq(cpu);
- /*
- * If we observe an active task using the mm on this rq after setting
- * the lazy-put flag, that task will be responsible for transitioning
- * from lazy-put flag set to MM_CID_UNSET.
- */
- scoped_guard (rcu) {
- t = rcu_dereference(rq->curr);
- if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
- return;
+ /* Remote access to mm::mm_cid::pcpu requires rq_lock */
+ guard(rq_lock_irq)(rq);
+ /* Is the CID still owned by the CPU? */
+ if (cid_on_cpu(pcp->cid)) {
+ /*
+ * If rq->curr has @mm, transfer it with the
+ * transition bit set. Otherwise drop it.
+ */
+ if (rq->curr->mm == mm && rq->curr->mm_cid.active)
+ mm_cid_transit_to_task(rq->curr, pcp);
+ else
+ mm_drop_cid_on_cpu(mm, pcp);
+
+ } else if (rq->curr->mm == mm && rq->curr->mm_cid.active) {
+ unsigned int cid = rq->curr->mm_cid.cid;
+
+ /* Ensure it has the transition bit set */
+ if (!cid_in_transit(cid)) {
+ cid = cid_to_transit_cid(cid);
+ rq->curr->mm_cid.cid = cid;
+ pcp->cid = cid;
+ }
+ }
}
+ /* Clear the transition bit */
+ WRITE_ONCE(mm->mm_cid.transit, 0);
+}
- /*
- * The cid is unused, so it can be unset.
- * Disable interrupts to keep the window of cid ownership without rq
- * lock small.
- */
- scoped_guard (irqsave) {
- if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
- __mm_cid_put(mm, cid);
+static inline void mm_cid_transfer_to_cpu(struct task_struct *t, struct mm_cid_pcpu *pcp)
+{
+ if (cid_on_task(t->mm_cid.cid)) {
+ t->mm_cid.cid = cid_to_cpu_cid(t->mm_cid.cid);
+ pcp->cid = t->mm_cid.cid;
}
}
-static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
+static bool mm_cid_fixup_task_to_cpu(struct task_struct *t, struct mm_struct *mm)
{
- struct rq *rq = cpu_rq(cpu);
- struct mm_cid *pcpu_cid;
- struct task_struct *curr;
- u64 rq_clock;
+ /* Remote access to mm::mm_cid::pcpu requires rq_lock */
+ guard(task_rq_lock)(t);
+ /* If the task is not active it is not in the users count */
+ if (!t->mm_cid.active)
+ return false;
+ if (cid_on_task(t->mm_cid.cid)) {
+ /* If running on the CPU, transfer the CID, otherwise drop it */
+ if (task_rq(t)->curr == t)
+ mm_cid_transfer_to_cpu(t, per_cpu_ptr(mm->mm_cid.pcpu, task_cpu(t)));
+ else
+ mm_unset_cid_on_task(t);
+ }
+ return true;
+}
- /*
- * rq->clock load is racy on 32-bit but one spurious clear once in a
- * while is irrelevant.
- */
- rq_clock = READ_ONCE(rq->clock);
- pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
+static void mm_cid_fixup_tasks_to_cpus(void)
+{
+ struct mm_struct *mm = current->mm;
+ struct task_struct *p, *t;
+ unsigned int users;
/*
- * In order to take care of infrequently scheduled tasks, bump the time
- * snapshot associated with this cid if an active task using the mm is
- * observed on this rq.
+ * This can obviously race with a concurrent affinity change, which
+ * increases the number of allowed CPUs for this mm, but that does
+ * not affect the mode and only changes the CID constraints. A
+ * possible switch back to per task mode happens either in the
+ * deferred handler function or in the next fork()/exit().
+ *
+ * The caller has already transferred. The newly incoming task is
+ * already accounted for, but not yet visible.
*/
- scoped_guard (rcu) {
- curr = rcu_dereference(rq->curr);
- if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
- WRITE_ONCE(pcpu_cid->time, rq_clock);
- return;
- }
+ users = mm->mm_cid.users - 2;
+ if (!users)
+ return;
+
+ guard(rcu)();
+ for_other_threads(current, t) {
+ if (mm_cid_fixup_task_to_cpu(t, mm))
+ users--;
}
- if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
+ if (!users)
return;
- sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
+
+ /* Happens only for VM_CLONE processes. */
+ for_each_process_thread(p, t) {
+ if (t == current || t->mm != mm)
+ continue;
+ if (mm_cid_fixup_task_to_cpu(t, mm)) {
+ if (--users == 0)
+ return;
+ }
+ }
}
-static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
- int weight)
+static bool sched_mm_cid_add_user(struct task_struct *t, struct mm_struct *mm)
{
- struct mm_cid *pcpu_cid;
- int cid;
-
- pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
- cid = READ_ONCE(pcpu_cid->cid);
- if (!mm_cid_is_valid(cid) || cid < weight)
- return;
- sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
+ t->mm_cid.active = 1;
+ mm->mm_cid.users++;
+ return mm_update_max_cids(mm);
}
-static void task_mm_cid_work(struct callback_head *work)
+void sched_mm_cid_fork(struct task_struct *t)
{
- unsigned long now = jiffies, old_scan, next_scan;
- struct task_struct *t = current;
- struct cpumask *cidmask;
- struct mm_struct *mm;
- int weight, cpu;
+ struct mm_struct *mm = t->mm;
+ bool percpu;
- SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
+ WARN_ON_ONCE(!mm || t->mm_cid.cid != MM_CID_UNSET);
- work->next = work; /* Prevent double-add */
- if (t->flags & PF_EXITING)
- return;
- mm = t->mm;
- if (!mm)
- return;
- old_scan = READ_ONCE(mm->mm_cid_next_scan);
- next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
- if (!old_scan) {
- unsigned long res;
-
- res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
- if (res != old_scan)
- old_scan = res;
+ guard(mutex)(&mm->mm_cid.mutex);
+ scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) {
+ struct mm_cid_pcpu *pcp = this_cpu_ptr(mm->mm_cid.pcpu);
+
+ /* First user ? */
+ if (!mm->mm_cid.users) {
+ sched_mm_cid_add_user(t, mm);
+ t->mm_cid.cid = mm_get_cid(mm);
+ /* Required for execve() */
+ pcp->cid = t->mm_cid.cid;
+ return;
+ }
+
+ if (!sched_mm_cid_add_user(t, mm)) {
+ if (!mm->mm_cid.percpu)
+ t->mm_cid.cid = mm_get_cid(mm);
+ return;
+ }
+
+ /* Handle the mode change and transfer current's CID */
+ percpu = !!mm->mm_cid.percpu;
+ if (!percpu)
+ mm_cid_transit_to_task(current, pcp);
else
- old_scan = next_scan;
+ mm_cid_transfer_to_cpu(current, pcp);
}
- if (time_before(now, old_scan))
- return;
- if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
- return;
- cidmask = mm_cidmask(mm);
- /* Clear cids that were not recently used. */
- for_each_possible_cpu(cpu)
- sched_mm_cid_remote_clear_old(mm, cpu);
- weight = cpumask_weight(cidmask);
- /*
- * Clear cids that are greater or equal to the cidmask weight to
- * recompact it.
- */
- for_each_possible_cpu(cpu)
- sched_mm_cid_remote_clear_weight(mm, cpu, weight);
-}
-void init_sched_mm_cid(struct task_struct *t)
-{
- struct mm_struct *mm = t->mm;
- int mm_users = 0;
-
- if (mm) {
- mm_users = atomic_read(&mm->mm_users);
- if (mm_users == 1)
- mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
+ if (percpu) {
+ mm_cid_fixup_tasks_to_cpus();
+ } else {
+ mm_cid_fixup_cpus_to_tasks(mm);
+ t->mm_cid.cid = mm_get_cid(mm);
}
- t->cid_work.next = &t->cid_work; /* Protect against double add */
- init_task_work(&t->cid_work, task_mm_cid_work);
}
-void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
+static bool sched_mm_cid_remove_user(struct task_struct *t)
{
- struct callback_head *work = &curr->cid_work;
- unsigned long now = jiffies;
-
- if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
- work->next != work)
- return;
- if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
- return;
-
- /* No page allocation under rq lock */
- task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
+ t->mm_cid.active = 0;
+ scoped_guard(preempt) {
+ /* Clear the transition bit */
+ t->mm_cid.cid = cid_from_transit_cid(t->mm_cid.cid);
+ mm_unset_cid_on_task(t);
+ }
+ t->mm->mm_cid.users--;
+ return mm_update_max_cids(t->mm);
}
-void sched_mm_cid_exit_signals(struct task_struct *t)
+static bool __sched_mm_cid_exit(struct task_struct *t)
{
struct mm_struct *mm = t->mm;
- struct rq *rq;
- if (!mm)
- return;
-
- preempt_disable();
- rq = this_rq();
- guard(rq_lock_irqsave)(rq);
- preempt_enable_no_resched(); /* holding spinlock */
- WRITE_ONCE(t->mm_cid_active, 0);
+ if (!sched_mm_cid_remove_user(t))
+ return false;
+ /*
+ * Contrary to fork() this only deals with a switch back to per
+ * task mode either because the above decreased users or an
+ * affinity change increased the number of allowed CPUs and the
+ * deferred fixup did not run yet.
+ */
+ if (WARN_ON_ONCE(mm->mm_cid.percpu))
+ return false;
/*
- * Store t->mm_cid_active before loading per-mm/cpu cid.
- * Matches barrier in sched_mm_cid_remote_clear_old().
+ * A failed fork(2) cleanup never gets here, so @current must have
+ * the same MM as @t. That's true for exit() and the failed
+ * pthread_create() cleanup case.
*/
- smp_mb();
- mm_cid_put(mm);
- t->last_mm_cid = t->mm_cid = -1;
+ if (WARN_ON_ONCE(current->mm != mm))
+ return false;
+ return true;
}
-void sched_mm_cid_before_execve(struct task_struct *t)
+/*
+ * When a task exits, the MM CID held by the task is not longer required as
+ * the task cannot return to user space.
+ */
+void sched_mm_cid_exit(struct task_struct *t)
{
struct mm_struct *mm = t->mm;
- struct rq *rq;
- if (!mm)
+ if (!mm || !t->mm_cid.active)
return;
+ /*
+ * Ensure that only one instance is doing MM CID operations within
+ * a MM. The common case is uncontended. The rare fixup case adds
+ * some overhead.
+ */
+ scoped_guard(mutex, &mm->mm_cid.mutex) {
+ /* mm_cid::mutex is sufficient to protect mm_cid::users */
+ if (likely(mm->mm_cid.users > 1)) {
+ scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) {
+ if (!__sched_mm_cid_exit(t))
+ return;
+ /* Mode change required. Transfer currents CID */
+ mm_cid_transit_to_task(current, this_cpu_ptr(mm->mm_cid.pcpu));
+ }
+ mm_cid_fixup_cpus_to_tasks(mm);
+ return;
+ }
+ /* Last user */
+ scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) {
+ /* Required across execve() */
+ if (t == current)
+ mm_cid_transit_to_task(t, this_cpu_ptr(mm->mm_cid.pcpu));
+ /* Ignore mode change. There is nothing to do. */
+ sched_mm_cid_remove_user(t);
+ }
+ }
- preempt_disable();
- rq = this_rq();
- guard(rq_lock_irqsave)(rq);
- preempt_enable_no_resched(); /* holding spinlock */
- WRITE_ONCE(t->mm_cid_active, 0);
/*
- * Store t->mm_cid_active before loading per-mm/cpu cid.
- * Matches barrier in sched_mm_cid_remote_clear_old().
+ * As this is the last user (execve(), process exit or failed
+ * fork(2)) there is no concurrency anymore.
+ *
+ * Synchronize eventually pending work to ensure that there are no
+ * dangling references left. @t->mm_cid.users is zero so nothing
+ * can queue this work anymore.
*/
- smp_mb();
- mm_cid_put(mm);
- t->last_mm_cid = t->mm_cid = -1;
+ irq_work_sync(&mm->mm_cid.irq_work);
+ cancel_work_sync(&mm->mm_cid.work);
+}
+
+/* Deactivate MM CID allocation across execve() */
+void sched_mm_cid_before_execve(struct task_struct *t)
+{
+ sched_mm_cid_exit(t);
}
+/* Reactivate MM CID after successful execve() */
void sched_mm_cid_after_execve(struct task_struct *t)
{
- struct mm_struct *mm = t->mm;
- struct rq *rq;
+ sched_mm_cid_fork(t);
+}
- if (!mm)
+static void mm_cid_work_fn(struct work_struct *work)
+{
+ struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.work);
+
+ guard(mutex)(&mm->mm_cid.mutex);
+ /* Did the last user task exit already? */
+ if (!mm->mm_cid.users)
return;
- preempt_disable();
- rq = this_rq();
- scoped_guard (rq_lock_irqsave, rq) {
- preempt_enable_no_resched(); /* holding spinlock */
- WRITE_ONCE(t->mm_cid_active, 1);
- /*
- * Store t->mm_cid_active before loading per-mm/cpu cid.
- * Matches barrier in sched_mm_cid_remote_clear_old().
- */
- smp_mb();
- t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
+ scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) {
+ /* Have fork() or exit() handled it already? */
+ if (!mm->mm_cid.update_deferred)
+ return;
+ /* This clears mm_cid::update_deferred */
+ if (!mm_update_max_cids(mm))
+ return;
+ /* Affinity changes can only switch back to task mode */
+ if (WARN_ON_ONCE(mm->mm_cid.percpu))
+ return;
}
- rseq_set_notify_resume(t);
+ mm_cid_fixup_cpus_to_tasks(mm);
}
-void sched_mm_cid_fork(struct task_struct *t)
+static void mm_cid_irq_work(struct irq_work *work)
{
- WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
- t->mm_cid_active = 1;
+ struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.irq_work);
+
+ /*
+ * Needs to be unconditional because mm_cid::lock cannot be held
+ * when scheduling work as mm_update_cpus_allowed() nests inside
+ * rq::lock and schedule_work() might end up in wakeup...
+ */
+ schedule_work(&mm->mm_cid.work);
}
-#endif
-#ifdef CONFIG_SCHED_CLASS_EXT
-void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
- struct sched_enq_and_set_ctx *ctx)
+void mm_init_cid(struct mm_struct *mm, struct task_struct *p)
+{
+ mm->mm_cid.max_cids = 0;
+ mm->mm_cid.percpu = 0;
+ mm->mm_cid.transit = 0;
+ mm->mm_cid.nr_cpus_allowed = p->nr_cpus_allowed;
+ mm->mm_cid.users = 0;
+ mm->mm_cid.pcpu_thrs = 0;
+ mm->mm_cid.update_deferred = 0;
+ raw_spin_lock_init(&mm->mm_cid.lock);
+ mutex_init(&mm->mm_cid.mutex);
+ mm->mm_cid.irq_work = IRQ_WORK_INIT_HARD(mm_cid_irq_work);
+ INIT_WORK(&mm->mm_cid.work, mm_cid_work_fn);
+ cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask);
+ bitmap_zero(mm_cidmask(mm), num_possible_cpus());
+}
+#else /* CONFIG_SCHED_MM_CID */
+static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk) { }
+#endif /* !CONFIG_SCHED_MM_CID */
+
+static DEFINE_PER_CPU(struct sched_change_ctx, sched_change_ctx);
+
+struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags)
{
+ struct sched_change_ctx *ctx = this_cpu_ptr(&sched_change_ctx);
struct rq *rq = task_rq(p);
+ /*
+ * Must exclusively use matched flags since this is both dequeue and
+ * enqueue.
+ */
+ WARN_ON_ONCE(flags & 0xFFFF0000);
+
lockdep_assert_rq_held(rq);
- *ctx = (struct sched_enq_and_set_ctx){
+ if (!(flags & DEQUEUE_NOCLOCK)) {
+ update_rq_clock(rq);
+ flags |= DEQUEUE_NOCLOCK;
+ }
+
+ if (flags & DEQUEUE_CLASS) {
+ if (p->sched_class->switching_from)
+ p->sched_class->switching_from(rq, p);
+ }
+
+ *ctx = (struct sched_change_ctx){
.p = p,
- .queue_flags = queue_flags,
+ .flags = flags,
.queued = task_on_rq_queued(p),
- .running = task_current(rq, p),
+ .running = task_current_donor(rq, p),
};
- update_rq_clock(rq);
+ if (!(flags & DEQUEUE_CLASS)) {
+ if (p->sched_class->get_prio)
+ ctx->prio = p->sched_class->get_prio(rq, p);
+ else
+ ctx->prio = p->prio;
+ }
+
if (ctx->queued)
- dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
+ dequeue_task(rq, p, flags);
if (ctx->running)
put_prev_task(rq, p);
+
+ if ((flags & DEQUEUE_CLASS) && p->sched_class->switched_from)
+ p->sched_class->switched_from(rq, p);
+
+ return ctx;
}
-void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
+void sched_change_end(struct sched_change_ctx *ctx)
{
- struct rq *rq = task_rq(ctx->p);
+ struct task_struct *p = ctx->p;
+ struct rq *rq = task_rq(p);
lockdep_assert_rq_held(rq);
+ if ((ctx->flags & ENQUEUE_CLASS) && p->sched_class->switching_to)
+ p->sched_class->switching_to(rq, p);
+
if (ctx->queued)
- enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
+ enqueue_task(rq, p, ctx->flags);
if (ctx->running)
- set_next_task(rq, ctx->p);
+ set_next_task(rq, p);
+
+ if (ctx->flags & ENQUEUE_CLASS) {
+ if (p->sched_class->switched_to)
+ p->sched_class->switched_to(rq, p);
+ } else {
+ p->sched_class->prio_changed(rq, p, ctx->prio);
+ }
}
-#endif /* CONFIG_SCHED_CLASS_EXT */
diff --git a/kernel/sched/core_sched.c b/kernel/sched/core_sched.c
index 1ef98a93eb1d..9ede71ecba7f 100644
--- a/kernel/sched/core_sched.c
+++ b/kernel/sched/core_sched.c
@@ -4,6 +4,8 @@
* A simple wrapper around refcount. An allocated sched_core_cookie's
* address is used to compute the cookie of the task.
*/
+#include "sched.h"
+
struct sched_core_cookie {
refcount_t refcnt;
};
@@ -65,7 +67,7 @@ static unsigned long sched_core_update_cookie(struct task_struct *p,
* a cookie until after we've removed it, we must have core scheduling
* enabled here.
*/
- SCHED_WARN_ON((p->core_cookie || cookie) && !sched_core_enabled(rq));
+ WARN_ON_ONCE((p->core_cookie || cookie) && !sched_core_enabled(rq));
if (sched_core_enqueued(p))
sched_core_dequeue(rq, p, DEQUEUE_SAVE);
diff --git a/kernel/sched/cpuacct.c b/kernel/sched/cpuacct.c
index 0de9dda09949..23a56ba12d81 100644
--- a/kernel/sched/cpuacct.c
+++ b/kernel/sched/cpuacct.c
@@ -6,6 +6,8 @@
* Based on the work by Paul Menage (menage@google.com) and Balbir Singh
* (balbir@in.ibm.com).
*/
+#include <linux/sched/cputime.h>
+#include "sched.h"
/* Time spent by the tasks of the CPU accounting group executing in ... */
enum cpuacct_stat_index {
diff --git a/kernel/sched/cpudeadline.c b/kernel/sched/cpudeadline.c
index 95baa12a1029..37b572cc8aca 100644
--- a/kernel/sched/cpudeadline.c
+++ b/kernel/sched/cpudeadline.c
@@ -6,6 +6,7 @@
*
* Author: Juri Lelli <j.lelli@sssup.it>
*/
+#include "sched.h"
static inline int parent(int i)
{
@@ -165,12 +166,13 @@ int cpudl_find(struct cpudl *cp, struct task_struct *p,
* cpudl_clear - remove a CPU from the cpudl max-heap
* @cp: the cpudl max-heap context
* @cpu: the target CPU
+ * @online: the online state of the deadline runqueue
*
* Notes: assumes cpu_rq(cpu)->lock is locked
*
* Returns: (void)
*/
-void cpudl_clear(struct cpudl *cp, int cpu)
+void cpudl_clear(struct cpudl *cp, int cpu, bool online)
{
int old_idx, new_cpu;
unsigned long flags;
@@ -183,7 +185,7 @@ void cpudl_clear(struct cpudl *cp, int cpu)
if (old_idx == IDX_INVALID) {
/*
* Nothing to remove if old_idx was invalid.
- * This could happen if a rq_offline_dl is
+ * This could happen if rq_online_dl or rq_offline_dl is
* called for a CPU without -dl tasks running.
*/
} else {
@@ -194,9 +196,12 @@ void cpudl_clear(struct cpudl *cp, int cpu)
cp->elements[new_cpu].idx = old_idx;
cp->elements[cpu].idx = IDX_INVALID;
cpudl_heapify(cp, old_idx);
-
- cpumask_set_cpu(cpu, cp->free_cpus);
}
+ if (likely(online))
+ __cpumask_set_cpu(cpu, cp->free_cpus);
+ else
+ __cpumask_clear_cpu(cpu, cp->free_cpus);
+
raw_spin_unlock_irqrestore(&cp->lock, flags);
}
@@ -227,7 +232,7 @@ void cpudl_set(struct cpudl *cp, int cpu, u64 dl)
cp->elements[new_idx].cpu = cpu;
cp->elements[cpu].idx = new_idx;
cpudl_heapify_up(cp, new_idx);
- cpumask_clear_cpu(cpu, cp->free_cpus);
+ __cpumask_clear_cpu(cpu, cp->free_cpus);
} else {
cp->elements[old_idx].dl = dl;
cpudl_heapify(cp, old_idx);
@@ -237,26 +242,6 @@ void cpudl_set(struct cpudl *cp, int cpu, u64 dl)
}
/*
- * cpudl_set_freecpu - Set the cpudl.free_cpus
- * @cp: the cpudl max-heap context
- * @cpu: rd attached CPU
- */
-void cpudl_set_freecpu(struct cpudl *cp, int cpu)
-{
- cpumask_set_cpu(cpu, cp->free_cpus);
-}
-
-/*
- * cpudl_clear_freecpu - Clear the cpudl.free_cpus
- * @cp: the cpudl max-heap context
- * @cpu: rd attached CPU
- */
-void cpudl_clear_freecpu(struct cpudl *cp, int cpu)
-{
- cpumask_clear_cpu(cpu, cp->free_cpus);
-}
-
-/*
* cpudl_init - initialize the cpudl structure
* @cp: the cpudl max-heap context
*/
diff --git a/kernel/sched/cpudeadline.h b/kernel/sched/cpudeadline.h
index 0adeda93b5fb..d7699468eedd 100644
--- a/kernel/sched/cpudeadline.h
+++ b/kernel/sched/cpudeadline.h
@@ -1,4 +1,6 @@
/* SPDX-License-Identifier: GPL-2.0 */
+#include <linux/types.h>
+#include <linux/spinlock.h>
#define IDX_INVALID -1
@@ -15,12 +17,8 @@ struct cpudl {
struct cpudl_item *elements;
};
-#ifdef CONFIG_SMP
int cpudl_find(struct cpudl *cp, struct task_struct *p, struct cpumask *later_mask);
void cpudl_set(struct cpudl *cp, int cpu, u64 dl);
-void cpudl_clear(struct cpudl *cp, int cpu);
+void cpudl_clear(struct cpudl *cp, int cpu, bool online);
int cpudl_init(struct cpudl *cp);
-void cpudl_set_freecpu(struct cpudl *cp, int cpu);
-void cpudl_clear_freecpu(struct cpudl *cp, int cpu);
void cpudl_cleanup(struct cpudl *cp);
-#endif /* CONFIG_SMP */
diff --git a/kernel/sched/cpufreq.c b/kernel/sched/cpufreq.c
index 5252fb191fae..742fb9e62e1a 100644
--- a/kernel/sched/cpufreq.c
+++ b/kernel/sched/cpufreq.c
@@ -5,6 +5,7 @@
* Copyright (C) 2016, Intel Corporation
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*/
+#include "sched.h"
DEFINE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
index 28c77904ea74..0ab5f9d4bc59 100644
--- a/kernel/sched/cpufreq_schedutil.c
+++ b/kernel/sched/cpufreq_schedutil.c
@@ -5,6 +5,8 @@
* Copyright (C) 2016, Intel Corporation
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*/
+#include <uapi/linux/sched/types.h>
+#include "sched.h"
#define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
@@ -81,9 +83,23 @@ static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
if (!cpufreq_this_cpu_can_update(sg_policy->policy))
return false;
- if (unlikely(sg_policy->limits_changed)) {
- sg_policy->limits_changed = false;
+ if (unlikely(READ_ONCE(sg_policy->limits_changed))) {
+ WRITE_ONCE(sg_policy->limits_changed, false);
sg_policy->need_freq_update = true;
+
+ /*
+ * The above limits_changed update must occur before the reads
+ * of policy limits in cpufreq_driver_resolve_freq() or a policy
+ * limits update might be missed, so use a memory barrier to
+ * ensure it.
+ *
+ * This pairs with the write memory barrier in sugov_limits().
+ */
+ smp_mb();
+
+ return true;
+ } else if (sg_policy->need_freq_update) {
+ /* ignore_dl_rate_limit() wants a new frequency to be found. */
return true;
}
@@ -95,10 +111,22 @@ static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
unsigned int next_freq)
{
- if (sg_policy->need_freq_update)
- sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
- else if (sg_policy->next_freq == next_freq)
+ if (sg_policy->need_freq_update) {
+ sg_policy->need_freq_update = false;
+ /*
+ * The policy limits have changed, but if the return value of
+ * cpufreq_driver_resolve_freq() after applying the new limits
+ * is still equal to the previously selected frequency, the
+ * driver callback need not be invoked unless the driver
+ * specifically wants that to happen on every update of the
+ * policy limits.
+ */
+ if (sg_policy->next_freq == next_freq &&
+ !cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS))
+ return false;
+ } else if (sg_policy->next_freq == next_freq) {
return false;
+ }
sg_policy->next_freq = next_freq;
sg_policy->last_freq_update_time = time;
@@ -354,9 +382,9 @@ static bool sugov_hold_freq(struct sugov_cpu *sg_cpu)
sg_cpu->saved_idle_calls = idle_calls;
return ret;
}
-#else
+#else /* !CONFIG_NO_HZ_COMMON: */
static inline bool sugov_hold_freq(struct sugov_cpu *sg_cpu) { return false; }
-#endif /* CONFIG_NO_HZ_COMMON */
+#endif /* !CONFIG_NO_HZ_COMMON */
/*
* Make sugov_should_update_freq() ignore the rate limit when DL
@@ -365,7 +393,7 @@ static inline bool sugov_hold_freq(struct sugov_cpu *sg_cpu) { return false; }
static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
{
if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
- sg_cpu->sg_policy->limits_changed = true;
+ sg_cpu->sg_policy->need_freq_update = true;
}
static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
@@ -604,32 +632,7 @@ static const struct kobj_type sugov_tunables_ktype = {
/********************** cpufreq governor interface *********************/
-#ifdef CONFIG_ENERGY_MODEL
-static void rebuild_sd_workfn(struct work_struct *work)
-{
- rebuild_sched_domains_energy();
-}
-
-static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
-
-/*
- * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
- * on governor changes to make sure the scheduler knows about it.
- */
-static void sugov_eas_rebuild_sd(void)
-{
- /*
- * When called from the cpufreq_register_driver() path, the
- * cpu_hotplug_lock is already held, so use a work item to
- * avoid nested locking in rebuild_sched_domains().
- */
- schedule_work(&rebuild_sd_work);
-}
-#else
-static inline void sugov_eas_rebuild_sd(void) { };
-#endif
-
-struct cpufreq_governor schedutil_gov;
+static struct cpufreq_governor schedutil_gov;
static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
{
@@ -691,7 +694,11 @@ static int sugov_kthread_create(struct sugov_policy *sg_policy)
}
sg_policy->thread = thread;
- kthread_bind_mask(thread, policy->related_cpus);
+ if (policy->dvfs_possible_from_any_cpu)
+ set_cpus_allowed_ptr(thread, policy->related_cpus);
+ else
+ kthread_bind_mask(thread, policy->related_cpus);
+
init_irq_work(&sg_policy->irq_work, sugov_irq_work);
mutex_init(&sg_policy->work_lock);
@@ -784,7 +791,11 @@ static int sugov_init(struct cpufreq_policy *policy)
goto fail;
out:
- sugov_eas_rebuild_sd();
+ /*
+ * Schedutil is the preferred governor for EAS, so rebuild sched domains
+ * on governor changes to make sure the scheduler knows about them.
+ */
+ em_rebuild_sched_domains();
mutex_unlock(&global_tunables_lock);
return 0;
@@ -826,7 +837,7 @@ static void sugov_exit(struct cpufreq_policy *policy)
sugov_policy_free(sg_policy);
cpufreq_disable_fast_switch(policy);
- sugov_eas_rebuild_sd();
+ em_rebuild_sched_domains();
}
static int sugov_start(struct cpufreq_policy *policy)
@@ -888,10 +899,19 @@ static void sugov_limits(struct cpufreq_policy *policy)
mutex_unlock(&sg_policy->work_lock);
}
- sg_policy->limits_changed = true;
+ /*
+ * The limits_changed update below must take place before the updates
+ * of policy limits in cpufreq_set_policy() or a policy limits update
+ * might be missed, so use a memory barrier to ensure it.
+ *
+ * This pairs with the memory barrier in sugov_should_update_freq().
+ */
+ smp_wmb();
+
+ WRITE_ONCE(sg_policy->limits_changed, true);
}
-struct cpufreq_governor schedutil_gov = {
+static struct cpufreq_governor schedutil_gov = {
.name = "schedutil",
.owner = THIS_MODULE,
.flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
@@ -909,4 +929,9 @@ struct cpufreq_governor *cpufreq_default_governor(void)
}
#endif
+bool sugov_is_governor(struct cpufreq_policy *policy)
+{
+ return policy->governor == &schedutil_gov;
+}
+
cpufreq_governor_init(schedutil_gov);
diff --git a/kernel/sched/cpupri.c b/kernel/sched/cpupri.c
index 42c40cfdf836..76a9ac5eb794 100644
--- a/kernel/sched/cpupri.c
+++ b/kernel/sched/cpupri.c
@@ -22,6 +22,7 @@
* worst case complexity of O(min(101, nr_domcpus)), though the scenario that
* yields the worst case search is fairly contrived.
*/
+#include "sched.h"
/*
* p->rt_priority p->prio newpri cpupri
diff --git a/kernel/sched/cpupri.h b/kernel/sched/cpupri.h
index d6cba0020064..6f562088c056 100644
--- a/kernel/sched/cpupri.h
+++ b/kernel/sched/cpupri.h
@@ -1,4 +1,7 @@
/* SPDX-License-Identifier: GPL-2.0 */
+#include <linux/atomic.h>
+#include <linux/cpumask.h>
+#include <linux/sched/rt.h>
#define CPUPRI_NR_PRIORITIES (MAX_RT_PRIO+1)
@@ -17,7 +20,6 @@ struct cpupri {
int *cpu_to_pri;
};
-#ifdef CONFIG_SMP
int cpupri_find(struct cpupri *cp, struct task_struct *p,
struct cpumask *lowest_mask);
int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
@@ -26,4 +28,3 @@ int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
void cpupri_set(struct cpupri *cp, int cpu, int pri);
int cpupri_init(struct cpupri *cp);
void cpupri_cleanup(struct cpupri *cp);
-#endif
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index 0bed0fa1acd9..4f97896887ec 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -2,6 +2,9 @@
/*
* Simple CPU accounting cgroup controller
*/
+#include <linux/sched/cputime.h>
+#include <linux/tsacct_kern.h>
+#include "sched.h"
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
#include <asm/cputime.h>
@@ -22,7 +25,7 @@
*/
DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
-static int sched_clock_irqtime;
+int sched_clock_irqtime;
void enable_sched_clock_irqtime(void)
{
@@ -57,7 +60,7 @@ void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
s64 delta;
int cpu;
- if (!sched_clock_irqtime)
+ if (!irqtime_enabled())
return;
cpu = smp_processor_id();
@@ -88,9 +91,7 @@ static u64 irqtime_tick_accounted(u64 maxtime)
return delta;
}
-#else /* CONFIG_IRQ_TIME_ACCOUNTING */
-
-#define sched_clock_irqtime (0)
+#else /* !CONFIG_IRQ_TIME_ACCOUNTING: */
static u64 irqtime_tick_accounted(u64 dummy)
{
@@ -243,7 +244,7 @@ void __account_forceidle_time(struct task_struct *p, u64 delta)
task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
}
-#endif
+#endif /* CONFIG_SCHED_CORE */
/*
* When a guest is interrupted for a longer amount of time, missed clock
@@ -264,7 +265,7 @@ static __always_inline u64 steal_account_process_time(u64 maxtime)
return steal;
}
-#endif
+#endif /* CONFIG_PARAVIRT */
return 0;
}
@@ -290,7 +291,7 @@ static inline u64 read_sum_exec_runtime(struct task_struct *t)
{
return t->se.sum_exec_runtime;
}
-#else
+#else /* !CONFIG_64BIT: */
static u64 read_sum_exec_runtime(struct task_struct *t)
{
u64 ns;
@@ -303,7 +304,7 @@ static u64 read_sum_exec_runtime(struct task_struct *t)
return ns;
}
-#endif
+#endif /* !CONFIG_64BIT */
/*
* Accumulate raw cputime values of dead tasks (sig->[us]time) and live
@@ -312,10 +313,8 @@ static u64 read_sum_exec_runtime(struct task_struct *t)
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
{
struct signal_struct *sig = tsk->signal;
- u64 utime, stime;
struct task_struct *t;
- unsigned int seq, nextseq;
- unsigned long flags;
+ u64 utime, stime;
/*
* Update current task runtime to account pending time since last
@@ -328,27 +327,19 @@ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
if (same_thread_group(current, tsk))
(void) task_sched_runtime(current);
- rcu_read_lock();
- /* Attempt a lockless read on the first round. */
- nextseq = 0;
- do {
- seq = nextseq;
- flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
+ guard(rcu)();
+ scoped_seqlock_read (&sig->stats_lock, ss_lock_irqsave) {
times->utime = sig->utime;
times->stime = sig->stime;
times->sum_exec_runtime = sig->sum_sched_runtime;
- for_each_thread(tsk, t) {
+ __for_each_thread(sig, t) {
task_cputime(t, &utime, &stime);
times->utime += utime;
times->stime += stime;
times->sum_exec_runtime += read_sum_exec_runtime(t);
}
- /* If lockless access failed, take the lock. */
- nextseq = 1;
- } while (need_seqretry(&sig->stats_lock, seq));
- done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
- rcu_read_unlock();
+ }
}
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
@@ -413,11 +404,11 @@ static void irqtime_account_idle_ticks(int ticks)
{
irqtime_account_process_tick(current, 0, ticks);
}
-#else /* CONFIG_IRQ_TIME_ACCOUNTING */
+#else /* !CONFIG_IRQ_TIME_ACCOUNTING: */
static inline void irqtime_account_idle_ticks(int ticks) { }
static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
int nr_ticks) { }
-#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
+#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
/*
* Use precise platform statistics if available:
@@ -478,7 +469,7 @@ void account_process_tick(struct task_struct *p, int user_tick)
if (vtime_accounting_enabled_this_cpu())
return;
- if (sched_clock_irqtime) {
+ if (irqtime_enabled()) {
irqtime_account_process_tick(p, user_tick, 1);
return;
}
@@ -507,7 +498,7 @@ void account_idle_ticks(unsigned long ticks)
{
u64 cputime, steal;
- if (sched_clock_irqtime) {
+ if (irqtime_enabled()) {
irqtime_account_idle_ticks(ticks);
return;
}
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index d9d5a702f1a6..319439fe1870 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -17,6 +17,10 @@
*/
#include <linux/cpuset.h>
+#include <linux/sched/clock.h>
+#include <uapi/linux/sched/types.h>
+#include "sched.h"
+#include "pelt.h"
/*
* Default limits for DL period; on the top end we guard against small util
@@ -26,7 +30,7 @@
static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
#ifdef CONFIG_SYSCTL
-static struct ctl_table sched_dl_sysctls[] = {
+static const struct ctl_table sched_dl_sysctls[] = {
{
.procname = "sched_deadline_period_max_us",
.data = &sysctl_sched_dl_period_max,
@@ -51,7 +55,7 @@ static int __init sched_dl_sysctl_init(void)
return 0;
}
late_initcall(sched_dl_sysctl_init);
-#endif
+#endif /* CONFIG_SYSCTL */
static bool dl_server(struct sched_dl_entity *dl_se)
{
@@ -99,7 +103,7 @@ static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
{
return pi_of(dl_se) != dl_se;
}
-#else
+#else /* !CONFIG_RT_MUTEXES: */
static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
{
return dl_se;
@@ -109,9 +113,8 @@ static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
{
return false;
}
-#endif
+#endif /* !CONFIG_RT_MUTEXES */
-#ifdef CONFIG_SMP
static inline struct dl_bw *dl_bw_of(int i)
{
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
@@ -122,20 +125,11 @@ static inline struct dl_bw *dl_bw_of(int i)
static inline int dl_bw_cpus(int i)
{
struct root_domain *rd = cpu_rq(i)->rd;
- int cpus;
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
"sched RCU must be held");
- if (cpumask_subset(rd->span, cpu_active_mask))
- return cpumask_weight(rd->span);
-
- cpus = 0;
-
- for_each_cpu_and(i, rd->span, cpu_active_mask)
- cpus++;
-
- return cpus;
+ return cpumask_weight_and(rd->span, cpu_active_mask);
}
static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
@@ -166,14 +160,14 @@ static inline unsigned long dl_bw_capacity(int i)
}
}
-static inline bool dl_bw_visited(int cpu, u64 gen)
+bool dl_bw_visited(int cpu, u64 cookie)
{
struct root_domain *rd = cpu_rq(cpu)->rd;
- if (rd->visit_gen == gen)
+ if (rd->visit_cookie == cookie)
return true;
- rd->visit_gen = gen;
+ rd->visit_cookie = cookie;
return false;
}
@@ -191,35 +185,6 @@ void __dl_update(struct dl_bw *dl_b, s64 bw)
rq->dl.extra_bw += bw;
}
}
-#else
-static inline struct dl_bw *dl_bw_of(int i)
-{
- return &cpu_rq(i)->dl.dl_bw;
-}
-
-static inline int dl_bw_cpus(int i)
-{
- return 1;
-}
-
-static inline unsigned long dl_bw_capacity(int i)
-{
- return SCHED_CAPACITY_SCALE;
-}
-
-static inline bool dl_bw_visited(int cpu, u64 gen)
-{
- return false;
-}
-
-static inline
-void __dl_update(struct dl_bw *dl_b, s64 bw)
-{
- struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
-
- dl->extra_bw += bw;
-}
-#endif
static inline
void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
@@ -249,8 +214,8 @@ void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
dl_rq->running_bw += dl_bw;
- SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
- SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
+ WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */
+ WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
/* kick cpufreq (see the comment in kernel/sched/sched.h). */
cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
}
@@ -262,7 +227,7 @@ void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
dl_rq->running_bw -= dl_bw;
- SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
+ WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */
if (dl_rq->running_bw > old)
dl_rq->running_bw = 0;
/* kick cpufreq (see the comment in kernel/sched/sched.h). */
@@ -276,7 +241,7 @@ void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
dl_rq->this_bw += dl_bw;
- SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
+ WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */
}
static inline
@@ -286,10 +251,10 @@ void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
dl_rq->this_bw -= dl_bw;
- SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
+ WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */
if (dl_rq->this_bw > old)
dl_rq->this_bw = 0;
- SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
+ WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
}
static inline
@@ -342,6 +307,29 @@ static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_s
__add_rq_bw(new_bw, &rq->dl);
}
+static __always_inline
+void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer)
+{
+ /*
+ * If the timer callback was running (hrtimer_try_to_cancel == -1),
+ * it will eventually call put_task_struct().
+ */
+ if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se))
+ put_task_struct(dl_task_of(dl_se));
+}
+
+static __always_inline
+void cancel_replenish_timer(struct sched_dl_entity *dl_se)
+{
+ cancel_dl_timer(dl_se, &dl_se->dl_timer);
+}
+
+static __always_inline
+void cancel_inactive_timer(struct sched_dl_entity *dl_se)
+{
+ cancel_dl_timer(dl_se, &dl_se->inactive_timer);
+}
+
static void dl_change_utilization(struct task_struct *p, u64 new_bw)
{
WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
@@ -408,7 +396,7 @@ static void __dl_clear_params(struct sched_dl_entity *dl_se);
* up, and checks if the task is still in the "ACTIVE non contending"
* state or not (in the second case, it updates running_bw).
*/
-static void task_non_contending(struct sched_dl_entity *dl_se)
+static void task_non_contending(struct sched_dl_entity *dl_se, bool dl_task)
{
struct hrtimer *timer = &dl_se->inactive_timer;
struct rq *rq = rq_of_dl_se(dl_se);
@@ -447,10 +435,10 @@ static void task_non_contending(struct sched_dl_entity *dl_se)
} else {
struct task_struct *p = dl_task_of(dl_se);
- if (dl_task(p))
+ if (dl_task)
sub_running_bw(dl_se, dl_rq);
- if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
+ if (!dl_task || READ_ONCE(p->__state) == TASK_DEAD) {
struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
if (READ_ONCE(p->__state) == TASK_DEAD)
@@ -495,10 +483,7 @@ static void task_contending(struct sched_dl_entity *dl_se, int flags)
* will not touch the rq's active utilization,
* so we are still safe.
*/
- if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
- if (!dl_server(dl_se))
- put_task_struct(dl_task_of(dl_se));
- }
+ cancel_inactive_timer(dl_se);
} else {
/*
* Since "dl_non_contending" is not set, the
@@ -532,23 +517,17 @@ void init_dl_rq(struct dl_rq *dl_rq)
{
dl_rq->root = RB_ROOT_CACHED;
-#ifdef CONFIG_SMP
/* zero means no -deadline tasks */
dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
dl_rq->overloaded = 0;
dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
-#else
- init_dl_bw(&dl_rq->dl_bw);
-#endif
dl_rq->running_bw = 0;
dl_rq->this_bw = 0;
init_dl_rq_bw_ratio(dl_rq);
}
-#ifdef CONFIG_SMP
-
static inline int dl_overloaded(struct rq *rq)
{
return atomic_read(&rq->rd->dlo_count);
@@ -733,37 +712,6 @@ static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p
return later_rq;
}
-#else
-
-static inline
-void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
-{
-}
-
-static inline
-void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
-{
-}
-
-static inline
-void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
-{
-}
-
-static inline
-void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
-{
-}
-
-static inline void deadline_queue_push_tasks(struct rq *rq)
-{
-}
-
-static inline void deadline_queue_pull_task(struct rq *rq)
-{
-}
-#endif /* CONFIG_SMP */
-
static void
enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
@@ -781,7 +729,7 @@ static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
* If it is a deferred reservation, and the server
* is not handling an starvation case, defer it.
*/
- if (dl_se->dl_defer & !dl_se->dl_defer_running) {
+ if (dl_se->dl_defer && !dl_se->dl_defer_running) {
dl_se->dl_throttled = 1;
dl_se->dl_defer_armed = 1;
}
@@ -804,6 +752,8 @@ static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
struct rq *rq = rq_of_dl_rq(dl_rq);
+ update_rq_clock(rq);
+
WARN_ON(is_dl_boosted(dl_se));
WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
@@ -916,7 +866,7 @@ static void replenish_dl_entity(struct sched_dl_entity *dl_se)
*/
if (dl_se->dl_defer && !dl_se->dl_defer_running &&
dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
- if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
+ if (!is_dl_boosted(dl_se)) {
/*
* Set dl_se->dl_defer_armed and dl_throttled variables to
@@ -1175,7 +1125,6 @@ static int start_dl_timer(struct sched_dl_entity *dl_se)
static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
{
-#ifdef CONFIG_SMP
/*
* Queueing this task back might have overloaded rq, check if we need
* to kick someone away.
@@ -1189,7 +1138,6 @@ static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
push_dl_task(rq);
rq_repin_lock(rq, rf);
}
-#endif
}
/* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
@@ -1209,11 +1157,15 @@ static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_
sched_clock_tick();
update_rq_clock(rq);
- if (!dl_se->dl_runtime)
- return HRTIMER_NORESTART;
+ /*
+ * Make sure current has propagated its pending runtime into
+ * any relevant server through calling dl_server_update() and
+ * friends.
+ */
+ rq->donor->sched_class->update_curr(rq);
- if (!dl_se->server_has_tasks(dl_se)) {
- replenish_dl_entity(dl_se);
+ if (dl_se->dl_defer_idle) {
+ dl_server_stop(dl_se);
return HRTIMER_NORESTART;
}
@@ -1319,7 +1271,6 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
goto unlock;
}
-#ifdef CONFIG_SMP
if (unlikely(!rq->online)) {
/*
* If the runqueue is no longer available, migrate the
@@ -1336,7 +1287,6 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
* there.
*/
}
-#endif
enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
if (dl_task(rq->donor))
@@ -1362,8 +1312,7 @@ static void init_dl_task_timer(struct sched_dl_entity *dl_se)
{
struct hrtimer *timer = &dl_se->dl_timer;
- hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
- timer->function = dl_task_timer;
+ hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
}
/*
@@ -1467,10 +1416,11 @@ s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta
}
static inline void
-update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
- int flags);
+update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, int flags);
+
static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
{
+ bool idle = rq->curr == rq->idle;
s64 scaled_delta_exec;
if (unlikely(delta_exec <= 0)) {
@@ -1485,10 +1435,15 @@ static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64
if (dl_entity_is_special(dl_se))
return;
- scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
+ scaled_delta_exec = delta_exec;
+ if (!dl_server(dl_se))
+ scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
dl_se->runtime -= scaled_delta_exec;
+ if (dl_se->dl_defer_idle && !idle)
+ dl_se->dl_defer_idle = 0;
+
/*
* The fair server can consume its runtime while throttled (not queued/
* running as regular CFS).
@@ -1499,6 +1454,29 @@ static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64
*/
if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
/*
+ * Non-servers would never get time accounted while throttled.
+ */
+ WARN_ON_ONCE(!dl_server(dl_se));
+
+ /*
+ * While the server is marked idle, do not push out the
+ * activation further, instead wait for the period timer
+ * to lapse and stop the server.
+ */
+ if (dl_se->dl_defer_idle && idle) {
+ /*
+ * The timer is at the zero-laxity point, this means
+ * dl_server_stop() / dl_server_start() can happen
+ * while now < deadline. This means update_dl_entity()
+ * will not replenish. Additionally start_dl_timer()
+ * will be set for 'deadline - runtime'. Negative
+ * runtime will not do.
+ */
+ dl_se->runtime = 0;
+ return;
+ }
+
+ /*
* If the server was previously activated - the starving condition
* took place, it this point it went away because the fair scheduler
* was able to get runtime in background. So return to the initial
@@ -1510,6 +1488,9 @@ static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64
replenish_dl_new_period(dl_se, dl_se->rq);
+ if (idle)
+ dl_se->dl_defer_idle = 1;
+
/*
* Not being able to start the timer seems problematic. If it could not
* be started for whatever reason, we need to "unthrottle" the DL server
@@ -1537,10 +1518,12 @@ throttle:
}
if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
- if (dl_server(dl_se))
- enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
- else
+ if (dl_server(dl_se)) {
+ replenish_dl_new_period(dl_se, rq);
+ start_dl_timer(dl_se);
+ } else {
enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
+ }
}
if (!is_leftmost(dl_se, &rq->dl))
@@ -1579,7 +1562,7 @@ throttle:
rt_rq->rt_time += delta_exec;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
}
-#endif
+#endif /* CONFIG_RT_GROUP_SCHED */
}
/*
@@ -1590,63 +1573,229 @@ throttle:
* as time available for the fair server, avoiding a penalty for the
* rt scheduler that did not consumed that time.
*/
-void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
+void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec)
{
- s64 delta_exec, scaled_delta_exec;
-
- if (!rq->fair_server.dl_defer)
- return;
-
- /* no need to discount more */
- if (rq->fair_server.runtime < 0)
- return;
-
- delta_exec = rq_clock_task(rq) - p->se.exec_start;
- if (delta_exec < 0)
- return;
-
- scaled_delta_exec = dl_scaled_delta_exec(rq, &rq->fair_server, delta_exec);
-
- rq->fair_server.runtime -= scaled_delta_exec;
-
- if (rq->fair_server.runtime < 0) {
- rq->fair_server.dl_defer_running = 0;
- rq->fair_server.runtime = 0;
- }
-
- p->se.exec_start = rq_clock_task(rq);
+ if (dl_se->dl_server_active && dl_se->dl_runtime && dl_se->dl_defer)
+ update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
}
void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
{
/* 0 runtime = fair server disabled */
- if (dl_se->dl_runtime)
+ if (dl_se->dl_server_active && dl_se->dl_runtime)
update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
}
+/*
+ * dl_server && dl_defer:
+ *
+ * 6
+ * +--------------------+
+ * v |
+ * +-------------+ 4 +-----------+ 5 +------------------+
+ * +-> | A:init | <--- | D:running | -----> | E:replenish-wait |
+ * | +-------------+ +-----------+ +------------------+
+ * | | | 1 ^ ^ |
+ * | | 1 +----------+ | 3 |
+ * | v | |
+ * | +--------------------------------+ 2 |
+ * | | | ----+ |
+ * | 8 | B:zero_laxity-wait | | |
+ * | | | <---+ |
+ * | +--------------------------------+ |
+ * | | ^ ^ 2 |
+ * | | 7 | 2 +--------------------+
+ * | v |
+ * | +-------------+ |
+ * +-- | C:idle-wait | -+
+ * +-------------+
+ * ^ 7 |
+ * +---------+
+ *
+ *
+ * [A] - init
+ * dl_server_active = 0
+ * dl_throttled = 0
+ * dl_defer_armed = 0
+ * dl_defer_running = 0/1
+ * dl_defer_idle = 0
+ *
+ * [B] - zero_laxity-wait
+ * dl_server_active = 1
+ * dl_throttled = 1
+ * dl_defer_armed = 1
+ * dl_defer_running = 0
+ * dl_defer_idle = 0
+ *
+ * [C] - idle-wait
+ * dl_server_active = 1
+ * dl_throttled = 1
+ * dl_defer_armed = 1
+ * dl_defer_running = 0
+ * dl_defer_idle = 1
+ *
+ * [D] - running
+ * dl_server_active = 1
+ * dl_throttled = 0
+ * dl_defer_armed = 0
+ * dl_defer_running = 1
+ * dl_defer_idle = 0
+ *
+ * [E] - replenish-wait
+ * dl_server_active = 1
+ * dl_throttled = 1
+ * dl_defer_armed = 0
+ * dl_defer_running = 1
+ * dl_defer_idle = 0
+ *
+ *
+ * [1] A->B, A->D
+ * dl_server_start()
+ * dl_server_active = 1;
+ * enqueue_dl_entity()
+ * update_dl_entity(WAKEUP)
+ * if (!dl_defer_running)
+ * dl_defer_armed = 1;
+ * dl_throttled = 1;
+ * if (dl_throttled && start_dl_timer())
+ * return; // [B]
+ * __enqueue_dl_entity();
+ * // [D]
+ *
+ * // deplete server runtime from client-class
+ * [2] B->B, C->B, E->B
+ * dl_server_update()
+ * update_curr_dl_se() // idle = false
+ * if (dl_defer_idle)
+ * dl_defer_idle = 0;
+ * if (dl_defer && dl_throttled && dl_runtime_exceeded())
+ * dl_defer_running = 0;
+ * hrtimer_try_to_cancel(); // stop timer
+ * replenish_dl_new_period()
+ * // fwd period
+ * dl_throttled = 1;
+ * dl_defer_armed = 1;
+ * start_dl_timer(); // restart timer
+ * // [B]
+ *
+ * // timer actually fires means we have runtime
+ * [3] B->D
+ * dl_server_timer()
+ * if (dl_defer_armed)
+ * dl_defer_running = 1;
+ * enqueue_dl_entity(REPLENISH)
+ * replenish_dl_entity()
+ * // fwd period
+ * if (dl_throttled)
+ * dl_throttled = 0;
+ * if (dl_defer_armed)
+ * dl_defer_armed = 0;
+ * __enqueue_dl_entity();
+ * // [D]
+ *
+ * // schedule server
+ * [4] D->A
+ * pick_task_dl()
+ * p = server_pick_task();
+ * if (!p)
+ * dl_server_stop()
+ * dequeue_dl_entity();
+ * hrtimer_try_to_cancel();
+ * dl_defer_armed = 0;
+ * dl_throttled = 0;
+ * dl_server_active = 0;
+ * // [A]
+ * return p;
+ *
+ * // server running
+ * [5] D->E
+ * update_curr_dl_se()
+ * if (dl_runtime_exceeded())
+ * dl_throttled = 1;
+ * dequeue_dl_entity();
+ * start_dl_timer();
+ * // [E]
+ *
+ * // server replenished
+ * [6] E->D
+ * dl_server_timer()
+ * enqueue_dl_entity(REPLENISH)
+ * replenish_dl_entity()
+ * fwd-period
+ * if (dl_throttled)
+ * dl_throttled = 0;
+ * __enqueue_dl_entity();
+ * // [D]
+ *
+ * // deplete server runtime from idle
+ * [7] B->C, C->C
+ * dl_server_update_idle()
+ * update_curr_dl_se() // idle = true
+ * if (dl_defer && dl_throttled && dl_runtime_exceeded())
+ * if (dl_defer_idle)
+ * return;
+ * dl_defer_running = 0;
+ * hrtimer_try_to_cancel();
+ * replenish_dl_new_period()
+ * // fwd period
+ * dl_throttled = 1;
+ * dl_defer_armed = 1;
+ * dl_defer_idle = 1;
+ * start_dl_timer(); // restart timer
+ * // [C]
+ *
+ * // stop idle server
+ * [8] C->A
+ * dl_server_timer()
+ * if (dl_defer_idle)
+ * dl_server_stop();
+ * // [A]
+ *
+ *
+ * digraph dl_server {
+ * "A:init" -> "B:zero_laxity-wait" [label="1:dl_server_start"]
+ * "A:init" -> "D:running" [label="1:dl_server_start"]
+ * "B:zero_laxity-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"]
+ * "B:zero_laxity-wait" -> "C:idle-wait" [label="7:dl_server_update_idle"]
+ * "B:zero_laxity-wait" -> "D:running" [label="3:dl_server_timer"]
+ * "C:idle-wait" -> "A:init" [label="8:dl_server_timer"]
+ * "C:idle-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"]
+ * "C:idle-wait" -> "C:idle-wait" [label="7:dl_server_update_idle"]
+ * "D:running" -> "A:init" [label="4:pick_task_dl"]
+ * "D:running" -> "E:replenish-wait" [label="5:update_curr_dl_se"]
+ * "E:replenish-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"]
+ * "E:replenish-wait" -> "D:running" [label="6:dl_server_timer"]
+ * }
+ *
+ *
+ * Notes:
+ *
+ * - When there are fair tasks running the most likely loop is [2]->[2].
+ * the dl_server never actually runs, the timer never fires.
+ *
+ * - When there is actual fair starvation; the timer fires and starts the
+ * dl_server. This will then throttle and replenish like a normal DL
+ * task. Notably it will not 'defer' again.
+ *
+ * - When idle it will push the actication forward once, and then wait
+ * for the timer to hit or a non-idle update to restart things.
+ */
void dl_server_start(struct sched_dl_entity *dl_se)
{
struct rq *rq = dl_se->rq;
+ if (!dl_server(dl_se) || dl_se->dl_server_active)
+ return;
+
/*
- * XXX: the apply do not work fine at the init phase for the
- * fair server because things are not yet set. We need to improve
- * this before getting generic.
+ * Update the current task to 'now'.
*/
- if (!dl_server(dl_se)) {
- u64 runtime = 50 * NSEC_PER_MSEC;
- u64 period = 1000 * NSEC_PER_MSEC;
-
- dl_server_apply_params(dl_se, runtime, period, 1);
+ rq->donor->sched_class->update_curr(rq);
- dl_se->dl_server = 1;
- dl_se->dl_defer = 1;
- setup_new_dl_entity(dl_se);
- }
-
- if (!dl_se->dl_runtime)
+ if (WARN_ON_ONCE(!cpu_online(cpu_of(rq))))
return;
+ dl_se->dl_server_active = 1;
enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
resched_curr(dl_se->rq);
@@ -1654,24 +1803,50 @@ void dl_server_start(struct sched_dl_entity *dl_se)
void dl_server_stop(struct sched_dl_entity *dl_se)
{
- if (!dl_se->dl_runtime)
+ if (!dl_server(dl_se) || !dl_server_active(dl_se))
return;
dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
hrtimer_try_to_cancel(&dl_se->dl_timer);
dl_se->dl_defer_armed = 0;
dl_se->dl_throttled = 0;
+ dl_se->dl_defer_idle = 0;
+ dl_se->dl_server_active = 0;
}
void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
- dl_server_has_tasks_f has_tasks,
dl_server_pick_f pick_task)
{
dl_se->rq = rq;
- dl_se->server_has_tasks = has_tasks;
dl_se->server_pick_task = pick_task;
}
+void sched_init_dl_servers(void)
+{
+ int cpu;
+ struct rq *rq;
+ struct sched_dl_entity *dl_se;
+
+ for_each_online_cpu(cpu) {
+ u64 runtime = 50 * NSEC_PER_MSEC;
+ u64 period = 1000 * NSEC_PER_MSEC;
+
+ rq = cpu_rq(cpu);
+
+ guard(rq_lock_irq)(rq);
+
+ dl_se = &rq->fair_server;
+
+ WARN_ON(dl_server(dl_se));
+
+ dl_server_apply_params(dl_se, runtime, period, 1);
+
+ dl_se->dl_server = 1;
+ dl_se->dl_defer = 1;
+ setup_new_dl_entity(dl_se);
+ }
+}
+
void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
{
u64 new_bw = dl_se->dl_bw;
@@ -1817,15 +1992,12 @@ static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
{
struct hrtimer *timer = &dl_se->inactive_timer;
- hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
- timer->function = inactive_task_timer;
+ hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
}
#define __node_2_dle(node) \
rb_entry((node), struct sched_dl_entity, rb_node)
-#ifdef CONFIG_SMP
-
static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
{
struct rq *rq = rq_of_dl_rq(dl_rq);
@@ -1850,7 +2022,7 @@ static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
if (!dl_rq->dl_nr_running) {
dl_rq->earliest_dl.curr = 0;
dl_rq->earliest_dl.next = 0;
- cpudl_clear(&rq->rd->cpudl, rq->cpu);
+ cpudl_clear(&rq->rd->cpudl, rq->cpu, rq->online);
cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
} else {
struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
@@ -1861,20 +2033,15 @@ static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
}
}
-#else
-
-static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
-static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
-
-#endif /* CONFIG_SMP */
-
static inline
void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
u64 deadline = dl_se->deadline;
dl_rq->dl_nr_running++;
- add_nr_running(rq_of_dl_rq(dl_rq), 1);
+
+ if (!dl_server(dl_se))
+ add_nr_running(rq_of_dl_rq(dl_rq), 1);
inc_dl_deadline(dl_rq, deadline);
}
@@ -1884,7 +2051,9 @@ void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
WARN_ON(!dl_rq->dl_nr_running);
dl_rq->dl_nr_running--;
- sub_nr_running(rq_of_dl_rq(dl_rq), 1);
+
+ if (!dl_server(dl_se))
+ sub_nr_running(rq_of_dl_rq(dl_rq), 1);
dec_dl_deadline(dl_rq, dl_se->deadline);
}
@@ -2042,6 +2211,7 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
} else if (flags & ENQUEUE_REPLENISH) {
replenish_dl_entity(dl_se);
} else if ((flags & ENQUEUE_RESTORE) &&
+ !is_dl_boosted(dl_se) &&
dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
setup_new_dl_entity(dl_se);
}
@@ -2089,7 +2259,7 @@ static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
* or "inactive")
*/
if (flags & DEQUEUE_SLEEP)
- task_non_contending(dl_se);
+ task_non_contending(dl_se, true);
}
static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
@@ -2112,13 +2282,8 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
* The replenish timer needs to be canceled. No
* problem if it fires concurrently: boosted threads
* are ignored in dl_task_timer().
- *
- * If the timer callback was running (hrtimer_try_to_cancel == -1),
- * it will eventually call put_task_struct().
*/
- if (hrtimer_try_to_cancel(&p->dl.dl_timer) == 1 &&
- !dl_server(&p->dl))
- put_task_struct(p);
+ cancel_replenish_timer(&p->dl);
p->dl.dl_throttled = 0;
}
} else if (!dl_prio(p->normal_prio)) {
@@ -2150,6 +2315,9 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
if (dl_server(&p->dl))
return;
+ if (task_is_blocked(p))
+ return;
+
if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
enqueue_pushable_dl_task(rq, p);
}
@@ -2186,7 +2354,7 @@ static void yield_task_dl(struct rq *rq)
* it and the bandwidth timer will wake it up and will give it
* new scheduling parameters (thanks to dl_yielded=1).
*/
- rq->curr->dl.dl_yielded = 1;
+ rq->donor->dl.dl_yielded = 1;
update_rq_clock(rq);
update_curr_dl(rq);
@@ -2198,8 +2366,6 @@ static void yield_task_dl(struct rq *rq)
rq_clock_skip_update(rq);
}
-#ifdef CONFIG_SMP
-
static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
struct rq *rq)
{
@@ -2218,7 +2384,7 @@ select_task_rq_dl(struct task_struct *p, int cpu, int flags)
struct rq *rq;
if (!(flags & WF_TTWU))
- goto out;
+ return cpu;
rq = cpu_rq(cpu);
@@ -2256,7 +2422,6 @@ select_task_rq_dl(struct task_struct *p, int cpu, int flags)
}
rcu_read_unlock();
-out:
return cpu;
}
@@ -2286,8 +2451,7 @@ static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused
* will not touch the rq's active utilization,
* so we are still safe.
*/
- if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
- put_task_struct(p);
+ cancel_inactive_timer(&p->dl);
}
sub_rq_bw(&p->dl, &rq->dl);
rq_unlock(rq, &rf);
@@ -2330,7 +2494,6 @@ static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
return sched_stop_runnable(rq) || sched_dl_runnable(rq);
}
-#endif /* CONFIG_SMP */
/*
* Only called when both the current and waking task are -deadline
@@ -2344,7 +2507,6 @@ static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
return;
}
-#ifdef CONFIG_SMP
/*
* In the unlikely case current and p have the same deadline
* let us try to decide what's the best thing to do...
@@ -2352,7 +2514,6 @@ static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
if ((p->dl.deadline == rq->donor->dl.deadline) &&
!test_tsk_need_resched(rq->curr))
check_preempt_equal_dl(rq, p);
-#endif /* CONFIG_SMP */
}
#ifdef CONFIG_SCHED_HRTICK
@@ -2360,11 +2521,11 @@ static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
{
hrtick_start(rq, dl_se->runtime);
}
-#else /* !CONFIG_SCHED_HRTICK */
+#else /* !CONFIG_SCHED_HRTICK: */
static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
{
}
-#endif
+#endif /* !CONFIG_SCHED_HRTICK */
static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
{
@@ -2404,7 +2565,7 @@ static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
* __pick_next_task_dl - Helper to pick the next -deadline task to run.
* @rq: The runqueue to pick the next task from.
*/
-static struct task_struct *__pick_task_dl(struct rq *rq)
+static struct task_struct *__pick_task_dl(struct rq *rq, struct rq_flags *rf)
{
struct sched_dl_entity *dl_se;
struct dl_rq *dl_rq = &rq->dl;
@@ -2418,10 +2579,9 @@ again:
WARN_ON_ONCE(!dl_se);
if (dl_server(dl_se)) {
- p = dl_se->server_pick_task(dl_se);
+ p = dl_se->server_pick_task(dl_se, rf);
if (!p) {
- dl_se->dl_yielded = 1;
- update_curr_dl_se(rq, dl_se, 0);
+ dl_server_stop(dl_se);
goto again;
}
rq->dl_server = dl_se;
@@ -2432,9 +2592,9 @@ again:
return p;
}
-static struct task_struct *pick_task_dl(struct rq *rq)
+static struct task_struct *pick_task_dl(struct rq *rq, struct rq_flags *rf)
{
- return __pick_task_dl(rq);
+ return __pick_task_dl(rq, rf);
}
static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
@@ -2448,6 +2608,10 @@ static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_s
update_curr_dl(rq);
update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
+
+ if (task_is_blocked(p))
+ return;
+
if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
enqueue_pushable_dl_task(rq, p);
}
@@ -2483,8 +2647,6 @@ static void task_fork_dl(struct task_struct *p)
*/
}
-#ifdef CONFIG_SMP
-
/* Only try algorithms three times */
#define DL_MAX_TRIES 3
@@ -2501,21 +2663,19 @@ static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu
return NULL;
next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
-
-next_node:
- if (next_node) {
+ while (next_node) {
p = __node_2_pdl(next_node);
if (task_is_pushable(rq, p, cpu))
return p;
next_node = rb_next(next_node);
- goto next_node;
}
return NULL;
}
+/* Access rule: must be called on local CPU with preemption disabled */
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
static int find_later_rq(struct task_struct *task)
@@ -2605,6 +2765,25 @@ static int find_later_rq(struct task_struct *task)
return -1;
}
+static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
+{
+ struct task_struct *p;
+
+ if (!has_pushable_dl_tasks(rq))
+ return NULL;
+
+ p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
+
+ WARN_ON_ONCE(rq->cpu != task_cpu(p));
+ WARN_ON_ONCE(task_current(rq, p));
+ WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
+
+ WARN_ON_ONCE(!task_on_rq_queued(p));
+ WARN_ON_ONCE(!dl_task(p));
+
+ return p;
+}
+
/* Locks the rq it finds */
static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
{
@@ -2632,12 +2811,37 @@ static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
/* Retry if something changed. */
if (double_lock_balance(rq, later_rq)) {
- if (unlikely(task_rq(task) != rq ||
+ /*
+ * double_lock_balance had to release rq->lock, in the
+ * meantime, task may no longer be fit to be migrated.
+ * Check the following to ensure that the task is
+ * still suitable for migration:
+ * 1. It is possible the task was scheduled,
+ * migrate_disabled was set and then got preempted,
+ * so we must check the task migration disable
+ * flag.
+ * 2. The CPU picked is in the task's affinity.
+ * 3. For throttled task (dl_task_offline_migration),
+ * check the following:
+ * - the task is not on the rq anymore (it was
+ * migrated)
+ * - the task is not on CPU anymore
+ * - the task is still a dl task
+ * - the task is not queued on the rq anymore
+ * 4. For the non-throttled task (push_dl_task), the
+ * check to ensure that this task is still at the
+ * head of the pushable tasks list is enough.
+ */
+ if (unlikely(is_migration_disabled(task) ||
!cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
- task_on_cpu(rq, task) ||
- !dl_task(task) ||
- is_migration_disabled(task) ||
- !task_on_rq_queued(task))) {
+ (task->dl.dl_throttled &&
+ (task_rq(task) != rq ||
+ task_on_cpu(rq, task) ||
+ !dl_task(task) ||
+ !task_on_rq_queued(task))) ||
+ (!task->dl.dl_throttled &&
+ task != pick_next_pushable_dl_task(rq)))) {
+
double_unlock_balance(rq, later_rq);
later_rq = NULL;
break;
@@ -2660,25 +2864,6 @@ static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
return later_rq;
}
-static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
-{
- struct task_struct *p;
-
- if (!has_pushable_dl_tasks(rq))
- return NULL;
-
- p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
-
- WARN_ON_ONCE(rq->cpu != task_cpu(p));
- WARN_ON_ONCE(task_current(rq, p));
- WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
-
- WARN_ON_ONCE(!task_on_rq_queued(p));
- WARN_ON_ONCE(!dl_task(p));
-
- return p;
-}
-
/*
* See if the non running -deadline tasks on this rq
* can be sent to some other CPU where they can preempt
@@ -2909,9 +3094,10 @@ static void rq_online_dl(struct rq *rq)
if (rq->dl.overloaded)
dl_set_overload(rq);
- cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
if (rq->dl.dl_nr_running > 0)
cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
+ else
+ cpudl_clear(&rq->rd->cpudl, rq->cpu, true);
}
/* Assumes rq->lock is held */
@@ -2920,8 +3106,7 @@ static void rq_offline_dl(struct rq *rq)
if (rq->dl.overloaded)
dl_clear_overload(rq);
- cpudl_clear(&rq->rd->cpudl, rq->cpu);
- cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
+ cpudl_clear(&rq->rd->cpudl, rq->cpu, false);
}
void __init init_sched_dl_class(void)
@@ -2933,40 +3118,101 @@ void __init init_sched_dl_class(void)
GFP_KERNEL, cpu_to_node(i));
}
+/*
+ * This function always returns a non-empty bitmap in @cpus. This is because
+ * if a root domain has reserved bandwidth for DL tasks, the DL bandwidth
+ * check will prevent CPU hotplug from deactivating all CPUs in that domain.
+ */
+static void dl_get_task_effective_cpus(struct task_struct *p, struct cpumask *cpus)
+{
+ const struct cpumask *hk_msk;
+
+ hk_msk = housekeeping_cpumask(HK_TYPE_DOMAIN);
+ if (housekeeping_enabled(HK_TYPE_DOMAIN)) {
+ if (!cpumask_intersects(p->cpus_ptr, hk_msk)) {
+ /*
+ * CPUs isolated by isolcpu="domain" always belong to
+ * def_root_domain.
+ */
+ cpumask_andnot(cpus, cpu_active_mask, hk_msk);
+ return;
+ }
+ }
+
+ /*
+ * If a root domain holds a DL task, it must have active CPUs. So
+ * active CPUs can always be found by walking up the task's cpuset
+ * hierarchy up to the partition root.
+ */
+ cpuset_cpus_allowed_locked(p, cpus);
+}
+
+/* The caller should hold cpuset_mutex */
void dl_add_task_root_domain(struct task_struct *p)
{
struct rq_flags rf;
struct rq *rq;
struct dl_bw *dl_b;
+ unsigned int cpu;
+ struct cpumask *msk = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
- if (!dl_task(p)) {
+ if (!dl_task(p) || dl_entity_is_special(&p->dl)) {
raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
return;
}
- rq = __task_rq_lock(p, &rf);
-
+ /*
+ * Get an active rq, whose rq->rd traces the correct root
+ * domain.
+ * Ideally this would be under cpuset reader lock until rq->rd is
+ * fetched. However, sleepable locks cannot nest inside pi_lock, so we
+ * rely on the caller of dl_add_task_root_domain() holds 'cpuset_mutex'
+ * to guarantee the CPU stays in the cpuset.
+ */
+ dl_get_task_effective_cpus(p, msk);
+ cpu = cpumask_first_and(cpu_active_mask, msk);
+ BUG_ON(cpu >= nr_cpu_ids);
+ rq = cpu_rq(cpu);
dl_b = &rq->rd->dl_bw;
- raw_spin_lock(&dl_b->lock);
+ /* End of fetching rd */
+ raw_spin_lock(&dl_b->lock);
__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
-
raw_spin_unlock(&dl_b->lock);
-
- task_rq_unlock(rq, p, &rf);
+ raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
}
void dl_clear_root_domain(struct root_domain *rd)
{
- unsigned long flags;
+ int i;
+
+ guard(raw_spinlock_irqsave)(&rd->dl_bw.lock);
- raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
+ /*
+ * Reset total_bw to zero and extra_bw to max_bw so that next
+ * loop will add dl-servers contributions back properly,
+ */
rd->dl_bw.total_bw = 0;
- raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
+ for_each_cpu(i, rd->span)
+ cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw;
+
+ /*
+ * dl_servers are not tasks. Since dl_add_task_root_domain ignores
+ * them, we need to account for them here explicitly.
+ */
+ for_each_cpu(i, rd->span) {
+ struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server;
+
+ if (dl_server(dl_se) && cpu_active(i))
+ __dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i));
+ }
}
-#endif /* CONFIG_SMP */
+void dl_clear_root_domain_cpu(int cpu)
+{
+ dl_clear_root_domain(cpu_rq(cpu)->rd);
+}
static void switched_from_dl(struct rq *rq, struct task_struct *p)
{
@@ -2979,7 +3225,7 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p)
* will reset the task parameters.
*/
if (task_on_rq_queued(p) && p->dl.dl_runtime)
- task_non_contending(&p->dl);
+ task_non_contending(&p->dl, false);
/*
* In case a task is setscheduled out from SCHED_DEADLINE we need to
@@ -3024,8 +3270,7 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p)
*/
static void switched_to_dl(struct rq *rq, struct task_struct *p)
{
- if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
- put_task_struct(p);
+ cancel_inactive_timer(&p->dl);
/*
* In case a task is setscheduled to SCHED_DEADLINE we need to keep
@@ -3041,10 +3286,8 @@ static void switched_to_dl(struct rq *rq, struct task_struct *p)
}
if (rq->donor != p) {
-#ifdef CONFIG_SMP
if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
deadline_queue_push_tasks(rq);
-#endif
if (dl_task(rq->donor))
wakeup_preempt_dl(rq, p, 0);
else
@@ -3054,24 +3297,24 @@ static void switched_to_dl(struct rq *rq, struct task_struct *p)
}
}
+static u64 get_prio_dl(struct rq *rq, struct task_struct *p)
+{
+ return p->dl.deadline;
+}
+
/*
* If the scheduling parameters of a -deadline task changed,
* a push or pull operation might be needed.
*/
-static void prio_changed_dl(struct rq *rq, struct task_struct *p,
- int oldprio)
+static void prio_changed_dl(struct rq *rq, struct task_struct *p, u64 old_deadline)
{
if (!task_on_rq_queued(p))
return;
-#ifdef CONFIG_SMP
- /*
- * This might be too much, but unfortunately
- * we don't have the old deadline value, and
- * we can't argue if the task is increasing
- * or lowering its prio, so...
- */
- if (!rq->dl.overloaded)
+ if (p->dl.deadline == old_deadline)
+ return;
+
+ if (dl_time_before(old_deadline, p->dl.deadline))
deadline_queue_pull_task(rq);
if (task_current_donor(rq, p)) {
@@ -3093,13 +3336,6 @@ static void prio_changed_dl(struct rq *rq, struct task_struct *p,
dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
resched_curr(rq);
}
-#else
- /*
- * We don't know if p has a earlier or later deadline, so let's blindly
- * set a (maybe not needed) rescheduling point.
- */
- resched_curr(rq);
-#endif
}
#ifdef CONFIG_SCHED_CORE
@@ -3111,6 +3347,8 @@ static int task_is_throttled_dl(struct task_struct *p, int cpu)
DEFINE_SCHED_CLASS(dl) = {
+ .queue_mask = 8,
+
.enqueue_task = enqueue_task_dl,
.dequeue_task = dequeue_task_dl,
.yield_task = yield_task_dl,
@@ -3121,7 +3359,6 @@ DEFINE_SCHED_CLASS(dl) = {
.put_prev_task = put_prev_task_dl,
.set_next_task = set_next_task_dl,
-#ifdef CONFIG_SMP
.balance = balance_dl,
.select_task_rq = select_task_rq_dl,
.migrate_task_rq = migrate_task_rq_dl,
@@ -3130,11 +3367,11 @@ DEFINE_SCHED_CLASS(dl) = {
.rq_offline = rq_offline_dl,
.task_woken = task_woken_dl,
.find_lock_rq = find_lock_later_rq,
-#endif
.task_tick = task_tick_dl,
.task_fork = task_fork_dl,
+ .get_prio = get_prio_dl,
.prio_changed = prio_changed_dl,
.switched_from = switched_from_dl,
.switched_to = switched_to_dl,
@@ -3145,15 +3382,18 @@ DEFINE_SCHED_CLASS(dl) = {
#endif
};
-/* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
-static u64 dl_generation;
+/*
+ * Used for dl_bw check and update, used under sched_rt_handler()::mutex and
+ * sched_domains_mutex.
+ */
+u64 dl_cookie;
int sched_dl_global_validate(void)
{
u64 runtime = global_rt_runtime();
u64 period = global_rt_period();
u64 new_bw = to_ratio(period, runtime);
- u64 gen = ++dl_generation;
+ u64 cookie = ++dl_cookie;
struct dl_bw *dl_b;
int cpu, cpus, ret = 0;
unsigned long flags;
@@ -3163,10 +3403,10 @@ int sched_dl_global_validate(void)
* value smaller than the currently allocated bandwidth in
* any of the root_domains.
*/
- for_each_possible_cpu(cpu) {
+ for_each_online_cpu(cpu) {
rcu_read_lock_sched();
- if (dl_bw_visited(cpu, gen))
+ if (dl_bw_visited(cpu, cookie))
goto next;
dl_b = dl_bw_of(cpu);
@@ -3203,7 +3443,7 @@ static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
void sched_dl_do_global(void)
{
u64 new_bw = -1;
- u64 gen = ++dl_generation;
+ u64 cookie = ++dl_cookie;
struct dl_bw *dl_b;
int cpu;
unsigned long flags;
@@ -3211,10 +3451,13 @@ void sched_dl_do_global(void)
if (global_rt_runtime() != RUNTIME_INF)
new_bw = to_ratio(global_rt_period(), global_rt_runtime());
+ for_each_possible_cpu(cpu)
+ init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
+
for_each_possible_cpu(cpu) {
rcu_read_lock_sched();
- if (dl_bw_visited(cpu, gen)) {
+ if (dl_bw_visited(cpu, cookie)) {
rcu_read_unlock_sched();
continue;
}
@@ -3226,7 +3469,6 @@ void sched_dl_do_global(void)
raw_spin_unlock_irqrestore(&dl_b->lock, flags);
rcu_read_unlock_sched();
- init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
}
}
@@ -3427,7 +3669,6 @@ bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
return false;
}
-#ifdef CONFIG_SMP
int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
const struct cpumask *trial)
{
@@ -3448,29 +3689,31 @@ int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
}
enum dl_bw_request {
- dl_bw_req_check_overflow = 0,
+ dl_bw_req_deactivate = 0,
dl_bw_req_alloc,
dl_bw_req_free
};
static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
{
- unsigned long flags;
+ unsigned long flags, cap;
struct dl_bw *dl_b;
bool overflow = 0;
+ u64 fair_server_bw = 0;
rcu_read_lock_sched();
dl_b = dl_bw_of(cpu);
raw_spin_lock_irqsave(&dl_b->lock, flags);
- if (req == dl_bw_req_free) {
+ cap = dl_bw_capacity(cpu);
+ switch (req) {
+ case dl_bw_req_free:
__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
- } else {
- unsigned long cap = dl_bw_capacity(cpu);
-
+ break;
+ case dl_bw_req_alloc:
overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
- if (req == dl_bw_req_alloc && !overflow) {
+ if (!overflow) {
/*
* We reserve space in the destination
* root_domain, as we can't fail after this point.
@@ -3479,6 +3722,42 @@ static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
*/
__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
}
+ break;
+ case dl_bw_req_deactivate:
+ /*
+ * cpu is not off yet, but we need to do the math by
+ * considering it off already (i.e., what would happen if we
+ * turn cpu off?).
+ */
+ cap -= arch_scale_cpu_capacity(cpu);
+
+ /*
+ * cpu is going offline and NORMAL tasks will be moved away
+ * from it. We can thus discount dl_server bandwidth
+ * contribution as it won't need to be servicing tasks after
+ * the cpu is off.
+ */
+ if (cpu_rq(cpu)->fair_server.dl_server)
+ fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw;
+
+ /*
+ * Not much to check if no DEADLINE bandwidth is present.
+ * dl_servers we can discount, as tasks will be moved out the
+ * offlined CPUs anyway.
+ */
+ if (dl_b->total_bw - fair_server_bw > 0) {
+ /*
+ * Leaving at least one CPU for DEADLINE tasks seems a
+ * wise thing to do. As said above, cpu is not offline
+ * yet, so account for that.
+ */
+ if (dl_bw_cpus(cpu) - 1)
+ overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0);
+ else
+ overflow = 1;
+ }
+
+ break;
}
raw_spin_unlock_irqrestore(&dl_b->lock, flags);
@@ -3487,9 +3766,9 @@ static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
return overflow ? -EBUSY : 0;
}
-int dl_bw_check_overflow(int cpu)
+int dl_bw_deactivate(int cpu)
{
- return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
+ return dl_bw_manage(dl_bw_req_deactivate, cpu, 0);
}
int dl_bw_alloc(int cpu, u64 dl_bw)
@@ -3501,11 +3780,8 @@ void dl_bw_free(int cpu, u64 dl_bw)
{
dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
}
-#endif
-#ifdef CONFIG_SCHED_DEBUG
void print_dl_stats(struct seq_file *m, int cpu)
{
print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
}
-#endif /* CONFIG_SCHED_DEBUG */
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index a48b2a701ec2..41caa22e0680 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -6,6 +6,9 @@
*
* Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
*/
+#include <linux/debugfs.h>
+#include <linux/nmi.h>
+#include "sched.h"
/*
* This allows printing both to /sys/kernel/debug/sched/debug and
@@ -90,10 +93,10 @@ static void sched_feat_enable(int i)
{
static_key_enable_cpuslocked(&sched_feat_keys[i]);
}
-#else
+#else /* !CONFIG_JUMP_LABEL: */
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
-#endif /* CONFIG_JUMP_LABEL */
+#endif /* !CONFIG_JUMP_LABEL */
static int sched_feat_set(char *cmp)
{
@@ -166,8 +169,6 @@ static const struct file_operations sched_feat_fops = {
.release = single_release,
};
-#ifdef CONFIG_SMP
-
static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
@@ -214,8 +215,6 @@ static const struct file_operations sched_scaling_fops = {
.release = single_release,
};
-#endif /* SMP */
-
#ifdef CONFIG_PREEMPT_DYNAMIC
static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
@@ -244,11 +243,13 @@ static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
static int sched_dynamic_show(struct seq_file *m, void *v)
{
- static const char * preempt_modes[] = {
- "none", "voluntary", "full", "lazy",
- };
- int j = ARRAY_SIZE(preempt_modes) - !IS_ENABLED(CONFIG_ARCH_HAS_PREEMPT_LAZY);
int i = IS_ENABLED(CONFIG_PREEMPT_RT) * 2;
+ int j;
+
+ /* Count entries in NULL terminated preempt_modes */
+ for (j = 0; preempt_modes[j]; j++)
+ ;
+ j -= !IS_ENABLED(CONFIG_ARCH_HAS_PREEMPT_LAZY);
for (; i < j; i++) {
if (preempt_dynamic_mode == i)
@@ -281,7 +282,6 @@ static const struct file_operations sched_dynamic_fops = {
__read_mostly bool sched_debug_verbose;
-#ifdef CONFIG_SMP
static struct dentry *sd_dentry;
@@ -292,7 +292,7 @@ static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf,
bool orig;
cpus_read_lock();
- mutex_lock(&sched_domains_mutex);
+ sched_domains_mutex_lock();
orig = sched_debug_verbose;
result = debugfs_write_file_bool(filp, ubuf, cnt, ppos);
@@ -304,14 +304,11 @@ static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf,
sd_dentry = NULL;
}
- mutex_unlock(&sched_domains_mutex);
+ sched_domains_mutex_unlock();
cpus_read_unlock();
return result;
}
-#else
-#define sched_verbose_write debugfs_write_file_bool
-#endif
static const struct file_operations sched_verbose_fops = {
.read = debugfs_read_file_bool,
@@ -379,10 +376,8 @@ static ssize_t sched_fair_server_write(struct file *filp, const char __user *ubu
return -EINVAL;
}
- if (rq->cfs.h_nr_running) {
- update_rq_clock(rq);
- dl_server_stop(&rq->fair_server);
- }
+ update_rq_clock(rq);
+ dl_server_stop(&rq->fair_server);
retval = dl_server_apply_params(&rq->fair_server, runtime, period, 0);
if (retval)
@@ -392,7 +387,7 @@ static ssize_t sched_fair_server_write(struct file *filp, const char __user *ubu
printk_deferred("Fair server disabled in CPU %d, system may crash due to starvation.\n",
cpu_of(rq));
- if (rq->cfs.h_nr_running)
+ if (rq->cfs.h_nr_queued)
dl_server_start(&rq->fair_server);
}
@@ -510,15 +505,13 @@ static __init int sched_init_debug(void)
debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
-#ifdef CONFIG_SMP
debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
- mutex_lock(&sched_domains_mutex);
+ sched_domains_mutex_lock();
update_sched_domain_debugfs();
- mutex_unlock(&sched_domains_mutex);
-#endif
+ sched_domains_mutex_unlock();
#ifdef CONFIG_NUMA_BALANCING
numa = debugfs_create_dir("numa_balancing", debugfs_sched);
@@ -528,7 +521,7 @@ static __init int sched_init_debug(void)
debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold);
-#endif
+#endif /* CONFIG_NUMA_BALANCING */
debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
@@ -538,8 +531,6 @@ static __init int sched_init_debug(void)
}
late_initcall(sched_init_debug);
-#ifdef CONFIG_SMP
-
static cpumask_var_t sd_sysctl_cpus;
static int sd_flags_show(struct seq_file *m, void *v)
@@ -586,6 +577,10 @@ static void register_sd(struct sched_domain *sd, struct dentry *parent)
debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops);
debugfs_create_u32("level", 0444, parent, (u32 *)&sd->level);
+
+ if (sd->flags & SD_ASYM_PACKING)
+ debugfs_create_u32("group_asym_prefer_cpu", 0444, parent,
+ (u32 *)&sd->groups->asym_prefer_cpu);
}
void update_sched_domain_debugfs(void)
@@ -646,8 +641,6 @@ void dirty_sched_domain_sysctl(int cpu)
__cpumask_set_cpu(cpu, sd_sysctl_cpus);
}
-#endif /* CONFIG_SMP */
-
#ifdef CONFIG_FAIR_GROUP_SCHED
static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
{
@@ -684,18 +677,16 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
}
P(se->load.weight);
-#ifdef CONFIG_SMP
P(se->avg.load_avg);
P(se->avg.util_avg);
P(se->avg.runnable_avg);
-#endif
#undef PN_SCHEDSTAT
#undef PN
#undef P_SCHEDSTAT
#undef P
}
-#endif
+#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_CGROUP_SCHED
static DEFINE_SPINLOCK(sched_debug_lock);
@@ -805,7 +796,7 @@ static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
{
- s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, left_deadline = -1, spread;
+ s64 left_vruntime = -1, zero_vruntime, right_vruntime = -1, left_deadline = -1, spread;
struct sched_entity *last, *first, *root;
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
@@ -828,29 +819,26 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
last = __pick_last_entity(cfs_rq);
if (last)
right_vruntime = last->vruntime;
- min_vruntime = cfs_rq->min_vruntime;
+ zero_vruntime = cfs_rq->zero_vruntime;
raw_spin_rq_unlock_irqrestore(rq, flags);
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_deadline",
SPLIT_NS(left_deadline));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_vruntime",
SPLIT_NS(left_vruntime));
- SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
- SPLIT_NS(min_vruntime));
+ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "zero_vruntime",
+ SPLIT_NS(zero_vruntime));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "avg_vruntime",
SPLIT_NS(avg_vruntime(cfs_rq)));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "right_vruntime",
SPLIT_NS(right_vruntime));
spread = right_vruntime - left_vruntime;
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread));
- SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
- SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
- SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running",
- cfs_rq->idle_nr_running);
- SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running",
- cfs_rq->idle_h_nr_running);
+ SEQ_printf(m, " .%-30s: %d\n", "nr_queued", cfs_rq->nr_queued);
+ SEQ_printf(m, " .%-30s: %d\n", "h_nr_runnable", cfs_rq->h_nr_runnable);
+ SEQ_printf(m, " .%-30s: %d\n", "h_nr_queued", cfs_rq->h_nr_queued);
+ SEQ_printf(m, " .%-30s: %d\n", "h_nr_idle", cfs_rq->h_nr_idle);
SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
-#ifdef CONFIG_SMP
SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
cfs_rq->avg.load_avg);
SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
@@ -870,8 +858,7 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
cfs_rq->tg_load_avg_contrib);
SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
atomic_long_read(&cfs_rq->tg->load_avg));
-#endif
-#endif
+#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_CFS_BANDWIDTH
SEQ_printf(m, " .%-30s: %d\n", "throttled",
cfs_rq->throttled);
@@ -925,11 +912,7 @@ void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
PU(dl_nr_running);
-#ifdef CONFIG_SMP
dl_bw = &cpu_rq(cpu)->rd->dl_bw;
-#else
- dl_bw = &dl_rq->dl_bw;
-#endif
SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
@@ -947,9 +930,9 @@ static void print_cpu(struct seq_file *m, int cpu)
SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
cpu, freq / 1000, (freq % 1000));
}
-#else
+#else /* !CONFIG_X86: */
SEQ_printf(m, "cpu#%d\n", cpu);
-#endif
+#endif /* !CONFIG_X86 */
#define P(x) \
do { \
@@ -972,12 +955,10 @@ do { \
#undef P
#undef PN
-#ifdef CONFIG_SMP
#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
P64(avg_idle);
P64(max_idle_balance_cost);
#undef P64
-#endif
#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
if (schedstat_enabled()) {
@@ -1159,7 +1140,7 @@ static void sched_show_numa(struct task_struct *p, struct seq_file *m)
SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
task_node(p), task_numa_group_id(p));
show_numa_stats(p, m);
-#endif
+#endif /* CONFIG_NUMA_BALANCING */
}
void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
@@ -1243,7 +1224,6 @@ void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
__PS("nr_involuntary_switches", p->nivcsw);
P(se.load.weight);
-#ifdef CONFIG_SMP
P(se.avg.load_sum);
P(se.avg.runnable_sum);
P(se.avg.util_sum);
@@ -1252,18 +1232,19 @@ void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
P(se.avg.util_avg);
P(se.avg.last_update_time);
PM(se.avg.util_est, ~UTIL_AVG_UNCHANGED);
-#endif
#ifdef CONFIG_UCLAMP_TASK
__PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
__PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
__PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
__PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
-#endif
+#endif /* CONFIG_UCLAMP_TASK */
P(policy);
P(prio);
if (task_has_dl_policy(p)) {
P(dl.runtime);
P(dl.deadline);
+ } else if (fair_policy(p->policy)) {
+ P(se.slice);
}
#ifdef CONFIG_SCHED_CLASS_EXT
__PS("ext.enabled", task_on_scx(p));
@@ -1294,8 +1275,10 @@ void resched_latency_warn(int cpu, u64 latency)
{
static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
- WARN(__ratelimit(&latency_check_ratelimit),
- "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
- "without schedule\n",
- cpu, latency, cpu_rq(cpu)->ticks_without_resched);
+ if (likely(!__ratelimit(&latency_check_ratelimit)))
+ return;
+
+ pr_err("sched: CPU %d need_resched set for > %llu ns (%d ticks) without schedule\n",
+ cpu, latency, cpu_rq(cpu)->ticks_without_resched);
+ dump_stack();
}
diff --git a/kernel/sched/ext.c b/kernel/sched/ext.c
index 7fff1d045477..05f5a49e9649 100644
--- a/kernel/sched/ext.c
+++ b/kernel/sched/ext.c
@@ -6,853 +6,18 @@
* Copyright (c) 2022 Tejun Heo <tj@kernel.org>
* Copyright (c) 2022 David Vernet <dvernet@meta.com>
*/
-#define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
-
-enum scx_consts {
- SCX_DSP_DFL_MAX_BATCH = 32,
- SCX_DSP_MAX_LOOPS = 32,
- SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ,
-
- SCX_EXIT_BT_LEN = 64,
- SCX_EXIT_MSG_LEN = 1024,
- SCX_EXIT_DUMP_DFL_LEN = 32768,
-
- SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE,
-
- /*
- * Iterating all tasks may take a while. Periodically drop
- * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls.
- */
- SCX_OPS_TASK_ITER_BATCH = 32,
-};
-
-enum scx_exit_kind {
- SCX_EXIT_NONE,
- SCX_EXIT_DONE,
-
- SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */
- SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */
- SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */
- SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */
-
- SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */
- SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */
- SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */
-};
-
-/*
- * An exit code can be specified when exiting with scx_bpf_exit() or
- * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
- * respectively. The codes are 64bit of the format:
- *
- * Bits: [63 .. 48 47 .. 32 31 .. 0]
- * [ SYS ACT ] [ SYS RSN ] [ USR ]
- *
- * SYS ACT: System-defined exit actions
- * SYS RSN: System-defined exit reasons
- * USR : User-defined exit codes and reasons
- *
- * Using the above, users may communicate intention and context by ORing system
- * actions and/or system reasons with a user-defined exit code.
- */
-enum scx_exit_code {
- /* Reasons */
- SCX_ECODE_RSN_HOTPLUG = 1LLU << 32,
-
- /* Actions */
- SCX_ECODE_ACT_RESTART = 1LLU << 48,
-};
-
-/*
- * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
- * being disabled.
- */
-struct scx_exit_info {
- /* %SCX_EXIT_* - broad category of the exit reason */
- enum scx_exit_kind kind;
-
- /* exit code if gracefully exiting */
- s64 exit_code;
-
- /* textual representation of the above */
- const char *reason;
-
- /* backtrace if exiting due to an error */
- unsigned long *bt;
- u32 bt_len;
-
- /* informational message */
- char *msg;
-
- /* debug dump */
- char *dump;
-};
-
-/* sched_ext_ops.flags */
-enum scx_ops_flags {
- /*
- * Keep built-in idle tracking even if ops.update_idle() is implemented.
- */
- SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
-
- /*
- * By default, if there are no other task to run on the CPU, ext core
- * keeps running the current task even after its slice expires. If this
- * flag is specified, such tasks are passed to ops.enqueue() with
- * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
- */
- SCX_OPS_ENQ_LAST = 1LLU << 1,
-
- /*
- * An exiting task may schedule after PF_EXITING is set. In such cases,
- * bpf_task_from_pid() may not be able to find the task and if the BPF
- * scheduler depends on pid lookup for dispatching, the task will be
- * lost leading to various issues including RCU grace period stalls.
- *
- * To mask this problem, by default, unhashed tasks are automatically
- * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
- * depend on pid lookups and wants to handle these tasks directly, the
- * following flag can be used.
- */
- SCX_OPS_ENQ_EXITING = 1LLU << 2,
-
- /*
- * If set, only tasks with policy set to SCHED_EXT are attached to
- * sched_ext. If clear, SCHED_NORMAL tasks are also included.
- */
- SCX_OPS_SWITCH_PARTIAL = 1LLU << 3,
-
- /*
- * CPU cgroup support flags
- */
- SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */
-
- SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE |
- SCX_OPS_ENQ_LAST |
- SCX_OPS_ENQ_EXITING |
- SCX_OPS_SWITCH_PARTIAL |
- SCX_OPS_HAS_CGROUP_WEIGHT,
-};
-
-/* argument container for ops.init_task() */
-struct scx_init_task_args {
- /*
- * Set if ops.init_task() is being invoked on the fork path, as opposed
- * to the scheduler transition path.
- */
- bool fork;
-#ifdef CONFIG_EXT_GROUP_SCHED
- /* the cgroup the task is joining */
- struct cgroup *cgroup;
-#endif
-};
-
-/* argument container for ops.exit_task() */
-struct scx_exit_task_args {
- /* Whether the task exited before running on sched_ext. */
- bool cancelled;
-};
-
-/* argument container for ops->cgroup_init() */
-struct scx_cgroup_init_args {
- /* the weight of the cgroup [1..10000] */
- u32 weight;
-};
-
-enum scx_cpu_preempt_reason {
- /* next task is being scheduled by &sched_class_rt */
- SCX_CPU_PREEMPT_RT,
- /* next task is being scheduled by &sched_class_dl */
- SCX_CPU_PREEMPT_DL,
- /* next task is being scheduled by &sched_class_stop */
- SCX_CPU_PREEMPT_STOP,
- /* unknown reason for SCX being preempted */
- SCX_CPU_PREEMPT_UNKNOWN,
-};
-
-/*
- * Argument container for ops->cpu_acquire(). Currently empty, but may be
- * expanded in the future.
- */
-struct scx_cpu_acquire_args {};
-
-/* argument container for ops->cpu_release() */
-struct scx_cpu_release_args {
- /* the reason the CPU was preempted */
- enum scx_cpu_preempt_reason reason;
-
- /* the task that's going to be scheduled on the CPU */
- struct task_struct *task;
-};
-
-/*
- * Informational context provided to dump operations.
- */
-struct scx_dump_ctx {
- enum scx_exit_kind kind;
- s64 exit_code;
- const char *reason;
- u64 at_ns;
- u64 at_jiffies;
-};
-
-/**
- * struct sched_ext_ops - Operation table for BPF scheduler implementation
- *
- * A BPF scheduler can implement an arbitrary scheduling policy by
- * implementing and loading operations in this table. Note that a userland
- * scheduling policy can also be implemented using the BPF scheduler
- * as a shim layer.
- */
-struct sched_ext_ops {
- /**
- * select_cpu - Pick the target CPU for a task which is being woken up
- * @p: task being woken up
- * @prev_cpu: the cpu @p was on before sleeping
- * @wake_flags: SCX_WAKE_*
- *
- * Decision made here isn't final. @p may be moved to any CPU while it
- * is getting dispatched for execution later. However, as @p is not on
- * the rq at this point, getting the eventual execution CPU right here
- * saves a small bit of overhead down the line.
- *
- * If an idle CPU is returned, the CPU is kicked and will try to
- * dispatch. While an explicit custom mechanism can be added,
- * select_cpu() serves as the default way to wake up idle CPUs.
- *
- * @p may be inserted into a DSQ directly by calling
- * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped.
- * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ
- * of the CPU returned by this operation.
- *
- * Note that select_cpu() is never called for tasks that can only run
- * on a single CPU or tasks with migration disabled, as they don't have
- * the option to select a different CPU. See select_task_rq() for
- * details.
- */
- s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
-
- /**
- * enqueue - Enqueue a task on the BPF scheduler
- * @p: task being enqueued
- * @enq_flags: %SCX_ENQ_*
- *
- * @p is ready to run. Insert directly into a DSQ by calling
- * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly
- * inserted, the bpf scheduler owns @p and if it fails to dispatch @p,
- * the task will stall.
- *
- * If @p was inserted into a DSQ from ops.select_cpu(), this callback is
- * skipped.
- */
- void (*enqueue)(struct task_struct *p, u64 enq_flags);
-
- /**
- * dequeue - Remove a task from the BPF scheduler
- * @p: task being dequeued
- * @deq_flags: %SCX_DEQ_*
- *
- * Remove @p from the BPF scheduler. This is usually called to isolate
- * the task while updating its scheduling properties (e.g. priority).
- *
- * The ext core keeps track of whether the BPF side owns a given task or
- * not and can gracefully ignore spurious dispatches from BPF side,
- * which makes it safe to not implement this method. However, depending
- * on the scheduling logic, this can lead to confusing behaviors - e.g.
- * scheduling position not being updated across a priority change.
- */
- void (*dequeue)(struct task_struct *p, u64 deq_flags);
-
- /**
- * dispatch - Dispatch tasks from the BPF scheduler and/or user DSQs
- * @cpu: CPU to dispatch tasks for
- * @prev: previous task being switched out
- *
- * Called when a CPU's local dsq is empty. The operation should dispatch
- * one or more tasks from the BPF scheduler into the DSQs using
- * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ
- * using scx_bpf_dsq_move_to_local().
- *
- * The maximum number of times scx_bpf_dsq_insert() can be called
- * without an intervening scx_bpf_dsq_move_to_local() is specified by
- * ops.dispatch_max_batch. See the comments on top of the two functions
- * for more details.
- *
- * When not %NULL, @prev is an SCX task with its slice depleted. If
- * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
- * @prev->scx.flags, it is not enqueued yet and will be enqueued after
- * ops.dispatch() returns. To keep executing @prev, return without
- * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST.
- */
- void (*dispatch)(s32 cpu, struct task_struct *prev);
-
- /**
- * tick - Periodic tick
- * @p: task running currently
- *
- * This operation is called every 1/HZ seconds on CPUs which are
- * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
- * immediate dispatch cycle on the CPU.
- */
- void (*tick)(struct task_struct *p);
-
- /**
- * runnable - A task is becoming runnable on its associated CPU
- * @p: task becoming runnable
- * @enq_flags: %SCX_ENQ_*
- *
- * This and the following three functions can be used to track a task's
- * execution state transitions. A task becomes ->runnable() on a CPU,
- * and then goes through one or more ->running() and ->stopping() pairs
- * as it runs on the CPU, and eventually becomes ->quiescent() when it's
- * done running on the CPU.
- *
- * @p is becoming runnable on the CPU because it's
- *
- * - waking up (%SCX_ENQ_WAKEUP)
- * - being moved from another CPU
- * - being restored after temporarily taken off the queue for an
- * attribute change.
- *
- * This and ->enqueue() are related but not coupled. This operation
- * notifies @p's state transition and may not be followed by ->enqueue()
- * e.g. when @p is being dispatched to a remote CPU, or when @p is
- * being enqueued on a CPU experiencing a hotplug event. Likewise, a
- * task may be ->enqueue()'d without being preceded by this operation
- * e.g. after exhausting its slice.
- */
- void (*runnable)(struct task_struct *p, u64 enq_flags);
-
- /**
- * running - A task is starting to run on its associated CPU
- * @p: task starting to run
- *
- * See ->runnable() for explanation on the task state notifiers.
- */
- void (*running)(struct task_struct *p);
-
- /**
- * stopping - A task is stopping execution
- * @p: task stopping to run
- * @runnable: is task @p still runnable?
- *
- * See ->runnable() for explanation on the task state notifiers. If
- * !@runnable, ->quiescent() will be invoked after this operation
- * returns.
- */
- void (*stopping)(struct task_struct *p, bool runnable);
-
- /**
- * quiescent - A task is becoming not runnable on its associated CPU
- * @p: task becoming not runnable
- * @deq_flags: %SCX_DEQ_*
- *
- * See ->runnable() for explanation on the task state notifiers.
- *
- * @p is becoming quiescent on the CPU because it's
- *
- * - sleeping (%SCX_DEQ_SLEEP)
- * - being moved to another CPU
- * - being temporarily taken off the queue for an attribute change
- * (%SCX_DEQ_SAVE)
- *
- * This and ->dequeue() are related but not coupled. This operation
- * notifies @p's state transition and may not be preceded by ->dequeue()
- * e.g. when @p is being dispatched to a remote CPU.
- */
- void (*quiescent)(struct task_struct *p, u64 deq_flags);
-
- /**
- * yield - Yield CPU
- * @from: yielding task
- * @to: optional yield target task
- *
- * If @to is NULL, @from is yielding the CPU to other runnable tasks.
- * The BPF scheduler should ensure that other available tasks are
- * dispatched before the yielding task. Return value is ignored in this
- * case.
- *
- * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
- * scheduler can implement the request, return %true; otherwise, %false.
- */
- bool (*yield)(struct task_struct *from, struct task_struct *to);
-
- /**
- * core_sched_before - Task ordering for core-sched
- * @a: task A
- * @b: task B
- *
- * Used by core-sched to determine the ordering between two tasks. See
- * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
- * core-sched.
- *
- * Both @a and @b are runnable and may or may not currently be queued on
- * the BPF scheduler. Should return %true if @a should run before @b.
- * %false if there's no required ordering or @b should run before @a.
- *
- * If not specified, the default is ordering them according to when they
- * became runnable.
- */
- bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
-
- /**
- * set_weight - Set task weight
- * @p: task to set weight for
- * @weight: new weight [1..10000]
- *
- * Update @p's weight to @weight.
- */
- void (*set_weight)(struct task_struct *p, u32 weight);
-
- /**
- * set_cpumask - Set CPU affinity
- * @p: task to set CPU affinity for
- * @cpumask: cpumask of cpus that @p can run on
- *
- * Update @p's CPU affinity to @cpumask.
- */
- void (*set_cpumask)(struct task_struct *p,
- const struct cpumask *cpumask);
-
- /**
- * update_idle - Update the idle state of a CPU
- * @cpu: CPU to udpate the idle state for
- * @idle: whether entering or exiting the idle state
- *
- * This operation is called when @rq's CPU goes or leaves the idle
- * state. By default, implementing this operation disables the built-in
- * idle CPU tracking and the following helpers become unavailable:
- *
- * - scx_bpf_select_cpu_dfl()
- * - scx_bpf_test_and_clear_cpu_idle()
- * - scx_bpf_pick_idle_cpu()
- *
- * The user also must implement ops.select_cpu() as the default
- * implementation relies on scx_bpf_select_cpu_dfl().
- *
- * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
- * tracking.
- */
- void (*update_idle)(s32 cpu, bool idle);
-
- /**
- * cpu_acquire - A CPU is becoming available to the BPF scheduler
- * @cpu: The CPU being acquired by the BPF scheduler.
- * @args: Acquire arguments, see the struct definition.
- *
- * A CPU that was previously released from the BPF scheduler is now once
- * again under its control.
- */
- void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
-
- /**
- * cpu_release - A CPU is taken away from the BPF scheduler
- * @cpu: The CPU being released by the BPF scheduler.
- * @args: Release arguments, see the struct definition.
- *
- * The specified CPU is no longer under the control of the BPF
- * scheduler. This could be because it was preempted by a higher
- * priority sched_class, though there may be other reasons as well. The
- * caller should consult @args->reason to determine the cause.
- */
- void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
-
- /**
- * init_task - Initialize a task to run in a BPF scheduler
- * @p: task to initialize for BPF scheduling
- * @args: init arguments, see the struct definition
- *
- * Either we're loading a BPF scheduler or a new task is being forked.
- * Initialize @p for BPF scheduling. This operation may block and can
- * be used for allocations, and is called exactly once for a task.
- *
- * Return 0 for success, -errno for failure. An error return while
- * loading will abort loading of the BPF scheduler. During a fork, it
- * will abort that specific fork.
- */
- s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
-
- /**
- * exit_task - Exit a previously-running task from the system
- * @p: task to exit
- *
- * @p is exiting or the BPF scheduler is being unloaded. Perform any
- * necessary cleanup for @p.
- */
- void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
-
- /**
- * enable - Enable BPF scheduling for a task
- * @p: task to enable BPF scheduling for
- *
- * Enable @p for BPF scheduling. enable() is called on @p any time it
- * enters SCX, and is always paired with a matching disable().
- */
- void (*enable)(struct task_struct *p);
-
- /**
- * disable - Disable BPF scheduling for a task
- * @p: task to disable BPF scheduling for
- *
- * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
- * Disable BPF scheduling for @p. A disable() call is always matched
- * with a prior enable() call.
- */
- void (*disable)(struct task_struct *p);
-
- /**
- * dump - Dump BPF scheduler state on error
- * @ctx: debug dump context
- *
- * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
- */
- void (*dump)(struct scx_dump_ctx *ctx);
-
- /**
- * dump_cpu - Dump BPF scheduler state for a CPU on error
- * @ctx: debug dump context
- * @cpu: CPU to generate debug dump for
- * @idle: @cpu is currently idle without any runnable tasks
- *
- * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
- * @cpu. If @idle is %true and this operation doesn't produce any
- * output, @cpu is skipped for dump.
- */
- void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
-
- /**
- * dump_task - Dump BPF scheduler state for a runnable task on error
- * @ctx: debug dump context
- * @p: runnable task to generate debug dump for
- *
- * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
- * @p.
- */
- void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
-
-#ifdef CONFIG_EXT_GROUP_SCHED
- /**
- * cgroup_init - Initialize a cgroup
- * @cgrp: cgroup being initialized
- * @args: init arguments, see the struct definition
- *
- * Either the BPF scheduler is being loaded or @cgrp created, initialize
- * @cgrp for sched_ext. This operation may block.
- *
- * Return 0 for success, -errno for failure. An error return while
- * loading will abort loading of the BPF scheduler. During cgroup
- * creation, it will abort the specific cgroup creation.
- */
- s32 (*cgroup_init)(struct cgroup *cgrp,
- struct scx_cgroup_init_args *args);
-
- /**
- * cgroup_exit - Exit a cgroup
- * @cgrp: cgroup being exited
- *
- * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
- * @cgrp for sched_ext. This operation my block.
- */
- void (*cgroup_exit)(struct cgroup *cgrp);
-
- /**
- * cgroup_prep_move - Prepare a task to be moved to a different cgroup
- * @p: task being moved
- * @from: cgroup @p is being moved from
- * @to: cgroup @p is being moved to
- *
- * Prepare @p for move from cgroup @from to @to. This operation may
- * block and can be used for allocations.
- *
- * Return 0 for success, -errno for failure. An error return aborts the
- * migration.
- */
- s32 (*cgroup_prep_move)(struct task_struct *p,
- struct cgroup *from, struct cgroup *to);
-
- /**
- * cgroup_move - Commit cgroup move
- * @p: task being moved
- * @from: cgroup @p is being moved from
- * @to: cgroup @p is being moved to
- *
- * Commit the move. @p is dequeued during this operation.
- */
- void (*cgroup_move)(struct task_struct *p,
- struct cgroup *from, struct cgroup *to);
-
- /**
- * cgroup_cancel_move - Cancel cgroup move
- * @p: task whose cgroup move is being canceled
- * @from: cgroup @p was being moved from
- * @to: cgroup @p was being moved to
- *
- * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
- * Undo the preparation.
- */
- void (*cgroup_cancel_move)(struct task_struct *p,
- struct cgroup *from, struct cgroup *to);
-
- /**
- * cgroup_set_weight - A cgroup's weight is being changed
- * @cgrp: cgroup whose weight is being updated
- * @weight: new weight [1..10000]
- *
- * Update @tg's weight to @weight.
- */
- void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
-#endif /* CONFIG_EXT_GROUP_SCHED */
-
- /*
- * All online ops must come before ops.cpu_online().
- */
-
- /**
- * cpu_online - A CPU became online
- * @cpu: CPU which just came up
- *
- * @cpu just came online. @cpu will not call ops.enqueue() or
- * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
- */
- void (*cpu_online)(s32 cpu);
-
- /**
- * cpu_offline - A CPU is going offline
- * @cpu: CPU which is going offline
- *
- * @cpu is going offline. @cpu will not call ops.enqueue() or
- * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
- */
- void (*cpu_offline)(s32 cpu);
-
- /*
- * All CPU hotplug ops must come before ops.init().
- */
-
- /**
- * init - Initialize the BPF scheduler
- */
- s32 (*init)(void);
-
- /**
- * exit - Clean up after the BPF scheduler
- * @info: Exit info
- *
- * ops.exit() is also called on ops.init() failure, which is a bit
- * unusual. This is to allow rich reporting through @info on how
- * ops.init() failed.
- */
- void (*exit)(struct scx_exit_info *info);
-
- /**
- * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
- */
- u32 dispatch_max_batch;
-
- /**
- * flags - %SCX_OPS_* flags
- */
- u64 flags;
-
- /**
- * timeout_ms - The maximum amount of time, in milliseconds, that a
- * runnable task should be able to wait before being scheduled. The
- * maximum timeout may not exceed the default timeout of 30 seconds.
- *
- * Defaults to the maximum allowed timeout value of 30 seconds.
- */
- u32 timeout_ms;
-
- /**
- * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
- * value of 32768 is used.
- */
- u32 exit_dump_len;
-
- /**
- * hotplug_seq - A sequence number that may be set by the scheduler to
- * detect when a hotplug event has occurred during the loading process.
- * If 0, no detection occurs. Otherwise, the scheduler will fail to
- * load if the sequence number does not match @scx_hotplug_seq on the
- * enable path.
- */
- u64 hotplug_seq;
-
- /**
- * name - BPF scheduler's name
- *
- * Must be a non-zero valid BPF object name including only isalnum(),
- * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
- * BPF scheduler is enabled.
- */
- char name[SCX_OPS_NAME_LEN];
-};
-
-enum scx_opi {
- SCX_OPI_BEGIN = 0,
- SCX_OPI_NORMAL_BEGIN = 0,
- SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online),
- SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online),
- SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init),
- SCX_OPI_END = SCX_OP_IDX(init),
-};
-
-enum scx_wake_flags {
- /* expose select WF_* flags as enums */
- SCX_WAKE_FORK = WF_FORK,
- SCX_WAKE_TTWU = WF_TTWU,
- SCX_WAKE_SYNC = WF_SYNC,
-};
-
-enum scx_enq_flags {
- /* expose select ENQUEUE_* flags as enums */
- SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP,
- SCX_ENQ_HEAD = ENQUEUE_HEAD,
- SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED,
-
- /* high 32bits are SCX specific */
-
- /*
- * Set the following to trigger preemption when calling
- * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the
- * current task is cleared to zero and the CPU is kicked into the
- * scheduling path. Implies %SCX_ENQ_HEAD.
- */
- SCX_ENQ_PREEMPT = 1LLU << 32,
-
- /*
- * The task being enqueued was previously enqueued on the current CPU's
- * %SCX_DSQ_LOCAL, but was removed from it in a call to the
- * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
- * invoked in a ->cpu_release() callback, and the task is again
- * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
- * task will not be scheduled on the CPU until at least the next invocation
- * of the ->cpu_acquire() callback.
- */
- SCX_ENQ_REENQ = 1LLU << 40,
-
- /*
- * The task being enqueued is the only task available for the cpu. By
- * default, ext core keeps executing such tasks but when
- * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
- * %SCX_ENQ_LAST flag set.
- *
- * The BPF scheduler is responsible for triggering a follow-up
- * scheduling event. Otherwise, Execution may stall.
- */
- SCX_ENQ_LAST = 1LLU << 41,
-
- /* high 8 bits are internal */
- __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56,
-
- SCX_ENQ_CLEAR_OPSS = 1LLU << 56,
- SCX_ENQ_DSQ_PRIQ = 1LLU << 57,
-};
-
-enum scx_deq_flags {
- /* expose select DEQUEUE_* flags as enums */
- SCX_DEQ_SLEEP = DEQUEUE_SLEEP,
-
- /* high 32bits are SCX specific */
-
- /*
- * The generic core-sched layer decided to execute the task even though
- * it hasn't been dispatched yet. Dequeue from the BPF side.
- */
- SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32,
-};
-
-enum scx_pick_idle_cpu_flags {
- SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */
-};
-
-enum scx_kick_flags {
- /*
- * Kick the target CPU if idle. Guarantees that the target CPU goes
- * through at least one full scheduling cycle before going idle. If the
- * target CPU can be determined to be currently not idle and going to go
- * through a scheduling cycle before going idle, noop.
- */
- SCX_KICK_IDLE = 1LLU << 0,
-
- /*
- * Preempt the current task and execute the dispatch path. If the
- * current task of the target CPU is an SCX task, its ->scx.slice is
- * cleared to zero before the scheduling path is invoked so that the
- * task expires and the dispatch path is invoked.
- */
- SCX_KICK_PREEMPT = 1LLU << 1,
-
- /*
- * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
- * return after the target CPU finishes picking the next task.
- */
- SCX_KICK_WAIT = 1LLU << 2,
-};
-
-enum scx_tg_flags {
- SCX_TG_ONLINE = 1U << 0,
- SCX_TG_INITED = 1U << 1,
-};
-
-enum scx_ops_enable_state {
- SCX_OPS_ENABLING,
- SCX_OPS_ENABLED,
- SCX_OPS_DISABLING,
- SCX_OPS_DISABLED,
-};
-
-static const char *scx_ops_enable_state_str[] = {
- [SCX_OPS_ENABLING] = "enabling",
- [SCX_OPS_ENABLED] = "enabled",
- [SCX_OPS_DISABLING] = "disabling",
- [SCX_OPS_DISABLED] = "disabled",
-};
+#include <linux/btf_ids.h>
+#include "ext_idle.h"
/*
- * sched_ext_entity->ops_state
- *
- * Used to track the task ownership between the SCX core and the BPF scheduler.
- * State transitions look as follows:
- *
- * NONE -> QUEUEING -> QUEUED -> DISPATCHING
- * ^ | |
- * | v v
- * \-------------------------------/
- *
- * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
- * sites for explanations on the conditions being waited upon and why they are
- * safe. Transitions out of them into NONE or QUEUED must store_release and the
- * waiters should load_acquire.
- *
- * Tracking scx_ops_state enables sched_ext core to reliably determine whether
- * any given task can be dispatched by the BPF scheduler at all times and thus
- * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
- * to try to dispatch any task anytime regardless of its state as the SCX core
- * can safely reject invalid dispatches.
+ * NOTE: sched_ext is in the process of growing multiple scheduler support and
+ * scx_root usage is in a transitional state. Naked dereferences are safe if the
+ * caller is one of the tasks attached to SCX and explicit RCU dereference is
+ * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but
+ * are used as temporary markers to indicate that the dereferences need to be
+ * updated to point to the associated scheduler instances rather than scx_root.
*/
-enum scx_ops_state {
- SCX_OPSS_NONE, /* owned by the SCX core */
- SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */
- SCX_OPSS_QUEUED, /* owned by the BPF scheduler */
- SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */
-
- /*
- * QSEQ brands each QUEUED instance so that, when dispatch races
- * dequeue/requeue, the dispatcher can tell whether it still has a claim
- * on the task being dispatched.
- *
- * As some 32bit archs can't do 64bit store_release/load_acquire,
- * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
- * 32bit machines. The dispatch race window QSEQ protects is very narrow
- * and runs with IRQ disabled. 30 bits should be sufficient.
- */
- SCX_OPSS_QSEQ_SHIFT = 2,
-};
-
-/* Use macros to ensure that the type is unsigned long for the masks */
-#define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
-#define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK)
+static struct scx_sched __rcu *scx_root;
/*
* During exit, a task may schedule after losing its PIDs. When disabling the
@@ -860,41 +25,22 @@ enum scx_ops_state {
* guarantee system safety. Maintain a dedicated task list which contains every
* task between its fork and eventual free.
*/
-static DEFINE_SPINLOCK(scx_tasks_lock);
+static DEFINE_RAW_SPINLOCK(scx_tasks_lock);
static LIST_HEAD(scx_tasks);
/* ops enable/disable */
-static struct kthread_worker *scx_ops_helper;
-static DEFINE_MUTEX(scx_ops_enable_mutex);
-DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
+static DEFINE_MUTEX(scx_enable_mutex);
+DEFINE_STATIC_KEY_FALSE(__scx_enabled);
DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
-static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
-static unsigned long scx_in_softlockup;
-static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0);
-static int scx_ops_bypass_depth;
-static bool scx_ops_init_task_enabled;
+static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED);
+static int scx_bypass_depth;
+static cpumask_var_t scx_bypass_lb_donee_cpumask;
+static cpumask_var_t scx_bypass_lb_resched_cpumask;
+static bool scx_aborting;
+static bool scx_init_task_enabled;
static bool scx_switching_all;
DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
-static struct sched_ext_ops scx_ops;
-static bool scx_warned_zero_slice;
-
-static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
-static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
-static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
-static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
-
-#ifdef CONFIG_SMP
-static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
-static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
-#endif
-
-static struct static_key_false scx_has_op[SCX_OPI_END] =
- { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
-
-static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
-static struct scx_exit_info *scx_exit_info;
-
static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
@@ -908,7 +54,7 @@ static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
/*
* The maximum amount of time in jiffies that a task may be runnable without
* being scheduled on a CPU. If this timeout is exceeded, it will trigger
- * scx_ops_error().
+ * scx_error().
*/
static unsigned long scx_watchdog_timeout;
@@ -922,23 +68,19 @@ static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
static struct delayed_work scx_watchdog_work;
-/* idle tracking */
-#ifdef CONFIG_SMP
-#ifdef CONFIG_CPUMASK_OFFSTACK
-#define CL_ALIGNED_IF_ONSTACK
-#else
-#define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
-#endif
-
-static struct {
- cpumask_var_t cpu;
- cpumask_var_t smt;
-} idle_masks CL_ALIGNED_IF_ONSTACK;
-
-#endif /* CONFIG_SMP */
+/*
+ * For %SCX_KICK_WAIT: Each CPU has a pointer to an array of kick_sync sequence
+ * numbers. The arrays are allocated with kvzalloc() as size can exceed percpu
+ * allocator limits on large machines. O(nr_cpu_ids^2) allocation, allocated
+ * lazily when enabling and freed when disabling to avoid waste when sched_ext
+ * isn't active.
+ */
+struct scx_kick_syncs {
+ struct rcu_head rcu;
+ unsigned long syncs[];
+};
-/* for %SCX_KICK_WAIT */
-static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
+static DEFINE_PER_CPU(struct scx_kick_syncs __rcu *, scx_kick_syncs);
/*
* Direct dispatch marker.
@@ -949,23 +91,12 @@ static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
*/
static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
-/*
- * Dispatch queues.
- *
- * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
- * to avoid live-locking in bypass mode where all tasks are dispatched to
- * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
- * sufficient, it can be further split.
- */
-static struct scx_dispatch_q **global_dsqs;
-
static const struct rhashtable_params dsq_hash_params = {
- .key_len = 8,
+ .key_len = sizeof_field(struct scx_dispatch_q, id),
.key_offset = offsetof(struct scx_dispatch_q, id),
.head_offset = offsetof(struct scx_dispatch_q, hash_node),
};
-static struct rhashtable dsq_hash;
static LLIST_HEAD(dsqs_to_free);
/* dispatch buf */
@@ -1012,27 +143,73 @@ static struct scx_dump_data scx_dump_data = {
/* /sys/kernel/sched_ext interface */
static struct kset *scx_kset;
-static struct kobject *scx_root_kobj;
+
+/*
+ * Parameters that can be adjusted through /sys/module/sched_ext/parameters.
+ * There usually is no reason to modify these as normal scheduler operation
+ * shouldn't be affected by them. The knobs are primarily for debugging.
+ */
+static u64 scx_slice_dfl = SCX_SLICE_DFL;
+static unsigned int scx_slice_bypass_us = SCX_SLICE_BYPASS / NSEC_PER_USEC;
+static unsigned int scx_bypass_lb_intv_us = SCX_BYPASS_LB_DFL_INTV_US;
+
+static int set_slice_us(const char *val, const struct kernel_param *kp)
+{
+ return param_set_uint_minmax(val, kp, 100, 100 * USEC_PER_MSEC);
+}
+
+static const struct kernel_param_ops slice_us_param_ops = {
+ .set = set_slice_us,
+ .get = param_get_uint,
+};
+
+static int set_bypass_lb_intv_us(const char *val, const struct kernel_param *kp)
+{
+ return param_set_uint_minmax(val, kp, 0, 10 * USEC_PER_SEC);
+}
+
+static const struct kernel_param_ops bypass_lb_intv_us_param_ops = {
+ .set = set_bypass_lb_intv_us,
+ .get = param_get_uint,
+};
+
+#undef MODULE_PARAM_PREFIX
+#define MODULE_PARAM_PREFIX "sched_ext."
+
+module_param_cb(slice_bypass_us, &slice_us_param_ops, &scx_slice_bypass_us, 0600);
+MODULE_PARM_DESC(slice_bypass_us, "bypass slice in microseconds, applied on [un]load (100us to 100ms)");
+module_param_cb(bypass_lb_intv_us, &bypass_lb_intv_us_param_ops, &scx_bypass_lb_intv_us, 0600);
+MODULE_PARM_DESC(bypass_lb_intv_us, "bypass load balance interval in microseconds (0 (disable) to 10s)");
+
+#undef MODULE_PARAM_PREFIX
#define CREATE_TRACE_POINTS
#include <trace/events/sched_ext.h>
static void process_ddsp_deferred_locals(struct rq *rq);
-static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
-static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
- s64 exit_code,
- const char *fmt, ...);
+static u32 reenq_local(struct rq *rq);
+static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags);
+static bool scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind,
+ s64 exit_code, const char *fmt, va_list args);
-#define scx_ops_error_kind(err, fmt, args...) \
- scx_ops_exit_kind((err), 0, fmt, ##args)
+static __printf(4, 5) bool scx_exit(struct scx_sched *sch,
+ enum scx_exit_kind kind, s64 exit_code,
+ const char *fmt, ...)
+{
+ va_list args;
+ bool ret;
+
+ va_start(args, fmt);
+ ret = scx_vexit(sch, kind, exit_code, fmt, args);
+ va_end(args);
-#define scx_ops_exit(code, fmt, args...) \
- scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
+ return ret;
+}
-#define scx_ops_error(fmt, args...) \
- scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
+#define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args)
+#define scx_verror(sch, fmt, args) scx_vexit((sch), SCX_EXIT_ERROR, 0, fmt, args)
-#define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
+#define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op)
static long jiffies_delta_msecs(unsigned long at, unsigned long now)
{
@@ -1060,14 +237,23 @@ static bool u32_before(u32 a, u32 b)
return (s32)(a - b) < 0;
}
-static struct scx_dispatch_q *find_global_dsq(struct task_struct *p)
+static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch,
+ struct task_struct *p)
+{
+ return sch->global_dsqs[cpu_to_node(task_cpu(p))];
+}
+
+static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id)
{
- return global_dsqs[cpu_to_node(task_cpu(p))];
+ return rhashtable_lookup(&sch->dsq_hash, &dsq_id, dsq_hash_params);
}
-static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
+static const struct sched_class *scx_setscheduler_class(struct task_struct *p)
{
- return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
+ if (p->sched_class == &stop_sched_class)
+ return &stop_sched_class;
+
+ return __setscheduler_class(p->policy, p->prio);
}
/*
@@ -1094,27 +280,56 @@ static void scx_kf_disallow(u32 mask)
current->scx.kf_mask &= ~mask;
}
-#define SCX_CALL_OP(mask, op, args...) \
+/*
+ * Track the rq currently locked.
+ *
+ * This allows kfuncs to safely operate on rq from any scx ops callback,
+ * knowing which rq is already locked.
+ */
+DEFINE_PER_CPU(struct rq *, scx_locked_rq_state);
+
+static inline void update_locked_rq(struct rq *rq)
+{
+ /*
+ * Check whether @rq is actually locked. This can help expose bugs
+ * or incorrect assumptions about the context in which a kfunc or
+ * callback is executed.
+ */
+ if (rq)
+ lockdep_assert_rq_held(rq);
+ __this_cpu_write(scx_locked_rq_state, rq);
+}
+
+#define SCX_CALL_OP(sch, mask, op, rq, args...) \
do { \
+ if (rq) \
+ update_locked_rq(rq); \
if (mask) { \
scx_kf_allow(mask); \
- scx_ops.op(args); \
+ (sch)->ops.op(args); \
scx_kf_disallow(mask); \
} else { \
- scx_ops.op(args); \
+ (sch)->ops.op(args); \
} \
+ if (rq) \
+ update_locked_rq(NULL); \
} while (0)
-#define SCX_CALL_OP_RET(mask, op, args...) \
+#define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \
({ \
- __typeof__(scx_ops.op(args)) __ret; \
+ __typeof__((sch)->ops.op(args)) __ret; \
+ \
+ if (rq) \
+ update_locked_rq(rq); \
if (mask) { \
scx_kf_allow(mask); \
- __ret = scx_ops.op(args); \
+ __ret = (sch)->ops.op(args); \
scx_kf_disallow(mask); \
} else { \
- __ret = scx_ops.op(args); \
+ __ret = (sch)->ops.op(args); \
} \
+ if (rq) \
+ update_locked_rq(NULL); \
__ret; \
})
@@ -1129,42 +344,42 @@ do { \
* scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
* the specific task.
*/
-#define SCX_CALL_OP_TASK(mask, op, task, args...) \
+#define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \
do { \
BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
current->scx.kf_tasks[0] = task; \
- SCX_CALL_OP(mask, op, task, ##args); \
+ SCX_CALL_OP((sch), mask, op, rq, task, ##args); \
current->scx.kf_tasks[0] = NULL; \
} while (0)
-#define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \
+#define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \
({ \
- __typeof__(scx_ops.op(task, ##args)) __ret; \
+ __typeof__((sch)->ops.op(task, ##args)) __ret; \
BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
current->scx.kf_tasks[0] = task; \
- __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \
+ __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \
current->scx.kf_tasks[0] = NULL; \
__ret; \
})
-#define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \
+#define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \
({ \
- __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \
+ __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \
BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
current->scx.kf_tasks[0] = task0; \
current->scx.kf_tasks[1] = task1; \
- __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \
+ __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \
current->scx.kf_tasks[0] = NULL; \
current->scx.kf_tasks[1] = NULL; \
__ret; \
})
/* @mask is constant, always inline to cull unnecessary branches */
-static __always_inline bool scx_kf_allowed(u32 mask)
+static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask)
{
if (unlikely(!(current->scx.kf_mask & mask))) {
- scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
- mask, current->scx.kf_mask);
+ scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x",
+ mask, current->scx.kf_mask);
return false;
}
@@ -1177,13 +392,13 @@ static __always_inline bool scx_kf_allowed(u32 mask)
*/
if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
(current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
- scx_ops_error("cpu_release kfunc called from a nested operation");
+ scx_error(sch, "cpu_release kfunc called from a nested operation");
return false;
}
if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
(current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
- scx_ops_error("dispatch kfunc called from a nested operation");
+ scx_error(sch, "dispatch kfunc called from a nested operation");
return false;
}
@@ -1191,29 +406,25 @@ static __always_inline bool scx_kf_allowed(u32 mask)
}
/* see SCX_CALL_OP_TASK() */
-static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
+static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch,
+ u32 mask,
struct task_struct *p)
{
- if (!scx_kf_allowed(mask))
+ if (!scx_kf_allowed(sch, mask))
return false;
if (unlikely((p != current->scx.kf_tasks[0] &&
p != current->scx.kf_tasks[1]))) {
- scx_ops_error("called on a task not being operated on");
+ scx_error(sch, "called on a task not being operated on");
return false;
}
return true;
}
-static bool scx_kf_allowed_if_unlocked(void)
-{
- return !current->scx.kf_mask;
-}
-
/**
* nldsq_next_task - Iterate to the next task in a non-local DSQ
- * @dsq: user dsq being interated
+ * @dsq: user dsq being iterated
* @cur: current position, %NULL to start iteration
* @rev: walk backwards
*
@@ -1290,10 +501,11 @@ struct bpf_iter_scx_dsq {
*/
struct scx_task_iter {
struct sched_ext_entity cursor;
- struct task_struct *locked;
+ struct task_struct *locked_task;
struct rq *rq;
struct rq_flags rf;
u32 cnt;
+ bool list_locked;
};
/**
@@ -1310,26 +522,24 @@ struct scx_task_iter {
* RCU read lock or obtaining a reference count.
*
* All tasks which existed when the iteration started are guaranteed to be
- * visited as long as they still exist.
+ * visited as long as they are not dead.
*/
static void scx_task_iter_start(struct scx_task_iter *iter)
{
- BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
- ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
+ memset(iter, 0, sizeof(*iter));
- spin_lock_irq(&scx_tasks_lock);
+ raw_spin_lock_irq(&scx_tasks_lock);
iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
list_add(&iter->cursor.tasks_node, &scx_tasks);
- iter->locked = NULL;
- iter->cnt = 0;
+ iter->list_locked = true;
}
static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
{
- if (iter->locked) {
- task_rq_unlock(iter->rq, iter->locked, &iter->rf);
- iter->locked = NULL;
+ if (iter->locked_task) {
+ task_rq_unlock(iter->rq, iter->locked_task, &iter->rf);
+ iter->locked_task = NULL;
}
}
@@ -1339,24 +549,24 @@ static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
*
* If @iter is in the middle of a locked iteration, it may be locking the rq of
* the task currently being visited in addition to scx_tasks_lock. Unlock both.
- * This function can be safely called anytime during an iteration.
+ * This function can be safely called anytime during an iteration. The next
+ * iterator operation will automatically restore the necessary locking.
*/
static void scx_task_iter_unlock(struct scx_task_iter *iter)
{
__scx_task_iter_rq_unlock(iter);
- spin_unlock_irq(&scx_tasks_lock);
+ if (iter->list_locked) {
+ iter->list_locked = false;
+ raw_spin_unlock_irq(&scx_tasks_lock);
+ }
}
-/**
- * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock()
- * @iter: iterator to re-lock
- *
- * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it
- * doesn't re-lock the rq lock. Must be called before other iterator operations.
- */
-static void scx_task_iter_relock(struct scx_task_iter *iter)
+static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter)
{
- spin_lock_irq(&scx_tasks_lock);
+ if (!iter->list_locked) {
+ raw_spin_lock_irq(&scx_tasks_lock);
+ iter->list_locked = true;
+ }
}
/**
@@ -1369,6 +579,7 @@ static void scx_task_iter_relock(struct scx_task_iter *iter)
*/
static void scx_task_iter_stop(struct scx_task_iter *iter)
{
+ __scx_task_iter_maybe_relock(iter);
list_del_init(&iter->cursor.tasks_node);
scx_task_iter_unlock(iter);
}
@@ -1378,20 +589,21 @@ static void scx_task_iter_stop(struct scx_task_iter *iter)
* @iter: iterator to walk
*
* Visit the next task. See scx_task_iter_start() for details. Locks are dropped
- * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing
- * stalls by holding scx_tasks_lock for too long.
+ * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls
+ * by holding scx_tasks_lock for too long.
*/
static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
{
struct list_head *cursor = &iter->cursor.tasks_node;
struct sched_ext_entity *pos;
- if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) {
+ if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) {
scx_task_iter_unlock(iter);
cond_resched();
- scx_task_iter_relock(iter);
}
+ __scx_task_iter_maybe_relock(iter);
+
list_for_each_entry(pos, cursor, tasks_node) {
if (&pos->tasks_node == &scx_tasks)
return NULL;
@@ -1408,7 +620,6 @@ static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
/**
* scx_task_iter_next_locked - Next non-idle task with its rq locked
* @iter: iterator to walk
- * @include_dead: Whether we should include dead tasks in the iteration
*
* Visit the non-idle task with its rq lock held. Allows callers to specify
* whether they would like to filter out dead tasks. See scx_task_iter_start()
@@ -1453,33 +664,77 @@ static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
return NULL;
iter->rq = task_rq_lock(p, &iter->rf);
- iter->locked = p;
+ iter->locked_task = p;
return p;
}
-static enum scx_ops_enable_state scx_ops_enable_state(void)
+/**
+ * scx_add_event - Increase an event counter for 'name' by 'cnt'
+ * @sch: scx_sched to account events for
+ * @name: an event name defined in struct scx_event_stats
+ * @cnt: the number of the event occurred
+ *
+ * This can be used when preemption is not disabled.
+ */
+#define scx_add_event(sch, name, cnt) do { \
+ this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \
+ trace_sched_ext_event(#name, (cnt)); \
+} while(0)
+
+/**
+ * __scx_add_event - Increase an event counter for 'name' by 'cnt'
+ * @sch: scx_sched to account events for
+ * @name: an event name defined in struct scx_event_stats
+ * @cnt: the number of the event occurred
+ *
+ * This should be used only when preemption is disabled.
+ */
+#define __scx_add_event(sch, name, cnt) do { \
+ __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \
+ trace_sched_ext_event(#name, cnt); \
+} while(0)
+
+/**
+ * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e'
+ * @dst_e: destination event stats
+ * @src_e: source event stats
+ * @kind: a kind of event to be aggregated
+ */
+#define scx_agg_event(dst_e, src_e, kind) do { \
+ (dst_e)->kind += READ_ONCE((src_e)->kind); \
+} while(0)
+
+/**
+ * scx_dump_event - Dump an event 'kind' in 'events' to 's'
+ * @s: output seq_buf
+ * @events: event stats
+ * @kind: a kind of event to dump
+ */
+#define scx_dump_event(s, events, kind) do { \
+ dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \
+} while (0)
+
+
+static void scx_read_events(struct scx_sched *sch,
+ struct scx_event_stats *events);
+
+static enum scx_enable_state scx_enable_state(void)
{
- return atomic_read(&scx_ops_enable_state_var);
+ return atomic_read(&scx_enable_state_var);
}
-static enum scx_ops_enable_state
-scx_ops_set_enable_state(enum scx_ops_enable_state to)
+static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to)
{
- return atomic_xchg(&scx_ops_enable_state_var, to);
+ return atomic_xchg(&scx_enable_state_var, to);
}
-static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
- enum scx_ops_enable_state from)
+static bool scx_tryset_enable_state(enum scx_enable_state to,
+ enum scx_enable_state from)
{
int from_v = from;
- return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
-}
-
-static bool scx_rq_bypassing(struct rq *rq)
-{
- return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
+ return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to);
}
/**
@@ -1499,8 +754,14 @@ static void wait_ops_state(struct task_struct *p, unsigned long opss)
} while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
}
+static inline bool __cpu_valid(s32 cpu)
+{
+ return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu));
+}
+
/**
- * ops_cpu_valid - Verify a cpu number
+ * ops_cpu_valid - Verify a cpu number, to be used on ops input args
+ * @sch: scx_sched to abort on error
* @cpu: cpu number which came from a BPF ops
* @where: extra information reported on error
*
@@ -1508,49 +769,52 @@ static void wait_ops_state(struct task_struct *p, unsigned long opss)
* Verify that it is in range and one of the possible cpus. If invalid, trigger
* an ops error.
*/
-static bool ops_cpu_valid(s32 cpu, const char *where)
+static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where)
{
- if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
+ if (__cpu_valid(cpu)) {
return true;
} else {
- scx_ops_error("invalid CPU %d%s%s", cpu,
- where ? " " : "", where ?: "");
+ scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: "");
return false;
}
}
/**
* ops_sanitize_err - Sanitize a -errno value
+ * @sch: scx_sched to error out on error
* @ops_name: operation to blame on failure
* @err: -errno value to sanitize
*
- * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
+ * Verify @err is a valid -errno. If not, trigger scx_error() and return
* -%EPROTO. This is necessary because returning a rogue -errno up the chain can
* cause misbehaviors. For an example, a large negative return from
* ops.init_task() triggers an oops when passed up the call chain because the
* value fails IS_ERR() test after being encoded with ERR_PTR() and then is
* handled as a pointer.
*/
-static int ops_sanitize_err(const char *ops_name, s32 err)
+static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err)
{
if (err < 0 && err >= -MAX_ERRNO)
return err;
- scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
+ scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err);
return -EPROTO;
}
static void run_deferred(struct rq *rq)
{
process_ddsp_deferred_locals(rq);
+
+ if (local_read(&rq->scx.reenq_local_deferred)) {
+ local_set(&rq->scx.reenq_local_deferred, 0);
+ reenq_local(rq);
+ }
}
-#ifdef CONFIG_SMP
static void deferred_bal_cb_workfn(struct rq *rq)
{
run_deferred(rq);
}
-#endif
static void deferred_irq_workfn(struct irq_work *irq_work)
{
@@ -1565,15 +829,30 @@ static void deferred_irq_workfn(struct irq_work *irq_work)
* schedule_deferred - Schedule execution of deferred actions on an rq
* @rq: target rq
*
- * Schedule execution of deferred actions on @rq. Must be called with @rq
- * locked. Deferred actions are executed with @rq locked but unpinned, and thus
- * can unlock @rq to e.g. migrate tasks to other rqs.
+ * Schedule execution of deferred actions on @rq. Deferred actions are executed
+ * with @rq locked but unpinned, and thus can unlock @rq to e.g. migrate tasks
+ * to other rqs.
*/
static void schedule_deferred(struct rq *rq)
{
+ /*
+ * Queue an irq work. They are executed on IRQ re-enable which may take
+ * a bit longer than the scheduler hook in schedule_deferred_locked().
+ */
+ irq_work_queue(&rq->scx.deferred_irq_work);
+}
+
+/**
+ * schedule_deferred_locked - Schedule execution of deferred actions on an rq
+ * @rq: target rq
+ *
+ * Schedule execution of deferred actions on @rq. Equivalent to
+ * schedule_deferred() but requires @rq to be locked and can be more efficient.
+ */
+static void schedule_deferred_locked(struct rq *rq)
+{
lockdep_assert_rq_held(rq);
-#ifdef CONFIG_SMP
/*
* If in the middle of waking up a task, task_woken_scx() will be called
* afterwards which will then run the deferred actions, no need to
@@ -1582,23 +861,32 @@ static void schedule_deferred(struct rq *rq)
if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
return;
+ /* Don't do anything if there already is a deferred operation. */
+ if (rq->scx.flags & SCX_RQ_BAL_CB_PENDING)
+ return;
+
/*
* If in balance, the balance callbacks will be called before rq lock is
* released. Schedule one.
+ *
+ *
+ * We can't directly insert the callback into the
+ * rq's list: The call can drop its lock and make the pending balance
+ * callback visible to unrelated code paths that call rq_pin_lock().
+ *
+ * Just let balance_one() know that it must do it itself.
*/
if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
- queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
- deferred_bal_cb_workfn);
+ rq->scx.flags |= SCX_RQ_BAL_CB_PENDING;
return;
}
-#endif
+
/*
- * No scheduler hooks available. Queue an irq work. They are executed on
- * IRQ re-enable which may take a bit longer than the scheduler hooks.
- * The above WAKEUP and BALANCE paths should cover most of the cases and
- * the time to IRQ re-enable shouldn't be long.
+ * No scheduler hooks available. Use the generic irq_work path. The
+ * above WAKEUP and BALANCE paths should cover most of the cases and the
+ * time to IRQ re-enable shouldn't be long.
*/
- irq_work_queue(&rq->scx.deferred_irq_work);
+ schedule_deferred(rq);
}
/**
@@ -1643,7 +931,7 @@ static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
lockdep_assert_rq_held(rq);
#ifdef CONFIG_SCHED_CORE
- if (SCX_HAS_OP(core_sched_before))
+ if (unlikely(SCX_HAS_OP(scx_root, core_sched_before)))
touch_core_sched(rq, p);
#endif
}
@@ -1681,8 +969,14 @@ static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
WRITE_ONCE(dsq->nr, dsq->nr + delta);
}
-static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
- u64 enq_flags)
+static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p)
+{
+ p->scx.slice = READ_ONCE(scx_slice_dfl);
+ __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1);
+}
+
+static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq,
+ struct task_struct *p, u64 enq_flags)
{
bool is_local = dsq->id == SCX_DSQ_LOCAL;
@@ -1691,12 +985,14 @@ static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
!RB_EMPTY_NODE(&p->scx.dsq_priq));
if (!is_local) {
- raw_spin_lock(&dsq->lock);
+ raw_spin_lock_nested(&dsq->lock,
+ (enq_flags & SCX_ENQ_NESTED) ? SINGLE_DEPTH_NESTING : 0);
+
if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
- scx_ops_error("attempting to dispatch to a destroyed dsq");
+ scx_error(sch, "attempting to dispatch to a destroyed dsq");
/* fall back to the global dsq */
raw_spin_unlock(&dsq->lock);
- dsq = find_global_dsq(p);
+ dsq = find_global_dsq(sch, p);
raw_spin_lock(&dsq->lock);
}
}
@@ -1710,7 +1006,7 @@ static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
* disallow any internal DSQ from doing vtime ordering of
* tasks.
*/
- scx_ops_error("cannot use vtime ordering for built-in DSQs");
+ scx_error(sch, "cannot use vtime ordering for built-in DSQs");
enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
}
@@ -1724,8 +1020,8 @@ static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
*/
if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
nldsq_next_task(dsq, NULL, false)))
- scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
- dsq->id);
+ scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks",
+ dsq->id);
p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
@@ -1740,19 +1036,31 @@ static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
container_of(rbp, struct task_struct,
scx.dsq_priq);
list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
+ /* first task unchanged - no update needed */
} else {
list_add(&p->scx.dsq_list.node, &dsq->list);
+ /* not builtin and new task is at head - use fastpath */
+ rcu_assign_pointer(dsq->first_task, p);
}
} else {
/* a FIFO DSQ shouldn't be using PRIQ enqueuing */
if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
- scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
- dsq->id);
+ scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
+ dsq->id);
- if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
+ if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) {
list_add(&p->scx.dsq_list.node, &dsq->list);
- else
+ /* new task inserted at head - use fastpath */
+ if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN))
+ rcu_assign_pointer(dsq->first_task, p);
+ } else {
+ bool was_empty;
+
+ was_empty = list_empty(&dsq->list);
list_add_tail(&p->scx.dsq_list.node, &dsq->list);
+ if (was_empty && !(dsq->id & SCX_DSQ_FLAG_BUILTIN))
+ rcu_assign_pointer(dsq->first_task, p);
+ }
}
/* seq records the order tasks are queued, used by BPF DSQ iterator */
@@ -1809,6 +1117,13 @@ static void task_unlink_from_dsq(struct task_struct *p,
list_del_init(&p->scx.dsq_list.node);
dsq_mod_nr(dsq, -1);
+
+ if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN) && dsq->first_task == p) {
+ struct task_struct *first_task;
+
+ first_task = nldsq_next_task(dsq, NULL, false);
+ rcu_assign_pointer(dsq->first_task, first_task);
+ }
}
static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
@@ -1816,6 +1131,8 @@ static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
struct scx_dispatch_q *dsq = p->scx.dsq;
bool is_local = dsq == &rq->scx.local_dsq;
+ lockdep_assert_rq_held(rq);
+
if (!dsq) {
/*
* If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
@@ -1862,7 +1179,22 @@ static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
raw_spin_unlock(&dsq->lock);
}
-static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
+/*
+ * Abbreviated version of dispatch_dequeue() that can be used when both @p's rq
+ * and dsq are locked.
+ */
+static void dispatch_dequeue_locked(struct task_struct *p,
+ struct scx_dispatch_q *dsq)
+{
+ lockdep_assert_rq_held(task_rq(p));
+ lockdep_assert_held(&dsq->lock);
+
+ task_unlink_from_dsq(p, dsq);
+ p->scx.dsq = NULL;
+}
+
+static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch,
+ struct rq *rq, u64 dsq_id,
struct task_struct *p)
{
struct scx_dispatch_q *dsq;
@@ -1873,27 +1205,28 @@ static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
- if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
- return find_global_dsq(p);
+ if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
+ return find_global_dsq(sch, p);
return &cpu_rq(cpu)->scx.local_dsq;
}
if (dsq_id == SCX_DSQ_GLOBAL)
- dsq = find_global_dsq(p);
+ dsq = find_global_dsq(sch, p);
else
- dsq = find_user_dsq(dsq_id);
+ dsq = find_user_dsq(sch, dsq_id);
if (unlikely(!dsq)) {
- scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
- dsq_id, p->comm, p->pid);
- return find_global_dsq(p);
+ scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]",
+ dsq_id, p->comm, p->pid);
+ return find_global_dsq(sch, p);
}
return dsq;
}
-static void mark_direct_dispatch(struct task_struct *ddsp_task,
+static void mark_direct_dispatch(struct scx_sched *sch,
+ struct task_struct *ddsp_task,
struct task_struct *p, u64 dsq_id,
u64 enq_flags)
{
@@ -1907,12 +1240,12 @@ static void mark_direct_dispatch(struct task_struct *ddsp_task,
/* @p must match the task on the enqueue path */
if (unlikely(p != ddsp_task)) {
if (IS_ERR(ddsp_task))
- scx_ops_error("%s[%d] already direct-dispatched",
- p->comm, p->pid);
+ scx_error(sch, "%s[%d] already direct-dispatched",
+ p->comm, p->pid);
else
- scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
- ddsp_task->comm, ddsp_task->pid,
- p->comm, p->pid);
+ scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
+ ddsp_task->comm, ddsp_task->pid,
+ p->comm, p->pid);
return;
}
@@ -1923,11 +1256,12 @@ static void mark_direct_dispatch(struct task_struct *ddsp_task,
p->scx.ddsp_enq_flags = enq_flags;
}
-static void direct_dispatch(struct task_struct *p, u64 enq_flags)
+static void direct_dispatch(struct scx_sched *sch, struct task_struct *p,
+ u64 enq_flags)
{
struct rq *rq = task_rq(p);
struct scx_dispatch_q *dsq =
- find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
+ find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
touch_core_sched_dispatch(rq, p);
@@ -1964,11 +1298,12 @@ static void direct_dispatch(struct task_struct *p, u64 enq_flags)
WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
list_add_tail(&p->scx.dsq_list.node,
&rq->scx.ddsp_deferred_locals);
- schedule_deferred(rq);
+ schedule_deferred_locked(rq);
return;
}
- dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
+ dispatch_enqueue(sch, dsq, p,
+ p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
}
static bool scx_rq_online(struct rq *rq)
@@ -1986,7 +1321,9 @@ static bool scx_rq_online(struct rq *rq)
static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
int sticky_cpu)
{
+ struct scx_sched *sch = scx_root;
struct task_struct **ddsp_taskp;
+ struct scx_dispatch_q *dsq;
unsigned long qseq;
WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
@@ -2003,18 +1340,29 @@ static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
if (!scx_rq_online(rq))
goto local;
- if (scx_rq_bypassing(rq))
- goto global;
+ if (scx_rq_bypassing(rq)) {
+ __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
+ goto bypass;
+ }
if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
goto direct;
/* see %SCX_OPS_ENQ_EXITING */
- if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
- unlikely(p->flags & PF_EXITING))
+ if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) &&
+ unlikely(p->flags & PF_EXITING)) {
+ __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1);
+ goto local;
+ }
+
+ /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */
+ if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) &&
+ is_migration_disabled(p)) {
+ __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1);
goto local;
+ }
- if (!SCX_HAS_OP(enqueue))
+ if (unlikely(!SCX_HAS_OP(sch, enqueue)))
goto global;
/* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
@@ -2027,7 +1375,7 @@ static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
WARN_ON_ONCE(*ddsp_taskp);
*ddsp_taskp = p;
- SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
+ SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags);
*ddsp_taskp = NULL;
if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
@@ -2041,25 +1389,30 @@ static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
return;
direct:
- direct_dispatch(p, enq_flags);
+ direct_dispatch(sch, p, enq_flags);
+ return;
+local_norefill:
+ dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags);
return;
-
local:
+ dsq = &rq->scx.local_dsq;
+ goto enqueue;
+global:
+ dsq = find_global_dsq(sch, p);
+ goto enqueue;
+bypass:
+ dsq = &task_rq(p)->scx.bypass_dsq;
+ goto enqueue;
+
+enqueue:
/*
* For task-ordering, slice refill must be treated as implying the end
* of the current slice. Otherwise, the longer @p stays on the CPU, the
* higher priority it becomes from scx_prio_less()'s POV.
*/
touch_core_sched(rq, p);
- p->scx.slice = SCX_SLICE_DFL;
-local_norefill:
- dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
- return;
-
-global:
- touch_core_sched(rq, p); /* see the comment in local: */
- p->scx.slice = SCX_SLICE_DFL;
- dispatch_enqueue(find_global_dsq(p), p, enq_flags);
+ refill_task_slice_dfl(sch, p);
+ dispatch_enqueue(sch, dsq, p, enq_flags);
}
static bool task_runnable(const struct task_struct *p)
@@ -2077,8 +1430,8 @@ static void set_task_runnable(struct rq *rq, struct task_struct *p)
}
/*
- * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
- * appened to the runnable_list.
+ * list_add_tail() must be used. scx_bypass() depends on tasks being
+ * appended to the runnable_list.
*/
list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
}
@@ -2092,6 +1445,7 @@ static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
{
+ struct scx_sched *sch = scx_root;
int sticky_cpu = p->scx.sticky_cpu;
if (enq_flags & ENQUEUE_WAKEUP)
@@ -2121,8 +1475,8 @@ static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags
rq->scx.nr_running++;
add_nr_running(rq, 1);
- if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p))
- SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
+ if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p))
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags);
if (enq_flags & SCX_ENQ_WAKEUP)
touch_core_sched(rq, p);
@@ -2130,10 +1484,15 @@ static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags
do_enqueue_task(rq, p, enq_flags, sticky_cpu);
out:
rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
+
+ if ((enq_flags & SCX_ENQ_CPU_SELECTED) &&
+ unlikely(cpu_of(rq) != p->scx.selected_cpu))
+ __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1);
}
-static void ops_dequeue(struct task_struct *p, u64 deq_flags)
+static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags)
{
+ struct scx_sched *sch = scx_root;
unsigned long opss;
/* dequeue is always temporary, don't reset runnable_at */
@@ -2152,8 +1511,9 @@ static void ops_dequeue(struct task_struct *p, u64 deq_flags)
*/
BUG();
case SCX_OPSS_QUEUED:
- if (SCX_HAS_OP(dequeue))
- SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
+ if (SCX_HAS_OP(sch, dequeue))
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq,
+ p, deq_flags);
if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
SCX_OPSS_NONE))
@@ -2181,12 +1541,14 @@ static void ops_dequeue(struct task_struct *p, u64 deq_flags)
static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
{
+ struct scx_sched *sch = scx_root;
+
if (!(p->scx.flags & SCX_TASK_QUEUED)) {
WARN_ON_ONCE(task_runnable(p));
return true;
}
- ops_dequeue(p, deq_flags);
+ ops_dequeue(rq, p, deq_flags);
/*
* A currently running task which is going off @rq first gets dequeued
@@ -2200,13 +1562,13 @@ static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags
* information meaningful to the BPF scheduler and can be suppressed by
* skipping the callbacks if the task is !QUEUED.
*/
- if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
+ if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) {
update_curr_scx(rq);
- SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false);
}
- if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p))
- SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
+ if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p))
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags);
if (deq_flags & SCX_DEQ_SLEEP)
p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
@@ -2223,20 +1585,23 @@ static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags
static void yield_task_scx(struct rq *rq)
{
- struct task_struct *p = rq->curr;
+ struct scx_sched *sch = scx_root;
+ struct task_struct *p = rq->donor;
- if (SCX_HAS_OP(yield))
- SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
+ if (SCX_HAS_OP(sch, yield))
+ SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL);
else
p->scx.slice = 0;
}
static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
{
- struct task_struct *from = rq->curr;
+ struct scx_sched *sch = scx_root;
+ struct task_struct *from = rq->donor;
- if (SCX_HAS_OP(yield))
- return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
+ if (SCX_HAS_OP(sch, yield))
+ return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq,
+ from, to);
else
return false;
}
@@ -2262,7 +1627,6 @@ static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
p->scx.dsq = dst_dsq;
}
-#ifdef CONFIG_SMP
/**
* move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
* @p: task to move
@@ -2313,12 +1677,36 @@ static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
*
* - The BPF scheduler is bypassed while the rq is offline and we can always say
* no to the BPF scheduler initiated migrations while offline.
+ *
+ * The caller must ensure that @p and @rq are on different CPUs.
*/
-static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
- bool trigger_error)
+static bool task_can_run_on_remote_rq(struct scx_sched *sch,
+ struct task_struct *p, struct rq *rq,
+ bool enforce)
{
int cpu = cpu_of(rq);
+ WARN_ON_ONCE(task_cpu(p) == cpu);
+
+ /*
+ * If @p has migration disabled, @p->cpus_ptr is updated to contain only
+ * the pinned CPU in migrate_disable_switch() while @p is being switched
+ * out. However, put_prev_task_scx() is called before @p->cpus_ptr is
+ * updated and thus another CPU may see @p on a DSQ inbetween leading to
+ * @p passing the below task_allowed_on_cpu() check while migration is
+ * disabled.
+ *
+ * Test the migration disabled state first as the race window is narrow
+ * and the BPF scheduler failing to check migration disabled state can
+ * easily be masked if task_allowed_on_cpu() is done first.
+ */
+ if (unlikely(is_migration_disabled(p))) {
+ if (enforce)
+ scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d",
+ p->comm, p->pid, task_cpu(p), cpu);
+ return false;
+ }
+
/*
* We don't require the BPF scheduler to avoid dispatching to offline
* CPUs mostly for convenience but also because CPUs can go offline
@@ -2326,17 +1714,17 @@ static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
* picked CPU is outside the allowed mask.
*/
if (!task_allowed_on_cpu(p, cpu)) {
- if (trigger_error)
- scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
- cpu_of(rq), p->comm, p->pid);
+ if (enforce)
+ scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]",
+ cpu, p->comm, p->pid);
return false;
}
- if (unlikely(is_migration_disabled(p)))
- return false;
-
- if (!scx_rq_online(rq))
+ if (!scx_rq_online(rq)) {
+ if (enforce)
+ __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1);
return false;
+ }
return true;
}
@@ -2404,14 +1792,10 @@ static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
return false;
}
}
-#else /* CONFIG_SMP */
-static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); }
-static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
-static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
-#endif /* CONFIG_SMP */
/**
* move_task_between_dsqs() - Move a task from one DSQ to another
+ * @sch: scx_sched being operated on
* @p: target task
* @enq_flags: %SCX_ENQ_*
* @src_dsq: DSQ @p is currently on, must not be a local DSQ
@@ -2425,7 +1809,8 @@ static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p
* On return, @src_dsq is unlocked and only @p's new task_rq, which is the
* return value, is locked.
*/
-static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags,
+static struct rq *move_task_between_dsqs(struct scx_sched *sch,
+ struct task_struct *p, u64 enq_flags,
struct scx_dispatch_q *src_dsq,
struct scx_dispatch_q *dst_dsq)
{
@@ -2437,8 +1822,9 @@ static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags,
if (dst_dsq->id == SCX_DSQ_LOCAL) {
dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
- if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
- dst_dsq = find_global_dsq(p);
+ if (src_rq != dst_rq &&
+ unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
+ dst_dsq = find_global_dsq(sch, p);
dst_rq = src_rq;
}
} else {
@@ -2467,58 +1853,21 @@ static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags,
* @p is going from a non-local DSQ to a non-local DSQ. As
* $src_dsq is already locked, do an abbreviated dequeue.
*/
- task_unlink_from_dsq(p, src_dsq);
- p->scx.dsq = NULL;
+ dispatch_dequeue_locked(p, src_dsq);
raw_spin_unlock(&src_dsq->lock);
- dispatch_enqueue(dst_dsq, p, enq_flags);
+ dispatch_enqueue(sch, dst_dsq, p, enq_flags);
}
return dst_rq;
}
-/*
- * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly
- * banging on the same DSQ on a large NUMA system to the point where switching
- * to the bypass mode can take a long time. Inject artifical delays while the
- * bypass mode is switching to guarantee timely completion.
- */
-static void scx_ops_breather(struct rq *rq)
-{
- u64 until;
-
- lockdep_assert_rq_held(rq);
-
- if (likely(!atomic_read(&scx_ops_breather_depth)))
- return;
-
- raw_spin_rq_unlock(rq);
-
- until = ktime_get_ns() + NSEC_PER_MSEC;
-
- do {
- int cnt = 1024;
- while (atomic_read(&scx_ops_breather_depth) && --cnt)
- cpu_relax();
- } while (atomic_read(&scx_ops_breather_depth) &&
- time_before64(ktime_get_ns(), until));
-
- raw_spin_rq_lock(rq);
-}
-
-static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
+static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq,
+ struct scx_dispatch_q *dsq)
{
struct task_struct *p;
retry:
/*
- * This retry loop can repeatedly race against scx_ops_bypass()
- * dequeueing tasks from @dsq trying to put the system into the bypass
- * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can
- * live-lock the machine into soft lockups. Give a breather.
- */
- scx_ops_breather(rq);
-
- /*
* The caller can't expect to successfully consume a task if the task's
* addition to @dsq isn't guaranteed to be visible somehow. Test
* @dsq->list without locking and skip if it seems empty.
@@ -2531,6 +1880,17 @@ retry:
nldsq_for_each_task(p, dsq) {
struct rq *task_rq = task_rq(p);
+ /*
+ * This loop can lead to multiple lockup scenarios, e.g. the BPF
+ * scheduler can put an enormous number of affinitized tasks into
+ * a contended DSQ, or the outer retry loop can repeatedly race
+ * against scx_bypass() dequeueing tasks from @dsq trying to put
+ * the system into the bypass mode. This can easily live-lock the
+ * machine. If aborting, exit from all non-bypass DSQs.
+ */
+ if (unlikely(READ_ONCE(scx_aborting)) && dsq->id != SCX_DSQ_BYPASS)
+ break;
+
if (rq == task_rq) {
task_unlink_from_dsq(p, dsq);
move_local_task_to_local_dsq(p, 0, dsq, rq);
@@ -2538,7 +1898,7 @@ retry:
return true;
}
- if (task_can_run_on_remote_rq(p, rq, false)) {
+ if (task_can_run_on_remote_rq(sch, p, rq, false)) {
if (likely(consume_remote_task(rq, p, dsq, task_rq)))
return true;
goto retry;
@@ -2549,15 +1909,16 @@ retry:
return false;
}
-static bool consume_global_dsq(struct rq *rq)
+static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq)
{
int node = cpu_to_node(cpu_of(rq));
- return consume_dispatch_q(rq, global_dsqs[node]);
+ return consume_dispatch_q(sch, rq, sch->global_dsqs[node]);
}
/**
* dispatch_to_local_dsq - Dispatch a task to a local dsq
+ * @sch: scx_sched being operated on
* @rq: current rq which is locked
* @dst_dsq: destination DSQ
* @p: task to dispatch
@@ -2570,11 +1931,13 @@ static bool consume_global_dsq(struct rq *rq)
* The caller must have exclusive ownership of @p (e.g. through
* %SCX_OPSS_DISPATCHING).
*/
-static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
+static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq,
+ struct scx_dispatch_q *dst_dsq,
struct task_struct *p, u64 enq_flags)
{
struct rq *src_rq = task_rq(p);
struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
+ struct rq *locked_rq = rq;
/*
* We're synchronized against dequeue through DISPATCHING. As @p can't
@@ -2583,13 +1946,14 @@ static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
* If dispatching to @rq that @p is already on, no lock dancing needed.
*/
if (rq == src_rq && rq == dst_rq) {
- dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
+ dispatch_enqueue(sch, dst_dsq, p,
+ enq_flags | SCX_ENQ_CLEAR_OPSS);
return;
}
-#ifdef CONFIG_SMP
- if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
- dispatch_enqueue(find_global_dsq(p), p,
+ if (src_rq != dst_rq &&
+ unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
+ dispatch_enqueue(sch, find_global_dsq(sch, p), p,
enq_flags | SCX_ENQ_CLEAR_OPSS);
return;
}
@@ -2611,8 +1975,9 @@ static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
/* switch to @src_rq lock */
- if (rq != src_rq) {
- raw_spin_rq_unlock(rq);
+ if (locked_rq != src_rq) {
+ raw_spin_rq_unlock(locked_rq);
+ locked_rq = src_rq;
raw_spin_rq_lock(src_rq);
}
@@ -2626,10 +1991,13 @@ static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
*/
if (src_rq == dst_rq) {
p->scx.holding_cpu = -1;
- dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
+ dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p,
+ enq_flags);
} else {
move_remote_task_to_local_dsq(p, enq_flags,
src_rq, dst_rq);
+ /* task has been moved to dst_rq, which is now locked */
+ locked_rq = dst_rq;
}
/* if the destination CPU is idle, wake it up */
@@ -2638,13 +2006,10 @@ static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
}
/* switch back to @rq lock */
- if (rq != dst_rq) {
- raw_spin_rq_unlock(dst_rq);
+ if (locked_rq != rq) {
+ raw_spin_rq_unlock(locked_rq);
raw_spin_rq_lock(rq);
}
-#else /* CONFIG_SMP */
- BUG(); /* control can not reach here on UP */
-#endif /* CONFIG_SMP */
}
/**
@@ -2666,7 +2031,8 @@ static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
* was valid in the first place. Make sure that the task is still owned by the
* BPF scheduler and claim the ownership before dispatching.
*/
-static void finish_dispatch(struct rq *rq, struct task_struct *p,
+static void finish_dispatch(struct scx_sched *sch, struct rq *rq,
+ struct task_struct *p,
unsigned long qseq_at_dispatch,
u64 dsq_id, u64 enq_flags)
{
@@ -2719,15 +2085,15 @@ retry:
BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
- dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
+ dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p);
if (dsq->id == SCX_DSQ_LOCAL)
- dispatch_to_local_dsq(rq, dsq, p, enq_flags);
+ dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags);
else
- dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
+ dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
}
-static void flush_dispatch_buf(struct rq *rq)
+static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq)
{
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
u32 u;
@@ -2735,7 +2101,7 @@ static void flush_dispatch_buf(struct rq *rq)
for (u = 0; u < dspc->cursor; u++) {
struct scx_dsp_buf_ent *ent = &dspc->buf[u];
- finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
+ finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id,
ent->enq_flags);
}
@@ -2743,17 +2109,32 @@ static void flush_dispatch_buf(struct rq *rq)
dspc->cursor = 0;
}
+static inline void maybe_queue_balance_callback(struct rq *rq)
+{
+ lockdep_assert_rq_held(rq);
+
+ if (!(rq->scx.flags & SCX_RQ_BAL_CB_PENDING))
+ return;
+
+ queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
+ deferred_bal_cb_workfn);
+
+ rq->scx.flags &= ~SCX_RQ_BAL_CB_PENDING;
+}
+
static int balance_one(struct rq *rq, struct task_struct *prev)
{
+ struct scx_sched *sch = scx_root;
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
bool prev_on_scx = prev->sched_class == &ext_sched_class;
+ bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED;
int nr_loops = SCX_DSP_MAX_LOOPS;
lockdep_assert_rq_held(rq);
rq->scx.flags |= SCX_RQ_IN_BALANCE;
- rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP);
+ rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
- if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
+ if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) &&
unlikely(rq->scx.cpu_released)) {
/*
* If the previous sched_class for the current CPU was not SCX,
@@ -2761,8 +2142,9 @@ static int balance_one(struct rq *rq, struct task_struct *prev)
* core. This callback complements ->cpu_release(), which is
* emitted in switch_class().
*/
- if (SCX_HAS_OP(cpu_acquire))
- SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL);
+ if (SCX_HAS_OP(sch, cpu_acquire))
+ SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq,
+ cpu_of(rq), NULL);
rq->scx.cpu_released = false;
}
@@ -2776,11 +2158,10 @@ static int balance_one(struct rq *rq, struct task_struct *prev)
* scheduler wants to handle this explicitly, it should
* implement ->cpu_release().
*
- * See scx_ops_disable_workfn() for the explanation on the
- * bypassing test.
+ * See scx_disable_workfn() for the explanation on the bypassing
+ * test.
*/
- if ((prev->scx.flags & SCX_TASK_QUEUED) &&
- prev->scx.slice && !scx_rq_bypassing(rq)) {
+ if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) {
rq->scx.flags |= SCX_RQ_BAL_KEEP;
goto has_tasks;
}
@@ -2790,10 +2171,17 @@ static int balance_one(struct rq *rq, struct task_struct *prev)
if (rq->scx.local_dsq.nr)
goto has_tasks;
- if (consume_global_dsq(rq))
+ if (consume_global_dsq(sch, rq))
goto has_tasks;
- if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
+ if (scx_rq_bypassing(rq)) {
+ if (consume_dispatch_q(sch, rq, &rq->scx.bypass_dsq))
+ goto has_tasks;
+ else
+ goto no_tasks;
+ }
+
+ if (unlikely(!SCX_HAS_OP(sch, dispatch)) || !scx_rq_online(rq))
goto no_tasks;
dspc->rq = rq;
@@ -2808,14 +2196,18 @@ static int balance_one(struct rq *rq, struct task_struct *prev)
do {
dspc->nr_tasks = 0;
- SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
- prev_on_scx ? prev : NULL);
+ SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq,
+ cpu_of(rq), prev_on_scx ? prev : NULL);
- flush_dispatch_buf(rq);
+ flush_dispatch_buf(sch, rq);
+ if (prev_on_rq && prev->scx.slice) {
+ rq->scx.flags |= SCX_RQ_BAL_KEEP;
+ goto has_tasks;
+ }
if (rq->scx.local_dsq.nr)
goto has_tasks;
- if (consume_global_dsq(rq))
+ if (consume_global_dsq(sch, rq))
goto has_tasks;
/*
@@ -2825,10 +2217,10 @@ static int balance_one(struct rq *rq, struct task_struct *prev)
* balance(), we want to complete this scheduling cycle and then
* start a new one. IOW, we want to call resched_curr() on the
* next, most likely idle, task, not the current one. Use
- * scx_bpf_kick_cpu() for deferred kicking.
+ * scx_kick_cpu() for deferred kicking.
*/
if (unlikely(!--nr_loops)) {
- scx_bpf_kick_cpu(cpu_of(rq), 0);
+ scx_kick_cpu(sch, cpu_of(rq), 0);
break;
}
} while (dspc->nr_tasks);
@@ -2838,10 +2230,10 @@ no_tasks:
* Didn't find another task to run. Keep running @prev unless
* %SCX_OPS_ENQ_LAST is in effect.
*/
- if ((prev->scx.flags & SCX_TASK_QUEUED) &&
- (!static_branch_unlikely(&scx_ops_enq_last) ||
- scx_rq_bypassing(rq))) {
+ if (prev_on_rq &&
+ (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) {
rq->scx.flags |= SCX_RQ_BAL_KEEP;
+ __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1);
goto has_tasks;
}
rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
@@ -2852,40 +2244,6 @@ has_tasks:
return true;
}
-static int balance_scx(struct rq *rq, struct task_struct *prev,
- struct rq_flags *rf)
-{
- int ret;
-
- rq_unpin_lock(rq, rf);
-
- ret = balance_one(rq, prev);
-
-#ifdef CONFIG_SCHED_SMT
- /*
- * When core-sched is enabled, this ops.balance() call will be followed
- * by pick_task_scx() on this CPU and the SMT siblings. Balance the
- * siblings too.
- */
- if (sched_core_enabled(rq)) {
- const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
- int scpu;
-
- for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
- struct rq *srq = cpu_rq(scpu);
- struct task_struct *sprev = srq->curr;
-
- WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
- update_rq_clock(srq);
- balance_one(srq, sprev);
- }
- }
-#endif
- rq_repin_lock(rq, rf);
-
- return ret;
-}
-
static void process_ddsp_deferred_locals(struct rq *rq)
{
struct task_struct *p;
@@ -2901,32 +2259,36 @@ static void process_ddsp_deferred_locals(struct rq *rq)
*/
while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
struct task_struct, scx.dsq_list.node))) {
+ struct scx_sched *sch = scx_root;
struct scx_dispatch_q *dsq;
list_del_init(&p->scx.dsq_list.node);
- dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
+ dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
- dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
+ dispatch_to_local_dsq(sch, rq, dsq, p,
+ p->scx.ddsp_enq_flags);
}
}
static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
{
+ struct scx_sched *sch = scx_root;
+
if (p->scx.flags & SCX_TASK_QUEUED) {
/*
* Core-sched might decide to execute @p before it is
* dispatched. Call ops_dequeue() to notify the BPF scheduler.
*/
- ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
+ ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC);
dispatch_dequeue(rq, p);
}
p->se.exec_start = rq_clock_task(rq);
/* see dequeue_task_scx() on why we skip when !QUEUED */
- if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
- SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
+ if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED))
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p);
clr_task_runnable(p, true);
@@ -2956,10 +2318,8 @@ static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
static enum scx_cpu_preempt_reason
preempt_reason_from_class(const struct sched_class *class)
{
-#ifdef CONFIG_SMP
if (class == &stop_sched_class)
return SCX_CPU_PREEMPT_STOP;
-#endif
if (class == &dl_sched_class)
return SCX_CPU_PREEMPT_DL;
if (class == &rt_sched_class)
@@ -2969,17 +2329,10 @@ preempt_reason_from_class(const struct sched_class *class)
static void switch_class(struct rq *rq, struct task_struct *next)
{
+ struct scx_sched *sch = scx_root;
const struct sched_class *next_class = next->sched_class;
-#ifdef CONFIG_SMP
- /*
- * Pairs with the smp_load_acquire() issued by a CPU in
- * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
- * resched.
- */
- smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
-#endif
- if (!static_branch_unlikely(&scx_ops_cpu_preempt))
+ if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT))
return;
/*
@@ -3001,14 +2354,14 @@ static void switch_class(struct rq *rq, struct task_struct *next)
* next time that balance_scx() is invoked.
*/
if (!rq->scx.cpu_released) {
- if (SCX_HAS_OP(cpu_release)) {
+ if (SCX_HAS_OP(sch, cpu_release)) {
struct scx_cpu_release_args args = {
.reason = preempt_reason_from_class(next_class),
.task = next,
};
- SCX_CALL_OP(SCX_KF_CPU_RELEASE,
- cpu_release, cpu_of(rq), &args);
+ SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq,
+ cpu_of(rq), &args);
}
rq->scx.cpu_released = true;
}
@@ -3017,11 +2370,16 @@ static void switch_class(struct rq *rq, struct task_struct *next)
static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
struct task_struct *next)
{
+ struct scx_sched *sch = scx_root;
+
+ /* see kick_cpus_irq_workfn() */
+ smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1);
+
update_curr_scx(rq);
/* see dequeue_task_scx() on why we skip when !QUEUED */
- if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
- SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
+ if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED))
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true);
if (p->scx.flags & SCX_TASK_QUEUED) {
set_task_runnable(rq, p);
@@ -3033,8 +2391,9 @@ static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
* DSQ.
*/
if (p->scx.slice && !scx_rq_bypassing(rq)) {
- dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
- return;
+ dispatch_enqueue(sch, &rq->scx.local_dsq, p,
+ SCX_ENQ_HEAD);
+ goto switch_class;
}
/*
@@ -3044,13 +2403,14 @@ static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
* which should trigger an explicit follow-up scheduling event.
*/
if (sched_class_above(&ext_sched_class, next->sched_class)) {
- WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
+ WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST));
do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
} else {
do_enqueue_task(rq, p, 0, -1);
}
}
+switch_class:
if (next && next->sched_class != &ext_sched_class)
switch_class(rq, next);
}
@@ -3061,39 +2421,38 @@ static struct task_struct *first_local_task(struct rq *rq)
struct task_struct, scx.dsq_list.node);
}
-static struct task_struct *pick_task_scx(struct rq *rq)
+static struct task_struct *
+do_pick_task_scx(struct rq *rq, struct rq_flags *rf, bool force_scx)
{
struct task_struct *prev = rq->curr;
+ bool keep_prev, kick_idle = false;
struct task_struct *p;
- bool prev_on_scx = prev->sched_class == &ext_sched_class;
- bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
- bool kick_idle = false;
+
+ /* see kick_cpus_irq_workfn() */
+ smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1);
+
+ rq_modified_clear(rq);
+
+ rq_unpin_lock(rq, rf);
+ balance_one(rq, prev);
+ rq_repin_lock(rq, rf);
+ maybe_queue_balance_callback(rq);
/*
- * WORKAROUND:
+ * If any higher-priority sched class enqueued a runnable task on
+ * this rq during balance_one(), abort and return RETRY_TASK, so
+ * that the scheduler loop can restart.
*
- * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
- * have gone through balance_scx(). Unfortunately, there currently is a
- * bug where fair could say yes on balance() but no on pick_task(),
- * which then ends up calling pick_task_scx() without preceding
- * balance_scx().
- *
- * Keep running @prev if possible and avoid stalling from entering idle
- * without balancing.
- *
- * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE()
- * if pick_task_scx() is called without preceding balance_scx().
+ * If @force_scx is true, always try to pick a SCHED_EXT task,
+ * regardless of any higher-priority sched classes activity.
*/
- if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) {
- if (prev_on_scx) {
- keep_prev = true;
- } else {
- keep_prev = false;
- kick_idle = true;
- }
- } else if (unlikely(keep_prev && !prev_on_scx)) {
- /* only allowed during transitions */
- WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED);
+ if (!force_scx && rq_modified_above(rq, &ext_sched_class))
+ return RETRY_TASK;
+
+ keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
+ if (unlikely(keep_prev &&
+ prev->sched_class != &ext_sched_class)) {
+ WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED);
keep_prev = false;
}
@@ -3105,33 +2464,42 @@ static struct task_struct *pick_task_scx(struct rq *rq)
if (keep_prev) {
p = prev;
if (!p->scx.slice)
- p->scx.slice = SCX_SLICE_DFL;
+ refill_task_slice_dfl(rcu_dereference_sched(scx_root), p);
} else {
p = first_local_task(rq);
if (!p) {
if (kick_idle)
- scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE);
+ scx_kick_cpu(rcu_dereference_sched(scx_root),
+ cpu_of(rq), SCX_KICK_IDLE);
return NULL;
}
if (unlikely(!p->scx.slice)) {
- if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
+ struct scx_sched *sch = rcu_dereference_sched(scx_root);
+
+ if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) {
printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
p->comm, p->pid, __func__);
- scx_warned_zero_slice = true;
+ sch->warned_zero_slice = true;
}
- p->scx.slice = SCX_SLICE_DFL;
+ refill_task_slice_dfl(sch, p);
}
}
return p;
}
+static struct task_struct *pick_task_scx(struct rq *rq, struct rq_flags *rf)
+{
+ return do_pick_task_scx(rq, rf, false);
+}
+
#ifdef CONFIG_SCHED_CORE
/**
* scx_prio_less - Task ordering for core-sched
* @a: task A
* @b: task B
+ * @in_fi: in forced idle state
*
* Core-sched is implemented as an additional scheduling layer on top of the
* usual sched_class'es and needs to find out the expected task ordering. For
@@ -3139,7 +2507,7 @@ static struct task_struct *pick_task_scx(struct rq *rq)
*
* Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
* to implement the default task ordering. The older the timestamp, the higher
- * prority the task - the global FIFO ordering matching the default scheduling
+ * priority the task - the global FIFO ordering matching the default scheduling
* behavior.
*
* When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
@@ -3148,13 +2516,17 @@ static struct task_struct *pick_task_scx(struct rq *rq)
bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
bool in_fi)
{
+ struct scx_sched *sch = scx_root;
+
/*
* The const qualifiers are dropped from task_struct pointers when
* calling ops.core_sched_before(). Accesses are controlled by the
* verifier.
*/
- if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
- return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
+ if (SCX_HAS_OP(sch, core_sched_before) &&
+ !scx_rq_bypassing(task_rq(a)))
+ return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before,
+ NULL,
(struct task_struct *)a,
(struct task_struct *)b);
else
@@ -3162,356 +2534,11 @@ bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
}
#endif /* CONFIG_SCHED_CORE */
-#ifdef CONFIG_SMP
-
-static bool test_and_clear_cpu_idle(int cpu)
-{
-#ifdef CONFIG_SCHED_SMT
- /*
- * SMT mask should be cleared whether we can claim @cpu or not. The SMT
- * cluster is not wholly idle either way. This also prevents
- * scx_pick_idle_cpu() from getting caught in an infinite loop.
- */
- if (sched_smt_active()) {
- const struct cpumask *smt = cpu_smt_mask(cpu);
-
- /*
- * If offline, @cpu is not its own sibling and
- * scx_pick_idle_cpu() can get caught in an infinite loop as
- * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
- * is eventually cleared.
- */
- if (cpumask_intersects(smt, idle_masks.smt))
- cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
- else if (cpumask_test_cpu(cpu, idle_masks.smt))
- __cpumask_clear_cpu(cpu, idle_masks.smt);
- }
-#endif
- return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
-}
-
-static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
-{
- int cpu;
-
-retry:
- if (sched_smt_active()) {
- cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
- if (cpu < nr_cpu_ids)
- goto found;
-
- if (flags & SCX_PICK_IDLE_CORE)
- return -EBUSY;
- }
-
- cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
- if (cpu >= nr_cpu_ids)
- return -EBUSY;
-
-found:
- if (test_and_clear_cpu_idle(cpu))
- return cpu;
- else
- goto retry;
-}
-
-/*
- * Return true if the LLC domains do not perfectly overlap with the NUMA
- * domains, false otherwise.
- */
-static bool llc_numa_mismatch(void)
-{
- int cpu;
-
- /*
- * We need to scan all online CPUs to verify whether their scheduling
- * domains overlap.
- *
- * While it is rare to encounter architectures with asymmetric NUMA
- * topologies, CPU hotplugging or virtualized environments can result
- * in asymmetric configurations.
- *
- * For example:
- *
- * NUMA 0:
- * - LLC 0: cpu0..cpu7
- * - LLC 1: cpu8..cpu15 [offline]
- *
- * NUMA 1:
- * - LLC 0: cpu16..cpu23
- * - LLC 1: cpu24..cpu31
- *
- * In this case, if we only check the first online CPU (cpu0), we might
- * incorrectly assume that the LLC and NUMA domains are fully
- * overlapping, which is incorrect (as NUMA 1 has two distinct LLC
- * domains).
- */
- for_each_online_cpu(cpu) {
- const struct cpumask *numa_cpus;
- struct sched_domain *sd;
-
- sd = rcu_dereference(per_cpu(sd_llc, cpu));
- if (!sd)
- return true;
-
- numa_cpus = cpumask_of_node(cpu_to_node(cpu));
- if (sd->span_weight != cpumask_weight(numa_cpus))
- return true;
- }
-
- return false;
-}
-
-/*
- * Initialize topology-aware scheduling.
- *
- * Detect if the system has multiple LLC or multiple NUMA domains and enable
- * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
- * selection policy.
- *
- * Assumption: the kernel's internal topology representation assumes that each
- * CPU belongs to a single LLC domain, and that each LLC domain is entirely
- * contained within a single NUMA node.
- */
-static void update_selcpu_topology(void)
-{
- bool enable_llc = false, enable_numa = false;
- struct sched_domain *sd;
- const struct cpumask *cpus;
- s32 cpu = cpumask_first(cpu_online_mask);
-
- /*
- * Enable LLC domain optimization only when there are multiple LLC
- * domains among the online CPUs. If all online CPUs are part of a
- * single LLC domain, the idle CPU selection logic can choose any
- * online CPU without bias.
- *
- * Note that it is sufficient to check the LLC domain of the first
- * online CPU to determine whether a single LLC domain includes all
- * CPUs.
- */
- rcu_read_lock();
- sd = rcu_dereference(per_cpu(sd_llc, cpu));
- if (sd) {
- if (sd->span_weight < num_online_cpus())
- enable_llc = true;
- }
-
- /*
- * Enable NUMA optimization only when there are multiple NUMA domains
- * among the online CPUs and the NUMA domains don't perfectly overlaps
- * with the LLC domains.
- *
- * If all CPUs belong to the same NUMA node and the same LLC domain,
- * enabling both NUMA and LLC optimizations is unnecessary, as checking
- * for an idle CPU in the same domain twice is redundant.
- */
- cpus = cpumask_of_node(cpu_to_node(cpu));
- if ((cpumask_weight(cpus) < num_online_cpus()) && llc_numa_mismatch())
- enable_numa = true;
- rcu_read_unlock();
-
- pr_debug("sched_ext: LLC idle selection %s\n",
- enable_llc ? "enabled" : "disabled");
- pr_debug("sched_ext: NUMA idle selection %s\n",
- enable_numa ? "enabled" : "disabled");
-
- if (enable_llc)
- static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
- else
- static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
- if (enable_numa)
- static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
- else
- static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
-}
-
-/*
- * Built-in CPU idle selection policy:
- *
- * 1. Prioritize full-idle cores:
- * - always prioritize CPUs from fully idle cores (both logical CPUs are
- * idle) to avoid interference caused by SMT.
- *
- * 2. Reuse the same CPU:
- * - prefer the last used CPU to take advantage of cached data (L1, L2) and
- * branch prediction optimizations.
- *
- * 3. Pick a CPU within the same LLC (Last-Level Cache):
- * - if the above conditions aren't met, pick a CPU that shares the same LLC
- * to maintain cache locality.
- *
- * 4. Pick a CPU within the same NUMA node, if enabled:
- * - choose a CPU from the same NUMA node to reduce memory access latency.
- *
- * Step 3 and 4 are performed only if the system has, respectively, multiple
- * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and
- * scx_selcpu_topo_numa).
- *
- * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
- * we never call ops.select_cpu() for them, see select_task_rq().
- */
-static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
- u64 wake_flags, bool *found)
-{
- const struct cpumask *llc_cpus = NULL;
- const struct cpumask *numa_cpus = NULL;
- s32 cpu;
-
- *found = false;
-
-
- /*
- * This is necessary to protect llc_cpus.
- */
- rcu_read_lock();
-
- /*
- * Determine the scheduling domain only if the task is allowed to run
- * on all CPUs.
- *
- * This is done primarily for efficiency, as it avoids the overhead of
- * updating a cpumask every time we need to select an idle CPU (which
- * can be costly in large SMP systems), but it also aligns logically:
- * if a task's scheduling domain is restricted by user-space (through
- * CPU affinity), the task will simply use the flat scheduling domain
- * defined by user-space.
- */
- if (p->nr_cpus_allowed >= num_possible_cpus()) {
- if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa))
- numa_cpus = cpumask_of_node(cpu_to_node(prev_cpu));
-
- if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) {
- struct sched_domain *sd;
-
- sd = rcu_dereference(per_cpu(sd_llc, prev_cpu));
- if (sd)
- llc_cpus = sched_domain_span(sd);
- }
- }
-
- /*
- * If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
- */
- if (wake_flags & SCX_WAKE_SYNC) {
- cpu = smp_processor_id();
-
- /*
- * If the waker's CPU is cache affine and prev_cpu is idle,
- * then avoid a migration.
- */
- if (cpus_share_cache(cpu, prev_cpu) &&
- test_and_clear_cpu_idle(prev_cpu)) {
- cpu = prev_cpu;
- goto cpu_found;
- }
-
- /*
- * If the waker's local DSQ is empty, and the system is under
- * utilized, try to wake up @p to the local DSQ of the waker.
- *
- * Checking only for an empty local DSQ is insufficient as it
- * could give the wakee an unfair advantage when the system is
- * oversaturated.
- *
- * Checking only for the presence of idle CPUs is also
- * insufficient as the local DSQ of the waker could have tasks
- * piled up on it even if there is an idle core elsewhere on
- * the system.
- */
- if (!cpumask_empty(idle_masks.cpu) &&
- !(current->flags & PF_EXITING) &&
- cpu_rq(cpu)->scx.local_dsq.nr == 0) {
- if (cpumask_test_cpu(cpu, p->cpus_ptr))
- goto cpu_found;
- }
- }
-
- /*
- * If CPU has SMT, any wholly idle CPU is likely a better pick than
- * partially idle @prev_cpu.
- */
- if (sched_smt_active()) {
- /*
- * Keep using @prev_cpu if it's part of a fully idle core.
- */
- if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
- test_and_clear_cpu_idle(prev_cpu)) {
- cpu = prev_cpu;
- goto cpu_found;
- }
-
- /*
- * Search for any fully idle core in the same LLC domain.
- */
- if (llc_cpus) {
- cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE);
- if (cpu >= 0)
- goto cpu_found;
- }
-
- /*
- * Search for any fully idle core in the same NUMA node.
- */
- if (numa_cpus) {
- cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE);
- if (cpu >= 0)
- goto cpu_found;
- }
-
- /*
- * Search for any full idle core usable by the task.
- */
- cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
- if (cpu >= 0)
- goto cpu_found;
- }
-
- /*
- * Use @prev_cpu if it's idle.
- */
- if (test_and_clear_cpu_idle(prev_cpu)) {
- cpu = prev_cpu;
- goto cpu_found;
- }
-
- /*
- * Search for any idle CPU in the same LLC domain.
- */
- if (llc_cpus) {
- cpu = scx_pick_idle_cpu(llc_cpus, 0);
- if (cpu >= 0)
- goto cpu_found;
- }
-
- /*
- * Search for any idle CPU in the same NUMA node.
- */
- if (numa_cpus) {
- cpu = scx_pick_idle_cpu(numa_cpus, 0);
- if (cpu >= 0)
- goto cpu_found;
- }
-
- /*
- * Search for any idle CPU usable by the task.
- */
- cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
- if (cpu >= 0)
- goto cpu_found;
-
- rcu_read_unlock();
- return prev_cpu;
-
-cpu_found:
- rcu_read_unlock();
-
- *found = true;
- return cpu;
-}
-
static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
{
+ struct scx_sched *sch = scx_root;
+ bool rq_bypass;
+
/*
* sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
* can be a good migration opportunity with low cache and memory
@@ -3525,7 +2552,8 @@ static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flag
if (unlikely(wake_flags & WF_EXEC))
return prev_cpu;
- if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) {
+ rq_bypass = scx_rq_bypassing(task_rq(p));
+ if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) {
s32 cpu;
struct task_struct **ddsp_taskp;
@@ -3533,22 +2561,30 @@ static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flag
WARN_ON_ONCE(*ddsp_taskp);
*ddsp_taskp = p;
- cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
- select_cpu, p, prev_cpu, wake_flags);
+ cpu = SCX_CALL_OP_TASK_RET(sch,
+ SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
+ select_cpu, NULL, p, prev_cpu,
+ wake_flags);
+ p->scx.selected_cpu = cpu;
*ddsp_taskp = NULL;
- if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
+ if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()"))
return cpu;
else
return prev_cpu;
} else {
- bool found;
s32 cpu;
- cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
- if (found) {
- p->scx.slice = SCX_SLICE_DFL;
+ cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0);
+ if (cpu >= 0) {
+ refill_task_slice_dfl(sch, p);
p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
+ } else {
+ cpu = prev_cpu;
}
+ p->scx.selected_cpu = cpu;
+
+ if (rq_bypass)
+ __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
return cpu;
}
}
@@ -3561,6 +2597,8 @@ static void task_woken_scx(struct rq *rq, struct task_struct *p)
static void set_cpus_allowed_scx(struct task_struct *p,
struct affinity_context *ac)
{
+ struct scx_sched *sch = scx_root;
+
set_cpus_allowed_common(p, ac);
/*
@@ -3571,74 +2609,38 @@ static void set_cpus_allowed_scx(struct task_struct *p,
* Fine-grained memory write control is enforced by BPF making the const
* designation pointless. Cast it away when calling the operation.
*/
- if (SCX_HAS_OP(set_cpumask))
- SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
- (struct cpumask *)p->cpus_ptr);
-}
-
-static void reset_idle_masks(void)
-{
- /*
- * Consider all online cpus idle. Should converge to the actual state
- * quickly.
- */
- cpumask_copy(idle_masks.cpu, cpu_online_mask);
- cpumask_copy(idle_masks.smt, cpu_online_mask);
-}
-
-void __scx_update_idle(struct rq *rq, bool idle)
-{
- int cpu = cpu_of(rq);
-
- if (SCX_HAS_OP(update_idle) && !scx_rq_bypassing(rq)) {
- SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
- if (!static_branch_unlikely(&scx_builtin_idle_enabled))
- return;
- }
-
- if (idle)
- cpumask_set_cpu(cpu, idle_masks.cpu);
- else
- cpumask_clear_cpu(cpu, idle_masks.cpu);
-
-#ifdef CONFIG_SCHED_SMT
- if (sched_smt_active()) {
- const struct cpumask *smt = cpu_smt_mask(cpu);
-
- if (idle) {
- /*
- * idle_masks.smt handling is racy but that's fine as
- * it's only for optimization and self-correcting.
- */
- for_each_cpu(cpu, smt) {
- if (!cpumask_test_cpu(cpu, idle_masks.cpu))
- return;
- }
- cpumask_or(idle_masks.smt, idle_masks.smt, smt);
- } else {
- cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
- }
- }
-#endif
+ if (SCX_HAS_OP(sch, set_cpumask))
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL,
+ p, (struct cpumask *)p->cpus_ptr);
}
static void handle_hotplug(struct rq *rq, bool online)
{
+ struct scx_sched *sch = scx_root;
int cpu = cpu_of(rq);
atomic_long_inc(&scx_hotplug_seq);
+ /*
+ * scx_root updates are protected by cpus_read_lock() and will stay
+ * stable here. Note that we can't depend on scx_enabled() test as the
+ * hotplug ops need to be enabled before __scx_enabled is set.
+ */
+ if (unlikely(!sch))
+ return;
+
if (scx_enabled())
- update_selcpu_topology();
+ scx_idle_update_selcpu_topology(&sch->ops);
- if (online && SCX_HAS_OP(cpu_online))
- SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
- else if (!online && SCX_HAS_OP(cpu_offline))
- SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
+ if (online && SCX_HAS_OP(sch, cpu_online))
+ SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu);
+ else if (!online && SCX_HAS_OP(sch, cpu_offline))
+ SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu);
else
- scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
- "cpu %d going %s, exiting scheduler", cpu,
- online ? "online" : "offline");
+ scx_exit(sch, SCX_EXIT_UNREG_KERN,
+ SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
+ "cpu %d going %s, exiting scheduler", cpu,
+ online ? "online" : "offline");
}
void scx_rq_activate(struct rq *rq)
@@ -3661,21 +2663,19 @@ static void rq_offline_scx(struct rq *rq)
rq->scx.flags &= ~SCX_RQ_ONLINE;
}
-#else /* CONFIG_SMP */
-
-static bool test_and_clear_cpu_idle(int cpu) { return false; }
-static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
-static void reset_idle_masks(void) {}
-
-#endif /* CONFIG_SMP */
static bool check_rq_for_timeouts(struct rq *rq)
{
+ struct scx_sched *sch;
struct task_struct *p;
struct rq_flags rf;
bool timed_out = false;
rq_lock_irqsave(rq, &rf);
+ sch = rcu_dereference_bh(scx_root);
+ if (unlikely(!sch))
+ goto out_unlock;
+
list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
unsigned long last_runnable = p->scx.runnable_at;
@@ -3683,16 +2683,15 @@ static bool check_rq_for_timeouts(struct rq *rq)
last_runnable + scx_watchdog_timeout))) {
u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
- scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
- "%s[%d] failed to run for %u.%03us",
- p->comm, p->pid,
- dur_ms / 1000, dur_ms % 1000);
+ scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
+ "%s[%d] failed to run for %u.%03us",
+ p->comm, p->pid, dur_ms / 1000, dur_ms % 1000);
timed_out = true;
break;
}
}
+out_unlock:
rq_unlock_irqrestore(rq, &rf);
-
return timed_out;
}
@@ -3714,19 +2713,24 @@ static void scx_watchdog_workfn(struct work_struct *work)
void scx_tick(struct rq *rq)
{
+ struct scx_sched *sch;
unsigned long last_check;
if (!scx_enabled())
return;
+ sch = rcu_dereference_bh(scx_root);
+ if (unlikely(!sch))
+ return;
+
last_check = READ_ONCE(scx_watchdog_timestamp);
if (unlikely(time_after(jiffies,
last_check + READ_ONCE(scx_watchdog_timeout)))) {
u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
- scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
- "watchdog failed to check in for %u.%03us",
- dur_ms / 1000, dur_ms % 1000);
+ scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
+ "watchdog failed to check in for %u.%03us",
+ dur_ms / 1000, dur_ms % 1000);
}
update_other_load_avgs(rq);
@@ -3734,6 +2738,8 @@ void scx_tick(struct rq *rq)
static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
{
+ struct scx_sched *sch = scx_root;
+
update_curr_scx(rq);
/*
@@ -3743,8 +2749,8 @@ static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
if (scx_rq_bypassing(rq)) {
curr->scx.slice = 0;
touch_core_sched(rq, curr);
- } else if (SCX_HAS_OP(tick)) {
- SCX_CALL_OP(SCX_KF_REST, tick, curr);
+ } else if (SCX_HAS_OP(sch, tick)) {
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr);
}
if (!curr->scx.slice)
@@ -3809,21 +2815,23 @@ static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
}
-static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
+static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork)
{
+ struct scx_sched *sch = scx_root;
int ret;
p->scx.disallow = false;
- if (SCX_HAS_OP(init_task)) {
+ if (SCX_HAS_OP(sch, init_task)) {
struct scx_init_task_args args = {
SCX_INIT_TASK_ARGS_CGROUP(tg)
.fork = fork,
};
- ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
+ ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL,
+ p, &args);
if (unlikely(ret)) {
- ret = ops_sanitize_err("init_task", ret);
+ ret = ops_sanitize_err(sch, "init_task", ret);
return ret;
}
}
@@ -3851,8 +2859,8 @@ static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool
task_rq_unlock(rq, p, &rf);
} else if (p->policy == SCHED_EXT) {
- scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
- p->comm, p->pid);
+ scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork",
+ p->comm, p->pid);
}
}
@@ -3860,11 +2868,13 @@ static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool
return 0;
}
-static void scx_ops_enable_task(struct task_struct *p)
+static void scx_enable_task(struct task_struct *p)
{
+ struct scx_sched *sch = scx_root;
+ struct rq *rq = task_rq(p);
u32 weight;
- lockdep_assert_rq_held(task_rq(p));
+ lockdep_assert_rq_held(rq);
/*
* Set the weight before calling ops.enable() so that the scheduler
@@ -3877,26 +2887,31 @@ static void scx_ops_enable_task(struct task_struct *p)
p->scx.weight = sched_weight_to_cgroup(weight);
- if (SCX_HAS_OP(enable))
- SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
+ if (SCX_HAS_OP(sch, enable))
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p);
scx_set_task_state(p, SCX_TASK_ENABLED);
- if (SCX_HAS_OP(set_weight))
- SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
+ if (SCX_HAS_OP(sch, set_weight))
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
+ p, p->scx.weight);
}
-static void scx_ops_disable_task(struct task_struct *p)
+static void scx_disable_task(struct task_struct *p)
{
- lockdep_assert_rq_held(task_rq(p));
+ struct scx_sched *sch = scx_root;
+ struct rq *rq = task_rq(p);
+
+ lockdep_assert_rq_held(rq);
WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
- if (SCX_HAS_OP(disable))
- SCX_CALL_OP(SCX_KF_REST, disable, p);
+ if (SCX_HAS_OP(sch, disable))
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p);
scx_set_task_state(p, SCX_TASK_READY);
}
-static void scx_ops_exit_task(struct task_struct *p)
+static void scx_exit_task(struct task_struct *p)
{
+ struct scx_sched *sch = scx_root;
struct scx_exit_task_args args = {
.cancelled = false,
};
@@ -3912,15 +2927,16 @@ static void scx_ops_exit_task(struct task_struct *p)
case SCX_TASK_READY:
break;
case SCX_TASK_ENABLED:
- scx_ops_disable_task(p);
+ scx_disable_task(p);
break;
default:
WARN_ON_ONCE(true);
return;
}
- if (SCX_HAS_OP(exit_task))
- SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
+ if (SCX_HAS_OP(sch, exit_task))
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p),
+ p, &args);
scx_set_task_state(p, SCX_TASK_NONE);
}
@@ -3934,7 +2950,7 @@ void init_scx_entity(struct sched_ext_entity *scx)
INIT_LIST_HEAD(&scx->runnable_node);
scx->runnable_at = jiffies;
scx->ddsp_dsq_id = SCX_DSQ_INVALID;
- scx->slice = SCX_SLICE_DFL;
+ scx->slice = READ_ONCE(scx_slice_dfl);
}
void scx_pre_fork(struct task_struct *p)
@@ -3952,15 +2968,15 @@ int scx_fork(struct task_struct *p)
{
percpu_rwsem_assert_held(&scx_fork_rwsem);
- if (scx_ops_init_task_enabled)
- return scx_ops_init_task(p, task_group(p), true);
+ if (scx_init_task_enabled)
+ return scx_init_task(p, task_group(p), true);
else
return 0;
}
void scx_post_fork(struct task_struct *p)
{
- if (scx_ops_init_task_enabled) {
+ if (scx_init_task_enabled) {
scx_set_task_state(p, SCX_TASK_READY);
/*
@@ -3973,14 +2989,14 @@ void scx_post_fork(struct task_struct *p)
struct rq *rq;
rq = task_rq_lock(p, &rf);
- scx_ops_enable_task(p);
+ scx_enable_task(p);
task_rq_unlock(rq, p, &rf);
}
}
- spin_lock_irq(&scx_tasks_lock);
+ raw_spin_lock_irq(&scx_tasks_lock);
list_add_tail(&p->scx.tasks_node, &scx_tasks);
- spin_unlock_irq(&scx_tasks_lock);
+ raw_spin_unlock_irq(&scx_tasks_lock);
percpu_up_read(&scx_fork_rwsem);
}
@@ -3993,31 +3009,31 @@ void scx_cancel_fork(struct task_struct *p)
rq = task_rq_lock(p, &rf);
WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
- scx_ops_exit_task(p);
+ scx_exit_task(p);
task_rq_unlock(rq, p, &rf);
}
percpu_up_read(&scx_fork_rwsem);
}
-void sched_ext_free(struct task_struct *p)
+void sched_ext_dead(struct task_struct *p)
{
unsigned long flags;
- spin_lock_irqsave(&scx_tasks_lock, flags);
+ raw_spin_lock_irqsave(&scx_tasks_lock, flags);
list_del_init(&p->scx.tasks_node);
- spin_unlock_irqrestore(&scx_tasks_lock, flags);
+ raw_spin_unlock_irqrestore(&scx_tasks_lock, flags);
/*
- * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
- * ENABLED transitions can't race us. Disable ops for @p.
+ * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED
+ * transitions can't race us. Disable ops for @p.
*/
if (scx_get_task_state(p) != SCX_TASK_NONE) {
struct rq_flags rf;
struct rq *rq;
rq = task_rq_lock(p, &rf);
- scx_ops_exit_task(p);
+ scx_exit_task(p);
task_rq_unlock(rq, p, &rf);
}
}
@@ -4025,33 +3041,38 @@ void sched_ext_free(struct task_struct *p)
static void reweight_task_scx(struct rq *rq, struct task_struct *p,
const struct load_weight *lw)
{
+ struct scx_sched *sch = scx_root;
+
lockdep_assert_rq_held(task_rq(p));
p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
- if (SCX_HAS_OP(set_weight))
- SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
+ if (SCX_HAS_OP(sch, set_weight))
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
+ p, p->scx.weight);
}
-static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
+static void prio_changed_scx(struct rq *rq, struct task_struct *p, u64 oldprio)
{
}
static void switching_to_scx(struct rq *rq, struct task_struct *p)
{
- scx_ops_enable_task(p);
+ struct scx_sched *sch = scx_root;
+
+ scx_enable_task(p);
/*
* set_cpus_allowed_scx() is not called while @p is associated with a
* different scheduler class. Keep the BPF scheduler up-to-date.
*/
- if (SCX_HAS_OP(set_cpumask))
- SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
- (struct cpumask *)p->cpus_ptr);
+ if (SCX_HAS_OP(sch, set_cpumask))
+ SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq,
+ p, (struct cpumask *)p->cpus_ptr);
}
static void switched_from_scx(struct rq *rq, struct task_struct *p)
{
- scx_ops_disable_task(p);
+ scx_disable_task(p);
}
static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
@@ -4091,90 +3112,66 @@ bool scx_can_stop_tick(struct rq *rq)
#ifdef CONFIG_EXT_GROUP_SCHED
-DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
+DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem);
static bool scx_cgroup_enabled;
-static bool cgroup_warned_missing_weight;
-static bool cgroup_warned_missing_idle;
-static void scx_cgroup_warn_missing_weight(struct task_group *tg)
+void scx_tg_init(struct task_group *tg)
{
- if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
- cgroup_warned_missing_weight)
- return;
-
- if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
- return;
-
- pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
- scx_ops.name);
- cgroup_warned_missing_weight = true;
-}
-
-static void scx_cgroup_warn_missing_idle(struct task_group *tg)
-{
- if (!scx_cgroup_enabled || cgroup_warned_missing_idle)
- return;
-
- if (!tg->idle)
- return;
-
- pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
- scx_ops.name);
- cgroup_warned_missing_idle = true;
+ tg->scx.weight = CGROUP_WEIGHT_DFL;
+ tg->scx.bw_period_us = default_bw_period_us();
+ tg->scx.bw_quota_us = RUNTIME_INF;
+ tg->scx.idle = false;
}
int scx_tg_online(struct task_group *tg)
{
+ struct scx_sched *sch = scx_root;
int ret = 0;
- WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
-
- percpu_down_read(&scx_cgroup_rwsem);
-
- scx_cgroup_warn_missing_weight(tg);
+ WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED));
if (scx_cgroup_enabled) {
- if (SCX_HAS_OP(cgroup_init)) {
+ if (SCX_HAS_OP(sch, cgroup_init)) {
struct scx_cgroup_init_args args =
- { .weight = tg->scx_weight };
+ { .weight = tg->scx.weight,
+ .bw_period_us = tg->scx.bw_period_us,
+ .bw_quota_us = tg->scx.bw_quota_us,
+ .bw_burst_us = tg->scx.bw_burst_us };
- ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
- tg->css.cgroup, &args);
+ ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init,
+ NULL, tg->css.cgroup, &args);
if (ret)
- ret = ops_sanitize_err("cgroup_init", ret);
+ ret = ops_sanitize_err(sch, "cgroup_init", ret);
}
if (ret == 0)
- tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
+ tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED;
} else {
- tg->scx_flags |= SCX_TG_ONLINE;
+ tg->scx.flags |= SCX_TG_ONLINE;
}
- percpu_up_read(&scx_cgroup_rwsem);
return ret;
}
void scx_tg_offline(struct task_group *tg)
{
- WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
-
- percpu_down_read(&scx_cgroup_rwsem);
+ struct scx_sched *sch = scx_root;
- if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
- SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
- tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
+ WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE));
- percpu_up_read(&scx_cgroup_rwsem);
+ if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) &&
+ (tg->scx.flags & SCX_TG_INITED))
+ SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
+ tg->css.cgroup);
+ tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
}
int scx_cgroup_can_attach(struct cgroup_taskset *tset)
{
+ struct scx_sched *sch = scx_root;
struct cgroup_subsys_state *css;
struct task_struct *p;
int ret;
- /* released in scx_finish/cancel_attach() */
- percpu_down_read(&scx_cgroup_rwsem);
-
if (!scx_cgroup_enabled)
return 0;
@@ -4192,8 +3189,9 @@ int scx_cgroup_can_attach(struct cgroup_taskset *tset)
if (from == to)
continue;
- if (SCX_HAS_OP(cgroup_prep_move)) {
- ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
+ if (SCX_HAS_OP(sch, cgroup_prep_move)) {
+ ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED,
+ cgroup_prep_move, NULL,
p, from, css->cgroup);
if (ret)
goto err;
@@ -4206,102 +3204,122 @@ int scx_cgroup_can_attach(struct cgroup_taskset *tset)
err:
cgroup_taskset_for_each(p, css, tset) {
- if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
- SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
- p->scx.cgrp_moving_from, css->cgroup);
+ if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
+ p->scx.cgrp_moving_from)
+ SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
+ p, p->scx.cgrp_moving_from, css->cgroup);
p->scx.cgrp_moving_from = NULL;
}
- percpu_up_read(&scx_cgroup_rwsem);
- return ops_sanitize_err("cgroup_prep_move", ret);
+ return ops_sanitize_err(sch, "cgroup_prep_move", ret);
}
-void scx_move_task(struct task_struct *p)
+void scx_cgroup_move_task(struct task_struct *p)
{
- if (!scx_cgroup_enabled)
- return;
+ struct scx_sched *sch = scx_root;
- /*
- * We're called from sched_move_task() which handles both cgroup and
- * autogroup moves. Ignore the latter.
- *
- * Also ignore exiting tasks, because in the exit path tasks transition
- * from the autogroup to the root group, so task_group_is_autogroup()
- * alone isn't able to catch exiting autogroup tasks. This is safe for
- * cgroup_move(), because cgroup migrations never happen for PF_EXITING
- * tasks.
- */
- if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
+ if (!scx_cgroup_enabled)
return;
/*
* @p must have ops.cgroup_prep_move() called on it and thus
* cgrp_moving_from set.
*/
- if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
- SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
- p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
+ if (SCX_HAS_OP(sch, cgroup_move) &&
+ !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
+ SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL,
+ p, p->scx.cgrp_moving_from,
+ tg_cgrp(task_group(p)));
p->scx.cgrp_moving_from = NULL;
}
-void scx_cgroup_finish_attach(void)
-{
- percpu_up_read(&scx_cgroup_rwsem);
-}
-
void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
{
+ struct scx_sched *sch = scx_root;
struct cgroup_subsys_state *css;
struct task_struct *p;
if (!scx_cgroup_enabled)
- goto out_unlock;
+ return;
cgroup_taskset_for_each(p, css, tset) {
- if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
- SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
- p->scx.cgrp_moving_from, css->cgroup);
+ if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
+ p->scx.cgrp_moving_from)
+ SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
+ p, p->scx.cgrp_moving_from, css->cgroup);
p->scx.cgrp_moving_from = NULL;
}
-out_unlock:
- percpu_up_read(&scx_cgroup_rwsem);
}
void scx_group_set_weight(struct task_group *tg, unsigned long weight)
{
- percpu_down_read(&scx_cgroup_rwsem);
+ struct scx_sched *sch = scx_root;
- if (scx_cgroup_enabled && tg->scx_weight != weight) {
- if (SCX_HAS_OP(cgroup_set_weight))
- SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
- tg_cgrp(tg), weight);
- tg->scx_weight = weight;
- }
+ percpu_down_read(&scx_cgroup_ops_rwsem);
+
+ if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) &&
+ tg->scx.weight != weight)
+ SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL,
+ tg_cgrp(tg), weight);
- percpu_up_read(&scx_cgroup_rwsem);
+ tg->scx.weight = weight;
+
+ percpu_up_read(&scx_cgroup_ops_rwsem);
}
void scx_group_set_idle(struct task_group *tg, bool idle)
{
- percpu_down_read(&scx_cgroup_rwsem);
- scx_cgroup_warn_missing_idle(tg);
- percpu_up_read(&scx_cgroup_rwsem);
+ struct scx_sched *sch = scx_root;
+
+ percpu_down_read(&scx_cgroup_ops_rwsem);
+
+ if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_idle))
+ SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_idle, NULL,
+ tg_cgrp(tg), idle);
+
+ /* Update the task group's idle state */
+ tg->scx.idle = idle;
+
+ percpu_up_read(&scx_cgroup_ops_rwsem);
+}
+
+void scx_group_set_bandwidth(struct task_group *tg,
+ u64 period_us, u64 quota_us, u64 burst_us)
+{
+ struct scx_sched *sch = scx_root;
+
+ percpu_down_read(&scx_cgroup_ops_rwsem);
+
+ if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) &&
+ (tg->scx.bw_period_us != period_us ||
+ tg->scx.bw_quota_us != quota_us ||
+ tg->scx.bw_burst_us != burst_us))
+ SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL,
+ tg_cgrp(tg), period_us, quota_us, burst_us);
+
+ tg->scx.bw_period_us = period_us;
+ tg->scx.bw_quota_us = quota_us;
+ tg->scx.bw_burst_us = burst_us;
+
+ percpu_up_read(&scx_cgroup_ops_rwsem);
}
static void scx_cgroup_lock(void)
{
- percpu_down_write(&scx_cgroup_rwsem);
+ percpu_down_write(&scx_cgroup_ops_rwsem);
+ cgroup_lock();
}
static void scx_cgroup_unlock(void)
{
- percpu_up_write(&scx_cgroup_rwsem);
+ cgroup_unlock();
+ percpu_up_write(&scx_cgroup_ops_rwsem);
}
#else /* CONFIG_EXT_GROUP_SCHED */
-static inline void scx_cgroup_lock(void) {}
-static inline void scx_cgroup_unlock(void) {}
+static void scx_cgroup_lock(void) {}
+static void scx_cgroup_unlock(void) {}
#endif /* CONFIG_EXT_GROUP_SCHED */
@@ -4318,6 +3336,8 @@ static inline void scx_cgroup_unlock(void) {}
* their current sched_class. Call them directly from sched core instead.
*/
DEFINE_SCHED_CLASS(ext) = {
+ .queue_mask = 1,
+
.enqueue_task = enqueue_task_scx,
.dequeue_task = dequeue_task_scx,
.yield_task = yield_task_scx,
@@ -4325,20 +3345,17 @@ DEFINE_SCHED_CLASS(ext) = {
.wakeup_preempt = wakeup_preempt_scx,
- .balance = balance_scx,
.pick_task = pick_task_scx,
.put_prev_task = put_prev_task_scx,
.set_next_task = set_next_task_scx,
-#ifdef CONFIG_SMP
.select_task_rq = select_task_rq_scx,
.task_woken = task_woken_scx,
.set_cpus_allowed = set_cpus_allowed_scx,
.rq_online = rq_online_scx,
.rq_offline = rq_offline_scx,
-#endif
.task_tick = task_tick_scx,
@@ -4364,29 +3381,6 @@ static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
dsq->id = dsq_id;
}
-static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
-{
- struct scx_dispatch_q *dsq;
- int ret;
-
- if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
- return ERR_PTR(-EINVAL);
-
- dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
- if (!dsq)
- return ERR_PTR(-ENOMEM);
-
- init_dsq(dsq, dsq_id);
-
- ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
- dsq_hash_params);
- if (ret) {
- kfree(dsq);
- return ERR_PTR(ret);
- }
- return dsq;
-}
-
static void free_dsq_irq_workfn(struct irq_work *irq_work)
{
struct llist_node *to_free = llist_del_all(&dsqs_to_free);
@@ -4398,26 +3392,27 @@ static void free_dsq_irq_workfn(struct irq_work *irq_work)
static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
-static void destroy_dsq(u64 dsq_id)
+static void destroy_dsq(struct scx_sched *sch, u64 dsq_id)
{
struct scx_dispatch_q *dsq;
unsigned long flags;
rcu_read_lock();
- dsq = find_user_dsq(dsq_id);
+ dsq = find_user_dsq(sch, dsq_id);
if (!dsq)
goto out_unlock_rcu;
raw_spin_lock_irqsave(&dsq->lock, flags);
if (dsq->nr) {
- scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
- dsq->id, dsq->nr);
+ scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)",
+ dsq->id, dsq->nr);
goto out_unlock_dsq;
}
- if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
+ if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node,
+ dsq_hash_params))
goto out_unlock_dsq;
/*
@@ -4437,89 +3432,67 @@ out_unlock_rcu:
}
#ifdef CONFIG_EXT_GROUP_SCHED
-static void scx_cgroup_exit(void)
+static void scx_cgroup_exit(struct scx_sched *sch)
{
struct cgroup_subsys_state *css;
- percpu_rwsem_assert_held(&scx_cgroup_rwsem);
-
scx_cgroup_enabled = false;
/*
- * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
+ * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
* cgroups and exit all the inited ones, all online cgroups are exited.
*/
- rcu_read_lock();
css_for_each_descendant_post(css, &root_task_group.css) {
struct task_group *tg = css_tg(css);
- if (!(tg->scx_flags & SCX_TG_INITED))
- continue;
- tg->scx_flags &= ~SCX_TG_INITED;
-
- if (!scx_ops.cgroup_exit)
+ if (!(tg->scx.flags & SCX_TG_INITED))
continue;
+ tg->scx.flags &= ~SCX_TG_INITED;
- if (WARN_ON_ONCE(!css_tryget(css)))
+ if (!sch->ops.cgroup_exit)
continue;
- rcu_read_unlock();
- SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
-
- rcu_read_lock();
- css_put(css);
+ SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
+ css->cgroup);
}
- rcu_read_unlock();
}
-static int scx_cgroup_init(void)
+static int scx_cgroup_init(struct scx_sched *sch)
{
struct cgroup_subsys_state *css;
int ret;
- percpu_rwsem_assert_held(&scx_cgroup_rwsem);
-
- cgroup_warned_missing_weight = false;
- cgroup_warned_missing_idle = false;
-
/*
- * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
+ * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
* cgroups and init, all online cgroups are initialized.
*/
- rcu_read_lock();
css_for_each_descendant_pre(css, &root_task_group.css) {
struct task_group *tg = css_tg(css);
- struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
-
- scx_cgroup_warn_missing_weight(tg);
- scx_cgroup_warn_missing_idle(tg);
+ struct scx_cgroup_init_args args = {
+ .weight = tg->scx.weight,
+ .bw_period_us = tg->scx.bw_period_us,
+ .bw_quota_us = tg->scx.bw_quota_us,
+ .bw_burst_us = tg->scx.bw_burst_us,
+ };
- if ((tg->scx_flags &
+ if ((tg->scx.flags &
(SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
continue;
- if (!scx_ops.cgroup_init) {
- tg->scx_flags |= SCX_TG_INITED;
+ if (!sch->ops.cgroup_init) {
+ tg->scx.flags |= SCX_TG_INITED;
continue;
}
- if (WARN_ON_ONCE(!css_tryget(css)))
- continue;
- rcu_read_unlock();
-
- ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
+ ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL,
css->cgroup, &args);
if (ret) {
css_put(css);
- scx_ops_error("ops.cgroup_init() failed (%d)", ret);
+ scx_error(sch, "ops.cgroup_init() failed (%d)", ret);
return ret;
}
- tg->scx_flags |= SCX_TG_INITED;
-
- rcu_read_lock();
- css_put(css);
+ tg->scx.flags |= SCX_TG_INITED;
}
- rcu_read_unlock();
WARN_ON_ONCE(scx_cgroup_enabled);
scx_cgroup_enabled = true;
@@ -4528,8 +3501,8 @@ static int scx_cgroup_init(void)
}
#else
-static void scx_cgroup_exit(void) {}
-static int scx_cgroup_init(void) { return 0; }
+static void scx_cgroup_exit(struct scx_sched *sch) {}
+static int scx_cgroup_init(struct scx_sched *sch) { return 0; }
#endif
@@ -4546,8 +3519,7 @@ static int scx_cgroup_init(void) { return 0; }
static ssize_t scx_attr_state_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
- return sysfs_emit(buf, "%s\n",
- scx_ops_enable_state_str[scx_ops_enable_state()]);
+ return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]);
}
SCX_ATTR(state);
@@ -4592,20 +3564,84 @@ static const struct attribute_group scx_global_attr_group = {
.attrs = scx_global_attrs,
};
+static void free_exit_info(struct scx_exit_info *ei);
+
+static void scx_sched_free_rcu_work(struct work_struct *work)
+{
+ struct rcu_work *rcu_work = to_rcu_work(work);
+ struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work);
+ struct rhashtable_iter rht_iter;
+ struct scx_dispatch_q *dsq;
+ int node;
+
+ irq_work_sync(&sch->error_irq_work);
+ kthread_stop(sch->helper->task);
+
+ free_percpu(sch->pcpu);
+
+ for_each_node_state(node, N_POSSIBLE)
+ kfree(sch->global_dsqs[node]);
+ kfree(sch->global_dsqs);
+
+ rhashtable_walk_enter(&sch->dsq_hash, &rht_iter);
+ do {
+ rhashtable_walk_start(&rht_iter);
+
+ while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
+ destroy_dsq(sch, dsq->id);
+
+ rhashtable_walk_stop(&rht_iter);
+ } while (dsq == ERR_PTR(-EAGAIN));
+ rhashtable_walk_exit(&rht_iter);
+
+ rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
+ free_exit_info(sch->exit_info);
+ kfree(sch);
+}
+
static void scx_kobj_release(struct kobject *kobj)
{
- kfree(kobj);
+ struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
+
+ INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work);
+ queue_rcu_work(system_unbound_wq, &sch->rcu_work);
}
static ssize_t scx_attr_ops_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
- return sysfs_emit(buf, "%s\n", scx_ops.name);
+ return sysfs_emit(buf, "%s\n", scx_root->ops.name);
}
SCX_ATTR(ops);
+#define scx_attr_event_show(buf, at, events, kind) ({ \
+ sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \
+})
+
+static ssize_t scx_attr_events_show(struct kobject *kobj,
+ struct kobj_attribute *ka, char *buf)
+{
+ struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
+ struct scx_event_stats events;
+ int at = 0;
+
+ scx_read_events(sch, &events);
+ at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK);
+ at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
+ at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST);
+ at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING);
+ at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
+ at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL);
+ at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION);
+ at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH);
+ at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE);
+ return at;
+}
+SCX_ATTR(events);
+
static struct attribute *scx_sched_attrs[] = {
&scx_attr_ops.attr,
+ &scx_attr_events.attr,
NULL,
};
ATTRIBUTE_GROUPS(scx_sched);
@@ -4618,7 +3654,7 @@ static const struct kobj_type scx_ktype = {
static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
{
- return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
+ return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name);
}
static const struct kset_uevent_ops scx_uevent_ops = {
@@ -4631,59 +3667,330 @@ static const struct kset_uevent_ops scx_uevent_ops = {
*/
bool task_should_scx(int policy)
{
- if (!scx_enabled() ||
- unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
+ if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING))
return false;
if (READ_ONCE(scx_switching_all))
return true;
return policy == SCHED_EXT;
}
+bool scx_allow_ttwu_queue(const struct task_struct *p)
+{
+ struct scx_sched *sch;
+
+ if (!scx_enabled())
+ return true;
+
+ sch = rcu_dereference_sched(scx_root);
+ if (unlikely(!sch))
+ return true;
+
+ if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP)
+ return true;
+
+ if (unlikely(p->sched_class != &ext_sched_class))
+ return true;
+
+ return false;
+}
+
+/**
+ * handle_lockup - sched_ext common lockup handler
+ * @fmt: format string
+ *
+ * Called on system stall or lockup condition and initiates abort of sched_ext
+ * if enabled, which may resolve the reported lockup.
+ *
+ * Returns %true if sched_ext is enabled and abort was initiated, which may
+ * resolve the lockup. %false if sched_ext is not enabled or abort was already
+ * initiated by someone else.
+ */
+static __printf(1, 2) bool handle_lockup(const char *fmt, ...)
+{
+ struct scx_sched *sch;
+ va_list args;
+ bool ret;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return false;
+
+ switch (scx_enable_state()) {
+ case SCX_ENABLING:
+ case SCX_ENABLED:
+ va_start(args, fmt);
+ ret = scx_verror(sch, fmt, args);
+ va_end(args);
+ return ret;
+ default:
+ return false;
+ }
+}
+
+/**
+ * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler
+ *
+ * While there are various reasons why RCU CPU stalls can occur on a system
+ * that may not be caused by the current BPF scheduler, try kicking out the
+ * current scheduler in an attempt to recover the system to a good state before
+ * issuing panics.
+ *
+ * Returns %true if sched_ext is enabled and abort was initiated, which may
+ * resolve the reported RCU stall. %false if sched_ext is not enabled or someone
+ * else already initiated abort.
+ */
+bool scx_rcu_cpu_stall(void)
+{
+ return handle_lockup("RCU CPU stall detected!");
+}
+
/**
* scx_softlockup - sched_ext softlockup handler
+ * @dur_s: number of seconds of CPU stuck due to soft lockup
*
* On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
* live-lock the system by making many CPUs target the same DSQ to the point
* where soft-lockup detection triggers. This function is called from
* soft-lockup watchdog when the triggering point is close and tries to unjam
- * the system by enabling the breather and aborting the BPF scheduler.
+ * the system and aborting the BPF scheduler.
*/
void scx_softlockup(u32 dur_s)
{
- switch (scx_ops_enable_state()) {
- case SCX_OPS_ENABLING:
- case SCX_OPS_ENABLED:
- break;
- default:
+ if (!handle_lockup("soft lockup - CPU %d stuck for %us", smp_processor_id(), dur_s))
return;
+
+ printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU %d stuck for %us, disabling BPF scheduler\n",
+ smp_processor_id(), dur_s);
+}
+
+/**
+ * scx_hardlockup - sched_ext hardlockup handler
+ *
+ * A poorly behaving BPF scheduler can trigger hard lockup by e.g. putting
+ * numerous affinitized tasks in a single queue and directing all CPUs at it.
+ * Try kicking out the current scheduler in an attempt to recover the system to
+ * a good state before taking more drastic actions.
+ *
+ * Returns %true if sched_ext is enabled and abort was initiated, which may
+ * resolve the reported hardlockdup. %false if sched_ext is not enabled or
+ * someone else already initiated abort.
+ */
+bool scx_hardlockup(int cpu)
+{
+ if (!handle_lockup("hard lockup - CPU %d", cpu))
+ return false;
+
+ printk_deferred(KERN_ERR "sched_ext: Hard lockup - CPU %d, disabling BPF scheduler\n",
+ cpu);
+ return true;
+}
+
+static u32 bypass_lb_cpu(struct scx_sched *sch, struct rq *rq,
+ struct cpumask *donee_mask, struct cpumask *resched_mask,
+ u32 nr_donor_target, u32 nr_donee_target)
+{
+ struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq;
+ struct task_struct *p, *n;
+ struct scx_dsq_list_node cursor = INIT_DSQ_LIST_CURSOR(cursor, 0, 0);
+ s32 delta = READ_ONCE(donor_dsq->nr) - nr_donor_target;
+ u32 nr_balanced = 0, min_delta_us;
+
+ /*
+ * All we want to guarantee is reasonable forward progress. No reason to
+ * fine tune. Assuming every task on @donor_dsq runs their full slice,
+ * consider offloading iff the total queued duration is over the
+ * threshold.
+ */
+ min_delta_us = scx_bypass_lb_intv_us / SCX_BYPASS_LB_MIN_DELTA_DIV;
+ if (delta < DIV_ROUND_UP(min_delta_us, scx_slice_bypass_us))
+ return 0;
+
+ raw_spin_rq_lock_irq(rq);
+ raw_spin_lock(&donor_dsq->lock);
+ list_add(&cursor.node, &donor_dsq->list);
+resume:
+ n = container_of(&cursor, struct task_struct, scx.dsq_list);
+ n = nldsq_next_task(donor_dsq, n, false);
+
+ while ((p = n)) {
+ struct rq *donee_rq;
+ struct scx_dispatch_q *donee_dsq;
+ int donee;
+
+ n = nldsq_next_task(donor_dsq, n, false);
+
+ if (donor_dsq->nr <= nr_donor_target)
+ break;
+
+ if (cpumask_empty(donee_mask))
+ break;
+
+ donee = cpumask_any_and_distribute(donee_mask, p->cpus_ptr);
+ if (donee >= nr_cpu_ids)
+ continue;
+
+ donee_rq = cpu_rq(donee);
+ donee_dsq = &donee_rq->scx.bypass_dsq;
+
+ /*
+ * $p's rq is not locked but $p's DSQ lock protects its
+ * scheduling properties making this test safe.
+ */
+ if (!task_can_run_on_remote_rq(sch, p, donee_rq, false))
+ continue;
+
+ /*
+ * Moving $p from one non-local DSQ to another. The source rq
+ * and DSQ are already locked. Do an abbreviated dequeue and
+ * then perform enqueue without unlocking $donor_dsq.
+ *
+ * We don't want to drop and reacquire the lock on each
+ * iteration as @donor_dsq can be very long and potentially
+ * highly contended. Donee DSQs are less likely to be contended.
+ * The nested locking is safe as only this LB moves tasks
+ * between bypass DSQs.
+ */
+ dispatch_dequeue_locked(p, donor_dsq);
+ dispatch_enqueue(sch, donee_dsq, p, SCX_ENQ_NESTED);
+
+ /*
+ * $donee might have been idle and need to be woken up. No need
+ * to be clever. Kick every CPU that receives tasks.
+ */
+ cpumask_set_cpu(donee, resched_mask);
+
+ if (READ_ONCE(donee_dsq->nr) >= nr_donee_target)
+ cpumask_clear_cpu(donee, donee_mask);
+
+ nr_balanced++;
+ if (!(nr_balanced % SCX_BYPASS_LB_BATCH) && n) {
+ list_move_tail(&cursor.node, &n->scx.dsq_list.node);
+ raw_spin_unlock(&donor_dsq->lock);
+ raw_spin_rq_unlock_irq(rq);
+ cpu_relax();
+ raw_spin_rq_lock_irq(rq);
+ raw_spin_lock(&donor_dsq->lock);
+ goto resume;
+ }
}
- /* allow only one instance, cleared at the end of scx_ops_bypass() */
- if (test_and_set_bit(0, &scx_in_softlockup))
- return;
+ list_del_init(&cursor.node);
+ raw_spin_unlock(&donor_dsq->lock);
+ raw_spin_rq_unlock_irq(rq);
+
+ return nr_balanced;
+}
+
+static void bypass_lb_node(struct scx_sched *sch, int node)
+{
+ const struct cpumask *node_mask = cpumask_of_node(node);
+ struct cpumask *donee_mask = scx_bypass_lb_donee_cpumask;
+ struct cpumask *resched_mask = scx_bypass_lb_resched_cpumask;
+ u32 nr_tasks = 0, nr_cpus = 0, nr_balanced = 0;
+ u32 nr_target, nr_donor_target;
+ u32 before_min = U32_MAX, before_max = 0;
+ u32 after_min = U32_MAX, after_max = 0;
+ int cpu;
- printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n",
- smp_processor_id(), dur_s, scx_ops.name);
+ /* count the target tasks and CPUs */
+ for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
+ u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr);
+
+ nr_tasks += nr;
+ nr_cpus++;
+
+ before_min = min(nr, before_min);
+ before_max = max(nr, before_max);
+ }
+
+ if (!nr_cpus)
+ return;
/*
- * Some CPUs may be trapped in the dispatch paths. Enable breather
- * immediately; otherwise, we might even be able to get to
- * scx_ops_bypass().
+ * We don't want CPUs to have more than $nr_donor_target tasks and
+ * balancing to fill donee CPUs upto $nr_target. Once targets are
+ * calculated, find the donee CPUs.
*/
- atomic_inc(&scx_ops_breather_depth);
+ nr_target = DIV_ROUND_UP(nr_tasks, nr_cpus);
+ nr_donor_target = DIV_ROUND_UP(nr_target * SCX_BYPASS_LB_DONOR_PCT, 100);
+
+ cpumask_clear(donee_mask);
+ for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
+ if (READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr) < nr_target)
+ cpumask_set_cpu(cpu, donee_mask);
+ }
+
+ /* iterate !donee CPUs and see if they should be offloaded */
+ cpumask_clear(resched_mask);
+ for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
+ struct rq *rq = cpu_rq(cpu);
+ struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq;
+
+ if (cpumask_empty(donee_mask))
+ break;
+ if (cpumask_test_cpu(cpu, donee_mask))
+ continue;
+ if (READ_ONCE(donor_dsq->nr) <= nr_donor_target)
+ continue;
+
+ nr_balanced += bypass_lb_cpu(sch, rq, donee_mask, resched_mask,
+ nr_donor_target, nr_target);
+ }
+
+ for_each_cpu(cpu, resched_mask) {
+ struct rq *rq = cpu_rq(cpu);
+
+ raw_spin_rq_lock_irq(rq);
+ resched_curr(rq);
+ raw_spin_rq_unlock_irq(rq);
+ }
+
+ for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
+ u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr);
+
+ after_min = min(nr, after_min);
+ after_max = max(nr, after_max);
+
+ }
- scx_ops_error("soft lockup - CPU#%d stuck for %us",
- smp_processor_id(), dur_s);
+ trace_sched_ext_bypass_lb(node, nr_cpus, nr_tasks, nr_balanced,
+ before_min, before_max, after_min, after_max);
}
-static void scx_clear_softlockup(void)
+/*
+ * In bypass mode, all tasks are put on the per-CPU bypass DSQs. If the machine
+ * is over-saturated and the BPF scheduler skewed tasks into few CPUs, some
+ * bypass DSQs can be overloaded. If there are enough tasks to saturate other
+ * lightly loaded CPUs, such imbalance can lead to very high execution latency
+ * on the overloaded CPUs and thus to hung tasks and RCU stalls. To avoid such
+ * outcomes, a simple load balancing mechanism is implemented by the following
+ * timer which runs periodically while bypass mode is in effect.
+ */
+static void scx_bypass_lb_timerfn(struct timer_list *timer)
{
- if (test_and_clear_bit(0, &scx_in_softlockup))
- atomic_dec(&scx_ops_breather_depth);
+ struct scx_sched *sch;
+ int node;
+ u32 intv_us;
+
+ sch = rcu_dereference_all(scx_root);
+ if (unlikely(!sch) || !READ_ONCE(scx_bypass_depth))
+ return;
+
+ for_each_node_with_cpus(node)
+ bypass_lb_node(sch, node);
+
+ intv_us = READ_ONCE(scx_bypass_lb_intv_us);
+ if (intv_us)
+ mod_timer(timer, jiffies + usecs_to_jiffies(intv_us));
}
+static DEFINE_TIMER(scx_bypass_lb_timer, scx_bypass_lb_timerfn);
+
/**
- * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
+ * scx_bypass - [Un]bypass scx_ops and guarantee forward progress
+ * @bypass: true for bypass, false for unbypass
*
* Bypassing guarantees that all runnable tasks make forward progress without
* trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
@@ -4707,32 +4014,51 @@ static void scx_clear_softlockup(void)
*
* - pick_next_task() suppresses zero slice warning.
*
- * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
+ * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM
* operations.
*
* - scx_prio_less() reverts to the default core_sched_at order.
*/
-static void scx_ops_bypass(bool bypass)
+static void scx_bypass(bool bypass)
{
static DEFINE_RAW_SPINLOCK(bypass_lock);
- int cpu;
+ static unsigned long bypass_timestamp;
+ struct scx_sched *sch;
unsigned long flags;
+ int cpu;
raw_spin_lock_irqsave(&bypass_lock, flags);
+ sch = rcu_dereference_bh(scx_root);
+
if (bypass) {
- scx_ops_bypass_depth++;
- WARN_ON_ONCE(scx_ops_bypass_depth <= 0);
- if (scx_ops_bypass_depth != 1)
+ u32 intv_us;
+
+ WRITE_ONCE(scx_bypass_depth, scx_bypass_depth + 1);
+ WARN_ON_ONCE(scx_bypass_depth <= 0);
+ if (scx_bypass_depth != 1)
goto unlock;
+ WRITE_ONCE(scx_slice_dfl, scx_slice_bypass_us * NSEC_PER_USEC);
+ bypass_timestamp = ktime_get_ns();
+ if (sch)
+ scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1);
+
+ intv_us = READ_ONCE(scx_bypass_lb_intv_us);
+ if (intv_us && !timer_pending(&scx_bypass_lb_timer)) {
+ scx_bypass_lb_timer.expires =
+ jiffies + usecs_to_jiffies(intv_us);
+ add_timer_global(&scx_bypass_lb_timer);
+ }
} else {
- scx_ops_bypass_depth--;
- WARN_ON_ONCE(scx_ops_bypass_depth < 0);
- if (scx_ops_bypass_depth != 0)
+ WRITE_ONCE(scx_bypass_depth, scx_bypass_depth - 1);
+ WARN_ON_ONCE(scx_bypass_depth < 0);
+ if (scx_bypass_depth != 0)
goto unlock;
+ WRITE_ONCE(scx_slice_dfl, SCX_SLICE_DFL);
+ if (sch)
+ scx_add_event(sch, SCX_EV_BYPASS_DURATION,
+ ktime_get_ns() - bypass_timestamp);
}
- atomic_inc(&scx_ops_breather_depth);
-
/*
* No task property is changing. We just need to make sure all currently
* queued tasks are re-queued according to the new scx_rq_bypassing()
@@ -4744,10 +4070,9 @@ static void scx_ops_bypass(bool bypass)
*/
for_each_possible_cpu(cpu) {
struct rq *rq = cpu_rq(cpu);
- struct rq_flags rf;
struct task_struct *p, *n;
- rq_lock(rq, &rf);
+ raw_spin_rq_lock(rq);
if (bypass) {
WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
@@ -4763,7 +4088,7 @@ static void scx_ops_bypass(bool bypass)
* sees scx_rq_bypassing() before moving tasks to SCX.
*/
if (!scx_enabled()) {
- rq_unlock_irqrestore(rq, &rf);
+ raw_spin_rq_unlock(rq);
continue;
}
@@ -4776,28 +4101,26 @@ static void scx_ops_bypass(bool bypass)
*/
list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
scx.runnable_node) {
- struct sched_enq_and_set_ctx ctx;
-
/* cycling deq/enq is enough, see the function comment */
- sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
- sched_enq_and_set_task(&ctx);
+ scoped_guard (sched_change, p, DEQUEUE_SAVE | DEQUEUE_MOVE) {
+ /* nothing */ ;
+ }
}
- rq_unlock(rq, &rf);
-
/* resched to restore ticks and idle state */
- resched_cpu(cpu);
+ if (cpu_online(cpu) || cpu == smp_processor_id())
+ resched_curr(rq);
+
+ raw_spin_rq_unlock(rq);
}
- atomic_dec(&scx_ops_breather_depth);
unlock:
raw_spin_unlock_irqrestore(&bypass_lock, flags);
- scx_clear_softlockup();
}
static void free_exit_info(struct scx_exit_info *ei)
{
- kfree(ei->dump);
+ kvfree(ei->dump);
kfree(ei->msg);
kfree(ei->bt);
kfree(ei);
@@ -4813,7 +4136,7 @@ static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
- ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
+ ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL);
if (!ei->bt || !ei->msg || !ei->dump) {
free_exit_info(ei);
@@ -4845,42 +4168,51 @@ static const char *scx_exit_reason(enum scx_exit_kind kind)
}
}
-static void scx_ops_disable_workfn(struct kthread_work *work)
+static void free_kick_syncs(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu);
+ struct scx_kick_syncs *to_free;
+
+ to_free = rcu_replace_pointer(*ksyncs, NULL, true);
+ if (to_free)
+ kvfree_rcu(to_free, rcu);
+ }
+}
+
+static void scx_disable_workfn(struct kthread_work *work)
{
- struct scx_exit_info *ei = scx_exit_info;
+ struct scx_sched *sch = container_of(work, struct scx_sched, disable_work);
+ struct scx_exit_info *ei = sch->exit_info;
struct scx_task_iter sti;
struct task_struct *p;
- struct rhashtable_iter rht_iter;
- struct scx_dispatch_q *dsq;
- int i, kind;
+ int kind, cpu;
- kind = atomic_read(&scx_exit_kind);
+ kind = atomic_read(&sch->exit_kind);
while (true) {
- /*
- * NONE indicates that a new scx_ops has been registered since
- * disable was scheduled - don't kill the new ops. DONE
- * indicates that the ops has already been disabled.
- */
- if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
+ if (kind == SCX_EXIT_DONE) /* already disabled? */
return;
- if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
+ WARN_ON_ONCE(kind == SCX_EXIT_NONE);
+ if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE))
break;
}
ei->kind = kind;
ei->reason = scx_exit_reason(ei->kind);
/* guarantee forward progress by bypassing scx_ops */
- scx_ops_bypass(true);
+ scx_bypass(true);
+ WRITE_ONCE(scx_aborting, false);
- switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
- case SCX_OPS_DISABLING:
+ switch (scx_set_enable_state(SCX_DISABLING)) {
+ case SCX_DISABLING:
WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
break;
- case SCX_OPS_DISABLED:
+ case SCX_DISABLED:
pr_warn("sched_ext: ops error detected without ops (%s)\n",
- scx_exit_info->msg);
- WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
- SCX_OPS_DISABLING);
+ sch->exit_info->msg);
+ WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
goto done;
default:
break;
@@ -4891,17 +4223,17 @@ static void scx_ops_disable_workfn(struct kthread_work *work)
* we can safely use blocking synchronization constructs. Actually
* disable ops.
*/
- mutex_lock(&scx_ops_enable_mutex);
+ mutex_lock(&scx_enable_mutex);
static_branch_disable(&__scx_switched_all);
WRITE_ONCE(scx_switching_all, false);
/*
* Shut down cgroup support before tasks so that the cgroup attach path
- * doesn't race against scx_ops_exit_task().
+ * doesn't race against scx_exit_task().
*/
scx_cgroup_lock();
- scx_cgroup_exit();
+ scx_cgroup_exit(sch);
scx_cgroup_unlock();
/*
@@ -4910,122 +4242,119 @@ static void scx_ops_disable_workfn(struct kthread_work *work)
*/
percpu_down_write(&scx_fork_rwsem);
- scx_ops_init_task_enabled = false;
+ scx_init_task_enabled = false;
scx_task_iter_start(&sti);
while ((p = scx_task_iter_next_locked(&sti))) {
+ unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
const struct sched_class *old_class = p->sched_class;
- const struct sched_class *new_class =
- __setscheduler_class(p->policy, p->prio);
- struct sched_enq_and_set_ctx ctx;
-
- if (old_class != new_class && p->se.sched_delayed)
- dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
+ const struct sched_class *new_class = scx_setscheduler_class(p);
- sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
+ update_rq_clock(task_rq(p));
- p->sched_class = new_class;
- check_class_changing(task_rq(p), p, old_class);
+ if (old_class != new_class)
+ queue_flags |= DEQUEUE_CLASS;
- sched_enq_and_set_task(&ctx);
+ scoped_guard (sched_change, p, queue_flags) {
+ p->sched_class = new_class;
+ }
- check_class_changed(task_rq(p), p, old_class, p->prio);
- scx_ops_exit_task(p);
+ scx_exit_task(p);
}
scx_task_iter_stop(&sti);
percpu_up_write(&scx_fork_rwsem);
+ /*
+ * Invalidate all the rq clocks to prevent getting outdated
+ * rq clocks from a previous scx scheduler.
+ */
+ for_each_possible_cpu(cpu) {
+ struct rq *rq = cpu_rq(cpu);
+ scx_rq_clock_invalidate(rq);
+ }
+
/* no task is on scx, turn off all the switches and flush in-progress calls */
- static_branch_disable(&__scx_ops_enabled);
- for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
- static_branch_disable(&scx_has_op[i]);
- static_branch_disable(&scx_ops_enq_last);
- static_branch_disable(&scx_ops_enq_exiting);
- static_branch_disable(&scx_ops_cpu_preempt);
- static_branch_disable(&scx_builtin_idle_enabled);
+ static_branch_disable(&__scx_enabled);
+ bitmap_zero(sch->has_op, SCX_OPI_END);
+ scx_idle_disable();
synchronize_rcu();
if (ei->kind >= SCX_EXIT_ERROR) {
pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
- scx_ops.name, ei->reason);
+ sch->ops.name, ei->reason);
if (ei->msg[0] != '\0')
- pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
+ pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg);
#ifdef CONFIG_STACKTRACE
stack_trace_print(ei->bt, ei->bt_len, 2);
#endif
} else {
pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
- scx_ops.name, ei->reason);
+ sch->ops.name, ei->reason);
}
- if (scx_ops.exit)
- SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
+ if (sch->ops.exit)
+ SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei);
cancel_delayed_work_sync(&scx_watchdog_work);
/*
- * Delete the kobject from the hierarchy eagerly in addition to just
- * dropping a reference. Otherwise, if the object is deleted
- * asynchronously, sysfs could observe an object of the same name still
- * in the hierarchy when another scheduler is loaded.
+ * scx_root clearing must be inside cpus_read_lock(). See
+ * handle_hotplug().
*/
- kobject_del(scx_root_kobj);
- kobject_put(scx_root_kobj);
- scx_root_kobj = NULL;
-
- memset(&scx_ops, 0, sizeof(scx_ops));
-
- rhashtable_walk_enter(&dsq_hash, &rht_iter);
- do {
- rhashtable_walk_start(&rht_iter);
-
- while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
- destroy_dsq(dsq->id);
+ cpus_read_lock();
+ RCU_INIT_POINTER(scx_root, NULL);
+ cpus_read_unlock();
- rhashtable_walk_stop(&rht_iter);
- } while (dsq == ERR_PTR(-EAGAIN));
- rhashtable_walk_exit(&rht_iter);
+ /*
+ * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs
+ * could observe an object of the same name still in the hierarchy when
+ * the next scheduler is loaded.
+ */
+ kobject_del(&sch->kobj);
free_percpu(scx_dsp_ctx);
scx_dsp_ctx = NULL;
scx_dsp_max_batch = 0;
+ free_kick_syncs();
- free_exit_info(scx_exit_info);
- scx_exit_info = NULL;
-
- mutex_unlock(&scx_ops_enable_mutex);
+ mutex_unlock(&scx_enable_mutex);
- WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
- SCX_OPS_DISABLING);
+ WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
done:
- scx_ops_bypass(false);
+ scx_bypass(false);
}
-static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
-
-static void schedule_scx_ops_disable_work(void)
+static bool scx_claim_exit(struct scx_sched *sch, enum scx_exit_kind kind)
{
- struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
+ int none = SCX_EXIT_NONE;
+
+ if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind))
+ return false;
/*
- * We may be called spuriously before the first bpf_sched_ext_reg(). If
- * scx_ops_helper isn't set up yet, there's nothing to do.
+ * Some CPUs may be trapped in the dispatch paths. Set the aborting
+ * flag to break potential live-lock scenarios, ensuring we can
+ * successfully reach scx_bypass().
*/
- if (helper)
- kthread_queue_work(helper, &scx_ops_disable_work);
+ WRITE_ONCE(scx_aborting, true);
+ return true;
}
-static void scx_ops_disable(enum scx_exit_kind kind)
+static void scx_disable(enum scx_exit_kind kind)
{
- int none = SCX_EXIT_NONE;
+ struct scx_sched *sch;
if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
kind = SCX_EXIT_ERROR;
- atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
-
- schedule_scx_ops_disable_work();
+ rcu_read_lock();
+ sch = rcu_dereference(scx_root);
+ if (sch) {
+ scx_claim_exit(sch, kind);
+ kthread_queue_work(sch->helper, &sch->disable_work);
+ }
+ rcu_read_unlock();
}
static void dump_newline(struct seq_buf *s)
@@ -5143,6 +4472,7 @@ static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
struct task_struct *p, char marker)
{
static unsigned long bt[SCX_EXIT_BT_LEN];
+ struct scx_sched *sch = scx_root;
char dsq_id_buf[19] = "(n/a)";
unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
unsigned int bt_len = 0;
@@ -5159,14 +4489,16 @@ static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
ops_state >> SCX_OPSS_QSEQ_SHIFT);
- dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
- p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
- p->scx.dsq_vtime);
- dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
-
- if (SCX_HAS_OP(dump_task)) {
+ dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s",
+ p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf);
+ dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u",
+ p->scx.dsq_vtime, p->scx.slice, p->scx.weight);
+ dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr),
+ p->migration_disabled);
+
+ if (SCX_HAS_OP(sch, dump_task)) {
ops_dump_init(s, " ");
- SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
+ SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p);
ops_dump_exit();
}
@@ -5183,6 +4515,7 @@ static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
{
static DEFINE_SPINLOCK(dump_lock);
static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
+ struct scx_sched *sch = scx_root;
struct scx_dump_ctx dctx = {
.kind = ei->kind,
.exit_code = ei->exit_code,
@@ -5191,6 +4524,7 @@ static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
.at_jiffies = jiffies,
};
struct seq_buf s;
+ struct scx_event_stats events;
unsigned long flags;
char *buf;
int cpu;
@@ -5210,9 +4544,9 @@ static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
dump_stack_trace(&s, " ", ei->bt, ei->bt_len);
}
- if (SCX_HAS_OP(dump)) {
+ if (SCX_HAS_OP(sch, dump)) {
ops_dump_init(&s, "");
- SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
+ SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx);
ops_dump_exit();
}
@@ -5228,12 +4562,12 @@ static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
size_t avail, used;
bool idle;
- rq_lock(rq, &rf);
+ rq_lock_irqsave(rq, &rf);
idle = list_empty(&rq->scx.runnable_list) &&
rq->curr->sched_class == &idle_sched_class;
- if (idle && !SCX_HAS_OP(dump_cpu))
+ if (idle && !SCX_HAS_OP(sch, dump_cpu))
goto next;
/*
@@ -5246,10 +4580,10 @@ static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
seq_buf_init(&ns, buf, avail);
dump_newline(&ns);
- dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
+ dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu ksync=%lu",
cpu, rq->scx.nr_running, rq->scx.flags,
rq->scx.cpu_released, rq->scx.ops_qseq,
- rq->scx.pnt_seq);
+ rq->scx.kick_sync);
dump_line(&ns, " curr=%s[%d] class=%ps",
rq->curr->comm, rq->curr->pid,
rq->curr->sched_class);
@@ -5267,9 +4601,10 @@ static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
cpumask_pr_args(rq->scx.cpus_to_wait));
used = seq_buf_used(&ns);
- if (SCX_HAS_OP(dump_cpu)) {
+ if (SCX_HAS_OP(sch, dump_cpu)) {
ops_dump_init(&ns, " ");
- SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
+ SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL,
+ &dctx, cpu, idle);
ops_dump_exit();
}
@@ -5296,9 +4631,24 @@ static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
scx_dump_task(&s, &dctx, p, ' ');
next:
- rq_unlock(rq, &rf);
+ rq_unlock_irqrestore(rq, &rf);
}
+ dump_newline(&s);
+ dump_line(&s, "Event counters");
+ dump_line(&s, "--------------");
+
+ scx_read_events(sch, &events);
+ scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK);
+ scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
+ scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST);
+ scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING);
+ scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
+ scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL);
+ scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION);
+ scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH);
+ scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE);
+
if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
memcpy(ei->dump + dump_len - sizeof(trunc_marker),
trunc_marker, sizeof(trunc_marker));
@@ -5306,59 +4656,154 @@ static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
spin_unlock_irqrestore(&dump_lock, flags);
}
-static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
+static void scx_error_irq_workfn(struct irq_work *irq_work)
{
- struct scx_exit_info *ei = scx_exit_info;
+ struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work);
+ struct scx_exit_info *ei = sch->exit_info;
if (ei->kind >= SCX_EXIT_ERROR)
- scx_dump_state(ei, scx_ops.exit_dump_len);
+ scx_dump_state(ei, sch->ops.exit_dump_len);
- schedule_scx_ops_disable_work();
+ kthread_queue_work(sch->helper, &sch->disable_work);
}
-static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
-
-static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
- s64 exit_code,
- const char *fmt, ...)
+static bool scx_vexit(struct scx_sched *sch,
+ enum scx_exit_kind kind, s64 exit_code,
+ const char *fmt, va_list args)
{
- struct scx_exit_info *ei = scx_exit_info;
- int none = SCX_EXIT_NONE;
- va_list args;
+ struct scx_exit_info *ei = sch->exit_info;
- if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
- return;
+ if (!scx_claim_exit(sch, kind))
+ return false;
ei->exit_code = exit_code;
#ifdef CONFIG_STACKTRACE
if (kind >= SCX_EXIT_ERROR)
ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
#endif
- va_start(args, fmt);
vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
- va_end(args);
/*
* Set ei->kind and ->reason for scx_dump_state(). They'll be set again
- * in scx_ops_disable_workfn().
+ * in scx_disable_workfn().
*/
ei->kind = kind;
ei->reason = scx_exit_reason(ei->kind);
- irq_work_queue(&scx_ops_error_irq_work);
+ irq_work_queue(&sch->error_irq_work);
+ return true;
}
-static struct kthread_worker *scx_create_rt_helper(const char *name)
+static int alloc_kick_syncs(void)
{
- struct kthread_worker *helper;
+ int cpu;
+
+ /*
+ * Allocate per-CPU arrays sized by nr_cpu_ids. Use kvzalloc as size
+ * can exceed percpu allocator limits on large machines.
+ */
+ for_each_possible_cpu(cpu) {
+ struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu);
+ struct scx_kick_syncs *new_ksyncs;
+
+ WARN_ON_ONCE(rcu_access_pointer(*ksyncs));
- helper = kthread_create_worker(0, name);
- if (helper)
- sched_set_fifo(helper->task);
- return helper;
+ new_ksyncs = kvzalloc_node(struct_size(new_ksyncs, syncs, nr_cpu_ids),
+ GFP_KERNEL, cpu_to_node(cpu));
+ if (!new_ksyncs) {
+ free_kick_syncs();
+ return -ENOMEM;
+ }
+
+ rcu_assign_pointer(*ksyncs, new_ksyncs);
+ }
+
+ return 0;
}
-static void check_hotplug_seq(const struct sched_ext_ops *ops)
+static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops)
+{
+ struct scx_sched *sch;
+ int node, ret;
+
+ sch = kzalloc(sizeof(*sch), GFP_KERNEL);
+ if (!sch)
+ return ERR_PTR(-ENOMEM);
+
+ sch->exit_info = alloc_exit_info(ops->exit_dump_len);
+ if (!sch->exit_info) {
+ ret = -ENOMEM;
+ goto err_free_sch;
+ }
+
+ ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params);
+ if (ret < 0)
+ goto err_free_ei;
+
+ sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]),
+ GFP_KERNEL);
+ if (!sch->global_dsqs) {
+ ret = -ENOMEM;
+ goto err_free_hash;
+ }
+
+ for_each_node_state(node, N_POSSIBLE) {
+ struct scx_dispatch_q *dsq;
+
+ dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
+ if (!dsq) {
+ ret = -ENOMEM;
+ goto err_free_gdsqs;
+ }
+
+ init_dsq(dsq, SCX_DSQ_GLOBAL);
+ sch->global_dsqs[node] = dsq;
+ }
+
+ sch->pcpu = alloc_percpu(struct scx_sched_pcpu);
+ if (!sch->pcpu)
+ goto err_free_gdsqs;
+
+ sch->helper = kthread_run_worker(0, "sched_ext_helper");
+ if (IS_ERR(sch->helper)) {
+ ret = PTR_ERR(sch->helper);
+ goto err_free_pcpu;
+ }
+
+ sched_set_fifo(sch->helper->task);
+
+ atomic_set(&sch->exit_kind, SCX_EXIT_NONE);
+ init_irq_work(&sch->error_irq_work, scx_error_irq_workfn);
+ kthread_init_work(&sch->disable_work, scx_disable_workfn);
+ sch->ops = *ops;
+ ops->priv = sch;
+
+ sch->kobj.kset = scx_kset;
+ ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root");
+ if (ret < 0)
+ goto err_stop_helper;
+
+ return sch;
+
+err_stop_helper:
+ kthread_stop(sch->helper->task);
+err_free_pcpu:
+ free_percpu(sch->pcpu);
+err_free_gdsqs:
+ for_each_node_state(node, N_POSSIBLE)
+ kfree(sch->global_dsqs[node]);
+ kfree(sch->global_dsqs);
+err_free_hash:
+ rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
+err_free_ei:
+ free_exit_info(sch->exit_info);
+err_free_sch:
+ kfree(sch);
+ return ERR_PTR(ret);
+}
+
+static int check_hotplug_seq(struct scx_sched *sch,
+ const struct sched_ext_ops *ops)
{
unsigned long long global_hotplug_seq;
@@ -5370,33 +4815,54 @@ static void check_hotplug_seq(const struct sched_ext_ops *ops)
if (ops->hotplug_seq) {
global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
if (ops->hotplug_seq != global_hotplug_seq) {
- scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
- "expected hotplug seq %llu did not match actual %llu",
- ops->hotplug_seq, global_hotplug_seq);
+ scx_exit(sch, SCX_EXIT_UNREG_KERN,
+ SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
+ "expected hotplug seq %llu did not match actual %llu",
+ ops->hotplug_seq, global_hotplug_seq);
+ return -EBUSY;
}
}
+
+ return 0;
}
-static int validate_ops(const struct sched_ext_ops *ops)
+static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops)
{
/*
* It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
* ops.enqueue() callback isn't implemented.
*/
if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
- scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
+ scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
return -EINVAL;
}
+ /*
+ * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle
+ * selection policy to be enabled.
+ */
+ if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) &&
+ (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) {
+ scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled");
+ return -EINVAL;
+ }
+
+ if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT)
+ pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n");
+
+ if (ops->cpu_acquire || ops->cpu_release)
+ pr_warn("ops->cpu_acquire/release() are deprecated, use sched_switch TP instead\n");
+
return 0;
}
-static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
+static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link)
{
+ struct scx_sched *sch;
struct scx_task_iter sti;
struct task_struct *p;
unsigned long timeout;
- int i, cpu, node, ret;
+ int i, cpu, ret;
if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
cpu_possible_mask)) {
@@ -5404,78 +4870,31 @@ static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
return -EINVAL;
}
- mutex_lock(&scx_ops_enable_mutex);
-
- if (!scx_ops_helper) {
- WRITE_ONCE(scx_ops_helper,
- scx_create_rt_helper("sched_ext_ops_helper"));
- if (!scx_ops_helper) {
- ret = -ENOMEM;
- goto err_unlock;
- }
- }
-
- if (!global_dsqs) {
- struct scx_dispatch_q **dsqs;
-
- dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL);
- if (!dsqs) {
- ret = -ENOMEM;
- goto err_unlock;
- }
-
- for_each_node_state(node, N_POSSIBLE) {
- struct scx_dispatch_q *dsq;
-
- dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
- if (!dsq) {
- for_each_node_state(node, N_POSSIBLE)
- kfree(dsqs[node]);
- kfree(dsqs);
- ret = -ENOMEM;
- goto err_unlock;
- }
-
- init_dsq(dsq, SCX_DSQ_GLOBAL);
- dsqs[node] = dsq;
- }
-
- global_dsqs = dsqs;
- }
+ mutex_lock(&scx_enable_mutex);
- if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
+ if (scx_enable_state() != SCX_DISABLED) {
ret = -EBUSY;
goto err_unlock;
}
- scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
- if (!scx_root_kobj) {
- ret = -ENOMEM;
+ ret = alloc_kick_syncs();
+ if (ret)
goto err_unlock;
- }
-
- scx_root_kobj->kset = scx_kset;
- ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
- if (ret < 0)
- goto err;
- scx_exit_info = alloc_exit_info(ops->exit_dump_len);
- if (!scx_exit_info) {
- ret = -ENOMEM;
- goto err_del;
+ sch = scx_alloc_and_add_sched(ops);
+ if (IS_ERR(sch)) {
+ ret = PTR_ERR(sch);
+ goto err_free_ksyncs;
}
/*
- * Set scx_ops, transition to ENABLING and clear exit info to arm the
- * disable path. Failure triggers full disabling from here on.
+ * Transition to ENABLING and clear exit info to arm the disable path.
+ * Failure triggers full disabling from here on.
*/
- scx_ops = *ops;
-
- WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) !=
- SCX_OPS_DISABLED);
-
- atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
- scx_warned_zero_slice = false;
+ WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED);
+ WARN_ON_ONCE(scx_root);
+ if (WARN_ON_ONCE(READ_ONCE(scx_aborting)))
+ WRITE_ONCE(scx_aborting, false);
atomic_long_set(&scx_nr_rejected, 0);
@@ -5488,27 +4907,39 @@ static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
*/
cpus_read_lock();
- if (scx_ops.init) {
- ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
+ /*
+ * Make the scheduler instance visible. Must be inside cpus_read_lock().
+ * See handle_hotplug().
+ */
+ rcu_assign_pointer(scx_root, sch);
+
+ scx_idle_enable(ops);
+
+ if (sch->ops.init) {
+ ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL);
if (ret) {
- ret = ops_sanitize_err("init", ret);
+ ret = ops_sanitize_err(sch, "init", ret);
cpus_read_unlock();
- scx_ops_error("ops.init() failed (%d)", ret);
+ scx_error(sch, "ops.init() failed (%d)", ret);
goto err_disable;
}
+ sch->exit_info->flags |= SCX_EFLAG_INITIALIZED;
}
for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
if (((void (**)(void))ops)[i])
- static_branch_enable_cpuslocked(&scx_has_op[i]);
+ set_bit(i, sch->has_op);
+
+ ret = check_hotplug_seq(sch, ops);
+ if (ret) {
+ cpus_read_unlock();
+ goto err_disable;
+ }
+ scx_idle_update_selcpu_topology(ops);
- check_hotplug_seq(ops);
-#ifdef CONFIG_SMP
- update_selcpu_topology();
-#endif
cpus_read_unlock();
- ret = validate_ops(ops);
+ ret = validate_ops(sch, ops);
if (ret)
goto err_disable;
@@ -5533,31 +4964,19 @@ static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
scx_watchdog_timeout / 2);
/*
- * Once __scx_ops_enabled is set, %current can be switched to SCX
- * anytime. This can lead to stalls as some BPF schedulers (e.g.
- * userspace scheduling) may not function correctly before all tasks are
- * switched. Init in bypass mode to guarantee forward progress.
+ * Once __scx_enabled is set, %current can be switched to SCX anytime.
+ * This can lead to stalls as some BPF schedulers (e.g. userspace
+ * scheduling) may not function correctly before all tasks are switched.
+ * Init in bypass mode to guarantee forward progress.
*/
- scx_ops_bypass(true);
+ scx_bypass(true);
for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
if (((void (**)(void))ops)[i])
- static_branch_enable(&scx_has_op[i]);
+ set_bit(i, sch->has_op);
- if (ops->flags & SCX_OPS_ENQ_LAST)
- static_branch_enable(&scx_ops_enq_last);
-
- if (ops->flags & SCX_OPS_ENQ_EXITING)
- static_branch_enable(&scx_ops_enq_exiting);
- if (scx_ops.cpu_acquire || scx_ops.cpu_release)
- static_branch_enable(&scx_ops_cpu_preempt);
-
- if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
- reset_idle_masks();
- static_branch_enable(&scx_builtin_idle_enabled);
- } else {
- static_branch_disable(&scx_builtin_idle_enabled);
- }
+ if (sch->ops.cpu_acquire || sch->ops.cpu_release)
+ sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT;
/*
* Lock out forks, cgroup on/offlining and moves before opening the
@@ -5565,8 +4984,8 @@ static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
*/
percpu_down_write(&scx_fork_rwsem);
- WARN_ON_ONCE(scx_ops_init_task_enabled);
- scx_ops_init_task_enabled = true;
+ WARN_ON_ONCE(scx_init_task_enabled);
+ scx_init_task_enabled = true;
/*
* Enable ops for every task. Fork is excluded by scx_fork_rwsem
@@ -5575,14 +4994,14 @@ static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
* tasks. Prep all tasks first and then enable them with preemption
* disabled.
*
- * All cgroups should be initialized before scx_ops_init_task() so that
- * the BPF scheduler can reliably track each task's cgroup membership
- * from scx_ops_init_task(). Lock out cgroup on/offlining and task
- * migrations while tasks are being initialized so that
- * scx_cgroup_can_attach() never sees uninitialized tasks.
+ * All cgroups should be initialized before scx_init_task() so that the
+ * BPF scheduler can reliably track each task's cgroup membership from
+ * scx_init_task(). Lock out cgroup on/offlining and task migrations
+ * while tasks are being initialized so that scx_cgroup_can_attach()
+ * never sees uninitialized tasks.
*/
scx_cgroup_lock();
- ret = scx_cgroup_init();
+ ret = scx_cgroup_init(sch);
if (ret)
goto err_disable_unlock_all;
@@ -5598,20 +5017,18 @@ static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
scx_task_iter_unlock(&sti);
- ret = scx_ops_init_task(p, task_group(p), false);
+ ret = scx_init_task(p, task_group(p), false);
if (ret) {
put_task_struct(p);
- scx_task_iter_relock(&sti);
scx_task_iter_stop(&sti);
- scx_ops_error("ops.init_task() failed (%d) for %s[%d]",
- ret, p->comm, p->pid);
+ scx_error(sch, "ops.init_task() failed (%d) for %s[%d]",
+ ret, p->comm, p->pid);
goto err_disable_unlock_all;
}
scx_set_task_state(p, SCX_TASK_READY);
put_task_struct(p);
- scx_task_iter_relock(&sti);
}
scx_task_iter_stop(&sti);
scx_cgroup_unlock();
@@ -5622,7 +5039,7 @@ static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
* all eligible tasks.
*/
WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
- static_branch_enable(&__scx_ops_enabled);
+ static_branch_enable(&__scx_enabled);
/*
* We're fully committed and can't fail. The task READY -> ENABLED
@@ -5632,31 +5049,28 @@ static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
percpu_down_write(&scx_fork_rwsem);
scx_task_iter_start(&sti);
while ((p = scx_task_iter_next_locked(&sti))) {
+ unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
const struct sched_class *old_class = p->sched_class;
- const struct sched_class *new_class =
- __setscheduler_class(p->policy, p->prio);
- struct sched_enq_and_set_ctx ctx;
-
- if (old_class != new_class && p->se.sched_delayed)
- dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
-
- sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
+ const struct sched_class *new_class = scx_setscheduler_class(p);
- p->scx.slice = SCX_SLICE_DFL;
- p->sched_class = new_class;
- check_class_changing(task_rq(p), p, old_class);
+ if (scx_get_task_state(p) != SCX_TASK_READY)
+ continue;
- sched_enq_and_set_task(&ctx);
+ if (old_class != new_class)
+ queue_flags |= DEQUEUE_CLASS;
- check_class_changed(task_rq(p), p, old_class, p->prio);
+ scoped_guard (sched_change, p, queue_flags) {
+ p->scx.slice = READ_ONCE(scx_slice_dfl);
+ p->sched_class = new_class;
+ }
}
scx_task_iter_stop(&sti);
percpu_up_write(&scx_fork_rwsem);
- scx_ops_bypass(false);
+ scx_bypass(false);
- if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
- WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
+ if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) {
+ WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE);
goto err_disable;
}
@@ -5664,44 +5078,37 @@ static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
static_branch_enable(&__scx_switched_all);
pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
- scx_ops.name, scx_switched_all() ? "" : " (partial)");
- kobject_uevent(scx_root_kobj, KOBJ_ADD);
- mutex_unlock(&scx_ops_enable_mutex);
+ sch->ops.name, scx_switched_all() ? "" : " (partial)");
+ kobject_uevent(&sch->kobj, KOBJ_ADD);
+ mutex_unlock(&scx_enable_mutex);
atomic_long_inc(&scx_enable_seq);
return 0;
-err_del:
- kobject_del(scx_root_kobj);
-err:
- kobject_put(scx_root_kobj);
- scx_root_kobj = NULL;
- if (scx_exit_info) {
- free_exit_info(scx_exit_info);
- scx_exit_info = NULL;
- }
+err_free_ksyncs:
+ free_kick_syncs();
err_unlock:
- mutex_unlock(&scx_ops_enable_mutex);
+ mutex_unlock(&scx_enable_mutex);
return ret;
err_disable_unlock_all:
scx_cgroup_unlock();
percpu_up_write(&scx_fork_rwsem);
- scx_ops_bypass(false);
+ /* we'll soon enter disable path, keep bypass on */
err_disable:
- mutex_unlock(&scx_ops_enable_mutex);
+ mutex_unlock(&scx_enable_mutex);
/*
* Returning an error code here would not pass all the error information
- * to userspace. Record errno using scx_ops_error() for cases
- * scx_ops_error() wasn't already invoked and exit indicating success so
- * that the error is notified through ops.exit() with all the details.
+ * to userspace. Record errno using scx_error() for cases scx_error()
+ * wasn't already invoked and exit indicating success so that the error
+ * is notified through ops.exit() with all the details.
*
- * Flush scx_ops_disable_work to ensure that error is reported before
- * init completion.
+ * Flush scx_disable_work to ensure that error is reported before init
+ * completion. sch's base reference will be put by bpf_scx_unreg().
*/
- scx_ops_error("scx_ops_enable() failed (%d)", ret);
- kthread_flush_work(&scx_ops_disable_work);
+ scx_error(sch, "scx_enable() failed (%d)", ret);
+ kthread_flush_work(&sch->disable_work);
return 0;
}
@@ -5752,21 +5159,8 @@ static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
return -EACCES;
}
-static const struct bpf_func_proto *
-bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
-{
- switch (func_id) {
- case BPF_FUNC_task_storage_get:
- return &bpf_task_storage_get_proto;
- case BPF_FUNC_task_storage_delete:
- return &bpf_task_storage_delete_proto;
- default:
- return bpf_base_func_proto(func_id, prog);
- }
-}
-
static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
- .get_func_proto = bpf_scx_get_func_proto,
+ .get_func_proto = bpf_base_func_proto,
.is_valid_access = bpf_scx_is_valid_access,
.btf_struct_access = bpf_scx_btf_struct_access,
};
@@ -5845,13 +5239,17 @@ static int bpf_scx_check_member(const struct btf_type *t,
static int bpf_scx_reg(void *kdata, struct bpf_link *link)
{
- return scx_ops_enable(kdata, link);
+ return scx_enable(kdata, link);
}
static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
{
- scx_ops_disable(SCX_EXIT_UNREG);
- kthread_flush_work(&scx_ops_disable_work);
+ struct sched_ext_ops *ops = kdata;
+ struct scx_sched *sch = ops->priv;
+
+ scx_disable(SCX_EXIT_UNREG);
+ kthread_flush_work(&sch->disable_work);
+ kobject_put(&sch->kobj);
}
static int bpf_scx_init(struct btf *btf)
@@ -5905,6 +5303,8 @@ static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup
static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {}
+static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {}
+static void sched_ext_ops__cgroup_set_idle(struct cgroup *cgrp, bool idle) {}
#endif
static void sched_ext_ops__cpu_online(s32 cpu) {}
static void sched_ext_ops__cpu_offline(s32 cpu) {}
@@ -5942,6 +5342,8 @@ static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
.cgroup_move = sched_ext_ops__cgroup_move,
.cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move,
.cgroup_set_weight = sched_ext_ops__cgroup_set_weight,
+ .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth,
+ .cgroup_set_idle = sched_ext_ops__cgroup_set_idle,
#endif
.cpu_online = sched_ext_ops__cpu_online,
.cpu_offline = sched_ext_ops__cpu_offline,
@@ -5973,10 +5375,7 @@ static struct bpf_struct_ops bpf_sched_ext_ops = {
static void sysrq_handle_sched_ext_reset(u8 key)
{
- if (scx_ops_helper)
- scx_ops_disable(SCX_EXIT_SYSRQ);
- else
- pr_info("sched_ext: BPF scheduler not yet used\n");
+ scx_disable(SCX_EXIT_SYSRQ);
}
static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
@@ -6018,29 +5417,38 @@ static bool can_skip_idle_kick(struct rq *rq)
return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
}
-static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
+static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *ksyncs)
{
struct rq *rq = cpu_rq(cpu);
struct scx_rq *this_scx = &this_rq->scx;
+ const struct sched_class *cur_class;
bool should_wait = false;
unsigned long flags;
raw_spin_rq_lock_irqsave(rq, flags);
+ cur_class = rq->curr->sched_class;
/*
* During CPU hotplug, a CPU may depend on kicking itself to make
- * forward progress. Allow kicking self regardless of online state.
+ * forward progress. Allow kicking self regardless of online state. If
+ * @cpu is running a higher class task, we have no control over @cpu.
+ * Skip kicking.
*/
- if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
+ if ((cpu_online(cpu) || cpu == cpu_of(this_rq)) &&
+ !sched_class_above(cur_class, &ext_sched_class)) {
if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
- if (rq->curr->sched_class == &ext_sched_class)
+ if (cur_class == &ext_sched_class)
rq->curr->scx.slice = 0;
cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
}
if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
- pseqs[cpu] = rq->scx.pnt_seq;
- should_wait = true;
+ if (cur_class == &ext_sched_class) {
+ ksyncs[cpu] = rq->scx.kick_sync;
+ should_wait = true;
+ } else {
+ cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
+ }
}
resched_curr(rq);
@@ -6072,12 +5480,20 @@ static void kick_cpus_irq_workfn(struct irq_work *irq_work)
{
struct rq *this_rq = this_rq();
struct scx_rq *this_scx = &this_rq->scx;
- unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
+ struct scx_kick_syncs __rcu *ksyncs_pcpu = __this_cpu_read(scx_kick_syncs);
bool should_wait = false;
+ unsigned long *ksyncs;
s32 cpu;
+ if (unlikely(!ksyncs_pcpu)) {
+ pr_warn_once("kick_cpus_irq_workfn() called with NULL scx_kick_syncs");
+ return;
+ }
+
+ ksyncs = rcu_dereference_bh(ksyncs_pcpu)->syncs;
+
for_each_cpu(cpu, this_scx->cpus_to_kick) {
- should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
+ should_wait |= kick_one_cpu(cpu, this_rq, ksyncs);
cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
}
@@ -6091,20 +5507,21 @@ static void kick_cpus_irq_workfn(struct irq_work *irq_work)
return;
for_each_cpu(cpu, this_scx->cpus_to_wait) {
- unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
+ unsigned long *wait_kick_sync = &cpu_rq(cpu)->scx.kick_sync;
- if (cpu != cpu_of(this_rq)) {
- /*
- * Pairs with smp_store_release() issued by this CPU in
- * switch_class() on the resched path.
- *
- * We busy-wait here to guarantee that no other task can
- * be scheduled on our core before the target CPU has
- * entered the resched path.
- */
- while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
- cpu_relax();
- }
+ /*
+ * Busy-wait until the task running at the time of kicking is no
+ * longer running. This can be used to implement e.g. core
+ * scheduling.
+ *
+ * smp_cond_load_acquire() pairs with store_releases in
+ * pick_task_scx() and put_prev_task_scx(). The former breaks
+ * the wait if SCX's scheduling path is entered even if the same
+ * task is picked subsequently. The latter is necessary to break
+ * the wait when $cpu is taken by a higher sched class.
+ */
+ if (cpu != cpu_of(this_rq))
+ smp_cond_load_acquire(wait_kick_sync, VAL != ksyncs[cpu]);
cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
}
@@ -6124,13 +5541,14 @@ static void kick_cpus_irq_workfn(struct irq_work *irq_work)
*/
void print_scx_info(const char *log_lvl, struct task_struct *p)
{
- enum scx_ops_enable_state state = scx_ops_enable_state();
+ struct scx_sched *sch = scx_root;
+ enum scx_enable_state state = scx_enable_state();
const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
char runnable_at_buf[22] = "?";
struct sched_class *class;
unsigned long runnable_at;
- if (state == SCX_OPS_DISABLED)
+ if (state == SCX_DISABLED)
return;
/*
@@ -6139,8 +5557,8 @@ void print_scx_info(const char *log_lvl, struct task_struct *p)
*/
if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
class != &ext_sched_class) {
- printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
- scx_ops_enable_state_str[state], all);
+ printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name,
+ scx_enable_state_str[state], all);
return;
}
@@ -6151,7 +5569,7 @@ void print_scx_info(const char *log_lvl, struct task_struct *p)
/* print everything onto one line to conserve console space */
printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
- log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
+ log_lvl, sch->ops.name, scx_enable_state_str[state], all,
runnable_at_buf);
}
@@ -6167,12 +5585,12 @@ static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
case PM_RESTORE_PREPARE:
- scx_ops_bypass(true);
+ scx_bypass(true);
break;
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
case PM_POST_RESTORE:
- scx_ops_bypass(false);
+ scx_bypass(false);
break;
}
@@ -6195,29 +5613,23 @@ void __init init_sched_ext_class(void)
WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
SCX_TG_ONLINE);
- BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
-#ifdef CONFIG_SMP
- BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
- BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
-#endif
- scx_kick_cpus_pnt_seqs =
- __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
- __alignof__(scx_kick_cpus_pnt_seqs[0]));
- BUG_ON(!scx_kick_cpus_pnt_seqs);
+ scx_idle_init_masks();
for_each_possible_cpu(cpu) {
struct rq *rq = cpu_rq(cpu);
+ int n = cpu_to_node(cpu);
init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
+ init_dsq(&rq->scx.bypass_dsq, SCX_DSQ_BYPASS);
INIT_LIST_HEAD(&rq->scx.runnable_list);
INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
- BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
- BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
- BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
- BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
- init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
- init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
+ BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n));
+ BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n));
+ BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n));
+ BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n));
+ rq->scx.deferred_irq_work = IRQ_WORK_INIT_HARD(deferred_irq_workfn);
+ rq->scx.kick_cpus_irq_work = IRQ_WORK_INIT_HARD(kick_cpus_irq_workfn);
if (cpu_online(cpu))
cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
@@ -6232,89 +5644,41 @@ void __init init_sched_ext_class(void)
/********************************************************************************
* Helpers that can be called from the BPF scheduler.
*/
-#include <linux/btf_ids.h>
-
-__bpf_kfunc_start_defs();
-
-/**
- * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
- * @p: task_struct to select a CPU for
- * @prev_cpu: CPU @p was on previously
- * @wake_flags: %SCX_WAKE_* flags
- * @is_idle: out parameter indicating whether the returned CPU is idle
- *
- * Can only be called from ops.select_cpu() if the built-in CPU selection is
- * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
- * @p, @prev_cpu and @wake_flags match ops.select_cpu().
- *
- * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
- * currently idle and thus a good candidate for direct dispatching.
- */
-__bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
- u64 wake_flags, bool *is_idle)
-{
- if (!static_branch_likely(&scx_builtin_idle_enabled)) {
- scx_ops_error("built-in idle tracking is disabled");
- goto prev_cpu;
- }
-
- if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
- goto prev_cpu;
-
-#ifdef CONFIG_SMP
- return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
-#endif
-
-prev_cpu:
- *is_idle = false;
- return prev_cpu;
-}
-
-__bpf_kfunc_end_defs();
-
-BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
-BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
-BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
-
-static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
- .owner = THIS_MODULE,
- .set = &scx_kfunc_ids_select_cpu,
-};
-
-static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags)
+static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p,
+ u64 enq_flags)
{
- if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
+ if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
return false;
lockdep_assert_irqs_disabled();
if (unlikely(!p)) {
- scx_ops_error("called with NULL task");
+ scx_error(sch, "called with NULL task");
return false;
}
if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
- scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
+ scx_error(sch, "invalid enq_flags 0x%llx", enq_flags);
return false;
}
return true;
}
-static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id,
- u64 enq_flags)
+static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p,
+ u64 dsq_id, u64 enq_flags)
{
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
struct task_struct *ddsp_task;
ddsp_task = __this_cpu_read(direct_dispatch_task);
if (ddsp_task) {
- mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
+ mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags);
return;
}
if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
- scx_ops_error("dispatch buffer overflow");
+ scx_error(sch, "dispatch buffer overflow");
return;
}
@@ -6340,9 +5704,7 @@ __bpf_kfunc_start_defs();
* ops.select_cpu(), and ops.dispatch().
*
* When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
- * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
- * used to target the local DSQ of a CPU other than the enqueueing one. Use
- * ops.select_cpu() to be on the target CPU in the first place.
+ * and @p must match the task being enqueued.
*
* When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
* will be directly inserted into the corresponding dispatch queue after
@@ -6354,7 +5716,8 @@ __bpf_kfunc_start_defs();
* When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
* and this function can be called upto ops.dispatch_max_batch times to insert
* multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
- * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
+ * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the
+ * counter.
*
* This function doesn't have any locking restrictions and may be called under
* BPF locks (in the future when BPF introduces more flexible locking).
@@ -6363,81 +5726,139 @@ __bpf_kfunc_start_defs();
* exhaustion. If zero, the current residual slice is maintained. If
* %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
* scx_bpf_kick_cpu() to trigger scheduling.
+ *
+ * Returns %true on successful insertion, %false on failure. On the root
+ * scheduler, %false return triggers scheduler abort and the caller doesn't need
+ * to check the return value.
*/
-__bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice,
- u64 enq_flags)
+__bpf_kfunc bool scx_bpf_dsq_insert___v2(struct task_struct *p, u64 dsq_id,
+ u64 slice, u64 enq_flags)
{
- if (!scx_dsq_insert_preamble(p, enq_flags))
- return;
+ struct scx_sched *sch;
+
+ guard(rcu)();
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return false;
+
+ if (!scx_dsq_insert_preamble(sch, p, enq_flags))
+ return false;
if (slice)
p->scx.slice = slice;
else
p->scx.slice = p->scx.slice ?: 1;
- scx_dsq_insert_commit(p, dsq_id, enq_flags);
+ scx_dsq_insert_commit(sch, p, dsq_id, enq_flags);
+
+ return true;
}
-/* for backward compatibility, will be removed in v6.15 */
-__bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
- u64 enq_flags)
+/*
+ * COMPAT: Will be removed in v6.23 along with the ___v2 suffix.
+ */
+__bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id,
+ u64 slice, u64 enq_flags)
+{
+ scx_bpf_dsq_insert___v2(p, dsq_id, slice, enq_flags);
+}
+
+static bool scx_dsq_insert_vtime(struct scx_sched *sch, struct task_struct *p,
+ u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags)
{
- printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()");
- scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags);
+ if (!scx_dsq_insert_preamble(sch, p, enq_flags))
+ return false;
+
+ if (slice)
+ p->scx.slice = slice;
+ else
+ p->scx.slice = p->scx.slice ?: 1;
+
+ p->scx.dsq_vtime = vtime;
+
+ scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
+
+ return true;
}
+struct scx_bpf_dsq_insert_vtime_args {
+ /* @p can't be packed together as KF_RCU is not transitive */
+ u64 dsq_id;
+ u64 slice;
+ u64 vtime;
+ u64 enq_flags;
+};
+
/**
- * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ
+ * __scx_bpf_dsq_insert_vtime - Arg-wrapped vtime DSQ insertion
* @p: task_struct to insert
- * @dsq_id: DSQ to insert into
- * @slice: duration @p can run for in nsecs, 0 to keep the current value
- * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
- * @enq_flags: SCX_ENQ_*
+ * @args: struct containing the rest of the arguments
+ * @args->dsq_id: DSQ to insert into
+ * @args->slice: duration @p can run for in nsecs, 0 to keep the current value
+ * @args->vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
+ * @args->enq_flags: SCX_ENQ_*
+ *
+ * Wrapper kfunc that takes arguments via struct to work around BPF's 5 argument
+ * limit. BPF programs should use scx_bpf_dsq_insert_vtime() which is provided
+ * as an inline wrapper in common.bpf.h.
*
- * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id.
- * Tasks queued into the priority queue are ordered by @vtime. All other aspects
- * are identical to scx_bpf_dsq_insert().
+ * Insert @p into the vtime priority queue of the DSQ identified by
+ * @args->dsq_id. Tasks queued into the priority queue are ordered by
+ * @args->vtime. All other aspects are identical to scx_bpf_dsq_insert().
*
- * @vtime ordering is according to time_before64() which considers wrapping. A
- * numerically larger vtime may indicate an earlier position in the ordering and
- * vice-versa.
+ * @args->vtime ordering is according to time_before64() which considers
+ * wrapping. A numerically larger vtime may indicate an earlier position in the
+ * ordering and vice-versa.
*
* A DSQ can only be used as a FIFO or priority queue at any given time and this
* function must not be called on a DSQ which already has one or more FIFO tasks
* queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
* SCX_DSQ_GLOBAL) cannot be used as priority queues.
+ *
+ * Returns %true on successful insertion, %false on failure. On the root
+ * scheduler, %false return triggers scheduler abort and the caller doesn't need
+ * to check the return value.
*/
-__bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
- u64 slice, u64 vtime, u64 enq_flags)
+__bpf_kfunc bool
+__scx_bpf_dsq_insert_vtime(struct task_struct *p,
+ struct scx_bpf_dsq_insert_vtime_args *args)
{
- if (!scx_dsq_insert_preamble(p, enq_flags))
- return;
+ struct scx_sched *sch;
- if (slice)
- p->scx.slice = slice;
- else
- p->scx.slice = p->scx.slice ?: 1;
+ guard(rcu)();
- p->scx.dsq_vtime = vtime;
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return false;
- scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
+ return scx_dsq_insert_vtime(sch, p, args->dsq_id, args->slice,
+ args->vtime, args->enq_flags);
}
-/* for backward compatibility, will be removed in v6.15 */
-__bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
- u64 slice, u64 vtime, u64 enq_flags)
+/*
+ * COMPAT: Will be removed in v6.23.
+ */
+__bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
+ u64 slice, u64 vtime, u64 enq_flags)
{
- printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()");
- scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags);
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return;
+
+ scx_dsq_insert_vtime(sch, p, dsq_id, slice, vtime, enq_flags);
}
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_dsq_insert___v2, KF_RCU)
+BTF_ID_FLAGS(func, __scx_bpf_dsq_insert_vtime, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU)
-BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
-BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
@@ -6448,13 +5869,22 @@ static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
struct task_struct *p, u64 dsq_id, u64 enq_flags)
{
+ struct scx_sched *sch = scx_root;
struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
struct rq *this_rq, *src_rq, *locked_rq;
bool dispatched = false;
bool in_balance;
unsigned long flags;
- if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
+ if (!scx_kf_allowed_if_unlocked() &&
+ !scx_kf_allowed(sch, SCX_KF_DISPATCH))
+ return false;
+
+ /*
+ * If the BPF scheduler keeps calling this function repeatedly, it can
+ * cause similar live-lock conditions as consume_dispatch_q().
+ */
+ if (unlikely(READ_ONCE(scx_aborting)))
return false;
/*
@@ -6477,13 +5907,6 @@ static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
raw_spin_rq_lock(src_rq);
}
- /*
- * If the BPF scheduler keeps calling this function repeatedly, it can
- * cause similar live-lock conditions as consume_dispatch_q(). Insert a
- * breather if necessary.
- */
- scx_ops_breather(src_rq);
-
locked_rq = src_rq;
raw_spin_lock(&src_dsq->lock);
@@ -6500,7 +5923,7 @@ static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
}
/* @p is still on $src_dsq and stable, determine the destination */
- dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
+ dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p);
/*
* Apply vtime and slice updates before moving so that the new time is
@@ -6513,7 +5936,7 @@ static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
p->scx.slice = kit->slice;
/* execute move */
- locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq);
+ locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq);
dispatched = true;
out:
if (in_balance) {
@@ -6539,7 +5962,15 @@ __bpf_kfunc_start_defs();
*/
__bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
{
- if (!scx_kf_allowed(SCX_KF_DISPATCH))
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return 0;
+
+ if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
return 0;
return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
@@ -6554,14 +5985,21 @@ __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
__bpf_kfunc void scx_bpf_dispatch_cancel(void)
{
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
+ struct scx_sched *sch;
- if (!scx_kf_allowed(SCX_KF_DISPATCH))
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return;
+
+ if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
return;
if (dspc->cursor > 0)
dspc->cursor--;
else
- scx_ops_error("dispatch buffer underflow");
+ scx_error(sch, "dispatch buffer underflow");
}
/**
@@ -6582,19 +6020,26 @@ __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
{
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
struct scx_dispatch_q *dsq;
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return false;
- if (!scx_kf_allowed(SCX_KF_DISPATCH))
+ if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
return false;
- flush_dispatch_buf(dspc->rq);
+ flush_dispatch_buf(sch, dspc->rq);
- dsq = find_user_dsq(dsq_id);
+ dsq = find_user_dsq(sch, dsq_id);
if (unlikely(!dsq)) {
- scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
+ scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id);
return false;
}
- if (consume_dispatch_q(dspc->rq, dsq)) {
+ if (consume_dispatch_q(sch, dspc->rq, dsq)) {
/*
* A successfully consumed task can be dequeued before it starts
* running while the CPU is trying to migrate other dispatched
@@ -6608,13 +6053,6 @@ __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
}
}
-/* for backward compatibility, will be removed in v6.15 */
-__bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
-{
- printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()");
- return scx_bpf_dsq_move_to_local(dsq_id);
-}
-
/**
* scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs
* @it__iter: DSQ iterator in progress
@@ -6633,14 +6071,6 @@ __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter,
kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
}
-/* for backward compatibility, will be removed in v6.15 */
-__bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
- struct bpf_iter_scx_dsq *it__iter, u64 slice)
-{
- printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()");
- scx_bpf_dsq_move_set_slice(it__iter, slice);
-}
-
/**
* scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs
* @it__iter: DSQ iterator in progress
@@ -6660,14 +6090,6 @@ __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter,
kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
}
-/* for backward compatibility, will be removed in v6.15 */
-__bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
- struct bpf_iter_scx_dsq *it__iter, u64 vtime)
-{
- printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()");
- scx_bpf_dsq_move_set_vtime(it__iter, vtime);
-}
-
/**
* scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ
* @it__iter: DSQ iterator in progress
@@ -6689,8 +6111,9 @@ __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
* Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
* lock (e.g. BPF timers or SYSCALL programs).
*
- * Returns %true if @p has been consumed, %false if @p had already been consumed
- * or dequeued.
+ * Returns %true if @p has been consumed, %false if @p had already been
+ * consumed, dequeued, or, for sub-scheds, @dsq_id points to a disallowed local
+ * DSQ.
*/
__bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter,
struct task_struct *p, u64 dsq_id,
@@ -6700,15 +6123,6 @@ __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter,
p, dsq_id, enq_flags);
}
-/* for backward compatibility, will be removed in v6.15 */
-__bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
- struct task_struct *p, u64 dsq_id,
- u64 enq_flags)
-{
- printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()");
- return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags);
-}
-
/**
* scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ
* @it__iter: DSQ iterator in progress
@@ -6734,30 +6148,16 @@ __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter,
p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
}
-/* for backward compatibility, will be removed in v6.15 */
-__bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
- struct task_struct *p, u64 dsq_id,
- u64 enq_flags)
-{
- printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()");
- return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags);
-}
-
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local)
-BTF_ID_FLAGS(func, scx_bpf_consume)
-BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
-BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
+BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
-BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
-BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
-BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
-BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
@@ -6765,26 +6165,12 @@ static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
.set = &scx_kfunc_ids_dispatch,
};
-__bpf_kfunc_start_defs();
-
-/**
- * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
- *
- * Iterate over all of the tasks currently enqueued on the local DSQ of the
- * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
- * processed tasks. Can only be called from ops.cpu_release().
- */
-__bpf_kfunc u32 scx_bpf_reenqueue_local(void)
+static u32 reenq_local(struct rq *rq)
{
LIST_HEAD(tasks);
u32 nr_enqueued = 0;
- struct rq *rq;
struct task_struct *p, *n;
- if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
- return 0;
-
- rq = cpu_rq(smp_processor_id());
lockdep_assert_rq_held(rq);
/*
@@ -6821,6 +6207,37 @@ __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
return nr_enqueued;
}
+__bpf_kfunc_start_defs();
+
+/**
+ * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
+ *
+ * Iterate over all of the tasks currently enqueued on the local DSQ of the
+ * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
+ * processed tasks. Can only be called from ops.cpu_release().
+ *
+ * COMPAT: Will be removed in v6.23 along with the ___v2 suffix on the void
+ * returning variant that can be called from anywhere.
+ */
+__bpf_kfunc u32 scx_bpf_reenqueue_local(void)
+{
+ struct scx_sched *sch;
+ struct rq *rq;
+
+ guard(rcu)();
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return 0;
+
+ if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE))
+ return 0;
+
+ rq = cpu_rq(smp_processor_id());
+ lockdep_assert_rq_held(rq);
+
+ return reenq_local(rq);
+}
+
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
@@ -6844,24 +6261,46 @@ __bpf_kfunc_start_defs();
*/
__bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
{
+ struct scx_dispatch_q *dsq;
+ struct scx_sched *sch;
+ s32 ret;
+
if (unlikely(node >= (int)nr_node_ids ||
(node < 0 && node != NUMA_NO_NODE)))
return -EINVAL;
- return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
+
+ if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN))
+ return -EINVAL;
+
+ dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
+ if (!dsq)
+ return -ENOMEM;
+
+ init_dsq(dsq, dsq_id);
+
+ rcu_read_lock();
+
+ sch = rcu_dereference(scx_root);
+ if (sch)
+ ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node,
+ dsq_hash_params);
+ else
+ ret = -ENODEV;
+
+ rcu_read_unlock();
+ if (ret)
+ kfree(dsq);
+ return ret;
}
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
-BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
-BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
+BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
-BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
-BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
-BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
-BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
@@ -6872,21 +6311,39 @@ static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
__bpf_kfunc_start_defs();
/**
- * scx_bpf_kick_cpu - Trigger reschedule on a CPU
- * @cpu: cpu to kick
- * @flags: %SCX_KICK_* flags
+ * scx_bpf_task_set_slice - Set task's time slice
+ * @p: task of interest
+ * @slice: time slice to set in nsecs
*
- * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
- * trigger rescheduling on a busy CPU. This can be called from any online
- * scx_ops operation and the actual kicking is performed asynchronously through
- * an irq work.
+ * Set @p's time slice to @slice. Returns %true on success, %false if the
+ * calling scheduler doesn't have authority over @p.
*/
-__bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
+__bpf_kfunc bool scx_bpf_task_set_slice(struct task_struct *p, u64 slice)
+{
+ p->scx.slice = slice;
+ return true;
+}
+
+/**
+ * scx_bpf_task_set_dsq_vtime - Set task's virtual time for DSQ ordering
+ * @p: task of interest
+ * @vtime: virtual time to set
+ *
+ * Set @p's virtual time to @vtime. Returns %true on success, %false if the
+ * calling scheduler doesn't have authority over @p.
+ */
+__bpf_kfunc bool scx_bpf_task_set_dsq_vtime(struct task_struct *p, u64 vtime)
+{
+ p->scx.dsq_vtime = vtime;
+ return true;
+}
+
+static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags)
{
struct rq *this_rq;
unsigned long irq_flags;
- if (!ops_cpu_valid(cpu, NULL))
+ if (!ops_cpu_valid(sch, cpu, NULL))
return;
local_irq_save(irq_flags);
@@ -6910,7 +6367,7 @@ __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
struct rq *target_rq = cpu_rq(cpu);
if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
- scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
+ scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
if (raw_spin_rq_trylock(target_rq)) {
if (can_skip_idle_kick(target_rq)) {
@@ -6935,6 +6392,26 @@ out:
}
/**
+ * scx_bpf_kick_cpu - Trigger reschedule on a CPU
+ * @cpu: cpu to kick
+ * @flags: %SCX_KICK_* flags
+ *
+ * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
+ * trigger rescheduling on a busy CPU. This can be called from any online
+ * scx_ops operation and the actual kicking is performed asynchronously through
+ * an irq work.
+ */
+__bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
+{
+ struct scx_sched *sch;
+
+ guard(rcu)();
+ sch = rcu_dereference(scx_root);
+ if (likely(sch))
+ scx_kick_cpu(sch, cpu, flags);
+}
+
+/**
* scx_bpf_dsq_nr_queued - Return the number of queued tasks
* @dsq_id: id of the DSQ
*
@@ -6943,23 +6420,30 @@ out:
*/
__bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
{
+ struct scx_sched *sch;
struct scx_dispatch_q *dsq;
s32 ret;
preempt_disable();
+ sch = rcu_dereference_sched(scx_root);
+ if (unlikely(!sch)) {
+ ret = -ENODEV;
+ goto out;
+ }
+
if (dsq_id == SCX_DSQ_LOCAL) {
ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
goto out;
} else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
- if (ops_cpu_valid(cpu, NULL)) {
+ if (ops_cpu_valid(sch, cpu, NULL)) {
ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
goto out;
}
} else {
- dsq = find_user_dsq(dsq_id);
+ dsq = find_user_dsq(sch, dsq_id);
if (dsq) {
ret = READ_ONCE(dsq->nr);
goto out;
@@ -6982,7 +6466,13 @@ out:
*/
__bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
{
- destroy_dsq(dsq_id);
+ struct scx_sched *sch;
+
+ rcu_read_lock();
+ sch = rcu_dereference(scx_root);
+ if (sch)
+ destroy_dsq(sch, dsq_id);
+ rcu_read_unlock();
}
/**
@@ -6999,22 +6489,34 @@ __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
u64 flags)
{
struct bpf_iter_scx_dsq_kern *kit = (void *)it;
+ struct scx_sched *sch;
BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
sizeof(struct bpf_iter_scx_dsq));
BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
__alignof__(struct bpf_iter_scx_dsq));
+ BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
+ ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
+
+ /*
+ * next() and destroy() will be called regardless of the return value.
+ * Always clear $kit->dsq.
+ */
+ kit->dsq = NULL;
+
+ sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held());
+ if (unlikely(!sch))
+ return -ENODEV;
if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
return -EINVAL;
- kit->dsq = find_user_dsq(dsq_id);
+ kit->dsq = find_user_dsq(sch, dsq_id);
if (!kit->dsq)
return -ENOENT;
- INIT_LIST_HEAD(&kit->cursor.node);
- kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags;
- kit->cursor.priv = READ_ONCE(kit->dsq->seq);
+ kit->cursor = INIT_DSQ_LIST_CURSOR(kit->cursor, flags,
+ READ_ONCE(kit->dsq->seq));
return 0;
}
@@ -7088,31 +6590,65 @@ __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
kit->dsq = NULL;
}
+/**
+ * scx_bpf_dsq_peek - Lockless peek at the first element.
+ * @dsq_id: DSQ to examine.
+ *
+ * Read the first element in the DSQ. This is semantically equivalent to using
+ * the DSQ iterator, but is lockfree. Of course, like any lockless operation,
+ * this provides only a point-in-time snapshot, and the contents may change
+ * by the time any subsequent locking operation reads the queue.
+ *
+ * Returns the pointer, or NULL indicates an empty queue OR internal error.
+ */
+__bpf_kfunc struct task_struct *scx_bpf_dsq_peek(u64 dsq_id)
+{
+ struct scx_sched *sch;
+ struct scx_dispatch_q *dsq;
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return NULL;
+
+ if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) {
+ scx_error(sch, "peek disallowed on builtin DSQ 0x%llx", dsq_id);
+ return NULL;
+ }
+
+ dsq = find_user_dsq(sch, dsq_id);
+ if (unlikely(!dsq)) {
+ scx_error(sch, "peek on non-existent DSQ 0x%llx", dsq_id);
+ return NULL;
+ }
+
+ return rcu_dereference(dsq->first_task);
+}
+
__bpf_kfunc_end_defs();
-static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
- char *fmt, unsigned long long *data, u32 data__sz)
+static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf,
+ size_t line_size, char *fmt, unsigned long long *data,
+ u32 data__sz)
{
struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
s32 ret;
if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
(data__sz && !data)) {
- scx_ops_error("invalid data=%p and data__sz=%u",
- (void *)data, data__sz);
+ scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz);
return -EINVAL;
}
ret = copy_from_kernel_nofault(data_buf, data, data__sz);
if (ret < 0) {
- scx_ops_error("failed to read data fields (%d)", ret);
+ scx_error(sch, "failed to read data fields (%d)", ret);
return ret;
}
ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
&bprintf_data);
if (ret < 0) {
- scx_ops_error("format preparation failed (%d)", ret);
+ scx_error(sch, "format preparation failed (%d)", ret);
return ret;
}
@@ -7120,18 +6656,17 @@ static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
bprintf_data.bin_args);
bpf_bprintf_cleanup(&bprintf_data);
if (ret < 0) {
- scx_ops_error("(\"%s\", %p, %u) failed to format",
- fmt, data, data__sz);
+ scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz);
return ret;
}
return ret;
}
-static s32 bstr_format(struct scx_bstr_buf *buf,
+static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf,
char *fmt, unsigned long long *data, u32 data__sz)
{
- return __bstr_format(buf->data, buf->line, sizeof(buf->line),
+ return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line),
fmt, data, data__sz);
}
@@ -7150,12 +6685,14 @@ __bpf_kfunc_start_defs();
__bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
unsigned long long *data, u32 data__sz)
{
+ struct scx_sched *sch;
unsigned long flags;
raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
- if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
- scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
- scx_exit_bstr_buf.line);
+ sch = rcu_dereference_bh(scx_root);
+ if (likely(sch) &&
+ bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
+ scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line);
raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
}
@@ -7171,17 +6708,19 @@ __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
__bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
u32 data__sz)
{
+ struct scx_sched *sch;
unsigned long flags;
raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
- if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
- scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
- scx_exit_bstr_buf.line);
+ sch = rcu_dereference_bh(scx_root);
+ if (likely(sch) &&
+ bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
+ scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line);
raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
}
/**
- * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
+ * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler
* @fmt: format string
* @data: format string parameters packaged using ___bpf_fill() macro
* @data__sz: @data len, must end in '__sz' for the verifier
@@ -7195,17 +6734,24 @@ __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
__bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
u32 data__sz)
{
+ struct scx_sched *sch;
struct scx_dump_data *dd = &scx_dump_data;
struct scx_bstr_buf *buf = &dd->buf;
s32 ret;
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return;
+
if (raw_smp_processor_id() != dd->cpu) {
- scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
+ scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends");
return;
}
/* append the formatted string to the line buf */
- ret = __bstr_format(buf->data, buf->line + dd->cursor,
+ ret = __bstr_format(sch, buf->data, buf->line + dd->cursor,
sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
if (ret < 0) {
dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
@@ -7232,6 +6778,24 @@ __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
}
/**
+ * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
+ *
+ * Iterate over all of the tasks currently enqueued on the local DSQ of the
+ * caller's CPU, and re-enqueue them in the BPF scheduler. Can be called from
+ * anywhere.
+ */
+__bpf_kfunc void scx_bpf_reenqueue_local___v2(void)
+{
+ struct rq *rq;
+
+ guard(preempt)();
+
+ rq = this_rq();
+ local_set(&rq->scx.reenq_local_deferred, 1);
+ schedule_deferred(rq);
+}
+
+/**
* scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
* @cpu: CPU of interest
*
@@ -7241,7 +6805,12 @@ __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
*/
__bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
{
- if (ops_cpu_valid(cpu, NULL))
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
return arch_scale_cpu_capacity(cpu);
else
return SCX_CPUPERF_ONE;
@@ -7263,7 +6832,12 @@ __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
*/
__bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
{
- if (ops_cpu_valid(cpu, NULL))
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
return arch_scale_freq_capacity(cpu);
else
return SCX_CPUPERF_ONE;
@@ -7273,7 +6847,6 @@ __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
* scx_bpf_cpuperf_set - Set the relative performance target of a CPU
* @cpu: CPU of interest
* @perf: target performance level [0, %SCX_CPUPERF_ONE]
- * @flags: %SCX_CPUPERF_* flags
*
* Set the target performance level of @cpu to @perf. @perf is in linear
* relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
@@ -7286,23 +6859,60 @@ __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
*/
__bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
{
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return;
+
if (unlikely(perf > SCX_CPUPERF_ONE)) {
- scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
+ scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu);
return;
}
- if (ops_cpu_valid(cpu, NULL)) {
- struct rq *rq = cpu_rq(cpu);
+ if (ops_cpu_valid(sch, cpu, NULL)) {
+ struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq();
+ struct rq_flags rf;
+
+ /*
+ * When called with an rq lock held, restrict the operation
+ * to the corresponding CPU to prevent ABBA deadlocks.
+ */
+ if (locked_rq && rq != locked_rq) {
+ scx_error(sch, "Invalid target CPU %d", cpu);
+ return;
+ }
+
+ /*
+ * If no rq lock is held, allow to operate on any CPU by
+ * acquiring the corresponding rq lock.
+ */
+ if (!locked_rq) {
+ rq_lock_irqsave(rq, &rf);
+ update_rq_clock(rq);
+ }
rq->scx.cpuperf_target = perf;
+ cpufreq_update_util(rq, 0);
- rcu_read_lock_sched_notrace();
- cpufreq_update_util(cpu_rq(cpu), 0);
- rcu_read_unlock_sched_notrace();
+ if (!locked_rq)
+ rq_unlock_irqrestore(rq, &rf);
}
}
/**
+ * scx_bpf_nr_node_ids - Return the number of possible node IDs
+ *
+ * All valid node IDs in the system are smaller than the returned value.
+ */
+__bpf_kfunc u32 scx_bpf_nr_node_ids(void)
+{
+ return nr_node_ids;
+}
+
+/**
* scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
*
* All valid CPU IDs in the system are smaller than the returned value.
@@ -7343,176 +6953,96 @@ __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
}
/**
- * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
- * per-CPU cpumask.
- *
- * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
+ * scx_bpf_task_running - Is task currently running?
+ * @p: task of interest
*/
-__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
+__bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
{
- if (!static_branch_likely(&scx_builtin_idle_enabled)) {
- scx_ops_error("built-in idle tracking is disabled");
- return cpu_none_mask;
- }
-
-#ifdef CONFIG_SMP
- return idle_masks.cpu;
-#else
- return cpu_none_mask;
-#endif
+ return task_rq(p)->curr == p;
}
/**
- * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
- * per-physical-core cpumask. Can be used to determine if an entire physical
- * core is free.
- *
- * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
+ * scx_bpf_task_cpu - CPU a task is currently associated with
+ * @p: task of interest
*/
-__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
+__bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
{
- if (!static_branch_likely(&scx_builtin_idle_enabled)) {
- scx_ops_error("built-in idle tracking is disabled");
- return cpu_none_mask;
- }
-
-#ifdef CONFIG_SMP
- if (sched_smt_active())
- return idle_masks.smt;
- else
- return idle_masks.cpu;
-#else
- return cpu_none_mask;
-#endif
+ return task_cpu(p);
}
/**
- * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
- * either the percpu, or SMT idle-tracking cpumask.
+ * scx_bpf_cpu_rq - Fetch the rq of a CPU
+ * @cpu: CPU of the rq
*/
-__bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
+__bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
{
- /*
- * Empty function body because we aren't actually acquiring or releasing
- * a reference to a global idle cpumask, which is read-only in the
- * caller and is never released. The acquire / release semantics here
- * are just used to make the cpumask a trusted pointer in the caller.
- */
-}
+ struct scx_sched *sch;
-/**
- * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
- * @cpu: cpu to test and clear idle for
- *
- * Returns %true if @cpu was idle and its idle state was successfully cleared.
- * %false otherwise.
- *
- * Unavailable if ops.update_idle() is implemented and
- * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
- */
-__bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
-{
- if (!static_branch_likely(&scx_builtin_idle_enabled)) {
- scx_ops_error("built-in idle tracking is disabled");
- return false;
- }
+ guard(rcu)();
- if (ops_cpu_valid(cpu, NULL))
- return test_and_clear_cpu_idle(cpu);
- else
- return false;
-}
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return NULL;
-/**
- * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
- * @cpus_allowed: Allowed cpumask
- * @flags: %SCX_PICK_IDLE_CPU_* flags
- *
- * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
- * number on success. -%EBUSY if no matching cpu was found.
- *
- * Idle CPU tracking may race against CPU scheduling state transitions. For
- * example, this function may return -%EBUSY as CPUs are transitioning into the
- * idle state. If the caller then assumes that there will be dispatch events on
- * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
- * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
- * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
- * event in the near future.
- *
- * Unavailable if ops.update_idle() is implemented and
- * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
- */
-__bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
- u64 flags)
-{
- if (!static_branch_likely(&scx_builtin_idle_enabled)) {
- scx_ops_error("built-in idle tracking is disabled");
- return -EBUSY;
+ if (!ops_cpu_valid(sch, cpu, NULL))
+ return NULL;
+
+ if (!sch->warned_deprecated_rq) {
+ printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; "
+ "use scx_bpf_locked_rq() when holding rq lock "
+ "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__);
+ sch->warned_deprecated_rq = true;
}
- return scx_pick_idle_cpu(cpus_allowed, flags);
+ return cpu_rq(cpu);
}
/**
- * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
- * @cpus_allowed: Allowed cpumask
- * @flags: %SCX_PICK_IDLE_CPU_* flags
+ * scx_bpf_locked_rq - Return the rq currently locked by SCX
*
- * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
- * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
- * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
- * empty.
- *
- * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
- * set, this function can't tell which CPUs are idle and will always pick any
- * CPU.
+ * Returns the rq if a rq lock is currently held by SCX.
+ * Otherwise emits an error and returns NULL.
*/
-__bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
- u64 flags)
+__bpf_kfunc struct rq *scx_bpf_locked_rq(void)
{
- s32 cpu;
+ struct scx_sched *sch;
+ struct rq *rq;
- if (static_branch_likely(&scx_builtin_idle_enabled)) {
- cpu = scx_pick_idle_cpu(cpus_allowed, flags);
- if (cpu >= 0)
- return cpu;
+ guard(preempt)();
+
+ sch = rcu_dereference_sched(scx_root);
+ if (unlikely(!sch))
+ return NULL;
+
+ rq = scx_locked_rq();
+ if (!rq) {
+ scx_error(sch, "accessing rq without holding rq lock");
+ return NULL;
}
- cpu = cpumask_any_distribute(cpus_allowed);
- if (cpu < nr_cpu_ids)
- return cpu;
- else
- return -EBUSY;
+ return rq;
}
/**
- * scx_bpf_task_running - Is task currently running?
- * @p: task of interest
+ * scx_bpf_cpu_curr - Return remote CPU's curr task
+ * @cpu: CPU of interest
+ *
+ * Callers must hold RCU read lock (KF_RCU).
*/
-__bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
+__bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu)
{
- return task_rq(p)->curr == p;
-}
+ struct scx_sched *sch;
-/**
- * scx_bpf_task_cpu - CPU a task is currently associated with
- * @p: task of interest
- */
-__bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
-{
- return task_cpu(p);
-}
+ guard(rcu)();
-/**
- * scx_bpf_cpu_rq - Fetch the rq of a CPU
- * @cpu: CPU of the rq
- */
-__bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
-{
- if (!ops_cpu_valid(cpu, NULL))
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
return NULL;
- return cpu_rq(cpu);
+ if (!ops_cpu_valid(sch, cpu, NULL))
+ return NULL;
+
+ return rcu_dereference(cpu_rq(cpu)->curr);
}
/**
@@ -7531,8 +7061,15 @@ __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
{
struct task_group *tg = p->sched_task_group;
struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
+ struct scx_sched *sch;
+
+ guard(rcu)();
- if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ goto out;
+
+ if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p))
goto out;
cgrp = tg_cgrp(tg);
@@ -7543,37 +7080,153 @@ out:
}
#endif
+/**
+ * scx_bpf_now - Returns a high-performance monotonically non-decreasing
+ * clock for the current CPU. The clock returned is in nanoseconds.
+ *
+ * It provides the following properties:
+ *
+ * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently
+ * to account for execution time and track tasks' runtime properties.
+ * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which
+ * eventually reads a hardware timestamp counter -- is neither performant nor
+ * scalable. scx_bpf_now() aims to provide a high-performance clock by
+ * using the rq clock in the scheduler core whenever possible.
+ *
+ * 2) High enough resolution for the BPF scheduler use cases: In most BPF
+ * scheduler use cases, the required clock resolution is lower than the most
+ * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically
+ * uses the rq clock in the scheduler core whenever it is valid. It considers
+ * that the rq clock is valid from the time the rq clock is updated
+ * (update_rq_clock) until the rq is unlocked (rq_unpin_lock).
+ *
+ * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now()
+ * guarantees the clock never goes backward when comparing them in the same
+ * CPU. On the other hand, when comparing clocks in different CPUs, there
+ * is no such guarantee -- the clock can go backward. It provides a
+ * monotonically *non-decreasing* clock so that it would provide the same
+ * clock values in two different scx_bpf_now() calls in the same CPU
+ * during the same period of when the rq clock is valid.
+ */
+__bpf_kfunc u64 scx_bpf_now(void)
+{
+ struct rq *rq;
+ u64 clock;
+
+ preempt_disable();
+
+ rq = this_rq();
+ if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) {
+ /*
+ * If the rq clock is valid, use the cached rq clock.
+ *
+ * Note that scx_bpf_now() is re-entrant between a process
+ * context and an interrupt context (e.g., timer interrupt).
+ * However, we don't need to consider the race between them
+ * because such race is not observable from a caller.
+ */
+ clock = READ_ONCE(rq->scx.clock);
+ } else {
+ /*
+ * Otherwise, return a fresh rq clock.
+ *
+ * The rq clock is updated outside of the rq lock.
+ * In this case, keep the updated rq clock invalid so the next
+ * kfunc call outside the rq lock gets a fresh rq clock.
+ */
+ clock = sched_clock_cpu(cpu_of(rq));
+ }
+
+ preempt_enable();
+
+ return clock;
+}
+
+static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events)
+{
+ struct scx_event_stats *e_cpu;
+ int cpu;
+
+ /* Aggregate per-CPU event counters into @events. */
+ memset(events, 0, sizeof(*events));
+ for_each_possible_cpu(cpu) {
+ e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats;
+ scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK);
+ scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
+ scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST);
+ scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING);
+ scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
+ scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL);
+ scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION);
+ scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH);
+ scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE);
+ }
+}
+
+/*
+ * scx_bpf_events - Get a system-wide event counter to
+ * @events: output buffer from a BPF program
+ * @events__sz: @events len, must end in '__sz'' for the verifier
+ */
+__bpf_kfunc void scx_bpf_events(struct scx_event_stats *events,
+ size_t events__sz)
+{
+ struct scx_sched *sch;
+ struct scx_event_stats e_sys;
+
+ rcu_read_lock();
+ sch = rcu_dereference(scx_root);
+ if (sch)
+ scx_read_events(sch, &e_sys);
+ else
+ memset(&e_sys, 0, sizeof(e_sys));
+ rcu_read_unlock();
+
+ /*
+ * We cannot entirely trust a BPF-provided size since a BPF program
+ * might be compiled against a different vmlinux.h, of which
+ * scx_event_stats would be larger (a newer vmlinux.h) or smaller
+ * (an older vmlinux.h). Hence, we use the smaller size to avoid
+ * memory corruption.
+ */
+ events__sz = min(events__sz, sizeof(*events));
+ memcpy(events, &e_sys, events__sz);
+}
+
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_any)
+BTF_ID_FLAGS(func, scx_bpf_task_set_slice, KF_RCU);
+BTF_ID_FLAGS(func, scx_bpf_task_set_dsq_vtime, KF_RCU);
BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
+BTF_ID_FLAGS(func, scx_bpf_dsq_peek, KF_RCU_PROTECTED | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
+BTF_ID_FLAGS(func, scx_bpf_reenqueue_local___v2)
BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
+BTF_ID_FLAGS(func, scx_bpf_nr_node_ids)
BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
-BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
-BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
-BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
-BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
-BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
-BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
+BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL)
+BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED)
#ifdef CONFIG_CGROUP_SCHED
BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
#endif
+BTF_ID_FLAGS(func, scx_bpf_now)
+BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS)
BTF_KFUNCS_END(scx_kfunc_ids_any)
static const struct btf_kfunc_id_set scx_kfunc_set_any = {
@@ -7597,8 +7250,6 @@ static int __init scx_init(void)
* check using scx_kf_allowed().
*/
if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
- &scx_kfunc_set_select_cpu)) ||
- (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
&scx_kfunc_set_enqueue_dispatch)) ||
(ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
&scx_kfunc_set_dispatch)) ||
@@ -7618,6 +7269,12 @@ static int __init scx_init(void)
return ret;
}
+ ret = scx_idle_init();
+ if (ret) {
+ pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret);
+ return ret;
+ }
+
ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
if (ret) {
pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
@@ -7642,6 +7299,12 @@ static int __init scx_init(void)
return ret;
}
+ if (!alloc_cpumask_var(&scx_bypass_lb_donee_cpumask, GFP_KERNEL) ||
+ !alloc_cpumask_var(&scx_bypass_lb_resched_cpumask, GFP_KERNEL)) {
+ pr_err("sched_ext: Failed to allocate cpumasks\n");
+ return -ENOMEM;
+ }
+
return 0;
}
__initcall(scx_init);
diff --git a/kernel/sched/ext.h b/kernel/sched/ext.h
index b1675bb59fc4..43429b33e52c 100644
--- a/kernel/sched/ext.h
+++ b/kernel/sched/ext.h
@@ -19,6 +19,7 @@ void scx_rq_activate(struct rq *rq);
void scx_rq_deactivate(struct rq *rq);
int scx_check_setscheduler(struct task_struct *p, int policy);
bool task_should_scx(int policy);
+bool scx_allow_ttwu_queue(const struct task_struct *p);
void init_sched_ext_class(void);
static inline u32 scx_cpuperf_target(s32 cpu)
@@ -52,40 +53,43 @@ static inline void scx_rq_activate(struct rq *rq) {}
static inline void scx_rq_deactivate(struct rq *rq) {}
static inline int scx_check_setscheduler(struct task_struct *p, int policy) { return 0; }
static inline bool task_on_scx(const struct task_struct *p) { return false; }
+static inline bool scx_allow_ttwu_queue(const struct task_struct *p) { return true; }
static inline void init_sched_ext_class(void) {}
#endif /* CONFIG_SCHED_CLASS_EXT */
-#if defined(CONFIG_SCHED_CLASS_EXT) && defined(CONFIG_SMP)
-void __scx_update_idle(struct rq *rq, bool idle);
+#ifdef CONFIG_SCHED_CLASS_EXT
+void __scx_update_idle(struct rq *rq, bool idle, bool do_notify);
-static inline void scx_update_idle(struct rq *rq, bool idle)
+static inline void scx_update_idle(struct rq *rq, bool idle, bool do_notify)
{
if (scx_enabled())
- __scx_update_idle(rq, idle);
+ __scx_update_idle(rq, idle, do_notify);
}
#else
-static inline void scx_update_idle(struct rq *rq, bool idle) {}
+static inline void scx_update_idle(struct rq *rq, bool idle, bool do_notify) {}
#endif
#ifdef CONFIG_CGROUP_SCHED
#ifdef CONFIG_EXT_GROUP_SCHED
+void scx_tg_init(struct task_group *tg);
int scx_tg_online(struct task_group *tg);
void scx_tg_offline(struct task_group *tg);
int scx_cgroup_can_attach(struct cgroup_taskset *tset);
-void scx_move_task(struct task_struct *p);
-void scx_cgroup_finish_attach(void);
+void scx_cgroup_move_task(struct task_struct *p);
void scx_cgroup_cancel_attach(struct cgroup_taskset *tset);
void scx_group_set_weight(struct task_group *tg, unsigned long cgrp_weight);
void scx_group_set_idle(struct task_group *tg, bool idle);
+void scx_group_set_bandwidth(struct task_group *tg, u64 period_us, u64 quota_us, u64 burst_us);
#else /* CONFIG_EXT_GROUP_SCHED */
+static inline void scx_tg_init(struct task_group *tg) {}
static inline int scx_tg_online(struct task_group *tg) { return 0; }
static inline void scx_tg_offline(struct task_group *tg) {}
static inline int scx_cgroup_can_attach(struct cgroup_taskset *tset) { return 0; }
-static inline void scx_move_task(struct task_struct *p) {}
-static inline void scx_cgroup_finish_attach(void) {}
+static inline void scx_cgroup_move_task(struct task_struct *p) {}
static inline void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) {}
static inline void scx_group_set_weight(struct task_group *tg, unsigned long cgrp_weight) {}
static inline void scx_group_set_idle(struct task_group *tg, bool idle) {}
+static inline void scx_group_set_bandwidth(struct task_group *tg, u64 period_us, u64 quota_us, u64 burst_us) {}
#endif /* CONFIG_EXT_GROUP_SCHED */
#endif /* CONFIG_CGROUP_SCHED */
diff --git a/kernel/sched/ext_idle.c b/kernel/sched/ext_idle.c
new file mode 100644
index 000000000000..3d9d404d5cd2
--- /dev/null
+++ b/kernel/sched/ext_idle.c
@@ -0,0 +1,1435 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
+ *
+ * Built-in idle CPU tracking policy.
+ *
+ * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
+ * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
+ * Copyright (c) 2022 David Vernet <dvernet@meta.com>
+ * Copyright (c) 2024 Andrea Righi <arighi@nvidia.com>
+ */
+#include "ext_idle.h"
+
+/* Enable/disable built-in idle CPU selection policy */
+static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
+
+/* Enable/disable per-node idle cpumasks */
+static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_per_node);
+
+/* Enable/disable LLC aware optimizations */
+static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
+
+/* Enable/disable NUMA aware optimizations */
+static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
+
+/*
+ * cpumasks to track idle CPUs within each NUMA node.
+ *
+ * If SCX_OPS_BUILTIN_IDLE_PER_NODE is not enabled, a single global cpumask
+ * from is used to track all the idle CPUs in the system.
+ */
+struct scx_idle_cpus {
+ cpumask_var_t cpu;
+ cpumask_var_t smt;
+};
+
+/*
+ * Global host-wide idle cpumasks (used when SCX_OPS_BUILTIN_IDLE_PER_NODE
+ * is not enabled).
+ */
+static struct scx_idle_cpus scx_idle_global_masks;
+
+/*
+ * Per-node idle cpumasks.
+ */
+static struct scx_idle_cpus **scx_idle_node_masks;
+
+/*
+ * Local per-CPU cpumasks (used to generate temporary idle cpumasks).
+ */
+static DEFINE_PER_CPU(cpumask_var_t, local_idle_cpumask);
+static DEFINE_PER_CPU(cpumask_var_t, local_llc_idle_cpumask);
+static DEFINE_PER_CPU(cpumask_var_t, local_numa_idle_cpumask);
+
+/*
+ * Return the idle masks associated to a target @node.
+ *
+ * NUMA_NO_NODE identifies the global idle cpumask.
+ */
+static struct scx_idle_cpus *idle_cpumask(int node)
+{
+ return node == NUMA_NO_NODE ? &scx_idle_global_masks : scx_idle_node_masks[node];
+}
+
+/*
+ * Returns the NUMA node ID associated with a @cpu, or NUMA_NO_NODE if
+ * per-node idle cpumasks are disabled.
+ */
+static int scx_cpu_node_if_enabled(int cpu)
+{
+ if (!static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node))
+ return NUMA_NO_NODE;
+
+ return cpu_to_node(cpu);
+}
+
+static bool scx_idle_test_and_clear_cpu(int cpu)
+{
+ int node = scx_cpu_node_if_enabled(cpu);
+ struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
+
+#ifdef CONFIG_SCHED_SMT
+ /*
+ * SMT mask should be cleared whether we can claim @cpu or not. The SMT
+ * cluster is not wholly idle either way. This also prevents
+ * scx_pick_idle_cpu() from getting caught in an infinite loop.
+ */
+ if (sched_smt_active()) {
+ const struct cpumask *smt = cpu_smt_mask(cpu);
+ struct cpumask *idle_smts = idle_cpumask(node)->smt;
+
+ /*
+ * If offline, @cpu is not its own sibling and
+ * scx_pick_idle_cpu() can get caught in an infinite loop as
+ * @cpu is never cleared from the idle SMT mask. Ensure that
+ * @cpu is eventually cleared.
+ *
+ * NOTE: Use cpumask_intersects() and cpumask_test_cpu() to
+ * reduce memory writes, which may help alleviate cache
+ * coherence pressure.
+ */
+ if (cpumask_intersects(smt, idle_smts))
+ cpumask_andnot(idle_smts, idle_smts, smt);
+ else if (cpumask_test_cpu(cpu, idle_smts))
+ __cpumask_clear_cpu(cpu, idle_smts);
+ }
+#endif
+
+ return cpumask_test_and_clear_cpu(cpu, idle_cpus);
+}
+
+/*
+ * Pick an idle CPU in a specific NUMA node.
+ */
+static s32 pick_idle_cpu_in_node(const struct cpumask *cpus_allowed, int node, u64 flags)
+{
+ int cpu;
+
+retry:
+ if (sched_smt_active()) {
+ cpu = cpumask_any_and_distribute(idle_cpumask(node)->smt, cpus_allowed);
+ if (cpu < nr_cpu_ids)
+ goto found;
+
+ if (flags & SCX_PICK_IDLE_CORE)
+ return -EBUSY;
+ }
+
+ cpu = cpumask_any_and_distribute(idle_cpumask(node)->cpu, cpus_allowed);
+ if (cpu >= nr_cpu_ids)
+ return -EBUSY;
+
+found:
+ if (scx_idle_test_and_clear_cpu(cpu))
+ return cpu;
+ else
+ goto retry;
+}
+
+#ifdef CONFIG_NUMA
+/*
+ * Tracks nodes that have not yet been visited when searching for an idle
+ * CPU across all available nodes.
+ */
+static DEFINE_PER_CPU(nodemask_t, per_cpu_unvisited);
+
+/*
+ * Search for an idle CPU across all nodes, excluding @node.
+ */
+static s32 pick_idle_cpu_from_online_nodes(const struct cpumask *cpus_allowed, int node, u64 flags)
+{
+ nodemask_t *unvisited;
+ s32 cpu = -EBUSY;
+
+ preempt_disable();
+ unvisited = this_cpu_ptr(&per_cpu_unvisited);
+
+ /*
+ * Restrict the search to the online nodes (excluding the current
+ * node that has been visited already).
+ */
+ nodes_copy(*unvisited, node_states[N_ONLINE]);
+ node_clear(node, *unvisited);
+
+ /*
+ * Traverse all nodes in order of increasing distance, starting
+ * from @node.
+ *
+ * This loop is O(N^2), with N being the amount of NUMA nodes,
+ * which might be quite expensive in large NUMA systems. However,
+ * this complexity comes into play only when a scheduler enables
+ * SCX_OPS_BUILTIN_IDLE_PER_NODE and it's requesting an idle CPU
+ * without specifying a target NUMA node, so it shouldn't be a
+ * bottleneck is most cases.
+ *
+ * As a future optimization we may want to cache the list of nodes
+ * in a per-node array, instead of actually traversing them every
+ * time.
+ */
+ for_each_node_numadist(node, *unvisited) {
+ cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
+ if (cpu >= 0)
+ break;
+ }
+ preempt_enable();
+
+ return cpu;
+}
+#else
+static inline s32
+pick_idle_cpu_from_online_nodes(const struct cpumask *cpus_allowed, int node, u64 flags)
+{
+ return -EBUSY;
+}
+#endif
+
+/*
+ * Find an idle CPU in the system, starting from @node.
+ */
+static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, int node, u64 flags)
+{
+ s32 cpu;
+
+ /*
+ * Always search in the starting node first (this is an
+ * optimization that can save some cycles even when the search is
+ * not limited to a single node).
+ */
+ cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
+ if (cpu >= 0)
+ return cpu;
+
+ /*
+ * Stop the search if we are using only a single global cpumask
+ * (NUMA_NO_NODE) or if the search is restricted to the first node
+ * only.
+ */
+ if (node == NUMA_NO_NODE || flags & SCX_PICK_IDLE_IN_NODE)
+ return -EBUSY;
+
+ /*
+ * Extend the search to the other online nodes.
+ */
+ return pick_idle_cpu_from_online_nodes(cpus_allowed, node, flags);
+}
+
+/*
+ * Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC
+ * domain is not defined).
+ */
+static unsigned int llc_weight(s32 cpu)
+{
+ struct sched_domain *sd;
+
+ sd = rcu_dereference(per_cpu(sd_llc, cpu));
+ if (!sd)
+ return 0;
+
+ return sd->span_weight;
+}
+
+/*
+ * Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC
+ * domain is not defined).
+ */
+static struct cpumask *llc_span(s32 cpu)
+{
+ struct sched_domain *sd;
+
+ sd = rcu_dereference(per_cpu(sd_llc, cpu));
+ if (!sd)
+ return NULL;
+
+ return sched_domain_span(sd);
+}
+
+/*
+ * Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the
+ * NUMA domain is not defined).
+ */
+static unsigned int numa_weight(s32 cpu)
+{
+ struct sched_domain *sd;
+ struct sched_group *sg;
+
+ sd = rcu_dereference(per_cpu(sd_numa, cpu));
+ if (!sd)
+ return 0;
+ sg = sd->groups;
+ if (!sg)
+ return 0;
+
+ return sg->group_weight;
+}
+
+/*
+ * Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA
+ * domain is not defined).
+ */
+static struct cpumask *numa_span(s32 cpu)
+{
+ struct sched_domain *sd;
+ struct sched_group *sg;
+
+ sd = rcu_dereference(per_cpu(sd_numa, cpu));
+ if (!sd)
+ return NULL;
+ sg = sd->groups;
+ if (!sg)
+ return NULL;
+
+ return sched_group_span(sg);
+}
+
+/*
+ * Return true if the LLC domains do not perfectly overlap with the NUMA
+ * domains, false otherwise.
+ */
+static bool llc_numa_mismatch(void)
+{
+ int cpu;
+
+ /*
+ * We need to scan all online CPUs to verify whether their scheduling
+ * domains overlap.
+ *
+ * While it is rare to encounter architectures with asymmetric NUMA
+ * topologies, CPU hotplugging or virtualized environments can result
+ * in asymmetric configurations.
+ *
+ * For example:
+ *
+ * NUMA 0:
+ * - LLC 0: cpu0..cpu7
+ * - LLC 1: cpu8..cpu15 [offline]
+ *
+ * NUMA 1:
+ * - LLC 0: cpu16..cpu23
+ * - LLC 1: cpu24..cpu31
+ *
+ * In this case, if we only check the first online CPU (cpu0), we might
+ * incorrectly assume that the LLC and NUMA domains are fully
+ * overlapping, which is incorrect (as NUMA 1 has two distinct LLC
+ * domains).
+ */
+ for_each_online_cpu(cpu)
+ if (llc_weight(cpu) != numa_weight(cpu))
+ return true;
+
+ return false;
+}
+
+/*
+ * Initialize topology-aware scheduling.
+ *
+ * Detect if the system has multiple LLC or multiple NUMA domains and enable
+ * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
+ * selection policy.
+ *
+ * Assumption: the kernel's internal topology representation assumes that each
+ * CPU belongs to a single LLC domain, and that each LLC domain is entirely
+ * contained within a single NUMA node.
+ */
+void scx_idle_update_selcpu_topology(struct sched_ext_ops *ops)
+{
+ bool enable_llc = false, enable_numa = false;
+ unsigned int nr_cpus;
+ s32 cpu = cpumask_first(cpu_online_mask);
+
+ /*
+ * Enable LLC domain optimization only when there are multiple LLC
+ * domains among the online CPUs. If all online CPUs are part of a
+ * single LLC domain, the idle CPU selection logic can choose any
+ * online CPU without bias.
+ *
+ * Note that it is sufficient to check the LLC domain of the first
+ * online CPU to determine whether a single LLC domain includes all
+ * CPUs.
+ */
+ rcu_read_lock();
+ nr_cpus = llc_weight(cpu);
+ if (nr_cpus > 0) {
+ if (nr_cpus < num_online_cpus())
+ enable_llc = true;
+ pr_debug("sched_ext: LLC=%*pb weight=%u\n",
+ cpumask_pr_args(llc_span(cpu)), llc_weight(cpu));
+ }
+
+ /*
+ * Enable NUMA optimization only when there are multiple NUMA domains
+ * among the online CPUs and the NUMA domains don't perfectly overlaps
+ * with the LLC domains.
+ *
+ * If all CPUs belong to the same NUMA node and the same LLC domain,
+ * enabling both NUMA and LLC optimizations is unnecessary, as checking
+ * for an idle CPU in the same domain twice is redundant.
+ *
+ * If SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled ignore the NUMA
+ * optimization, as we would naturally select idle CPUs within
+ * specific NUMA nodes querying the corresponding per-node cpumask.
+ */
+ if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
+ nr_cpus = numa_weight(cpu);
+ if (nr_cpus > 0) {
+ if (nr_cpus < num_online_cpus() && llc_numa_mismatch())
+ enable_numa = true;
+ pr_debug("sched_ext: NUMA=%*pb weight=%u\n",
+ cpumask_pr_args(numa_span(cpu)), nr_cpus);
+ }
+ }
+ rcu_read_unlock();
+
+ pr_debug("sched_ext: LLC idle selection %s\n",
+ str_enabled_disabled(enable_llc));
+ pr_debug("sched_ext: NUMA idle selection %s\n",
+ str_enabled_disabled(enable_numa));
+
+ if (enable_llc)
+ static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
+ else
+ static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
+ if (enable_numa)
+ static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
+ else
+ static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
+}
+
+/*
+ * Return true if @p can run on all possible CPUs, false otherwise.
+ */
+static inline bool task_affinity_all(const struct task_struct *p)
+{
+ return p->nr_cpus_allowed >= num_possible_cpus();
+}
+
+/*
+ * Built-in CPU idle selection policy:
+ *
+ * 1. Prioritize full-idle cores:
+ * - always prioritize CPUs from fully idle cores (both logical CPUs are
+ * idle) to avoid interference caused by SMT.
+ *
+ * 2. Reuse the same CPU:
+ * - prefer the last used CPU to take advantage of cached data (L1, L2) and
+ * branch prediction optimizations.
+ *
+ * 3. Pick a CPU within the same LLC (Last-Level Cache):
+ * - if the above conditions aren't met, pick a CPU that shares the same
+ * LLC, if the LLC domain is a subset of @cpus_allowed, to maintain
+ * cache locality.
+ *
+ * 4. Pick a CPU within the same NUMA node, if enabled:
+ * - choose a CPU from the same NUMA node, if the node cpumask is a
+ * subset of @cpus_allowed, to reduce memory access latency.
+ *
+ * 5. Pick any idle CPU within the @cpus_allowed domain.
+ *
+ * Step 3 and 4 are performed only if the system has, respectively,
+ * multiple LLCs / multiple NUMA nodes (see scx_selcpu_topo_llc and
+ * scx_selcpu_topo_numa) and they don't contain the same subset of CPUs.
+ *
+ * If %SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled, the search will always
+ * begin in @prev_cpu's node and proceed to other nodes in order of
+ * increasing distance.
+ *
+ * Return the picked CPU if idle, or a negative value otherwise.
+ *
+ * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
+ * we never call ops.select_cpu() for them, see select_task_rq().
+ */
+s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
+ const struct cpumask *cpus_allowed, u64 flags)
+{
+ const struct cpumask *llc_cpus = NULL, *numa_cpus = NULL;
+ const struct cpumask *allowed = cpus_allowed ?: p->cpus_ptr;
+ int node = scx_cpu_node_if_enabled(prev_cpu);
+ bool is_prev_allowed;
+ s32 cpu;
+
+ preempt_disable();
+
+ /*
+ * Check whether @prev_cpu is still within the allowed set. If not,
+ * we can still try selecting a nearby CPU.
+ */
+ is_prev_allowed = cpumask_test_cpu(prev_cpu, allowed);
+
+ /*
+ * Determine the subset of CPUs usable by @p within @cpus_allowed.
+ */
+ if (allowed != p->cpus_ptr) {
+ struct cpumask *local_cpus = this_cpu_cpumask_var_ptr(local_idle_cpumask);
+
+ if (task_affinity_all(p)) {
+ allowed = cpus_allowed;
+ } else if (cpumask_and(local_cpus, cpus_allowed, p->cpus_ptr)) {
+ allowed = local_cpus;
+ } else {
+ cpu = -EBUSY;
+ goto out_enable;
+ }
+ }
+
+ /*
+ * This is necessary to protect llc_cpus.
+ */
+ rcu_read_lock();
+
+ /*
+ * Determine the subset of CPUs that the task can use in its
+ * current LLC and node.
+ *
+ * If the task can run on all CPUs, use the node and LLC cpumasks
+ * directly.
+ */
+ if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa)) {
+ struct cpumask *local_cpus = this_cpu_cpumask_var_ptr(local_numa_idle_cpumask);
+ const struct cpumask *cpus = numa_span(prev_cpu);
+
+ if (allowed == p->cpus_ptr && task_affinity_all(p))
+ numa_cpus = cpus;
+ else if (cpus && cpumask_and(local_cpus, allowed, cpus))
+ numa_cpus = local_cpus;
+ }
+
+ if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) {
+ struct cpumask *local_cpus = this_cpu_cpumask_var_ptr(local_llc_idle_cpumask);
+ const struct cpumask *cpus = llc_span(prev_cpu);
+
+ if (allowed == p->cpus_ptr && task_affinity_all(p))
+ llc_cpus = cpus;
+ else if (cpus && cpumask_and(local_cpus, allowed, cpus))
+ llc_cpus = local_cpus;
+ }
+
+ /*
+ * If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
+ */
+ if (wake_flags & SCX_WAKE_SYNC) {
+ int waker_node;
+
+ /*
+ * If the waker's CPU is cache affine and prev_cpu is idle,
+ * then avoid a migration.
+ */
+ cpu = smp_processor_id();
+ if (is_prev_allowed && cpus_share_cache(cpu, prev_cpu) &&
+ scx_idle_test_and_clear_cpu(prev_cpu)) {
+ cpu = prev_cpu;
+ goto out_unlock;
+ }
+
+ /*
+ * If the waker's local DSQ is empty, and the system is under
+ * utilized, try to wake up @p to the local DSQ of the waker.
+ *
+ * Checking only for an empty local DSQ is insufficient as it
+ * could give the wakee an unfair advantage when the system is
+ * oversaturated.
+ *
+ * Checking only for the presence of idle CPUs is also
+ * insufficient as the local DSQ of the waker could have tasks
+ * piled up on it even if there is an idle core elsewhere on
+ * the system.
+ */
+ waker_node = cpu_to_node(cpu);
+ if (!(current->flags & PF_EXITING) &&
+ cpu_rq(cpu)->scx.local_dsq.nr == 0 &&
+ (!(flags & SCX_PICK_IDLE_IN_NODE) || (waker_node == node)) &&
+ !cpumask_empty(idle_cpumask(waker_node)->cpu)) {
+ if (cpumask_test_cpu(cpu, allowed))
+ goto out_unlock;
+ }
+ }
+
+ /*
+ * If CPU has SMT, any wholly idle CPU is likely a better pick than
+ * partially idle @prev_cpu.
+ */
+ if (sched_smt_active()) {
+ /*
+ * Keep using @prev_cpu if it's part of a fully idle core.
+ */
+ if (is_prev_allowed &&
+ cpumask_test_cpu(prev_cpu, idle_cpumask(node)->smt) &&
+ scx_idle_test_and_clear_cpu(prev_cpu)) {
+ cpu = prev_cpu;
+ goto out_unlock;
+ }
+
+ /*
+ * Search for any fully idle core in the same LLC domain.
+ */
+ if (llc_cpus) {
+ cpu = pick_idle_cpu_in_node(llc_cpus, node, SCX_PICK_IDLE_CORE);
+ if (cpu >= 0)
+ goto out_unlock;
+ }
+
+ /*
+ * Search for any fully idle core in the same NUMA node.
+ */
+ if (numa_cpus) {
+ cpu = pick_idle_cpu_in_node(numa_cpus, node, SCX_PICK_IDLE_CORE);
+ if (cpu >= 0)
+ goto out_unlock;
+ }
+
+ /*
+ * Search for any full-idle core usable by the task.
+ *
+ * If the node-aware idle CPU selection policy is enabled
+ * (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always
+ * begin in prev_cpu's node and proceed to other nodes in
+ * order of increasing distance.
+ */
+ cpu = scx_pick_idle_cpu(allowed, node, flags | SCX_PICK_IDLE_CORE);
+ if (cpu >= 0)
+ goto out_unlock;
+
+ /*
+ * Give up if we're strictly looking for a full-idle SMT
+ * core.
+ */
+ if (flags & SCX_PICK_IDLE_CORE) {
+ cpu = -EBUSY;
+ goto out_unlock;
+ }
+ }
+
+ /*
+ * Use @prev_cpu if it's idle.
+ */
+ if (is_prev_allowed && scx_idle_test_and_clear_cpu(prev_cpu)) {
+ cpu = prev_cpu;
+ goto out_unlock;
+ }
+
+ /*
+ * Search for any idle CPU in the same LLC domain.
+ */
+ if (llc_cpus) {
+ cpu = pick_idle_cpu_in_node(llc_cpus, node, 0);
+ if (cpu >= 0)
+ goto out_unlock;
+ }
+
+ /*
+ * Search for any idle CPU in the same NUMA node.
+ */
+ if (numa_cpus) {
+ cpu = pick_idle_cpu_in_node(numa_cpus, node, 0);
+ if (cpu >= 0)
+ goto out_unlock;
+ }
+
+ /*
+ * Search for any idle CPU usable by the task.
+ *
+ * If the node-aware idle CPU selection policy is enabled
+ * (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always begin
+ * in prev_cpu's node and proceed to other nodes in order of
+ * increasing distance.
+ */
+ cpu = scx_pick_idle_cpu(allowed, node, flags);
+
+out_unlock:
+ rcu_read_unlock();
+out_enable:
+ preempt_enable();
+
+ return cpu;
+}
+
+/*
+ * Initialize global and per-node idle cpumasks.
+ */
+void scx_idle_init_masks(void)
+{
+ int i;
+
+ /* Allocate global idle cpumasks */
+ BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.cpu, GFP_KERNEL));
+ BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.smt, GFP_KERNEL));
+
+ /* Allocate per-node idle cpumasks */
+ scx_idle_node_masks = kcalloc(num_possible_nodes(),
+ sizeof(*scx_idle_node_masks), GFP_KERNEL);
+ BUG_ON(!scx_idle_node_masks);
+
+ for_each_node(i) {
+ scx_idle_node_masks[i] = kzalloc_node(sizeof(**scx_idle_node_masks),
+ GFP_KERNEL, i);
+ BUG_ON(!scx_idle_node_masks[i]);
+
+ BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[i]->cpu, GFP_KERNEL, i));
+ BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[i]->smt, GFP_KERNEL, i));
+ }
+
+ /* Allocate local per-cpu idle cpumasks */
+ for_each_possible_cpu(i) {
+ BUG_ON(!alloc_cpumask_var_node(&per_cpu(local_idle_cpumask, i),
+ GFP_KERNEL, cpu_to_node(i)));
+ BUG_ON(!alloc_cpumask_var_node(&per_cpu(local_llc_idle_cpumask, i),
+ GFP_KERNEL, cpu_to_node(i)));
+ BUG_ON(!alloc_cpumask_var_node(&per_cpu(local_numa_idle_cpumask, i),
+ GFP_KERNEL, cpu_to_node(i)));
+ }
+}
+
+static void update_builtin_idle(int cpu, bool idle)
+{
+ int node = scx_cpu_node_if_enabled(cpu);
+ struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
+
+ assign_cpu(cpu, idle_cpus, idle);
+
+#ifdef CONFIG_SCHED_SMT
+ if (sched_smt_active()) {
+ const struct cpumask *smt = cpu_smt_mask(cpu);
+ struct cpumask *idle_smts = idle_cpumask(node)->smt;
+
+ if (idle) {
+ /*
+ * idle_smt handling is racy but that's fine as it's
+ * only for optimization and self-correcting.
+ */
+ if (!cpumask_subset(smt, idle_cpus))
+ return;
+ cpumask_or(idle_smts, idle_smts, smt);
+ } else {
+ cpumask_andnot(idle_smts, idle_smts, smt);
+ }
+ }
+#endif
+}
+
+/*
+ * Update the idle state of a CPU to @idle.
+ *
+ * If @do_notify is true, ops.update_idle() is invoked to notify the scx
+ * scheduler of an actual idle state transition (idle to busy or vice
+ * versa). If @do_notify is false, only the idle state in the idle masks is
+ * refreshed without invoking ops.update_idle().
+ *
+ * This distinction is necessary, because an idle CPU can be "reserved" and
+ * awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as
+ * busy even if no tasks are dispatched. In this case, the CPU may return
+ * to idle without a true state transition. Refreshing the idle masks
+ * without invoking ops.update_idle() ensures accurate idle state tracking
+ * while avoiding unnecessary updates and maintaining balanced state
+ * transitions.
+ */
+void __scx_update_idle(struct rq *rq, bool idle, bool do_notify)
+{
+ struct scx_sched *sch = scx_root;
+ int cpu = cpu_of(rq);
+
+ lockdep_assert_rq_held(rq);
+
+ /*
+ * Update the idle masks:
+ * - for real idle transitions (do_notify == true)
+ * - for idle-to-idle transitions (indicated by the previous task
+ * being the idle thread, managed by pick_task_idle())
+ *
+ * Skip updating idle masks if the previous task is not the idle
+ * thread, since set_next_task_idle() has already handled it when
+ * transitioning from a task to the idle thread (calling this
+ * function with do_notify == true).
+ *
+ * In this way we can avoid updating the idle masks twice,
+ * unnecessarily.
+ */
+ if (static_branch_likely(&scx_builtin_idle_enabled))
+ if (do_notify || is_idle_task(rq->curr))
+ update_builtin_idle(cpu, idle);
+
+ /*
+ * Trigger ops.update_idle() only when transitioning from a task to
+ * the idle thread and vice versa.
+ *
+ * Idle transitions are indicated by do_notify being set to true,
+ * managed by put_prev_task_idle()/set_next_task_idle().
+ *
+ * This must come after builtin idle update so that BPF schedulers can
+ * create interlocking between ops.update_idle() and ops.enqueue() -
+ * either enqueue() sees the idle bit or update_idle() sees the task
+ * that enqueue() queued.
+ */
+ if (SCX_HAS_OP(sch, update_idle) && do_notify && !scx_rq_bypassing(rq))
+ SCX_CALL_OP(sch, SCX_KF_REST, update_idle, rq, cpu_of(rq), idle);
+}
+
+static void reset_idle_masks(struct sched_ext_ops *ops)
+{
+ int node;
+
+ /*
+ * Consider all online cpus idle. Should converge to the actual state
+ * quickly.
+ */
+ if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
+ cpumask_copy(idle_cpumask(NUMA_NO_NODE)->cpu, cpu_online_mask);
+ cpumask_copy(idle_cpumask(NUMA_NO_NODE)->smt, cpu_online_mask);
+ return;
+ }
+
+ for_each_node(node) {
+ const struct cpumask *node_mask = cpumask_of_node(node);
+
+ cpumask_and(idle_cpumask(node)->cpu, cpu_online_mask, node_mask);
+ cpumask_and(idle_cpumask(node)->smt, cpu_online_mask, node_mask);
+ }
+}
+
+void scx_idle_enable(struct sched_ext_ops *ops)
+{
+ if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))
+ static_branch_enable_cpuslocked(&scx_builtin_idle_enabled);
+ else
+ static_branch_disable_cpuslocked(&scx_builtin_idle_enabled);
+
+ if (ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)
+ static_branch_enable_cpuslocked(&scx_builtin_idle_per_node);
+ else
+ static_branch_disable_cpuslocked(&scx_builtin_idle_per_node);
+
+ reset_idle_masks(ops);
+}
+
+void scx_idle_disable(void)
+{
+ static_branch_disable(&scx_builtin_idle_enabled);
+ static_branch_disable(&scx_builtin_idle_per_node);
+}
+
+/********************************************************************************
+ * Helpers that can be called from the BPF scheduler.
+ */
+
+static int validate_node(struct scx_sched *sch, int node)
+{
+ if (!static_branch_likely(&scx_builtin_idle_per_node)) {
+ scx_error(sch, "per-node idle tracking is disabled");
+ return -EOPNOTSUPP;
+ }
+
+ /* Return no entry for NUMA_NO_NODE (not a critical scx error) */
+ if (node == NUMA_NO_NODE)
+ return -ENOENT;
+
+ /* Make sure node is in a valid range */
+ if (node < 0 || node >= nr_node_ids) {
+ scx_error(sch, "invalid node %d", node);
+ return -EINVAL;
+ }
+
+ /* Make sure the node is part of the set of possible nodes */
+ if (!node_possible(node)) {
+ scx_error(sch, "unavailable node %d", node);
+ return -EINVAL;
+ }
+
+ return node;
+}
+
+__bpf_kfunc_start_defs();
+
+static bool check_builtin_idle_enabled(struct scx_sched *sch)
+{
+ if (static_branch_likely(&scx_builtin_idle_enabled))
+ return true;
+
+ scx_error(sch, "built-in idle tracking is disabled");
+ return false;
+}
+
+/*
+ * Determine whether @p is a migration-disabled task in the context of BPF
+ * code.
+ *
+ * We can't simply check whether @p->migration_disabled is set in a
+ * sched_ext callback, because migration is always disabled for the current
+ * task while running BPF code.
+ *
+ * The prolog (__bpf_prog_enter) and epilog (__bpf_prog_exit) respectively
+ * disable and re-enable migration. For this reason, the current task
+ * inside a sched_ext callback is always a migration-disabled task.
+ *
+ * Therefore, when @p->migration_disabled == 1, check whether @p is the
+ * current task or not: if it is, then migration was not disabled before
+ * entering the callback, otherwise migration was disabled.
+ *
+ * Returns true if @p is migration-disabled, false otherwise.
+ */
+static bool is_bpf_migration_disabled(const struct task_struct *p)
+{
+ if (p->migration_disabled == 1)
+ return p != current;
+ else
+ return p->migration_disabled;
+}
+
+static s32 select_cpu_from_kfunc(struct scx_sched *sch, struct task_struct *p,
+ s32 prev_cpu, u64 wake_flags,
+ const struct cpumask *allowed, u64 flags)
+{
+ struct rq *rq;
+ struct rq_flags rf;
+ s32 cpu;
+
+ if (!ops_cpu_valid(sch, prev_cpu, NULL))
+ return -EINVAL;
+
+ if (!check_builtin_idle_enabled(sch))
+ return -EBUSY;
+
+ /*
+ * If called from an unlocked context, acquire the task's rq lock,
+ * so that we can safely access p->cpus_ptr and p->nr_cpus_allowed.
+ *
+ * Otherwise, allow to use this kfunc only from ops.select_cpu()
+ * and ops.select_enqueue().
+ */
+ if (scx_kf_allowed_if_unlocked()) {
+ rq = task_rq_lock(p, &rf);
+ } else {
+ if (!scx_kf_allowed(sch, SCX_KF_SELECT_CPU | SCX_KF_ENQUEUE))
+ return -EPERM;
+ rq = scx_locked_rq();
+ }
+
+ /*
+ * Validate locking correctness to access p->cpus_ptr and
+ * p->nr_cpus_allowed: if we're holding an rq lock, we're safe;
+ * otherwise, assert that p->pi_lock is held.
+ */
+ if (!rq)
+ lockdep_assert_held(&p->pi_lock);
+
+ /*
+ * This may also be called from ops.enqueue(), so we need to handle
+ * per-CPU tasks as well. For these tasks, we can skip all idle CPU
+ * selection optimizations and simply check whether the previously
+ * used CPU is idle and within the allowed cpumask.
+ */
+ if (p->nr_cpus_allowed == 1 || is_bpf_migration_disabled(p)) {
+ if (cpumask_test_cpu(prev_cpu, allowed ?: p->cpus_ptr) &&
+ scx_idle_test_and_clear_cpu(prev_cpu))
+ cpu = prev_cpu;
+ else
+ cpu = -EBUSY;
+ } else {
+ cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags,
+ allowed ?: p->cpus_ptr, flags);
+ }
+
+ if (scx_kf_allowed_if_unlocked())
+ task_rq_unlock(rq, p, &rf);
+
+ return cpu;
+}
+
+/**
+ * scx_bpf_cpu_node - Return the NUMA node the given @cpu belongs to, or
+ * trigger an error if @cpu is invalid
+ * @cpu: target CPU
+ */
+__bpf_kfunc int scx_bpf_cpu_node(s32 cpu)
+{
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch) || !ops_cpu_valid(sch, cpu, NULL))
+ return NUMA_NO_NODE;
+ return cpu_to_node(cpu);
+}
+
+/**
+ * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
+ * @p: task_struct to select a CPU for
+ * @prev_cpu: CPU @p was on previously
+ * @wake_flags: %SCX_WAKE_* flags
+ * @is_idle: out parameter indicating whether the returned CPU is idle
+ *
+ * Can be called from ops.select_cpu(), ops.enqueue(), or from an unlocked
+ * context such as a BPF test_run() call, as long as built-in CPU selection
+ * is enabled: ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE
+ * is set.
+ *
+ * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
+ * currently idle and thus a good candidate for direct dispatching.
+ */
+__bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
+ u64 wake_flags, bool *is_idle)
+{
+ struct scx_sched *sch;
+ s32 cpu;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return -ENODEV;
+
+ cpu = select_cpu_from_kfunc(sch, p, prev_cpu, wake_flags, NULL, 0);
+ if (cpu >= 0) {
+ *is_idle = true;
+ return cpu;
+ }
+ *is_idle = false;
+ return prev_cpu;
+}
+
+struct scx_bpf_select_cpu_and_args {
+ /* @p and @cpus_allowed can't be packed together as KF_RCU is not transitive */
+ s32 prev_cpu;
+ u64 wake_flags;
+ u64 flags;
+};
+
+/**
+ * __scx_bpf_select_cpu_and - Arg-wrapped CPU selection with cpumask
+ * @p: task_struct to select a CPU for
+ * @cpus_allowed: cpumask of allowed CPUs
+ * @args: struct containing the rest of the arguments
+ * @args->prev_cpu: CPU @p was on previously
+ * @args->wake_flags: %SCX_WAKE_* flags
+ * @args->flags: %SCX_PICK_IDLE* flags
+ *
+ * Wrapper kfunc that takes arguments via struct to work around BPF's 5 argument
+ * limit. BPF programs should use scx_bpf_select_cpu_and() which is provided
+ * as an inline wrapper in common.bpf.h.
+ *
+ * Can be called from ops.select_cpu(), ops.enqueue(), or from an unlocked
+ * context such as a BPF test_run() call, as long as built-in CPU selection
+ * is enabled: ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE
+ * is set.
+ *
+ * @p, @args->prev_cpu and @args->wake_flags match ops.select_cpu().
+ *
+ * Returns the selected idle CPU, which will be automatically awakened upon
+ * returning from ops.select_cpu() and can be used for direct dispatch, or
+ * a negative value if no idle CPU is available.
+ */
+__bpf_kfunc s32
+__scx_bpf_select_cpu_and(struct task_struct *p, const struct cpumask *cpus_allowed,
+ struct scx_bpf_select_cpu_and_args *args)
+{
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return -ENODEV;
+
+ return select_cpu_from_kfunc(sch, p, args->prev_cpu, args->wake_flags,
+ cpus_allowed, args->flags);
+}
+
+/*
+ * COMPAT: Will be removed in v6.22.
+ */
+__bpf_kfunc s32 scx_bpf_select_cpu_and(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
+ const struct cpumask *cpus_allowed, u64 flags)
+{
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return -ENODEV;
+
+ return select_cpu_from_kfunc(sch, p, prev_cpu, wake_flags,
+ cpus_allowed, flags);
+}
+
+/**
+ * scx_bpf_get_idle_cpumask_node - Get a referenced kptr to the
+ * idle-tracking per-CPU cpumask of a target NUMA node.
+ * @node: target NUMA node
+ *
+ * Returns an empty cpumask if idle tracking is not enabled, if @node is
+ * not valid, or running on a UP kernel. In this case the actual error will
+ * be reported to the BPF scheduler via scx_error().
+ */
+__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask_node(int node)
+{
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return cpu_none_mask;
+
+ node = validate_node(sch, node);
+ if (node < 0)
+ return cpu_none_mask;
+
+ return idle_cpumask(node)->cpu;
+}
+
+/**
+ * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
+ * per-CPU cpumask.
+ *
+ * Returns an empty mask if idle tracking is not enabled, or running on a
+ * UP kernel.
+ */
+__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
+{
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return cpu_none_mask;
+
+ if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
+ scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
+ return cpu_none_mask;
+ }
+
+ if (!check_builtin_idle_enabled(sch))
+ return cpu_none_mask;
+
+ return idle_cpumask(NUMA_NO_NODE)->cpu;
+}
+
+/**
+ * scx_bpf_get_idle_smtmask_node - Get a referenced kptr to the
+ * idle-tracking, per-physical-core cpumask of a target NUMA node. Can be
+ * used to determine if an entire physical core is free.
+ * @node: target NUMA node
+ *
+ * Returns an empty cpumask if idle tracking is not enabled, if @node is
+ * not valid, or running on a UP kernel. In this case the actual error will
+ * be reported to the BPF scheduler via scx_error().
+ */
+__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask_node(int node)
+{
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return cpu_none_mask;
+
+ node = validate_node(sch, node);
+ if (node < 0)
+ return cpu_none_mask;
+
+ if (sched_smt_active())
+ return idle_cpumask(node)->smt;
+ else
+ return idle_cpumask(node)->cpu;
+}
+
+/**
+ * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
+ * per-physical-core cpumask. Can be used to determine if an entire physical
+ * core is free.
+ *
+ * Returns an empty mask if idle tracking is not enabled, or running on a
+ * UP kernel.
+ */
+__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
+{
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return cpu_none_mask;
+
+ if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
+ scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
+ return cpu_none_mask;
+ }
+
+ if (!check_builtin_idle_enabled(sch))
+ return cpu_none_mask;
+
+ if (sched_smt_active())
+ return idle_cpumask(NUMA_NO_NODE)->smt;
+ else
+ return idle_cpumask(NUMA_NO_NODE)->cpu;
+}
+
+/**
+ * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
+ * either the percpu, or SMT idle-tracking cpumask.
+ * @idle_mask: &cpumask to use
+ */
+__bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
+{
+ /*
+ * Empty function body because we aren't actually acquiring or releasing
+ * a reference to a global idle cpumask, which is read-only in the
+ * caller and is never released. The acquire / release semantics here
+ * are just used to make the cpumask a trusted pointer in the caller.
+ */
+}
+
+/**
+ * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
+ * @cpu: cpu to test and clear idle for
+ *
+ * Returns %true if @cpu was idle and its idle state was successfully cleared.
+ * %false otherwise.
+ *
+ * Unavailable if ops.update_idle() is implemented and
+ * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
+ */
+__bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
+{
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return false;
+
+ if (!check_builtin_idle_enabled(sch))
+ return false;
+
+ if (!ops_cpu_valid(sch, cpu, NULL))
+ return false;
+
+ return scx_idle_test_and_clear_cpu(cpu);
+}
+
+/**
+ * scx_bpf_pick_idle_cpu_node - Pick and claim an idle cpu from @node
+ * @cpus_allowed: Allowed cpumask
+ * @node: target NUMA node
+ * @flags: %SCX_PICK_IDLE_* flags
+ *
+ * Pick and claim an idle cpu in @cpus_allowed from the NUMA node @node.
+ *
+ * Returns the picked idle cpu number on success, or -%EBUSY if no matching
+ * cpu was found.
+ *
+ * The search starts from @node and proceeds to other online NUMA nodes in
+ * order of increasing distance (unless SCX_PICK_IDLE_IN_NODE is specified,
+ * in which case the search is limited to the target @node).
+ *
+ * Always returns an error if ops.update_idle() is implemented and
+ * %SCX_OPS_KEEP_BUILTIN_IDLE is not set, or if
+ * %SCX_OPS_BUILTIN_IDLE_PER_NODE is not set.
+ */
+__bpf_kfunc s32 scx_bpf_pick_idle_cpu_node(const struct cpumask *cpus_allowed,
+ int node, u64 flags)
+{
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return -ENODEV;
+
+ node = validate_node(sch, node);
+ if (node < 0)
+ return node;
+
+ return scx_pick_idle_cpu(cpus_allowed, node, flags);
+}
+
+/**
+ * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
+ * @cpus_allowed: Allowed cpumask
+ * @flags: %SCX_PICK_IDLE_CPU_* flags
+ *
+ * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
+ * number on success. -%EBUSY if no matching cpu was found.
+ *
+ * Idle CPU tracking may race against CPU scheduling state transitions. For
+ * example, this function may return -%EBUSY as CPUs are transitioning into the
+ * idle state. If the caller then assumes that there will be dispatch events on
+ * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
+ * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
+ * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
+ * event in the near future.
+ *
+ * Unavailable if ops.update_idle() is implemented and
+ * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
+ *
+ * Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use
+ * scx_bpf_pick_idle_cpu_node() instead.
+ */
+__bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
+ u64 flags)
+{
+ struct scx_sched *sch;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return -ENODEV;
+
+ if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) {
+ scx_error(sch, "per-node idle tracking is enabled");
+ return -EBUSY;
+ }
+
+ if (!check_builtin_idle_enabled(sch))
+ return -EBUSY;
+
+ return scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
+}
+
+/**
+ * scx_bpf_pick_any_cpu_node - Pick and claim an idle cpu if available
+ * or pick any CPU from @node
+ * @cpus_allowed: Allowed cpumask
+ * @node: target NUMA node
+ * @flags: %SCX_PICK_IDLE_CPU_* flags
+ *
+ * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
+ * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
+ * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
+ * empty.
+ *
+ * The search starts from @node and proceeds to other online NUMA nodes in
+ * order of increasing distance (unless %SCX_PICK_IDLE_IN_NODE is specified,
+ * in which case the search is limited to the target @node, regardless of
+ * the CPU idle state).
+ *
+ * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
+ * set, this function can't tell which CPUs are idle and will always pick any
+ * CPU.
+ */
+__bpf_kfunc s32 scx_bpf_pick_any_cpu_node(const struct cpumask *cpus_allowed,
+ int node, u64 flags)
+{
+ struct scx_sched *sch;
+ s32 cpu;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return -ENODEV;
+
+ node = validate_node(sch, node);
+ if (node < 0)
+ return node;
+
+ cpu = scx_pick_idle_cpu(cpus_allowed, node, flags);
+ if (cpu >= 0)
+ return cpu;
+
+ if (flags & SCX_PICK_IDLE_IN_NODE)
+ cpu = cpumask_any_and_distribute(cpumask_of_node(node), cpus_allowed);
+ else
+ cpu = cpumask_any_distribute(cpus_allowed);
+ if (cpu < nr_cpu_ids)
+ return cpu;
+ else
+ return -EBUSY;
+}
+
+/**
+ * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
+ * @cpus_allowed: Allowed cpumask
+ * @flags: %SCX_PICK_IDLE_CPU_* flags
+ *
+ * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
+ * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
+ * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
+ * empty.
+ *
+ * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
+ * set, this function can't tell which CPUs are idle and will always pick any
+ * CPU.
+ *
+ * Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use
+ * scx_bpf_pick_any_cpu_node() instead.
+ */
+__bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
+ u64 flags)
+{
+ struct scx_sched *sch;
+ s32 cpu;
+
+ guard(rcu)();
+
+ sch = rcu_dereference(scx_root);
+ if (unlikely(!sch))
+ return -ENODEV;
+
+ if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) {
+ scx_error(sch, "per-node idle tracking is enabled");
+ return -EBUSY;
+ }
+
+ if (static_branch_likely(&scx_builtin_idle_enabled)) {
+ cpu = scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
+ if (cpu >= 0)
+ return cpu;
+ }
+
+ cpu = cpumask_any_distribute(cpus_allowed);
+ if (cpu < nr_cpu_ids)
+ return cpu;
+ else
+ return -EBUSY;
+}
+
+__bpf_kfunc_end_defs();
+
+BTF_KFUNCS_START(scx_kfunc_ids_idle)
+BTF_ID_FLAGS(func, scx_bpf_cpu_node)
+BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask_node, KF_ACQUIRE)
+BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
+BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask_node, KF_ACQUIRE)
+BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
+BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
+BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
+BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu_node, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu_node, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
+BTF_ID_FLAGS(func, __scx_bpf_select_cpu_and, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_select_cpu_and, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
+BTF_KFUNCS_END(scx_kfunc_ids_idle)
+
+static const struct btf_kfunc_id_set scx_kfunc_set_idle = {
+ .owner = THIS_MODULE,
+ .set = &scx_kfunc_ids_idle,
+};
+
+int scx_idle_init(void)
+{
+ int ret;
+
+ ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_idle) ||
+ register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &scx_kfunc_set_idle) ||
+ register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &scx_kfunc_set_idle);
+
+ return ret;
+}
diff --git a/kernel/sched/ext_idle.h b/kernel/sched/ext_idle.h
new file mode 100644
index 000000000000..fa583f141f35
--- /dev/null
+++ b/kernel/sched/ext_idle.h
@@ -0,0 +1,24 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
+ *
+ * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
+ * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
+ * Copyright (c) 2022 David Vernet <dvernet@meta.com>
+ * Copyright (c) 2024 Andrea Righi <arighi@nvidia.com>
+ */
+#ifndef _KERNEL_SCHED_EXT_IDLE_H
+#define _KERNEL_SCHED_EXT_IDLE_H
+
+struct sched_ext_ops;
+
+void scx_idle_update_selcpu_topology(struct sched_ext_ops *ops);
+void scx_idle_init_masks(void);
+
+s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
+ const struct cpumask *cpus_allowed, u64 flags);
+void scx_idle_enable(struct sched_ext_ops *ops);
+void scx_idle_disable(void);
+int scx_idle_init(void);
+
+#endif /* _KERNEL_SCHED_EXT_IDLE_H */
diff --git a/kernel/sched/ext_internal.h b/kernel/sched/ext_internal.h
new file mode 100644
index 000000000000..386c677e4c9a
--- /dev/null
+++ b/kernel/sched/ext_internal.h
@@ -0,0 +1,1101 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
+ *
+ * Copyright (c) 2025 Meta Platforms, Inc. and affiliates.
+ * Copyright (c) 2025 Tejun Heo <tj@kernel.org>
+ */
+#define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
+
+enum scx_consts {
+ SCX_DSP_DFL_MAX_BATCH = 32,
+ SCX_DSP_MAX_LOOPS = 32,
+ SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ,
+
+ SCX_EXIT_BT_LEN = 64,
+ SCX_EXIT_MSG_LEN = 1024,
+ SCX_EXIT_DUMP_DFL_LEN = 32768,
+
+ SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE,
+
+ /*
+ * Iterating all tasks may take a while. Periodically drop
+ * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls.
+ */
+ SCX_TASK_ITER_BATCH = 32,
+
+ SCX_BYPASS_LB_DFL_INTV_US = 500 * USEC_PER_MSEC,
+ SCX_BYPASS_LB_DONOR_PCT = 125,
+ SCX_BYPASS_LB_MIN_DELTA_DIV = 4,
+ SCX_BYPASS_LB_BATCH = 256,
+};
+
+enum scx_exit_kind {
+ SCX_EXIT_NONE,
+ SCX_EXIT_DONE,
+
+ SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */
+ SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */
+ SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */
+ SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */
+
+ SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */
+ SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */
+ SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */
+};
+
+/*
+ * An exit code can be specified when exiting with scx_bpf_exit() or scx_exit(),
+ * corresponding to exit_kind UNREG_BPF and UNREG_KERN respectively. The codes
+ * are 64bit of the format:
+ *
+ * Bits: [63 .. 48 47 .. 32 31 .. 0]
+ * [ SYS ACT ] [ SYS RSN ] [ USR ]
+ *
+ * SYS ACT: System-defined exit actions
+ * SYS RSN: System-defined exit reasons
+ * USR : User-defined exit codes and reasons
+ *
+ * Using the above, users may communicate intention and context by ORing system
+ * actions and/or system reasons with a user-defined exit code.
+ */
+enum scx_exit_code {
+ /* Reasons */
+ SCX_ECODE_RSN_HOTPLUG = 1LLU << 32,
+
+ /* Actions */
+ SCX_ECODE_ACT_RESTART = 1LLU << 48,
+};
+
+enum scx_exit_flags {
+ /*
+ * ops.exit() may be called even if the loading failed before ops.init()
+ * finishes successfully. This is because ops.exit() allows rich exit
+ * info communication. The following flag indicates whether ops.init()
+ * finished successfully.
+ */
+ SCX_EFLAG_INITIALIZED,
+};
+
+/*
+ * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
+ * being disabled.
+ */
+struct scx_exit_info {
+ /* %SCX_EXIT_* - broad category of the exit reason */
+ enum scx_exit_kind kind;
+
+ /* exit code if gracefully exiting */
+ s64 exit_code;
+
+ /* %SCX_EFLAG_* */
+ u64 flags;
+
+ /* textual representation of the above */
+ const char *reason;
+
+ /* backtrace if exiting due to an error */
+ unsigned long *bt;
+ u32 bt_len;
+
+ /* informational message */
+ char *msg;
+
+ /* debug dump */
+ char *dump;
+};
+
+/* sched_ext_ops.flags */
+enum scx_ops_flags {
+ /*
+ * Keep built-in idle tracking even if ops.update_idle() is implemented.
+ */
+ SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
+
+ /*
+ * By default, if there are no other task to run on the CPU, ext core
+ * keeps running the current task even after its slice expires. If this
+ * flag is specified, such tasks are passed to ops.enqueue() with
+ * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
+ */
+ SCX_OPS_ENQ_LAST = 1LLU << 1,
+
+ /*
+ * An exiting task may schedule after PF_EXITING is set. In such cases,
+ * bpf_task_from_pid() may not be able to find the task and if the BPF
+ * scheduler depends on pid lookup for dispatching, the task will be
+ * lost leading to various issues including RCU grace period stalls.
+ *
+ * To mask this problem, by default, unhashed tasks are automatically
+ * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
+ * depend on pid lookups and wants to handle these tasks directly, the
+ * following flag can be used.
+ */
+ SCX_OPS_ENQ_EXITING = 1LLU << 2,
+
+ /*
+ * If set, only tasks with policy set to SCHED_EXT are attached to
+ * sched_ext. If clear, SCHED_NORMAL tasks are also included.
+ */
+ SCX_OPS_SWITCH_PARTIAL = 1LLU << 3,
+
+ /*
+ * A migration disabled task can only execute on its current CPU. By
+ * default, such tasks are automatically put on the CPU's local DSQ with
+ * the default slice on enqueue. If this ops flag is set, they also go
+ * through ops.enqueue().
+ *
+ * A migration disabled task never invokes ops.select_cpu() as it can
+ * only select the current CPU. Also, p->cpus_ptr will only contain its
+ * current CPU while p->nr_cpus_allowed keeps tracking p->user_cpus_ptr
+ * and thus may disagree with cpumask_weight(p->cpus_ptr).
+ */
+ SCX_OPS_ENQ_MIGRATION_DISABLED = 1LLU << 4,
+
+ /*
+ * Queued wakeup (ttwu_queue) is a wakeup optimization that invokes
+ * ops.enqueue() on the ops.select_cpu() selected or the wakee's
+ * previous CPU via IPI (inter-processor interrupt) to reduce cacheline
+ * transfers. When this optimization is enabled, ops.select_cpu() is
+ * skipped in some cases (when racing against the wakee switching out).
+ * As the BPF scheduler may depend on ops.select_cpu() being invoked
+ * during wakeups, queued wakeup is disabled by default.
+ *
+ * If this ops flag is set, queued wakeup optimization is enabled and
+ * the BPF scheduler must be able to handle ops.enqueue() invoked on the
+ * wakee's CPU without preceding ops.select_cpu() even for tasks which
+ * may be executed on multiple CPUs.
+ */
+ SCX_OPS_ALLOW_QUEUED_WAKEUP = 1LLU << 5,
+
+ /*
+ * If set, enable per-node idle cpumasks. If clear, use a single global
+ * flat idle cpumask.
+ */
+ SCX_OPS_BUILTIN_IDLE_PER_NODE = 1LLU << 6,
+
+ /*
+ * CPU cgroup support flags
+ */
+ SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* DEPRECATED, will be removed on 6.18 */
+
+ SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE |
+ SCX_OPS_ENQ_LAST |
+ SCX_OPS_ENQ_EXITING |
+ SCX_OPS_ENQ_MIGRATION_DISABLED |
+ SCX_OPS_ALLOW_QUEUED_WAKEUP |
+ SCX_OPS_SWITCH_PARTIAL |
+ SCX_OPS_BUILTIN_IDLE_PER_NODE |
+ SCX_OPS_HAS_CGROUP_WEIGHT,
+
+ /* high 8 bits are internal, don't include in SCX_OPS_ALL_FLAGS */
+ __SCX_OPS_INTERNAL_MASK = 0xffLLU << 56,
+
+ SCX_OPS_HAS_CPU_PREEMPT = 1LLU << 56,
+};
+
+/* argument container for ops.init_task() */
+struct scx_init_task_args {
+ /*
+ * Set if ops.init_task() is being invoked on the fork path, as opposed
+ * to the scheduler transition path.
+ */
+ bool fork;
+#ifdef CONFIG_EXT_GROUP_SCHED
+ /* the cgroup the task is joining */
+ struct cgroup *cgroup;
+#endif
+};
+
+/* argument container for ops.exit_task() */
+struct scx_exit_task_args {
+ /* Whether the task exited before running on sched_ext. */
+ bool cancelled;
+};
+
+/* argument container for ops->cgroup_init() */
+struct scx_cgroup_init_args {
+ /* the weight of the cgroup [1..10000] */
+ u32 weight;
+
+ /* bandwidth control parameters from cpu.max and cpu.max.burst */
+ u64 bw_period_us;
+ u64 bw_quota_us;
+ u64 bw_burst_us;
+};
+
+enum scx_cpu_preempt_reason {
+ /* next task is being scheduled by &sched_class_rt */
+ SCX_CPU_PREEMPT_RT,
+ /* next task is being scheduled by &sched_class_dl */
+ SCX_CPU_PREEMPT_DL,
+ /* next task is being scheduled by &sched_class_stop */
+ SCX_CPU_PREEMPT_STOP,
+ /* unknown reason for SCX being preempted */
+ SCX_CPU_PREEMPT_UNKNOWN,
+};
+
+/*
+ * Argument container for ops->cpu_acquire(). Currently empty, but may be
+ * expanded in the future.
+ */
+struct scx_cpu_acquire_args {};
+
+/* argument container for ops->cpu_release() */
+struct scx_cpu_release_args {
+ /* the reason the CPU was preempted */
+ enum scx_cpu_preempt_reason reason;
+
+ /* the task that's going to be scheduled on the CPU */
+ struct task_struct *task;
+};
+
+/*
+ * Informational context provided to dump operations.
+ */
+struct scx_dump_ctx {
+ enum scx_exit_kind kind;
+ s64 exit_code;
+ const char *reason;
+ u64 at_ns;
+ u64 at_jiffies;
+};
+
+/**
+ * struct sched_ext_ops - Operation table for BPF scheduler implementation
+ *
+ * A BPF scheduler can implement an arbitrary scheduling policy by
+ * implementing and loading operations in this table. Note that a userland
+ * scheduling policy can also be implemented using the BPF scheduler
+ * as a shim layer.
+ */
+struct sched_ext_ops {
+ /**
+ * @select_cpu: Pick the target CPU for a task which is being woken up
+ * @p: task being woken up
+ * @prev_cpu: the cpu @p was on before sleeping
+ * @wake_flags: SCX_WAKE_*
+ *
+ * Decision made here isn't final. @p may be moved to any CPU while it
+ * is getting dispatched for execution later. However, as @p is not on
+ * the rq at this point, getting the eventual execution CPU right here
+ * saves a small bit of overhead down the line.
+ *
+ * If an idle CPU is returned, the CPU is kicked and will try to
+ * dispatch. While an explicit custom mechanism can be added,
+ * select_cpu() serves as the default way to wake up idle CPUs.
+ *
+ * @p may be inserted into a DSQ directly by calling
+ * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped.
+ * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ
+ * of the CPU returned by this operation.
+ *
+ * Note that select_cpu() is never called for tasks that can only run
+ * on a single CPU or tasks with migration disabled, as they don't have
+ * the option to select a different CPU. See select_task_rq() for
+ * details.
+ */
+ s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
+
+ /**
+ * @enqueue: Enqueue a task on the BPF scheduler
+ * @p: task being enqueued
+ * @enq_flags: %SCX_ENQ_*
+ *
+ * @p is ready to run. Insert directly into a DSQ by calling
+ * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly
+ * inserted, the bpf scheduler owns @p and if it fails to dispatch @p,
+ * the task will stall.
+ *
+ * If @p was inserted into a DSQ from ops.select_cpu(), this callback is
+ * skipped.
+ */
+ void (*enqueue)(struct task_struct *p, u64 enq_flags);
+
+ /**
+ * @dequeue: Remove a task from the BPF scheduler
+ * @p: task being dequeued
+ * @deq_flags: %SCX_DEQ_*
+ *
+ * Remove @p from the BPF scheduler. This is usually called to isolate
+ * the task while updating its scheduling properties (e.g. priority).
+ *
+ * The ext core keeps track of whether the BPF side owns a given task or
+ * not and can gracefully ignore spurious dispatches from BPF side,
+ * which makes it safe to not implement this method. However, depending
+ * on the scheduling logic, this can lead to confusing behaviors - e.g.
+ * scheduling position not being updated across a priority change.
+ */
+ void (*dequeue)(struct task_struct *p, u64 deq_flags);
+
+ /**
+ * @dispatch: Dispatch tasks from the BPF scheduler and/or user DSQs
+ * @cpu: CPU to dispatch tasks for
+ * @prev: previous task being switched out
+ *
+ * Called when a CPU's local dsq is empty. The operation should dispatch
+ * one or more tasks from the BPF scheduler into the DSQs using
+ * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ
+ * using scx_bpf_dsq_move_to_local().
+ *
+ * The maximum number of times scx_bpf_dsq_insert() can be called
+ * without an intervening scx_bpf_dsq_move_to_local() is specified by
+ * ops.dispatch_max_batch. See the comments on top of the two functions
+ * for more details.
+ *
+ * When not %NULL, @prev is an SCX task with its slice depleted. If
+ * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
+ * @prev->scx.flags, it is not enqueued yet and will be enqueued after
+ * ops.dispatch() returns. To keep executing @prev, return without
+ * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST.
+ */
+ void (*dispatch)(s32 cpu, struct task_struct *prev);
+
+ /**
+ * @tick: Periodic tick
+ * @p: task running currently
+ *
+ * This operation is called every 1/HZ seconds on CPUs which are
+ * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
+ * immediate dispatch cycle on the CPU.
+ */
+ void (*tick)(struct task_struct *p);
+
+ /**
+ * @runnable: A task is becoming runnable on its associated CPU
+ * @p: task becoming runnable
+ * @enq_flags: %SCX_ENQ_*
+ *
+ * This and the following three functions can be used to track a task's
+ * execution state transitions. A task becomes ->runnable() on a CPU,
+ * and then goes through one or more ->running() and ->stopping() pairs
+ * as it runs on the CPU, and eventually becomes ->quiescent() when it's
+ * done running on the CPU.
+ *
+ * @p is becoming runnable on the CPU because it's
+ *
+ * - waking up (%SCX_ENQ_WAKEUP)
+ * - being moved from another CPU
+ * - being restored after temporarily taken off the queue for an
+ * attribute change.
+ *
+ * This and ->enqueue() are related but not coupled. This operation
+ * notifies @p's state transition and may not be followed by ->enqueue()
+ * e.g. when @p is being dispatched to a remote CPU, or when @p is
+ * being enqueued on a CPU experiencing a hotplug event. Likewise, a
+ * task may be ->enqueue()'d without being preceded by this operation
+ * e.g. after exhausting its slice.
+ */
+ void (*runnable)(struct task_struct *p, u64 enq_flags);
+
+ /**
+ * @running: A task is starting to run on its associated CPU
+ * @p: task starting to run
+ *
+ * Note that this callback may be called from a CPU other than the
+ * one the task is going to run on. This can happen when a task
+ * property is changed (i.e., affinity), since scx_next_task_scx(),
+ * which triggers this callback, may run on a CPU different from
+ * the task's assigned CPU.
+ *
+ * Therefore, always use scx_bpf_task_cpu(@p) to determine the
+ * target CPU the task is going to use.
+ *
+ * See ->runnable() for explanation on the task state notifiers.
+ */
+ void (*running)(struct task_struct *p);
+
+ /**
+ * @stopping: A task is stopping execution
+ * @p: task stopping to run
+ * @runnable: is task @p still runnable?
+ *
+ * Note that this callback may be called from a CPU other than the
+ * one the task was running on. This can happen when a task
+ * property is changed (i.e., affinity), since dequeue_task_scx(),
+ * which triggers this callback, may run on a CPU different from
+ * the task's assigned CPU.
+ *
+ * Therefore, always use scx_bpf_task_cpu(@p) to retrieve the CPU
+ * the task was running on.
+ *
+ * See ->runnable() for explanation on the task state notifiers. If
+ * !@runnable, ->quiescent() will be invoked after this operation
+ * returns.
+ */
+ void (*stopping)(struct task_struct *p, bool runnable);
+
+ /**
+ * @quiescent: A task is becoming not runnable on its associated CPU
+ * @p: task becoming not runnable
+ * @deq_flags: %SCX_DEQ_*
+ *
+ * See ->runnable() for explanation on the task state notifiers.
+ *
+ * @p is becoming quiescent on the CPU because it's
+ *
+ * - sleeping (%SCX_DEQ_SLEEP)
+ * - being moved to another CPU
+ * - being temporarily taken off the queue for an attribute change
+ * (%SCX_DEQ_SAVE)
+ *
+ * This and ->dequeue() are related but not coupled. This operation
+ * notifies @p's state transition and may not be preceded by ->dequeue()
+ * e.g. when @p is being dispatched to a remote CPU.
+ */
+ void (*quiescent)(struct task_struct *p, u64 deq_flags);
+
+ /**
+ * @yield: Yield CPU
+ * @from: yielding task
+ * @to: optional yield target task
+ *
+ * If @to is NULL, @from is yielding the CPU to other runnable tasks.
+ * The BPF scheduler should ensure that other available tasks are
+ * dispatched before the yielding task. Return value is ignored in this
+ * case.
+ *
+ * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
+ * scheduler can implement the request, return %true; otherwise, %false.
+ */
+ bool (*yield)(struct task_struct *from, struct task_struct *to);
+
+ /**
+ * @core_sched_before: Task ordering for core-sched
+ * @a: task A
+ * @b: task B
+ *
+ * Used by core-sched to determine the ordering between two tasks. See
+ * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
+ * core-sched.
+ *
+ * Both @a and @b are runnable and may or may not currently be queued on
+ * the BPF scheduler. Should return %true if @a should run before @b.
+ * %false if there's no required ordering or @b should run before @a.
+ *
+ * If not specified, the default is ordering them according to when they
+ * became runnable.
+ */
+ bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
+
+ /**
+ * @set_weight: Set task weight
+ * @p: task to set weight for
+ * @weight: new weight [1..10000]
+ *
+ * Update @p's weight to @weight.
+ */
+ void (*set_weight)(struct task_struct *p, u32 weight);
+
+ /**
+ * @set_cpumask: Set CPU affinity
+ * @p: task to set CPU affinity for
+ * @cpumask: cpumask of cpus that @p can run on
+ *
+ * Update @p's CPU affinity to @cpumask.
+ */
+ void (*set_cpumask)(struct task_struct *p,
+ const struct cpumask *cpumask);
+
+ /**
+ * @update_idle: Update the idle state of a CPU
+ * @cpu: CPU to update the idle state for
+ * @idle: whether entering or exiting the idle state
+ *
+ * This operation is called when @rq's CPU goes or leaves the idle
+ * state. By default, implementing this operation disables the built-in
+ * idle CPU tracking and the following helpers become unavailable:
+ *
+ * - scx_bpf_select_cpu_dfl()
+ * - scx_bpf_select_cpu_and()
+ * - scx_bpf_test_and_clear_cpu_idle()
+ * - scx_bpf_pick_idle_cpu()
+ *
+ * The user also must implement ops.select_cpu() as the default
+ * implementation relies on scx_bpf_select_cpu_dfl().
+ *
+ * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
+ * tracking.
+ */
+ void (*update_idle)(s32 cpu, bool idle);
+
+ /**
+ * @cpu_acquire: A CPU is becoming available to the BPF scheduler
+ * @cpu: The CPU being acquired by the BPF scheduler.
+ * @args: Acquire arguments, see the struct definition.
+ *
+ * A CPU that was previously released from the BPF scheduler is now once
+ * again under its control.
+ */
+ void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
+
+ /**
+ * @cpu_release: A CPU is taken away from the BPF scheduler
+ * @cpu: The CPU being released by the BPF scheduler.
+ * @args: Release arguments, see the struct definition.
+ *
+ * The specified CPU is no longer under the control of the BPF
+ * scheduler. This could be because it was preempted by a higher
+ * priority sched_class, though there may be other reasons as well. The
+ * caller should consult @args->reason to determine the cause.
+ */
+ void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
+
+ /**
+ * @init_task: Initialize a task to run in a BPF scheduler
+ * @p: task to initialize for BPF scheduling
+ * @args: init arguments, see the struct definition
+ *
+ * Either we're loading a BPF scheduler or a new task is being forked.
+ * Initialize @p for BPF scheduling. This operation may block and can
+ * be used for allocations, and is called exactly once for a task.
+ *
+ * Return 0 for success, -errno for failure. An error return while
+ * loading will abort loading of the BPF scheduler. During a fork, it
+ * will abort that specific fork.
+ */
+ s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
+
+ /**
+ * @exit_task: Exit a previously-running task from the system
+ * @p: task to exit
+ * @args: exit arguments, see the struct definition
+ *
+ * @p is exiting or the BPF scheduler is being unloaded. Perform any
+ * necessary cleanup for @p.
+ */
+ void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
+
+ /**
+ * @enable: Enable BPF scheduling for a task
+ * @p: task to enable BPF scheduling for
+ *
+ * Enable @p for BPF scheduling. enable() is called on @p any time it
+ * enters SCX, and is always paired with a matching disable().
+ */
+ void (*enable)(struct task_struct *p);
+
+ /**
+ * @disable: Disable BPF scheduling for a task
+ * @p: task to disable BPF scheduling for
+ *
+ * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
+ * Disable BPF scheduling for @p. A disable() call is always matched
+ * with a prior enable() call.
+ */
+ void (*disable)(struct task_struct *p);
+
+ /**
+ * @dump: Dump BPF scheduler state on error
+ * @ctx: debug dump context
+ *
+ * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
+ */
+ void (*dump)(struct scx_dump_ctx *ctx);
+
+ /**
+ * @dump_cpu: Dump BPF scheduler state for a CPU on error
+ * @ctx: debug dump context
+ * @cpu: CPU to generate debug dump for
+ * @idle: @cpu is currently idle without any runnable tasks
+ *
+ * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
+ * @cpu. If @idle is %true and this operation doesn't produce any
+ * output, @cpu is skipped for dump.
+ */
+ void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
+
+ /**
+ * @dump_task: Dump BPF scheduler state for a runnable task on error
+ * @ctx: debug dump context
+ * @p: runnable task to generate debug dump for
+ *
+ * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
+ * @p.
+ */
+ void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
+
+#ifdef CONFIG_EXT_GROUP_SCHED
+ /**
+ * @cgroup_init: Initialize a cgroup
+ * @cgrp: cgroup being initialized
+ * @args: init arguments, see the struct definition
+ *
+ * Either the BPF scheduler is being loaded or @cgrp created, initialize
+ * @cgrp for sched_ext. This operation may block.
+ *
+ * Return 0 for success, -errno for failure. An error return while
+ * loading will abort loading of the BPF scheduler. During cgroup
+ * creation, it will abort the specific cgroup creation.
+ */
+ s32 (*cgroup_init)(struct cgroup *cgrp,
+ struct scx_cgroup_init_args *args);
+
+ /**
+ * @cgroup_exit: Exit a cgroup
+ * @cgrp: cgroup being exited
+ *
+ * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
+ * @cgrp for sched_ext. This operation my block.
+ */
+ void (*cgroup_exit)(struct cgroup *cgrp);
+
+ /**
+ * @cgroup_prep_move: Prepare a task to be moved to a different cgroup
+ * @p: task being moved
+ * @from: cgroup @p is being moved from
+ * @to: cgroup @p is being moved to
+ *
+ * Prepare @p for move from cgroup @from to @to. This operation may
+ * block and can be used for allocations.
+ *
+ * Return 0 for success, -errno for failure. An error return aborts the
+ * migration.
+ */
+ s32 (*cgroup_prep_move)(struct task_struct *p,
+ struct cgroup *from, struct cgroup *to);
+
+ /**
+ * @cgroup_move: Commit cgroup move
+ * @p: task being moved
+ * @from: cgroup @p is being moved from
+ * @to: cgroup @p is being moved to
+ *
+ * Commit the move. @p is dequeued during this operation.
+ */
+ void (*cgroup_move)(struct task_struct *p,
+ struct cgroup *from, struct cgroup *to);
+
+ /**
+ * @cgroup_cancel_move: Cancel cgroup move
+ * @p: task whose cgroup move is being canceled
+ * @from: cgroup @p was being moved from
+ * @to: cgroup @p was being moved to
+ *
+ * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
+ * Undo the preparation.
+ */
+ void (*cgroup_cancel_move)(struct task_struct *p,
+ struct cgroup *from, struct cgroup *to);
+
+ /**
+ * @cgroup_set_weight: A cgroup's weight is being changed
+ * @cgrp: cgroup whose weight is being updated
+ * @weight: new weight [1..10000]
+ *
+ * Update @cgrp's weight to @weight.
+ */
+ void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
+
+ /**
+ * @cgroup_set_bandwidth: A cgroup's bandwidth is being changed
+ * @cgrp: cgroup whose bandwidth is being updated
+ * @period_us: bandwidth control period
+ * @quota_us: bandwidth control quota
+ * @burst_us: bandwidth control burst
+ *
+ * Update @cgrp's bandwidth control parameters. This is from the cpu.max
+ * cgroup interface.
+ *
+ * @quota_us / @period_us determines the CPU bandwidth @cgrp is entitled
+ * to. For example, if @period_us is 1_000_000 and @quota_us is
+ * 2_500_000. @cgrp is entitled to 2.5 CPUs. @burst_us can be
+ * interpreted in the same fashion and specifies how much @cgrp can
+ * burst temporarily. The specific control mechanism and thus the
+ * interpretation of @period_us and burstiness is up to the BPF
+ * scheduler.
+ */
+ void (*cgroup_set_bandwidth)(struct cgroup *cgrp,
+ u64 period_us, u64 quota_us, u64 burst_us);
+
+ /**
+ * @cgroup_set_idle: A cgroup's idle state is being changed
+ * @cgrp: cgroup whose idle state is being updated
+ * @idle: whether the cgroup is entering or exiting idle state
+ *
+ * Update @cgrp's idle state to @idle. This callback is invoked when
+ * a cgroup transitions between idle and non-idle states, allowing the
+ * BPF scheduler to adjust its behavior accordingly.
+ */
+ void (*cgroup_set_idle)(struct cgroup *cgrp, bool idle);
+
+#endif /* CONFIG_EXT_GROUP_SCHED */
+
+ /*
+ * All online ops must come before ops.cpu_online().
+ */
+
+ /**
+ * @cpu_online: A CPU became online
+ * @cpu: CPU which just came up
+ *
+ * @cpu just came online. @cpu will not call ops.enqueue() or
+ * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
+ */
+ void (*cpu_online)(s32 cpu);
+
+ /**
+ * @cpu_offline: A CPU is going offline
+ * @cpu: CPU which is going offline
+ *
+ * @cpu is going offline. @cpu will not call ops.enqueue() or
+ * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
+ */
+ void (*cpu_offline)(s32 cpu);
+
+ /*
+ * All CPU hotplug ops must come before ops.init().
+ */
+
+ /**
+ * @init: Initialize the BPF scheduler
+ */
+ s32 (*init)(void);
+
+ /**
+ * @exit: Clean up after the BPF scheduler
+ * @info: Exit info
+ *
+ * ops.exit() is also called on ops.init() failure, which is a bit
+ * unusual. This is to allow rich reporting through @info on how
+ * ops.init() failed.
+ */
+ void (*exit)(struct scx_exit_info *info);
+
+ /**
+ * @dispatch_max_batch: Max nr of tasks that dispatch() can dispatch
+ */
+ u32 dispatch_max_batch;
+
+ /**
+ * @flags: %SCX_OPS_* flags
+ */
+ u64 flags;
+
+ /**
+ * @timeout_ms: The maximum amount of time, in milliseconds, that a
+ * runnable task should be able to wait before being scheduled. The
+ * maximum timeout may not exceed the default timeout of 30 seconds.
+ *
+ * Defaults to the maximum allowed timeout value of 30 seconds.
+ */
+ u32 timeout_ms;
+
+ /**
+ * @exit_dump_len: scx_exit_info.dump buffer length. If 0, the default
+ * value of 32768 is used.
+ */
+ u32 exit_dump_len;
+
+ /**
+ * @hotplug_seq: A sequence number that may be set by the scheduler to
+ * detect when a hotplug event has occurred during the loading process.
+ * If 0, no detection occurs. Otherwise, the scheduler will fail to
+ * load if the sequence number does not match @scx_hotplug_seq on the
+ * enable path.
+ */
+ u64 hotplug_seq;
+
+ /**
+ * @name: BPF scheduler's name
+ *
+ * Must be a non-zero valid BPF object name including only isalnum(),
+ * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
+ * BPF scheduler is enabled.
+ */
+ char name[SCX_OPS_NAME_LEN];
+
+ /* internal use only, must be NULL */
+ void *priv;
+};
+
+enum scx_opi {
+ SCX_OPI_BEGIN = 0,
+ SCX_OPI_NORMAL_BEGIN = 0,
+ SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online),
+ SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online),
+ SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init),
+ SCX_OPI_END = SCX_OP_IDX(init),
+};
+
+/*
+ * Collection of event counters. Event types are placed in descending order.
+ */
+struct scx_event_stats {
+ /*
+ * If ops.select_cpu() returns a CPU which can't be used by the task,
+ * the core scheduler code silently picks a fallback CPU.
+ */
+ s64 SCX_EV_SELECT_CPU_FALLBACK;
+
+ /*
+ * When dispatching to a local DSQ, the CPU may have gone offline in
+ * the meantime. In this case, the task is bounced to the global DSQ.
+ */
+ s64 SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE;
+
+ /*
+ * If SCX_OPS_ENQ_LAST is not set, the number of times that a task
+ * continued to run because there were no other tasks on the CPU.
+ */
+ s64 SCX_EV_DISPATCH_KEEP_LAST;
+
+ /*
+ * If SCX_OPS_ENQ_EXITING is not set, the number of times that a task
+ * is dispatched to a local DSQ when exiting.
+ */
+ s64 SCX_EV_ENQ_SKIP_EXITING;
+
+ /*
+ * If SCX_OPS_ENQ_MIGRATION_DISABLED is not set, the number of times a
+ * migration disabled task skips ops.enqueue() and is dispatched to its
+ * local DSQ.
+ */
+ s64 SCX_EV_ENQ_SKIP_MIGRATION_DISABLED;
+
+ /*
+ * Total number of times a task's time slice was refilled with the
+ * default value (SCX_SLICE_DFL).
+ */
+ s64 SCX_EV_REFILL_SLICE_DFL;
+
+ /*
+ * The total duration of bypass modes in nanoseconds.
+ */
+ s64 SCX_EV_BYPASS_DURATION;
+
+ /*
+ * The number of tasks dispatched in the bypassing mode.
+ */
+ s64 SCX_EV_BYPASS_DISPATCH;
+
+ /*
+ * The number of times the bypassing mode has been activated.
+ */
+ s64 SCX_EV_BYPASS_ACTIVATE;
+};
+
+struct scx_sched_pcpu {
+ /*
+ * The event counters are in a per-CPU variable to minimize the
+ * accounting overhead. A system-wide view on the event counter is
+ * constructed when requested by scx_bpf_events().
+ */
+ struct scx_event_stats event_stats;
+};
+
+struct scx_sched {
+ struct sched_ext_ops ops;
+ DECLARE_BITMAP(has_op, SCX_OPI_END);
+
+ /*
+ * Dispatch queues.
+ *
+ * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability.
+ * This is to avoid live-locking in bypass mode where all tasks are
+ * dispatched to %SCX_DSQ_GLOBAL and all CPUs consume from it. If
+ * per-node split isn't sufficient, it can be further split.
+ */
+ struct rhashtable dsq_hash;
+ struct scx_dispatch_q **global_dsqs;
+ struct scx_sched_pcpu __percpu *pcpu;
+
+ /*
+ * Updates to the following warned bitfields can race causing RMW issues
+ * but it doesn't really matter.
+ */
+ bool warned_zero_slice:1;
+ bool warned_deprecated_rq:1;
+
+ atomic_t exit_kind;
+ struct scx_exit_info *exit_info;
+
+ struct kobject kobj;
+
+ struct kthread_worker *helper;
+ struct irq_work error_irq_work;
+ struct kthread_work disable_work;
+ struct rcu_work rcu_work;
+};
+
+enum scx_wake_flags {
+ /* expose select WF_* flags as enums */
+ SCX_WAKE_FORK = WF_FORK,
+ SCX_WAKE_TTWU = WF_TTWU,
+ SCX_WAKE_SYNC = WF_SYNC,
+};
+
+enum scx_enq_flags {
+ /* expose select ENQUEUE_* flags as enums */
+ SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP,
+ SCX_ENQ_HEAD = ENQUEUE_HEAD,
+ SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED,
+
+ /* high 32bits are SCX specific */
+
+ /*
+ * Set the following to trigger preemption when calling
+ * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the
+ * current task is cleared to zero and the CPU is kicked into the
+ * scheduling path. Implies %SCX_ENQ_HEAD.
+ */
+ SCX_ENQ_PREEMPT = 1LLU << 32,
+
+ /*
+ * The task being enqueued was previously enqueued on the current CPU's
+ * %SCX_DSQ_LOCAL, but was removed from it in a call to the
+ * scx_bpf_reenqueue_local() kfunc. If scx_bpf_reenqueue_local() was
+ * invoked in a ->cpu_release() callback, and the task is again
+ * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
+ * task will not be scheduled on the CPU until at least the next invocation
+ * of the ->cpu_acquire() callback.
+ */
+ SCX_ENQ_REENQ = 1LLU << 40,
+
+ /*
+ * The task being enqueued is the only task available for the cpu. By
+ * default, ext core keeps executing such tasks but when
+ * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
+ * %SCX_ENQ_LAST flag set.
+ *
+ * The BPF scheduler is responsible for triggering a follow-up
+ * scheduling event. Otherwise, Execution may stall.
+ */
+ SCX_ENQ_LAST = 1LLU << 41,
+
+ /* high 8 bits are internal */
+ __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56,
+
+ SCX_ENQ_CLEAR_OPSS = 1LLU << 56,
+ SCX_ENQ_DSQ_PRIQ = 1LLU << 57,
+ SCX_ENQ_NESTED = 1LLU << 58,
+};
+
+enum scx_deq_flags {
+ /* expose select DEQUEUE_* flags as enums */
+ SCX_DEQ_SLEEP = DEQUEUE_SLEEP,
+
+ /* high 32bits are SCX specific */
+
+ /*
+ * The generic core-sched layer decided to execute the task even though
+ * it hasn't been dispatched yet. Dequeue from the BPF side.
+ */
+ SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32,
+};
+
+enum scx_pick_idle_cpu_flags {
+ SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */
+ SCX_PICK_IDLE_IN_NODE = 1LLU << 1, /* pick a CPU in the same target NUMA node */
+};
+
+enum scx_kick_flags {
+ /*
+ * Kick the target CPU if idle. Guarantees that the target CPU goes
+ * through at least one full scheduling cycle before going idle. If the
+ * target CPU can be determined to be currently not idle and going to go
+ * through a scheduling cycle before going idle, noop.
+ */
+ SCX_KICK_IDLE = 1LLU << 0,
+
+ /*
+ * Preempt the current task and execute the dispatch path. If the
+ * current task of the target CPU is an SCX task, its ->scx.slice is
+ * cleared to zero before the scheduling path is invoked so that the
+ * task expires and the dispatch path is invoked.
+ */
+ SCX_KICK_PREEMPT = 1LLU << 1,
+
+ /*
+ * The scx_bpf_kick_cpu() call will return after the current SCX task of
+ * the target CPU switches out. This can be used to implement e.g. core
+ * scheduling. This has no effect if the current task on the target CPU
+ * is not on SCX.
+ */
+ SCX_KICK_WAIT = 1LLU << 2,
+};
+
+enum scx_tg_flags {
+ SCX_TG_ONLINE = 1U << 0,
+ SCX_TG_INITED = 1U << 1,
+};
+
+enum scx_enable_state {
+ SCX_ENABLING,
+ SCX_ENABLED,
+ SCX_DISABLING,
+ SCX_DISABLED,
+};
+
+static const char *scx_enable_state_str[] = {
+ [SCX_ENABLING] = "enabling",
+ [SCX_ENABLED] = "enabled",
+ [SCX_DISABLING] = "disabling",
+ [SCX_DISABLED] = "disabled",
+};
+
+/*
+ * sched_ext_entity->ops_state
+ *
+ * Used to track the task ownership between the SCX core and the BPF scheduler.
+ * State transitions look as follows:
+ *
+ * NONE -> QUEUEING -> QUEUED -> DISPATCHING
+ * ^ | |
+ * | v v
+ * \-------------------------------/
+ *
+ * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
+ * sites for explanations on the conditions being waited upon and why they are
+ * safe. Transitions out of them into NONE or QUEUED must store_release and the
+ * waiters should load_acquire.
+ *
+ * Tracking scx_ops_state enables sched_ext core to reliably determine whether
+ * any given task can be dispatched by the BPF scheduler at all times and thus
+ * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
+ * to try to dispatch any task anytime regardless of its state as the SCX core
+ * can safely reject invalid dispatches.
+ */
+enum scx_ops_state {
+ SCX_OPSS_NONE, /* owned by the SCX core */
+ SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */
+ SCX_OPSS_QUEUED, /* owned by the BPF scheduler */
+ SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */
+
+ /*
+ * QSEQ brands each QUEUED instance so that, when dispatch races
+ * dequeue/requeue, the dispatcher can tell whether it still has a claim
+ * on the task being dispatched.
+ *
+ * As some 32bit archs can't do 64bit store_release/load_acquire,
+ * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
+ * 32bit machines. The dispatch race window QSEQ protects is very narrow
+ * and runs with IRQ disabled. 30 bits should be sufficient.
+ */
+ SCX_OPSS_QSEQ_SHIFT = 2,
+};
+
+/* Use macros to ensure that the type is unsigned long for the masks */
+#define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
+#define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK)
+
+DECLARE_PER_CPU(struct rq *, scx_locked_rq_state);
+
+/*
+ * Return the rq currently locked from an scx callback, or NULL if no rq is
+ * locked.
+ */
+static inline struct rq *scx_locked_rq(void)
+{
+ return __this_cpu_read(scx_locked_rq_state);
+}
+
+static inline bool scx_kf_allowed_if_unlocked(void)
+{
+ return !current->scx.kf_mask;
+}
+
+static inline bool scx_rq_bypassing(struct rq *rq)
+{
+ return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
+}
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index fbdca89c677f..da46c3164537 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -37,6 +37,7 @@
#include <linux/sched/cputime.h>
#include <linux/sched/isolation.h>
#include <linux/sched/nohz.h>
+#include <linux/sched/prio.h>
#include <linux/cpuidle.h>
#include <linux/interrupt.h>
@@ -51,6 +52,8 @@
#include <asm/switch_to.h>
+#include <uapi/linux/sched/types.h>
+
#include "sched.h"
#include "stats.h"
#include "autogroup.h"
@@ -71,12 +74,12 @@ unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
/*
* Minimal preemption granularity for CPU-bound tasks:
*
- * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
+ * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds)
*/
-unsigned int sysctl_sched_base_slice = 750000ULL;
-static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
+unsigned int sysctl_sched_base_slice = 700000ULL;
+static unsigned int normalized_sysctl_sched_base_slice = 700000ULL;
-const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
+__read_mostly unsigned int sysctl_sched_migration_cost = 500000UL;
static int __init setup_sched_thermal_decay_shift(char *str)
{
@@ -85,7 +88,6 @@ static int __init setup_sched_thermal_decay_shift(char *str)
}
__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
-#ifdef CONFIG_SMP
/*
* For asym packing, by default the lower numbered CPU has higher priority.
*/
@@ -108,7 +110,6 @@ int __weak arch_asym_cpu_priority(int cpu)
* (default: ~5%)
*/
#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
-#endif
#ifdef CONFIG_CFS_BANDWIDTH
/*
@@ -130,7 +131,7 @@ static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
#endif
#ifdef CONFIG_SYSCTL
-static struct ctl_table sched_fair_sysctls[] = {
+static const struct ctl_table sched_fair_sysctls[] = {
#ifdef CONFIG_CFS_BANDWIDTH
{
.procname = "sched_cfs_bandwidth_slice_us",
@@ -159,7 +160,7 @@ static int __init sched_fair_sysctl_init(void)
return 0;
}
late_initcall(sched_fair_sysctl_init);
-#endif
+#endif /* CONFIG_SYSCTL */
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
@@ -396,7 +397,7 @@ static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
static inline void assert_list_leaf_cfs_rq(struct rq *rq)
{
- SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
+ WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
}
/* Iterate through all leaf cfs_rq's on a runqueue */
@@ -468,7 +469,7 @@ static int se_is_idle(struct sched_entity *se)
return cfs_rq_is_idle(group_cfs_rq(se));
}
-#else /* !CONFIG_FAIR_GROUP_SCHED */
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
#define for_each_sched_entity(se) \
for (; se; se = NULL)
@@ -514,7 +515,7 @@ static int se_is_idle(struct sched_entity *se)
return task_has_idle_policy(task_of(se));
}
-#endif /* CONFIG_FAIR_GROUP_SCHED */
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
@@ -523,7 +524,7 @@ void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
* Scheduling class tree data structure manipulation methods:
*/
-static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
+static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
{
s64 delta = (s64)(vruntime - max_vruntime);
if (delta > 0)
@@ -532,7 +533,7 @@ static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
return max_vruntime;
}
-static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
+static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
{
s64 delta = (s64)(vruntime - min_vruntime);
if (delta < 0)
@@ -553,7 +554,7 @@ static inline bool entity_before(const struct sched_entity *a,
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- return (s64)(se->vruntime - cfs_rq->min_vruntime);
+ return (s64)(se->vruntime - cfs_rq->zero_vruntime);
}
#define __node_2_se(node) \
@@ -605,13 +606,13 @@ static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
*
* Which we track using:
*
- * v0 := cfs_rq->min_vruntime
+ * v0 := cfs_rq->zero_vruntime
* \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
* \Sum w_i := cfs_rq->avg_load
*
- * Since min_vruntime is a monotonic increasing variable that closely tracks
- * the per-task service, these deltas: (v_i - v), will be in the order of the
- * maximal (virtual) lag induced in the system due to quantisation.
+ * Since zero_vruntime closely tracks the per-task service, these
+ * deltas: (v_i - v), will be in the order of the maximal (virtual) lag
+ * induced in the system due to quantisation.
*
* Also, we use scale_load_down() to reduce the size.
*
@@ -670,7 +671,7 @@ u64 avg_vruntime(struct cfs_rq *cfs_rq)
avg = div_s64(avg, load);
}
- return cfs_rq->min_vruntime + avg;
+ return cfs_rq->zero_vruntime + avg;
}
/*
@@ -689,21 +690,16 @@ u64 avg_vruntime(struct cfs_rq *cfs_rq)
*
* XXX could add max_slice to the augmented data to track this.
*/
-static s64 entity_lag(u64 avruntime, struct sched_entity *se)
+static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
s64 vlag, limit;
- vlag = avruntime - se->vruntime;
- limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
-
- return clamp(vlag, -limit, limit);
-}
+ WARN_ON_ONCE(!se->on_rq);
-static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
- SCHED_WARN_ON(!se->on_rq);
+ vlag = avg_vruntime(cfs_rq) - se->vruntime;
+ limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
- se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
+ se->vlag = clamp(vlag, -limit, limit);
}
/*
@@ -736,7 +732,7 @@ static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
load += weight;
}
- return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
+ return avg >= (s64)(vruntime - cfs_rq->zero_vruntime) * load;
}
int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
@@ -744,42 +740,14 @@ int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
return vruntime_eligible(cfs_rq, se->vruntime);
}
-static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
-{
- u64 min_vruntime = cfs_rq->min_vruntime;
- /*
- * open coded max_vruntime() to allow updating avg_vruntime
- */
- s64 delta = (s64)(vruntime - min_vruntime);
- if (delta > 0) {
- avg_vruntime_update(cfs_rq, delta);
- min_vruntime = vruntime;
- }
- return min_vruntime;
-}
-
-static void update_min_vruntime(struct cfs_rq *cfs_rq)
+static void update_zero_vruntime(struct cfs_rq *cfs_rq)
{
- struct sched_entity *se = __pick_root_entity(cfs_rq);
- struct sched_entity *curr = cfs_rq->curr;
- u64 vruntime = cfs_rq->min_vruntime;
+ u64 vruntime = avg_vruntime(cfs_rq);
+ s64 delta = (s64)(vruntime - cfs_rq->zero_vruntime);
- if (curr) {
- if (curr->on_rq)
- vruntime = curr->vruntime;
- else
- curr = NULL;
- }
-
- if (se) {
- if (!curr)
- vruntime = se->min_vruntime;
- else
- vruntime = min_vruntime(vruntime, se->min_vruntime);
- }
+ avg_vruntime_update(cfs_rq, delta);
- /* ensure we never gain time by being placed backwards. */
- cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
+ cfs_rq->zero_vruntime = vruntime;
}
static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
@@ -852,6 +820,7 @@ RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
avg_vruntime_add(cfs_rq, se);
+ update_zero_vruntime(cfs_rq);
se->min_vruntime = se->vruntime;
se->min_slice = se->slice;
rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
@@ -863,6 +832,7 @@ static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
&min_vruntime_cb);
avg_vruntime_sub(cfs_rq, se);
+ update_zero_vruntime(cfs_rq);
}
struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
@@ -886,6 +856,47 @@ struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
}
/*
+ * Set the vruntime up to which an entity can run before looking
+ * for another entity to pick.
+ * In case of run to parity, we use the shortest slice of the enqueued
+ * entities to set the protected period.
+ * When run to parity is disabled, we give a minimum quantum to the running
+ * entity to ensure progress.
+ */
+static inline void set_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ u64 slice = normalized_sysctl_sched_base_slice;
+ u64 vprot = se->deadline;
+
+ if (sched_feat(RUN_TO_PARITY))
+ slice = cfs_rq_min_slice(cfs_rq);
+
+ slice = min(slice, se->slice);
+ if (slice != se->slice)
+ vprot = min_vruntime(vprot, se->vruntime + calc_delta_fair(slice, se));
+
+ se->vprot = vprot;
+}
+
+static inline void update_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ u64 slice = cfs_rq_min_slice(cfs_rq);
+
+ se->vprot = min_vruntime(se->vprot, se->vruntime + calc_delta_fair(slice, se));
+}
+
+static inline bool protect_slice(struct sched_entity *se)
+{
+ return ((s64)(se->vprot - se->vruntime) > 0);
+}
+
+static inline void cancel_protect_slice(struct sched_entity *se)
+{
+ if (protect_slice(se))
+ se->vprot = se->vruntime;
+}
+
+/*
* Earliest Eligible Virtual Deadline First
*
* In order to provide latency guarantees for different request sizes
@@ -904,7 +915,7 @@ struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
*
* Which allows tree pruning through eligibility.
*/
-static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
+static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq, bool protect)
{
struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
struct sched_entity *se = __pick_first_entity(cfs_rq);
@@ -915,17 +926,23 @@ static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
* We can safely skip eligibility check if there is only one entity
* in this cfs_rq, saving some cycles.
*/
- if (cfs_rq->nr_running == 1)
+ if (cfs_rq->nr_queued == 1)
return curr && curr->on_rq ? curr : se;
+ /*
+ * Picking the ->next buddy will affect latency but not fairness.
+ */
+ if (sched_feat(PICK_BUDDY) &&
+ cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
+ /* ->next will never be delayed */
+ WARN_ON_ONCE(cfs_rq->next->sched_delayed);
+ return cfs_rq->next;
+ }
+
if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
curr = NULL;
- /*
- * Once selected, run a task until it either becomes non-eligible or
- * until it gets a new slice. See the HACK in set_next_entity().
- */
- if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
+ if (curr && protect && protect_slice(curr))
return curr;
/* Pick the leftmost entity if it's eligible */
@@ -969,7 +986,11 @@ found:
return best;
}
-#ifdef CONFIG_SCHED_DEBUG
+static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
+{
+ return __pick_eevdf(cfs_rq, true);
+}
+
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
@@ -983,7 +1004,6 @@ struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
/**************************************************************
* Scheduling class statistics methods:
*/
-#ifdef CONFIG_SMP
int sched_update_scaling(void)
{
unsigned int factor = get_update_sysctl_factor();
@@ -995,8 +1015,6 @@ int sched_update_scaling(void)
return 0;
}
-#endif
-#endif
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
@@ -1029,7 +1047,6 @@ static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
}
#include "pelt.h"
-#ifdef CONFIG_SMP
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
static unsigned long task_h_load(struct task_struct *p);
@@ -1119,34 +1136,40 @@ void post_init_entity_util_avg(struct task_struct *p)
sa->runnable_avg = sa->util_avg;
}
-#else /* !CONFIG_SMP */
-void init_entity_runnable_average(struct sched_entity *se)
-{
-}
-void post_init_entity_util_avg(struct task_struct *p)
-{
-}
-static void update_tg_load_avg(struct cfs_rq *cfs_rq)
-{
-}
-#endif /* CONFIG_SMP */
-
-static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
+static s64 update_se(struct rq *rq, struct sched_entity *se)
{
u64 now = rq_clock_task(rq);
s64 delta_exec;
- delta_exec = now - curr->exec_start;
+ delta_exec = now - se->exec_start;
if (unlikely(delta_exec <= 0))
return delta_exec;
- curr->exec_start = now;
- curr->sum_exec_runtime += delta_exec;
+ se->exec_start = now;
+ if (entity_is_task(se)) {
+ struct task_struct *donor = task_of(se);
+ struct task_struct *running = rq->curr;
+ /*
+ * If se is a task, we account the time against the running
+ * task, as w/ proxy-exec they may not be the same.
+ */
+ running->se.exec_start = now;
+ running->se.sum_exec_runtime += delta_exec;
+
+ trace_sched_stat_runtime(running, delta_exec);
+ account_group_exec_runtime(running, delta_exec);
+
+ /* cgroup time is always accounted against the donor */
+ cgroup_account_cputime(donor, delta_exec);
+ } else {
+ /* If not task, account the time against donor se */
+ se->sum_exec_runtime += delta_exec;
+ }
if (schedstat_enabled()) {
struct sched_statistics *stats;
- stats = __schedstats_from_se(curr);
+ stats = __schedstats_from_se(se);
__schedstat_set(stats->exec_max,
max(delta_exec, stats->exec_max));
}
@@ -1154,60 +1177,14 @@ static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
return delta_exec;
}
-static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
-{
- trace_sched_stat_runtime(p, delta_exec);
- account_group_exec_runtime(p, delta_exec);
- cgroup_account_cputime(p, delta_exec);
- if (p->dl_server)
- dl_server_update(p->dl_server, delta_exec);
-}
-
-static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
-{
- if (!sched_feat(PREEMPT_SHORT))
- return false;
-
- if (curr->vlag == curr->deadline)
- return false;
-
- return !entity_eligible(cfs_rq, curr);
-}
-
-static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
- struct sched_entity *pse, struct sched_entity *se)
-{
- if (!sched_feat(PREEMPT_SHORT))
- return false;
-
- if (pse->slice >= se->slice)
- return false;
-
- if (!entity_eligible(cfs_rq, pse))
- return false;
-
- if (entity_before(pse, se))
- return true;
-
- if (!entity_eligible(cfs_rq, se))
- return true;
-
- return false;
-}
+static void set_next_buddy(struct sched_entity *se);
/*
* Used by other classes to account runtime.
*/
s64 update_curr_common(struct rq *rq)
{
- struct task_struct *donor = rq->donor;
- s64 delta_exec;
-
- delta_exec = update_curr_se(rq, &donor->se);
- if (likely(delta_exec > 0))
- update_curr_task(donor, delta_exec);
-
- return delta_exec;
+ return update_se(rq, &rq->donor->se);
}
/*
@@ -1215,6 +1192,12 @@ s64 update_curr_common(struct rq *rq)
*/
static void update_curr(struct cfs_rq *cfs_rq)
{
+ /*
+ * Note: cfs_rq->curr corresponds to the task picked to
+ * run (ie: rq->donor.se) which due to proxy-exec may
+ * not necessarily be the actual task running
+ * (rq->curr.se). This is easy to confuse!
+ */
struct sched_entity *curr = cfs_rq->curr;
struct rq *rq = rq_of(cfs_rq);
s64 delta_exec;
@@ -1223,34 +1206,33 @@ static void update_curr(struct cfs_rq *cfs_rq)
if (unlikely(!curr))
return;
- delta_exec = update_curr_se(rq, curr);
+ delta_exec = update_se(rq, curr);
if (unlikely(delta_exec <= 0))
return;
curr->vruntime += calc_delta_fair(delta_exec, curr);
resched = update_deadline(cfs_rq, curr);
- update_min_vruntime(cfs_rq);
if (entity_is_task(curr)) {
- struct task_struct *p = task_of(curr);
-
- update_curr_task(p, delta_exec);
-
/*
- * Any fair task that runs outside of fair_server should
- * account against fair_server such that it can account for
- * this time and possibly avoid running this period.
+ * If the fair_server is active, we need to account for the
+ * fair_server time whether or not the task is running on
+ * behalf of fair_server or not:
+ * - If the task is running on behalf of fair_server, we need
+ * to limit its time based on the assigned runtime.
+ * - Fair task that runs outside of fair_server should account
+ * against fair_server such that it can account for this time
+ * and possibly avoid running this period.
*/
- if (p->dl_server != &rq->fair_server)
- dl_server_update(&rq->fair_server, delta_exec);
+ dl_server_update(&rq->fair_server, delta_exec);
}
account_cfs_rq_runtime(cfs_rq, delta_exec);
- if (cfs_rq->nr_running == 1)
+ if (cfs_rq->nr_queued == 1)
return;
- if (resched || did_preempt_short(cfs_rq, curr)) {
+ if (resched || !protect_slice(curr)) {
resched_curr_lazy(rq);
clear_buddies(cfs_rq, curr);
}
@@ -1497,7 +1479,7 @@ static unsigned int task_nr_scan_windows(struct task_struct *p)
* by the PTE scanner and NUMA hinting faults should be trapped based
* on resident pages
*/
- nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
+ nr_scan_pages = MB_TO_PAGES(sysctl_numa_balancing_scan_size);
rss = get_mm_rss(p->mm);
if (!rss)
rss = nr_scan_pages;
@@ -1925,17 +1907,18 @@ bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
struct pglist_data *pgdat;
unsigned long rate_limit;
unsigned int latency, th, def_th;
+ long nr = folio_nr_pages(folio);
pgdat = NODE_DATA(dst_nid);
if (pgdat_free_space_enough(pgdat)) {
/* workload changed, reset hot threshold */
pgdat->nbp_threshold = 0;
+ mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE_NRL, nr);
return true;
}
def_th = sysctl_numa_balancing_hot_threshold;
- rate_limit = sysctl_numa_balancing_promote_rate_limit << \
- (20 - PAGE_SHIFT);
+ rate_limit = MB_TO_PAGES(sysctl_numa_balancing_promote_rate_limit);
numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
th = pgdat->nbp_threshold ? : def_th;
@@ -1943,8 +1926,7 @@ bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
if (latency >= th)
return false;
- return !numa_promotion_rate_limit(pgdat, rate_limit,
- folio_nr_pages(folio));
+ return !numa_promotion_rate_limit(pgdat, rate_limit, nr);
}
this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
@@ -2099,12 +2081,12 @@ static inline int numa_idle_core(int idle_core, int cpu)
return idle_core;
}
-#else
+#else /* !CONFIG_SCHED_SMT: */
static inline int numa_idle_core(int idle_core, int cpu)
{
return idle_core;
}
-#endif
+#endif /* !CONFIG_SCHED_SMT */
/*
* Gather all necessary information to make NUMA balancing placement
@@ -2128,7 +2110,7 @@ static void update_numa_stats(struct task_numa_env *env,
ns->load += cpu_load(rq);
ns->runnable += cpu_runnable(rq);
ns->util += cpu_util_cfs(cpu);
- ns->nr_running += rq->cfs.h_nr_running;
+ ns->nr_running += rq->cfs.h_nr_runnable;
ns->compute_capacity += capacity_of(cpu);
if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
@@ -2258,7 +2240,8 @@ static bool task_numa_compare(struct task_numa_env *env,
rcu_read_lock();
cur = rcu_dereference(dst_rq->curr);
- if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
+ if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) ||
+ !cur->mm))
cur = NULL;
/*
@@ -3300,7 +3283,7 @@ static void task_numa_work(struct callback_head *work)
bool vma_pids_skipped;
bool vma_pids_forced = false;
- SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
+ WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
work->next = work;
/*
@@ -3314,6 +3297,15 @@ static void task_numa_work(struct callback_head *work)
if (p->flags & PF_EXITING)
return;
+ /*
+ * Memory is pinned to only one NUMA node via cpuset.mems, naturally
+ * no page can be migrated.
+ */
+ if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) {
+ trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed);
+ return;
+ }
+
if (!mm->numa_next_scan) {
mm->numa_next_scan = now +
msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
@@ -3399,11 +3391,17 @@ retry_pids:
/* Initialise new per-VMA NUMAB state. */
if (!vma->numab_state) {
- vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
- GFP_KERNEL);
- if (!vma->numab_state)
+ struct vma_numab_state *ptr;
+
+ ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
+ if (!ptr)
continue;
+ if (cmpxchg(&vma->numab_state, NULL, ptr)) {
+ kfree(ptr);
+ continue;
+ }
+
vma->numab_state->start_scan_seq = mm->numa_scan_seq;
vma->numab_state->next_scan = now +
@@ -3528,7 +3526,7 @@ out:
}
}
-void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
+void init_numa_balancing(u64 clone_flags, struct task_struct *p)
{
int mm_users = 0;
struct mm_struct *mm = p->mm;
@@ -3642,7 +3640,8 @@ static void update_scan_period(struct task_struct *p, int new_cpu)
p->numa_scan_period = task_scan_start(p);
}
-#else
+#else /* !CONFIG_NUMA_BALANCING: */
+
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
@@ -3659,38 +3658,30 @@ static inline void update_scan_period(struct task_struct *p, int new_cpu)
{
}
-#endif /* CONFIG_NUMA_BALANCING */
+#endif /* !CONFIG_NUMA_BALANCING */
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
update_load_add(&cfs_rq->load, se->load.weight);
-#ifdef CONFIG_SMP
if (entity_is_task(se)) {
struct rq *rq = rq_of(cfs_rq);
account_numa_enqueue(rq, task_of(se));
list_add(&se->group_node, &rq->cfs_tasks);
}
-#endif
- cfs_rq->nr_running++;
- if (se_is_idle(se))
- cfs_rq->idle_nr_running++;
+ cfs_rq->nr_queued++;
}
static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
update_load_sub(&cfs_rq->load, se->load.weight);
-#ifdef CONFIG_SMP
if (entity_is_task(se)) {
account_numa_dequeue(rq_of(cfs_rq), task_of(se));
list_del_init(&se->group_node);
}
-#endif
- cfs_rq->nr_running--;
- if (se_is_idle(se))
- cfs_rq->idle_nr_running--;
+ cfs_rq->nr_queued--;
}
/*
@@ -3741,7 +3732,6 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
*ptr -= min_t(typeof(*ptr), *ptr, _val); \
} while (0)
-#ifdef CONFIG_SMP
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
@@ -3758,169 +3748,50 @@ dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
}
-#else
-static inline void
-enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
-static inline void
-dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
-#endif
-static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
- unsigned long weight)
-{
- unsigned long old_weight = se->load.weight;
- s64 vlag, vslice;
-
- /*
- * VRUNTIME
- * --------
- *
- * COROLLARY #1: The virtual runtime of the entity needs to be
- * adjusted if re-weight at !0-lag point.
- *
- * Proof: For contradiction assume this is not true, so we can
- * re-weight without changing vruntime at !0-lag point.
- *
- * Weight VRuntime Avg-VRuntime
- * before w v V
- * after w' v' V'
- *
- * Since lag needs to be preserved through re-weight:
- *
- * lag = (V - v)*w = (V'- v')*w', where v = v'
- * ==> V' = (V - v)*w/w' + v (1)
- *
- * Let W be the total weight of the entities before reweight,
- * since V' is the new weighted average of entities:
- *
- * V' = (WV + w'v - wv) / (W + w' - w) (2)
- *
- * by using (1) & (2) we obtain:
- *
- * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
- * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
- * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
- * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
- *
- * Since we are doing at !0-lag point which means V != v, we
- * can simplify (3):
- *
- * ==> W / (W + w' - w) = w / w'
- * ==> Ww' = Ww + ww' - ww
- * ==> W * (w' - w) = w * (w' - w)
- * ==> W = w (re-weight indicates w' != w)
- *
- * So the cfs_rq contains only one entity, hence vruntime of
- * the entity @v should always equal to the cfs_rq's weighted
- * average vruntime @V, which means we will always re-weight
- * at 0-lag point, thus breach assumption. Proof completed.
- *
- *
- * COROLLARY #2: Re-weight does NOT affect weighted average
- * vruntime of all the entities.
- *
- * Proof: According to corollary #1, Eq. (1) should be:
- *
- * (V - v)*w = (V' - v')*w'
- * ==> v' = V' - (V - v)*w/w' (4)
- *
- * According to the weighted average formula, we have:
- *
- * V' = (WV - wv + w'v') / (W - w + w')
- * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
- * = (WV - wv + w'V' - Vw + wv) / (W - w + w')
- * = (WV + w'V' - Vw) / (W - w + w')
- *
- * ==> V'*(W - w + w') = WV + w'V' - Vw
- * ==> V' * (W - w) = (W - w) * V (5)
- *
- * If the entity is the only one in the cfs_rq, then reweight
- * always occurs at 0-lag point, so V won't change. Or else
- * there are other entities, hence W != w, then Eq. (5) turns
- * into V' = V. So V won't change in either case, proof done.
- *
- *
- * So according to corollary #1 & #2, the effect of re-weight
- * on vruntime should be:
- *
- * v' = V' - (V - v) * w / w' (4)
- * = V - (V - v) * w / w'
- * = V - vl * w / w'
- * = V - vl'
- */
- if (avruntime != se->vruntime) {
- vlag = entity_lag(avruntime, se);
- vlag = div_s64(vlag * old_weight, weight);
- se->vruntime = avruntime - vlag;
- }
-
- /*
- * DEADLINE
- * --------
- *
- * When the weight changes, the virtual time slope changes and
- * we should adjust the relative virtual deadline accordingly.
- *
- * d' = v' + (d - v)*w/w'
- * = V' - (V - v)*w/w' + (d - v)*w/w'
- * = V - (V - v)*w/w' + (d - v)*w/w'
- * = V + (d - V)*w/w'
- */
- vslice = (s64)(se->deadline - avruntime);
- vslice = div_s64(vslice * old_weight, weight);
- se->deadline = avruntime + vslice;
-}
+static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
unsigned long weight)
{
bool curr = cfs_rq->curr == se;
- u64 avruntime;
if (se->on_rq) {
/* commit outstanding execution time */
update_curr(cfs_rq);
- avruntime = avg_vruntime(cfs_rq);
+ update_entity_lag(cfs_rq, se);
+ se->deadline -= se->vruntime;
+ se->rel_deadline = 1;
+ cfs_rq->nr_queued--;
if (!curr)
__dequeue_entity(cfs_rq, se);
update_load_sub(&cfs_rq->load, se->load.weight);
}
dequeue_load_avg(cfs_rq, se);
- if (se->on_rq) {
- reweight_eevdf(se, avruntime, weight);
- } else {
- /*
- * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
- * we need to scale se->vlag when w_i changes.
- */
- se->vlag = div_s64(se->vlag * se->load.weight, weight);
- }
+ /*
+ * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
+ * we need to scale se->vlag when w_i changes.
+ */
+ se->vlag = div_s64(se->vlag * se->load.weight, weight);
+ if (se->rel_deadline)
+ se->deadline = div_s64(se->deadline * se->load.weight, weight);
update_load_set(&se->load, weight);
-#ifdef CONFIG_SMP
do {
u32 divider = get_pelt_divider(&se->avg);
se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
} while (0);
-#endif
enqueue_load_avg(cfs_rq, se);
if (se->on_rq) {
+ place_entity(cfs_rq, se, 0);
update_load_add(&cfs_rq->load, se->load.weight);
if (!curr)
__enqueue_entity(cfs_rq, se);
-
- /*
- * The entity's vruntime has been adjusted, so let's check
- * whether the rq-wide min_vruntime needs updated too. Since
- * the calculations above require stable min_vruntime rather
- * than up-to-date one, we do the update at the end of the
- * reweight process.
- */
- update_min_vruntime(cfs_rq);
+ cfs_rq->nr_queued++;
}
}
@@ -3938,7 +3809,6 @@ static void reweight_task_fair(struct rq *rq, struct task_struct *p,
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
-#ifdef CONFIG_SMP
/*
* All this does is approximate the hierarchical proportion which includes that
* global sum we all love to hate.
@@ -4045,7 +3915,6 @@ static long calc_group_shares(struct cfs_rq *cfs_rq)
*/
return clamp_t(long, shares, MIN_SHARES, tg_shares);
}
-#endif /* CONFIG_SMP */
/*
* Recomputes the group entity based on the current state of its group
@@ -4056,26 +3925,23 @@ static void update_cfs_group(struct sched_entity *se)
struct cfs_rq *gcfs_rq = group_cfs_rq(se);
long shares;
- if (!gcfs_rq)
- return;
-
- if (throttled_hierarchy(gcfs_rq))
+ /*
+ * When a group becomes empty, preserve its weight. This matters for
+ * DELAY_DEQUEUE.
+ */
+ if (!gcfs_rq || !gcfs_rq->load.weight)
return;
-#ifndef CONFIG_SMP
- shares = READ_ONCE(gcfs_rq->tg->shares);
-#else
shares = calc_group_shares(gcfs_rq);
-#endif
if (unlikely(se->load.weight != shares))
reweight_entity(cfs_rq_of(se), se, shares);
}
-#else /* CONFIG_FAIR_GROUP_SCHED */
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
static inline void update_cfs_group(struct sched_entity *se)
{
}
-#endif /* CONFIG_FAIR_GROUP_SCHED */
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
{
@@ -4100,7 +3966,6 @@ static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
}
}
-#ifdef CONFIG_SMP
static inline bool load_avg_is_decayed(struct sched_avg *sa)
{
if (sa->load_sum)
@@ -4117,7 +3982,7 @@ static inline bool load_avg_is_decayed(struct sched_avg *sa)
* Make sure that rounding and/or propagation of PELT values never
* break this.
*/
- SCHED_WARN_ON(sa->load_avg ||
+ WARN_ON_ONCE(sa->load_avg ||
sa->util_avg ||
sa->runnable_avg);
@@ -4142,15 +4007,17 @@ static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
{
struct cfs_rq *prev_cfs_rq;
struct list_head *prev;
+ struct rq *rq = rq_of(cfs_rq);
if (cfs_rq->on_list) {
prev = cfs_rq->leaf_cfs_rq_list.prev;
} else {
- struct rq *rq = rq_of(cfs_rq);
-
prev = rq->tmp_alone_branch;
}
+ if (prev == &rq->leaf_cfs_rq_list)
+ return false;
+
prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
return (prev_cfs_rq->tg->parent == cfs_rq->tg);
@@ -4167,6 +4034,9 @@ static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
if (child_cfs_rq_on_list(cfs_rq))
return false;
+ if (cfs_rq->tg_load_avg_contrib)
+ return false;
+
return true;
}
@@ -4550,7 +4420,7 @@ static inline bool skip_blocked_update(struct sched_entity *se)
return true;
}
-#else /* CONFIG_FAIR_GROUP_SCHED */
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
@@ -4563,7 +4433,7 @@ static inline int propagate_entity_load_avg(struct sched_entity *se)
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
-#endif /* CONFIG_FAIR_GROUP_SCHED */
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_NO_HZ_COMMON
static inline void migrate_se_pelt_lag(struct sched_entity *se)
@@ -4644,9 +4514,9 @@ static inline void migrate_se_pelt_lag(struct sched_entity *se)
__update_load_avg_blocked_se(now, se);
}
-#else
+#else /* !CONFIG_NO_HZ_COMMON: */
static void migrate_se_pelt_lag(struct sched_entity *se) {}
-#endif
+#endif /* !CONFIG_NO_HZ_COMMON */
/**
* update_cfs_rq_load_avg - update the cfs_rq's load/util averages
@@ -5014,13 +4884,6 @@ static inline void util_est_update(struct cfs_rq *cfs_rq,
goto done;
/*
- * To avoid overestimation of actual task utilization, skip updates if
- * we cannot grant there is idle time in this CPU.
- */
- if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
- return;
-
- /*
* To avoid underestimate of task utilization, skip updates of EWMA if
* we cannot grant that thread got all CPU time it wanted.
*/
@@ -5220,48 +5083,22 @@ static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
}
-#else /* CONFIG_SMP */
-
-static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
-{
- return !cfs_rq->nr_running;
-}
-
-#define UPDATE_TG 0x0
-#define SKIP_AGE_LOAD 0x0
-#define DO_ATTACH 0x0
-#define DO_DETACH 0x0
-
-static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
+void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
{
- cfs_rq_util_change(cfs_rq, 0);
-}
-
-static inline void remove_entity_load_avg(struct sched_entity *se) {}
-
-static inline void
-attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
-static inline void
-detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
+ struct sched_entity *se = &p->se;
-static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
-{
- return 0;
+ p->static_prio = NICE_TO_PRIO(attr->sched_nice);
+ if (attr->sched_runtime) {
+ se->custom_slice = 1;
+ se->slice = clamp_t(u64, attr->sched_runtime,
+ NSEC_PER_MSEC/10, /* HZ=1000 * 10 */
+ NSEC_PER_MSEC*100); /* HZ=100 / 10 */
+ } else {
+ se->custom_slice = 0;
+ se->slice = sysctl_sched_base_slice;
+ }
}
-static inline void
-util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
-
-static inline void
-util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
-
-static inline void
-util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
- bool task_sleep) {}
-static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
-
-#endif /* CONFIG_SMP */
-
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
@@ -5280,7 +5117,7 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
*
* EEVDF: placement strategy #1 / #2
*/
- if (sched_feat(PLACE_LAG) && cfs_rq->nr_running && se->vlag) {
+ if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
struct sched_entity *curr = cfs_rq->curr;
unsigned long load;
@@ -5313,7 +5150,7 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
* = (W*V + w_i*(V - vl_i)) / (W + w_i)
* = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
- * = (V*(W + w_i) - w_i*l) / (W + w_i)
+ * = (V*(W + w_i) - w_i*vl_i) / (W + w_i)
* = V - w_i*vl_i / (W + w_i)
*
* And the actual lag after adding an entity with vl_i is:
@@ -5350,7 +5187,7 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
se->vruntime = vruntime - lag;
- if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
+ if (se->rel_deadline) {
se->deadline += se->vruntime;
se->rel_deadline = 0;
return;
@@ -5373,8 +5210,6 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
-static inline bool cfs_bandwidth_used(void);
-
static void
requeue_delayed_entity(struct sched_entity *se);
@@ -5396,7 +5231,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* When enqueuing a sched_entity, we must:
* - Update loads to have both entity and cfs_rq synced with now.
* - For group_entity, update its runnable_weight to reflect the new
- * h_nr_running of its group cfs_rq.
+ * h_nr_runnable of its group cfs_rq.
* - For group_entity, update its weight to reflect the new share of
* its group cfs_rq
* - Add its new weight to cfs_rq->load.weight
@@ -5429,20 +5264,18 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
__enqueue_entity(cfs_rq, se);
se->on_rq = 1;
- if (cfs_rq->nr_running == 1) {
+ if (cfs_rq->nr_queued == 1) {
check_enqueue_throttle(cfs_rq);
- if (!throttled_hierarchy(cfs_rq)) {
- list_add_leaf_cfs_rq(cfs_rq);
- } else {
+ list_add_leaf_cfs_rq(cfs_rq);
#ifdef CONFIG_CFS_BANDWIDTH
+ if (cfs_rq->pelt_clock_throttled) {
struct rq *rq = rq_of(cfs_rq);
- if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
- cfs_rq->throttled_clock = rq_clock(rq);
- if (!cfs_rq->throttled_clock_self)
- cfs_rq->throttled_clock_self = rq_clock(rq);
-#endif
+ cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
+ cfs_rq->throttled_clock_pelt;
+ cfs_rq->pelt_clock_throttled = 0;
}
+#endif
}
}
@@ -5465,9 +5298,48 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
-static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
+static void set_delayed(struct sched_entity *se)
+{
+ se->sched_delayed = 1;
+
+ /*
+ * Delayed se of cfs_rq have no tasks queued on them.
+ * Do not adjust h_nr_runnable since dequeue_entities()
+ * will account it for blocked tasks.
+ */
+ if (!entity_is_task(se))
+ return;
+
+ for_each_sched_entity(se) {
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+ cfs_rq->h_nr_runnable--;
+ }
+}
+
+static void clear_delayed(struct sched_entity *se)
{
se->sched_delayed = 0;
+
+ /*
+ * Delayed se of cfs_rq have no tasks queued on them.
+ * Do not adjust h_nr_runnable since a dequeue has
+ * already accounted for it or an enqueue of a task
+ * below it will account for it in enqueue_task_fair().
+ */
+ if (!entity_is_task(se))
+ return;
+
+ for_each_sched_entity(se) {
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+ cfs_rq->h_nr_runnable++;
+ }
+}
+
+static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
+{
+ clear_delayed(se);
if (sched_feat(DELAY_ZERO) && se->vlag > 0)
se->vlag = 0;
}
@@ -5476,33 +5348,32 @@ static bool
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
bool sleep = flags & DEQUEUE_SLEEP;
+ int action = UPDATE_TG;
update_curr(cfs_rq);
+ clear_buddies(cfs_rq, se);
if (flags & DEQUEUE_DELAYED) {
- SCHED_WARN_ON(!se->sched_delayed);
+ WARN_ON_ONCE(!se->sched_delayed);
} else {
bool delay = sleep;
/*
* DELAY_DEQUEUE relies on spurious wakeups, special task
* states must not suffer spurious wakeups, excempt them.
*/
- if (flags & DEQUEUE_SPECIAL)
+ if (flags & (DEQUEUE_SPECIAL | DEQUEUE_THROTTLE))
delay = false;
- SCHED_WARN_ON(delay && se->sched_delayed);
+ WARN_ON_ONCE(delay && se->sched_delayed);
if (sched_feat(DELAY_DEQUEUE) && delay &&
!entity_eligible(cfs_rq, se)) {
- if (cfs_rq->next == se)
- cfs_rq->next = NULL;
update_load_avg(cfs_rq, se, 0);
- se->sched_delayed = 1;
+ set_delayed(se);
return false;
}
}
- int action = UPDATE_TG;
if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
action |= DO_DETACH;
@@ -5510,7 +5381,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* When dequeuing a sched_entity, we must:
* - Update loads to have both entity and cfs_rq synced with now.
* - For group_entity, update its runnable_weight to reflect the new
- * h_nr_running of its group cfs_rq.
+ * h_nr_runnable of its group cfs_rq.
* - Subtract its previous weight from cfs_rq->load.weight.
* - For group entity, update its weight to reflect the new share
* of its group cfs_rq.
@@ -5520,8 +5391,6 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
update_stats_dequeue_fair(cfs_rq, se, flags);
- clear_buddies(cfs_rq, se);
-
update_entity_lag(cfs_rq, se);
if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
se->deadline -= se->vruntime;
@@ -5538,20 +5407,21 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
update_cfs_group(se);
- /*
- * Now advance min_vruntime if @se was the entity holding it back,
- * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
- * put back on, and if we advance min_vruntime, we'll be placed back
- * further than we started -- i.e. we'll be penalized.
- */
- if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
- update_min_vruntime(cfs_rq);
-
if (flags & DEQUEUE_DELAYED)
finish_delayed_dequeue_entity(se);
- if (cfs_rq->nr_running == 0)
+ if (cfs_rq->nr_queued == 0) {
update_idle_cfs_rq_clock_pelt(cfs_rq);
+#ifdef CONFIG_CFS_BANDWIDTH
+ if (throttled_hierarchy(cfs_rq)) {
+ struct rq *rq = rq_of(cfs_rq);
+
+ list_del_leaf_cfs_rq(cfs_rq);
+ cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
+ cfs_rq->pelt_clock_throttled = 1;
+ }
+#endif
+ }
return true;
}
@@ -5571,15 +5441,12 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
update_stats_wait_end_fair(cfs_rq, se);
__dequeue_entity(cfs_rq, se);
update_load_avg(cfs_rq, se, UPDATE_TG);
- /*
- * HACK, stash a copy of deadline at the point of pick in vlag,
- * which isn't used until dequeue.
- */
- se->vlag = se->deadline;
+
+ set_protect_slice(cfs_rq, se);
}
update_stats_curr_start(cfs_rq, se);
- SCHED_WARN_ON(cfs_rq->curr);
+ WARN_ON_ONCE(cfs_rq->curr);
cfs_rq->curr = se;
/*
@@ -5612,17 +5479,9 @@ static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
static struct sched_entity *
pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
{
- /*
- * Enabling NEXT_BUDDY will affect latency but not fairness.
- */
- if (sched_feat(NEXT_BUDDY) &&
- cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
- /* ->next will never be delayed */
- SCHED_WARN_ON(cfs_rq->next->sched_delayed);
- return cfs_rq->next;
- }
+ struct sched_entity *se;
- struct sched_entity *se = pick_eevdf(cfs_rq);
+ se = pick_eevdf(cfs_rq);
if (se->sched_delayed) {
dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
/*
@@ -5654,7 +5513,7 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
/* in !on_rq case, update occurred at dequeue */
update_load_avg(cfs_rq, prev, 0);
}
- SCHED_WARN_ON(cfs_rq->curr != prev);
+ WARN_ON_ONCE(cfs_rq->curr != prev);
cfs_rq->curr = NULL;
}
@@ -5708,7 +5567,7 @@ void cfs_bandwidth_usage_dec(void)
{
static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
}
-#else /* CONFIG_JUMP_LABEL */
+#else /* !CONFIG_JUMP_LABEL: */
static bool cfs_bandwidth_used(void)
{
return true;
@@ -5716,16 +5575,7 @@ static bool cfs_bandwidth_used(void)
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
-#endif /* CONFIG_JUMP_LABEL */
-
-/*
- * default period for cfs group bandwidth.
- * default: 0.1s, units: nanoseconds
- */
-static inline u64 default_cfs_period(void)
-{
- return 100000000ULL;
-}
+#endif /* !CONFIG_JUMP_LABEL */
static inline u64 sched_cfs_bandwidth_slice(void)
{
@@ -5835,74 +5685,253 @@ static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
return cfs_bandwidth_used() && cfs_rq->throttled;
}
+static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq)
+{
+ return cfs_bandwidth_used() && cfs_rq->pelt_clock_throttled;
+}
+
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
return cfs_bandwidth_used() && cfs_rq->throttle_count;
}
+static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu)
+{
+ return throttled_hierarchy(task_group(p)->cfs_rq[dst_cpu]);
+}
+
+static inline bool task_is_throttled(struct task_struct *p)
+{
+ return cfs_bandwidth_used() && p->throttled;
+}
+
+static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags);
+static void throttle_cfs_rq_work(struct callback_head *work)
+{
+ struct task_struct *p = container_of(work, struct task_struct, sched_throttle_work);
+ struct sched_entity *se;
+ struct cfs_rq *cfs_rq;
+ struct rq *rq;
+
+ WARN_ON_ONCE(p != current);
+ p->sched_throttle_work.next = &p->sched_throttle_work;
+
+ /*
+ * If task is exiting, then there won't be a return to userspace, so we
+ * don't have to bother with any of this.
+ */
+ if ((p->flags & PF_EXITING))
+ return;
+
+ scoped_guard(task_rq_lock, p) {
+ se = &p->se;
+ cfs_rq = cfs_rq_of(se);
+
+ /* Raced, forget */
+ if (p->sched_class != &fair_sched_class)
+ return;
+
+ /*
+ * If not in limbo, then either replenish has happened or this
+ * task got migrated out of the throttled cfs_rq, move along.
+ */
+ if (!cfs_rq->throttle_count)
+ return;
+ rq = scope.rq;
+ update_rq_clock(rq);
+ WARN_ON_ONCE(p->throttled || !list_empty(&p->throttle_node));
+ dequeue_task_fair(rq, p, DEQUEUE_SLEEP | DEQUEUE_THROTTLE);
+ list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list);
+ /*
+ * Must not set throttled before dequeue or dequeue will
+ * mistakenly regard this task as an already throttled one.
+ */
+ p->throttled = true;
+ resched_curr(rq);
+ }
+}
+
+void init_cfs_throttle_work(struct task_struct *p)
+{
+ init_task_work(&p->sched_throttle_work, throttle_cfs_rq_work);
+ /* Protect against double add, see throttle_cfs_rq() and throttle_cfs_rq_work() */
+ p->sched_throttle_work.next = &p->sched_throttle_work;
+ INIT_LIST_HEAD(&p->throttle_node);
+}
+
/*
- * Ensure that neither of the group entities corresponding to src_cpu or
- * dest_cpu are members of a throttled hierarchy when performing group
- * load-balance operations.
+ * Task is throttled and someone wants to dequeue it again:
+ * it could be sched/core when core needs to do things like
+ * task affinity change, task group change, task sched class
+ * change etc. and in these cases, DEQUEUE_SLEEP is not set;
+ * or the task is blocked after throttled due to freezer etc.
+ * and in these cases, DEQUEUE_SLEEP is set.
*/
-static inline int throttled_lb_pair(struct task_group *tg,
- int src_cpu, int dest_cpu)
+static void detach_task_cfs_rq(struct task_struct *p);
+static void dequeue_throttled_task(struct task_struct *p, int flags)
{
- struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
+ WARN_ON_ONCE(p->se.on_rq);
+ list_del_init(&p->throttle_node);
- src_cfs_rq = tg->cfs_rq[src_cpu];
- dest_cfs_rq = tg->cfs_rq[dest_cpu];
+ /* task blocked after throttled */
+ if (flags & DEQUEUE_SLEEP) {
+ p->throttled = false;
+ return;
+ }
- return throttled_hierarchy(src_cfs_rq) ||
- throttled_hierarchy(dest_cfs_rq);
+ /*
+ * task is migrating off its old cfs_rq, detach
+ * the task's load from its old cfs_rq.
+ */
+ if (task_on_rq_migrating(p))
+ detach_task_cfs_rq(p);
}
+static bool enqueue_throttled_task(struct task_struct *p)
+{
+ struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
+
+ /* @p should have gone through dequeue_throttled_task() first */
+ WARN_ON_ONCE(!list_empty(&p->throttle_node));
+
+ /*
+ * If the throttled task @p is enqueued to a throttled cfs_rq,
+ * take the fast path by directly putting the task on the
+ * target cfs_rq's limbo list.
+ *
+ * Do not do that when @p is current because the following race can
+ * cause @p's group_node to be incorectly re-insterted in its rq's
+ * cfs_tasks list, despite being throttled:
+ *
+ * cpuX cpuY
+ * p ret2user
+ * throttle_cfs_rq_work() sched_move_task(p)
+ * LOCK task_rq_lock
+ * dequeue_task_fair(p)
+ * UNLOCK task_rq_lock
+ * LOCK task_rq_lock
+ * task_current_donor(p) == true
+ * task_on_rq_queued(p) == true
+ * dequeue_task(p)
+ * put_prev_task(p)
+ * sched_change_group()
+ * enqueue_task(p) -> p's new cfs_rq
+ * is throttled, go
+ * fast path and skip
+ * actual enqueue
+ * set_next_task(p)
+ * list_move(&se->group_node, &rq->cfs_tasks); // bug
+ * schedule()
+ *
+ * In the above race case, @p current cfs_rq is in the same rq as
+ * its previous cfs_rq because sched_move_task() only moves a task
+ * to a different group from the same rq, so we can use its current
+ * cfs_rq to derive rq and test if the task is current.
+ */
+ if (throttled_hierarchy(cfs_rq) &&
+ !task_current_donor(rq_of(cfs_rq), p)) {
+ list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list);
+ return true;
+ }
+
+ /* we can't take the fast path, do an actual enqueue*/
+ p->throttled = false;
+ return false;
+}
+
+static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags);
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
struct rq *rq = data;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
+ struct task_struct *p, *tmp;
- cfs_rq->throttle_count--;
- if (!cfs_rq->throttle_count) {
+ if (--cfs_rq->throttle_count)
+ return 0;
+
+ if (cfs_rq->pelt_clock_throttled) {
cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
cfs_rq->throttled_clock_pelt;
+ cfs_rq->pelt_clock_throttled = 0;
+ }
- /* Add cfs_rq with load or one or more already running entities to the list */
- if (!cfs_rq_is_decayed(cfs_rq))
- list_add_leaf_cfs_rq(cfs_rq);
+ if (cfs_rq->throttled_clock_self) {
+ u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
- if (cfs_rq->throttled_clock_self) {
- u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
+ cfs_rq->throttled_clock_self = 0;
- cfs_rq->throttled_clock_self = 0;
+ if (WARN_ON_ONCE((s64)delta < 0))
+ delta = 0;
- if (SCHED_WARN_ON((s64)delta < 0))
- delta = 0;
+ cfs_rq->throttled_clock_self_time += delta;
+ }
- cfs_rq->throttled_clock_self_time += delta;
- }
+ /* Re-enqueue the tasks that have been throttled at this level. */
+ list_for_each_entry_safe(p, tmp, &cfs_rq->throttled_limbo_list, throttle_node) {
+ list_del_init(&p->throttle_node);
+ p->throttled = false;
+ enqueue_task_fair(rq_of(cfs_rq), p, ENQUEUE_WAKEUP);
}
+ /* Add cfs_rq with load or one or more already running entities to the list */
+ if (!cfs_rq_is_decayed(cfs_rq))
+ list_add_leaf_cfs_rq(cfs_rq);
+
return 0;
}
+static inline bool task_has_throttle_work(struct task_struct *p)
+{
+ return p->sched_throttle_work.next != &p->sched_throttle_work;
+}
+
+static inline void task_throttle_setup_work(struct task_struct *p)
+{
+ if (task_has_throttle_work(p))
+ return;
+
+ /*
+ * Kthreads and exiting tasks don't return to userspace, so adding the
+ * work is pointless
+ */
+ if ((p->flags & (PF_EXITING | PF_KTHREAD)))
+ return;
+
+ task_work_add(p, &p->sched_throttle_work, TWA_RESUME);
+}
+
+static void record_throttle_clock(struct cfs_rq *cfs_rq)
+{
+ struct rq *rq = rq_of(cfs_rq);
+
+ if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
+ cfs_rq->throttled_clock = rq_clock(rq);
+
+ if (!cfs_rq->throttled_clock_self)
+ cfs_rq->throttled_clock_self = rq_clock(rq);
+}
+
static int tg_throttle_down(struct task_group *tg, void *data)
{
struct rq *rq = data;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
- /* group is entering throttled state, stop time */
- if (!cfs_rq->throttle_count) {
- cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
- list_del_leaf_cfs_rq(cfs_rq);
+ if (cfs_rq->throttle_count++)
+ return 0;
- SCHED_WARN_ON(cfs_rq->throttled_clock_self);
- if (cfs_rq->nr_running)
- cfs_rq->throttled_clock_self = rq_clock(rq);
+ /*
+ * For cfs_rqs that still have entities enqueued, PELT clock
+ * stop happens at dequeue time when all entities are dequeued.
+ */
+ if (!cfs_rq->nr_queued) {
+ list_del_leaf_cfs_rq(cfs_rq);
+ cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
+ cfs_rq->pelt_clock_throttled = 1;
}
- cfs_rq->throttle_count++;
+ WARN_ON_ONCE(cfs_rq->throttled_clock_self);
+ WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_limbo_list));
return 0;
}
@@ -5910,9 +5939,7 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
- struct sched_entity *se;
- long task_delta, idle_task_delta, dequeue = 1;
- long rq_h_nr_running = rq->cfs.h_nr_running;
+ int dequeue = 1;
raw_spin_lock(&cfs_b->lock);
/* This will start the period timer if necessary */
@@ -5935,77 +5962,17 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
if (!dequeue)
return false; /* Throttle no longer required. */
- se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
-
/* freeze hierarchy runnable averages while throttled */
rcu_read_lock();
walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
rcu_read_unlock();
- task_delta = cfs_rq->h_nr_running;
- idle_task_delta = cfs_rq->idle_h_nr_running;
- for_each_sched_entity(se) {
- struct cfs_rq *qcfs_rq = cfs_rq_of(se);
- int flags;
-
- /* throttled entity or throttle-on-deactivate */
- if (!se->on_rq)
- goto done;
-
- /*
- * Abuse SPECIAL to avoid delayed dequeue in this instance.
- * This avoids teaching dequeue_entities() about throttled
- * entities and keeps things relatively simple.
- */
- flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
- if (se->sched_delayed)
- flags |= DEQUEUE_DELAYED;
- dequeue_entity(qcfs_rq, se, flags);
-
- if (cfs_rq_is_idle(group_cfs_rq(se)))
- idle_task_delta = cfs_rq->h_nr_running;
-
- qcfs_rq->h_nr_running -= task_delta;
- qcfs_rq->idle_h_nr_running -= idle_task_delta;
-
- if (qcfs_rq->load.weight) {
- /* Avoid re-evaluating load for this entity: */
- se = parent_entity(se);
- break;
- }
- }
-
- for_each_sched_entity(se) {
- struct cfs_rq *qcfs_rq = cfs_rq_of(se);
- /* throttled entity or throttle-on-deactivate */
- if (!se->on_rq)
- goto done;
-
- update_load_avg(qcfs_rq, se, 0);
- se_update_runnable(se);
-
- if (cfs_rq_is_idle(group_cfs_rq(se)))
- idle_task_delta = cfs_rq->h_nr_running;
-
- qcfs_rq->h_nr_running -= task_delta;
- qcfs_rq->idle_h_nr_running -= idle_task_delta;
- }
-
- /* At this point se is NULL and we are at root level*/
- sub_nr_running(rq, task_delta);
-
- /* Stop the fair server if throttling resulted in no runnable tasks */
- if (rq_h_nr_running && !rq->cfs.h_nr_running)
- dl_server_stop(&rq->fair_server);
-done:
/*
* Note: distribution will already see us throttled via the
* throttled-list. rq->lock protects completion.
*/
cfs_rq->throttled = 1;
- SCHED_WARN_ON(cfs_rq->throttled_clock);
- if (cfs_rq->nr_running)
- cfs_rq->throttled_clock = rq_clock(rq);
+ WARN_ON_ONCE(cfs_rq->throttled_clock);
return true;
}
@@ -6013,11 +5980,19 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
- struct sched_entity *se;
- long task_delta, idle_task_delta;
- long rq_h_nr_running = rq->cfs.h_nr_running;
+ struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
- se = cfs_rq->tg->se[cpu_of(rq)];
+ /*
+ * It's possible we are called with runtime_remaining < 0 due to things
+ * like async unthrottled us with a positive runtime_remaining but other
+ * still running entities consumed those runtime before we reached here.
+ *
+ * We can't unthrottle this cfs_rq without any runtime remaining because
+ * any enqueue in tg_unthrottle_up() will immediately trigger a throttle,
+ * which is not supposed to happen on unthrottle path.
+ */
+ if (cfs_rq->runtime_enabled && cfs_rq->runtime_remaining <= 0)
+ return;
cfs_rq->throttled = 0;
@@ -6045,67 +6020,15 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
break;
}
- goto unthrottle_throttle;
- }
-
- task_delta = cfs_rq->h_nr_running;
- idle_task_delta = cfs_rq->idle_h_nr_running;
- for_each_sched_entity(se) {
- struct cfs_rq *qcfs_rq = cfs_rq_of(se);
-
- /* Handle any unfinished DELAY_DEQUEUE business first. */
- if (se->sched_delayed) {
- int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
-
- dequeue_entity(qcfs_rq, se, flags);
- } else if (se->on_rq)
- break;
- enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
-
- if (cfs_rq_is_idle(group_cfs_rq(se)))
- idle_task_delta = cfs_rq->h_nr_running;
-
- qcfs_rq->h_nr_running += task_delta;
- qcfs_rq->idle_h_nr_running += idle_task_delta;
-
- /* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(qcfs_rq))
- goto unthrottle_throttle;
- }
-
- for_each_sched_entity(se) {
- struct cfs_rq *qcfs_rq = cfs_rq_of(se);
-
- update_load_avg(qcfs_rq, se, UPDATE_TG);
- se_update_runnable(se);
-
- if (cfs_rq_is_idle(group_cfs_rq(se)))
- idle_task_delta = cfs_rq->h_nr_running;
-
- qcfs_rq->h_nr_running += task_delta;
- qcfs_rq->idle_h_nr_running += idle_task_delta;
-
- /* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(qcfs_rq))
- goto unthrottle_throttle;
}
- /* Start the fair server if un-throttling resulted in new runnable tasks */
- if (!rq_h_nr_running && rq->cfs.h_nr_running)
- dl_server_start(&rq->fair_server);
-
- /* At this point se is NULL and we are at root level*/
- add_nr_running(rq, task_delta);
-
-unthrottle_throttle:
assert_list_leaf_cfs_rq(rq);
/* Determine whether we need to wake up potentially idle CPU: */
- if (rq->curr == rq->idle && rq->cfs.nr_running)
+ if (rq->curr == rq->idle && rq->cfs.nr_queued)
resched_curr(rq);
}
-#ifdef CONFIG_SMP
static void __cfsb_csd_unthrottle(void *arg)
{
struct cfs_rq *cursor, *tmp;
@@ -6156,7 +6079,7 @@ static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
}
/* Already enqueued */
- if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
+ if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list)))
return;
first = list_empty(&rq->cfsb_csd_list);
@@ -6164,18 +6087,12 @@ static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
if (first)
smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
}
-#else
-static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
-{
- unthrottle_cfs_rq(cfs_rq);
-}
-#endif
static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
{
lockdep_assert_rq_held(rq_of(cfs_rq));
- if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
+ if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) ||
cfs_rq->runtime_remaining <= 0))
return;
@@ -6211,7 +6128,7 @@ static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
goto next;
/* By the above checks, this should never be true */
- SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
+ WARN_ON_ONCE(cfs_rq->runtime_remaining > 0);
raw_spin_lock(&cfs_b->lock);
runtime = -cfs_rq->runtime_remaining + 1;
@@ -6232,7 +6149,7 @@ static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
* We currently only expect to be unthrottling
* a single cfs_rq locally.
*/
- SCHED_WARN_ON(!list_empty(&local_unthrottle));
+ WARN_ON_ONCE(!list_empty(&local_unthrottle));
list_add_tail(&cfs_rq->throttled_csd_list,
&local_unthrottle);
}
@@ -6257,7 +6174,7 @@ next:
rq_unlock_irqrestore(rq, &rf);
}
- SCHED_WARN_ON(!list_empty(&local_unthrottle));
+ WARN_ON_ONCE(!list_empty(&local_unthrottle));
rcu_read_unlock();
@@ -6402,7 +6319,7 @@ static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
if (!cfs_bandwidth_used())
return;
- if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
+ if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
return;
__return_cfs_rq_runtime(cfs_rq);
@@ -6476,6 +6393,16 @@ static void sync_throttle(struct task_group *tg, int cpu)
cfs_rq->throttle_count = pcfs_rq->throttle_count;
cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
+
+ /*
+ * It is not enough to sync the "pelt_clock_throttled" indicator
+ * with the parent cfs_rq when the hierarchy is not queued.
+ * Always join a throttled hierarchy with PELT clock throttled
+ * and leaf it to the first enqueue, or distribution to
+ * unthrottle the PELT clock.
+ */
+ if (cfs_rq->throttle_count)
+ cfs_rq->pelt_clock_throttled = 1;
}
/* conditionally throttle active cfs_rq's from put_prev_entity() */
@@ -6507,8 +6434,6 @@ static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
return HRTIMER_NORESTART;
}
-extern const u64 max_cfs_quota_period;
-
static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
struct cfs_bandwidth *cfs_b =
@@ -6535,7 +6460,7 @@ static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
* to fail.
*/
new = old * 2;
- if (new < max_cfs_quota_period) {
+ if (new < max_bw_quota_period_us * NSEC_PER_USEC) {
cfs_b->period = ns_to_ktime(new);
cfs_b->quota *= 2;
cfs_b->burst *= 2;
@@ -6569,19 +6494,19 @@ void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *paren
raw_spin_lock_init(&cfs_b->lock);
cfs_b->runtime = 0;
cfs_b->quota = RUNTIME_INF;
- cfs_b->period = ns_to_ktime(default_cfs_period());
+ cfs_b->period = us_to_ktime(default_bw_period_us());
cfs_b->burst = 0;
cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
- hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
- cfs_b->period_timer.function = sched_cfs_period_timer;
+ hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC,
+ HRTIMER_MODE_ABS_PINNED);
/* Add a random offset so that timers interleave */
hrtimer_set_expires(&cfs_b->period_timer,
get_random_u32_below(cfs_b->period));
- hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- cfs_b->slack_timer.function = sched_cfs_slack_timer;
+ hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC,
+ HRTIMER_MODE_REL);
cfs_b->slack_started = false;
}
@@ -6590,6 +6515,7 @@ static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
cfs_rq->runtime_enabled = 0;
INIT_LIST_HEAD(&cfs_rq->throttled_list);
INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
+ INIT_LIST_HEAD(&cfs_rq->throttled_limbo_list);
}
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
@@ -6625,7 +6551,6 @@ static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
* guaranteed at this point that no additional cfs_rq of this group can
* join a CSD list.
*/
-#ifdef CONFIG_SMP
for_each_possible_cpu(i) {
struct rq *rq = cpu_rq(i);
unsigned long flags;
@@ -6637,7 +6562,6 @@ static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
__cfsb_csd_unthrottle(rq);
local_irq_restore(flags);
}
-#endif
}
/*
@@ -6673,6 +6597,10 @@ static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
lockdep_assert_rq_held(rq);
+ // Do not unthrottle for an active CPU
+ if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
+ return;
+
/*
* The rq clock has already been updated in the
* set_rq_offline(), so we should skip updating
@@ -6688,18 +6616,20 @@ static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
continue;
/*
- * clock_task is not advancing so we just need to make sure
- * there's some valid quota amount
- */
- cfs_rq->runtime_remaining = 1;
- /*
* Offline rq is schedulable till CPU is completely disabled
* in take_cpu_down(), so we prevent new cfs throttling here.
*/
cfs_rq->runtime_enabled = 0;
- if (cfs_rq_throttled(cfs_rq))
- unthrottle_cfs_rq(cfs_rq);
+ if (!cfs_rq_throttled(cfs_rq))
+ continue;
+
+ /*
+ * clock_task is not advancing so we just need to make sure
+ * there's some valid quota amount
+ */
+ cfs_rq->runtime_remaining = 1;
+ unthrottle_cfs_rq(cfs_rq);
}
rcu_read_unlock();
@@ -6744,33 +6674,37 @@ static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
if (cfs_task_bw_constrained(p))
tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
}
-#endif
+#endif /* CONFIG_NO_HZ_FULL */
-#else /* CONFIG_CFS_BANDWIDTH */
-
-static inline bool cfs_bandwidth_used(void)
-{
- return false;
-}
+#else /* !CONFIG_CFS_BANDWIDTH: */
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
static inline void sync_throttle(struct task_group *tg, int cpu) {}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
+static void task_throttle_setup_work(struct task_struct *p) {}
+static bool task_is_throttled(struct task_struct *p) { return false; }
+static void dequeue_throttled_task(struct task_struct *p, int flags) {}
+static bool enqueue_throttled_task(struct task_struct *p) { return false; }
+static void record_throttle_clock(struct cfs_rq *cfs_rq) {}
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
return 0;
}
+static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq)
+{
+ return false;
+}
+
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
return 0;
}
-static inline int throttled_lb_pair(struct task_group *tg,
- int src_cpu, int dest_cpu)
+static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu)
{
return 0;
}
@@ -6793,7 +6727,7 @@ bool cfs_task_bw_constrained(struct task_struct *p)
return false;
}
#endif
-#endif /* CONFIG_CFS_BANDWIDTH */
+#endif /* !CONFIG_CFS_BANDWIDTH */
#if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
@@ -6808,9 +6742,9 @@ static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
struct sched_entity *se = &p->se;
- SCHED_WARN_ON(task_rq(p) != rq);
+ WARN_ON_ONCE(task_rq(p) != rq);
- if (rq->cfs.h_nr_running > 1) {
+ if (rq->cfs.h_nr_queued > 1) {
u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
u64 slice = se->slice;
s64 delta = slice - ran;
@@ -6838,7 +6772,7 @@ static void hrtick_update(struct rq *rq)
hrtick_start_fair(rq, donor);
}
-#else /* !CONFIG_SCHED_HRTICK */
+#else /* !CONFIG_SCHED_HRTICK: */
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
@@ -6847,9 +6781,8 @@ hrtick_start_fair(struct rq *rq, struct task_struct *p)
static inline void hrtick_update(struct rq *rq)
{
}
-#endif
+#endif /* !CONFIG_SCHED_HRTICK */
-#ifdef CONFIG_SMP
static inline bool cpu_overutilized(int cpu)
{
unsigned long rq_util_min, rq_util_max;
@@ -6891,23 +6824,18 @@ static inline void check_update_overutilized_status(struct rq *rq)
if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
set_rd_overutilized(rq->rd, 1);
}
-#else
-static inline void check_update_overutilized_status(struct rq *rq) { }
-#endif
/* Runqueue only has SCHED_IDLE tasks enqueued */
static int sched_idle_rq(struct rq *rq)
{
- return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
+ return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
rq->nr_running);
}
-#ifdef CONFIG_SMP
static int sched_idle_cpu(int cpu)
{
return sched_idle_rq(cpu_rq(cpu));
}
-#endif
static void
requeue_delayed_entity(struct sched_entity *se)
@@ -6919,25 +6847,25 @@ requeue_delayed_entity(struct sched_entity *se)
* Because a delayed entity is one that is still on
* the runqueue competing until elegibility.
*/
- SCHED_WARN_ON(!se->sched_delayed);
- SCHED_WARN_ON(!se->on_rq);
+ WARN_ON_ONCE(!se->sched_delayed);
+ WARN_ON_ONCE(!se->on_rq);
if (sched_feat(DELAY_ZERO)) {
update_entity_lag(cfs_rq, se);
if (se->vlag > 0) {
- cfs_rq->nr_running--;
+ cfs_rq->nr_queued--;
if (se != cfs_rq->curr)
__dequeue_entity(cfs_rq, se);
se->vlag = 0;
place_entity(cfs_rq, se, 0);
if (se != cfs_rq->curr)
__enqueue_entity(cfs_rq, se);
- cfs_rq->nr_running++;
+ cfs_rq->nr_queued++;
}
}
update_load_avg(cfs_rq, se, 0);
- se->sched_delayed = 0;
+ clear_delayed(se);
}
/*
@@ -6950,18 +6878,22 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &p->se;
- int idle_h_nr_running = task_has_idle_policy(p);
+ int h_nr_idle = task_has_idle_policy(p);
+ int h_nr_runnable = 1;
int task_new = !(flags & ENQUEUE_WAKEUP);
- int rq_h_nr_running = rq->cfs.h_nr_running;
+ int rq_h_nr_queued = rq->cfs.h_nr_queued;
u64 slice = 0;
+ if (task_is_throttled(p) && enqueue_throttled_task(p))
+ return;
+
/*
* The code below (indirectly) updates schedutil which looks at
* the cfs_rq utilization to select a frequency.
* Let's add the task's estimated utilization to the cfs_rq's
* estimated utilization, before we update schedutil.
*/
- if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
+ if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED))
util_est_enqueue(&rq->cfs, p);
if (flags & ENQUEUE_DELAYED) {
@@ -6977,6 +6909,9 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (p->in_iowait)
cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
+ if (task_new && se->sched_delayed)
+ h_nr_runnable = 0;
+
for_each_sched_entity(se) {
if (se->on_rq) {
if (se->sched_delayed)
@@ -6997,15 +6932,12 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
enqueue_entity(cfs_rq, se, flags);
slice = cfs_rq_min_slice(cfs_rq);
- cfs_rq->h_nr_running++;
- cfs_rq->idle_h_nr_running += idle_h_nr_running;
+ cfs_rq->h_nr_runnable += h_nr_runnable;
+ cfs_rq->h_nr_queued++;
+ cfs_rq->h_nr_idle += h_nr_idle;
if (cfs_rq_is_idle(cfs_rq))
- idle_h_nr_running = 1;
-
- /* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(cfs_rq))
- goto enqueue_throttle;
+ h_nr_idle = 1;
flags = ENQUEUE_WAKEUP;
}
@@ -7018,25 +6950,20 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
update_cfs_group(se);
se->slice = slice;
+ if (se != cfs_rq->curr)
+ min_vruntime_cb_propagate(&se->run_node, NULL);
slice = cfs_rq_min_slice(cfs_rq);
- cfs_rq->h_nr_running++;
- cfs_rq->idle_h_nr_running += idle_h_nr_running;
+ cfs_rq->h_nr_runnable += h_nr_runnable;
+ cfs_rq->h_nr_queued++;
+ cfs_rq->h_nr_idle += h_nr_idle;
if (cfs_rq_is_idle(cfs_rq))
- idle_h_nr_running = 1;
-
- /* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(cfs_rq))
- goto enqueue_throttle;
+ h_nr_idle = 1;
}
- if (!rq_h_nr_running && rq->cfs.h_nr_running) {
- /* Account for idle runtime */
- if (!rq->nr_running)
- dl_server_update_idle_time(rq, rq->curr);
+ if (!rq_h_nr_queued && rq->cfs.h_nr_queued)
dl_server_start(&rq->fair_server);
- }
/* At this point se is NULL and we are at root level*/
add_nr_running(rq, 1);
@@ -7058,14 +6985,11 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (!task_new)
check_update_overutilized_status(rq);
-enqueue_throttle:
assert_list_leaf_cfs_rq(rq);
hrtick_update(rq);
}
-static void set_next_buddy(struct sched_entity *se);
-
/*
* Basically dequeue_task_fair(), except it can deal with dequeue_entity()
* failing half-way through and resume the dequeue later.
@@ -7078,22 +7002,22 @@ static void set_next_buddy(struct sched_entity *se);
static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
{
bool was_sched_idle = sched_idle_rq(rq);
- int rq_h_nr_running = rq->cfs.h_nr_running;
bool task_sleep = flags & DEQUEUE_SLEEP;
bool task_delayed = flags & DEQUEUE_DELAYED;
+ bool task_throttled = flags & DEQUEUE_THROTTLE;
struct task_struct *p = NULL;
- int idle_h_nr_running = 0;
- int h_nr_running = 0;
+ int h_nr_idle = 0;
+ int h_nr_queued = 0;
+ int h_nr_runnable = 0;
struct cfs_rq *cfs_rq;
u64 slice = 0;
if (entity_is_task(se)) {
p = task_of(se);
- h_nr_running = 1;
- idle_h_nr_running = task_has_idle_policy(p);
- } else {
- cfs_rq = group_cfs_rq(se);
- slice = cfs_rq_min_slice(cfs_rq);
+ h_nr_queued = 1;
+ h_nr_idle = task_has_idle_policy(p);
+ if (task_sleep || task_delayed || !se->sched_delayed)
+ h_nr_runnable = 1;
}
for_each_sched_entity(se) {
@@ -7103,18 +7027,19 @@ static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
if (p && &p->se == se)
return -1;
+ slice = cfs_rq_min_slice(cfs_rq);
break;
}
- cfs_rq->h_nr_running -= h_nr_running;
- cfs_rq->idle_h_nr_running -= idle_h_nr_running;
+ cfs_rq->h_nr_runnable -= h_nr_runnable;
+ cfs_rq->h_nr_queued -= h_nr_queued;
+ cfs_rq->h_nr_idle -= h_nr_idle;
if (cfs_rq_is_idle(cfs_rq))
- idle_h_nr_running = h_nr_running;
+ h_nr_idle = h_nr_queued;
- /* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(cfs_rq))
- return 0;
+ if (throttled_hierarchy(cfs_rq) && task_throttled)
+ record_throttle_clock(cfs_rq);
/* Don't dequeue parent if it has other entities besides us */
if (cfs_rq->load.weight) {
@@ -7126,7 +7051,7 @@ static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
* Bias pick_next to pick a task from this cfs_rq, as
* p is sleeping when it is within its sched_slice.
*/
- if (task_sleep && se && !throttled_hierarchy(cfs_rq))
+ if (task_sleep && se)
set_next_buddy(se);
break;
}
@@ -7142,31 +7067,30 @@ static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
update_cfs_group(se);
se->slice = slice;
+ if (se != cfs_rq->curr)
+ min_vruntime_cb_propagate(&se->run_node, NULL);
slice = cfs_rq_min_slice(cfs_rq);
- cfs_rq->h_nr_running -= h_nr_running;
- cfs_rq->idle_h_nr_running -= idle_h_nr_running;
+ cfs_rq->h_nr_runnable -= h_nr_runnable;
+ cfs_rq->h_nr_queued -= h_nr_queued;
+ cfs_rq->h_nr_idle -= h_nr_idle;
if (cfs_rq_is_idle(cfs_rq))
- idle_h_nr_running = h_nr_running;
+ h_nr_idle = h_nr_queued;
- /* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(cfs_rq))
- return 0;
+ if (throttled_hierarchy(cfs_rq) && task_throttled)
+ record_throttle_clock(cfs_rq);
}
- sub_nr_running(rq, h_nr_running);
-
- if (rq_h_nr_running && !rq->cfs.h_nr_running)
- dl_server_stop(&rq->fair_server);
+ sub_nr_running(rq, h_nr_queued);
/* balance early to pull high priority tasks */
if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
rq->next_balance = jiffies;
if (p && task_delayed) {
- SCHED_WARN_ON(!task_sleep);
- SCHED_WARN_ON(p->on_rq != 1);
+ WARN_ON_ONCE(!task_sleep);
+ WARN_ON_ONCE(p->on_rq != 1);
/* Fix-up what dequeue_task_fair() skipped */
hrtick_update(rq);
@@ -7189,7 +7113,12 @@ static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
*/
static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
- if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
+ if (task_is_throttled(p)) {
+ dequeue_throttled_task(p, flags);
+ return true;
+ }
+
+ if (!p->se.sched_delayed)
util_est_dequeue(&rq->cfs, p);
util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
@@ -7204,7 +7133,10 @@ static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
return true;
}
-#ifdef CONFIG_SMP
+static inline unsigned int cfs_h_nr_delayed(struct rq *rq)
+{
+ return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable);
+}
/* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
@@ -7365,8 +7297,12 @@ wake_affine_idle(int this_cpu, int prev_cpu, int sync)
if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
- if (sync && cpu_rq(this_cpu)->nr_running == 1)
- return this_cpu;
+ if (sync) {
+ struct rq *rq = cpu_rq(this_cpu);
+
+ if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1)
+ return this_cpu;
+ }
if (available_idle_cpu(prev_cpu))
return prev_cpu;
@@ -7671,7 +7607,7 @@ static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int t
return -1;
}
-#else /* CONFIG_SCHED_SMT */
+#else /* !CONFIG_SCHED_SMT: */
static inline void set_idle_cores(int cpu, int val)
{
@@ -7692,7 +7628,7 @@ static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd
return -1;
}
-#endif /* CONFIG_SCHED_SMT */
+#endif /* !CONFIG_SCHED_SMT */
/*
* Scan the LLC domain for idle CPUs; this is dynamically regulated by
@@ -8729,22 +8665,10 @@ static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context
set_task_max_allowed_capacity(p);
}
-static int
-balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
-{
- if (sched_fair_runnable(rq))
- return 1;
-
- return sched_balance_newidle(rq, rf) != 0;
-}
-#else
-static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
-#endif /* CONFIG_SMP */
-
static void set_next_buddy(struct sched_entity *se)
{
for_each_sched_entity(se) {
- if (SCHED_WARN_ON(!se->on_rq))
+ if (WARN_ON_ONCE(!se->on_rq))
return;
if (se_is_idle(se))
return;
@@ -8752,11 +8676,77 @@ static void set_next_buddy(struct sched_entity *se)
}
}
+enum preempt_wakeup_action {
+ PREEMPT_WAKEUP_NONE, /* No preemption. */
+ PREEMPT_WAKEUP_SHORT, /* Ignore slice protection. */
+ PREEMPT_WAKEUP_PICK, /* Let __pick_eevdf() decide. */
+ PREEMPT_WAKEUP_RESCHED, /* Force reschedule. */
+};
+
+static inline bool
+set_preempt_buddy(struct cfs_rq *cfs_rq, int wake_flags,
+ struct sched_entity *pse, struct sched_entity *se)
+{
+ /*
+ * Keep existing buddy if the deadline is sooner than pse.
+ * The older buddy may be cache cold and completely unrelated
+ * to the current wakeup but that is unpredictable where as
+ * obeying the deadline is more in line with EEVDF objectives.
+ */
+ if (cfs_rq->next && entity_before(cfs_rq->next, pse))
+ return false;
+
+ set_next_buddy(pse);
+ return true;
+}
+
+/*
+ * WF_SYNC|WF_TTWU indicates the waker expects to sleep but it is not
+ * strictly enforced because the hint is either misunderstood or
+ * multiple tasks must be woken up.
+ */
+static inline enum preempt_wakeup_action
+preempt_sync(struct rq *rq, int wake_flags,
+ struct sched_entity *pse, struct sched_entity *se)
+{
+ u64 threshold, delta;
+
+ /*
+ * WF_SYNC without WF_TTWU is not expected so warn if it happens even
+ * though it is likely harmless.
+ */
+ WARN_ON_ONCE(!(wake_flags & WF_TTWU));
+
+ threshold = sysctl_sched_migration_cost;
+ delta = rq_clock_task(rq) - se->exec_start;
+ if ((s64)delta < 0)
+ delta = 0;
+
+ /*
+ * WF_RQ_SELECTED implies the tasks are stacking on a CPU when they
+ * could run on other CPUs. Reduce the threshold before preemption is
+ * allowed to an arbitrary lower value as it is more likely (but not
+ * guaranteed) the waker requires the wakee to finish.
+ */
+ if (wake_flags & WF_RQ_SELECTED)
+ threshold >>= 2;
+
+ /*
+ * As WF_SYNC is not strictly obeyed, allow some runtime for batch
+ * wakeups to be issued.
+ */
+ if (entity_before(pse, se) && delta >= threshold)
+ return PREEMPT_WAKEUP_RESCHED;
+
+ return PREEMPT_WAKEUP_NONE;
+}
+
/*
* Preempt the current task with a newly woken task if needed:
*/
static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
{
+ enum preempt_wakeup_action preempt_action = PREEMPT_WAKEUP_PICK;
struct task_struct *donor = rq->donor;
struct sched_entity *se = &donor->se, *pse = &p->se;
struct cfs_rq *cfs_rq = task_cfs_rq(donor);
@@ -8771,13 +8761,9 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
* lead to a throttle). This both saves work and prevents false
* next-buddy nomination below.
*/
- if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
+ if (task_is_throttled(p))
return;
- if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
- set_next_buddy(pse);
- }
-
/*
* We can come here with TIF_NEED_RESCHED already set from new task
* wake up path.
@@ -8804,8 +8790,15 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
* Preempt an idle entity in favor of a non-idle entity (and don't preempt
* in the inverse case).
*/
- if (cse_is_idle && !pse_is_idle)
+ if (cse_is_idle && !pse_is_idle) {
+ /*
+ * When non-idle entity preempt an idle entity,
+ * don't give idle entity slice protection.
+ */
+ preempt_action = PREEMPT_WAKEUP_SHORT;
goto preempt;
+ }
+
if (cse_is_idle != pse_is_idle)
return;
@@ -8820,42 +8813,94 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
/*
* If @p has a shorter slice than current and @p is eligible, override
* current's slice protection in order to allow preemption.
- *
- * Note that even if @p does not turn out to be the most eligible
- * task at this moment, current's slice protection will be lost.
*/
- if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
- se->vlag = se->deadline + 1;
+ if (sched_feat(PREEMPT_SHORT) && (pse->slice < se->slice)) {
+ preempt_action = PREEMPT_WAKEUP_SHORT;
+ goto pick;
+ }
+
+ /*
+ * Ignore wakee preemption on WF_FORK as it is less likely that
+ * there is shared data as exec often follow fork. Do not
+ * preempt for tasks that are sched_delayed as it would violate
+ * EEVDF to forcibly queue an ineligible task.
+ */
+ if ((wake_flags & WF_FORK) || pse->sched_delayed)
+ return;
+
+ /*
+ * If @p potentially is completing work required by current then
+ * consider preemption.
+ *
+ * Reschedule if waker is no longer eligible. */
+ if (in_task() && !entity_eligible(cfs_rq, se)) {
+ preempt_action = PREEMPT_WAKEUP_RESCHED;
+ goto preempt;
+ }
+ /* Prefer picking wakee soon if appropriate. */
+ if (sched_feat(NEXT_BUDDY) &&
+ set_preempt_buddy(cfs_rq, wake_flags, pse, se)) {
+
+ /*
+ * Decide whether to obey WF_SYNC hint for a new buddy. Old
+ * buddies are ignored as they may not be relevant to the
+ * waker and less likely to be cache hot.
+ */
+ if (wake_flags & WF_SYNC)
+ preempt_action = preempt_sync(rq, wake_flags, pse, se);
+ }
+
+ switch (preempt_action) {
+ case PREEMPT_WAKEUP_NONE:
+ return;
+ case PREEMPT_WAKEUP_RESCHED:
+ goto preempt;
+ case PREEMPT_WAKEUP_SHORT:
+ fallthrough;
+ case PREEMPT_WAKEUP_PICK:
+ break;
+ }
+
+pick:
/*
* If @p has become the most eligible task, force preemption.
*/
- if (pick_eevdf(cfs_rq) == pse)
+ if (__pick_eevdf(cfs_rq, preempt_action != PREEMPT_WAKEUP_SHORT) == pse)
goto preempt;
+ if (sched_feat(RUN_TO_PARITY))
+ update_protect_slice(cfs_rq, se);
+
return;
preempt:
+ if (preempt_action == PREEMPT_WAKEUP_SHORT)
+ cancel_protect_slice(se);
+
resched_curr_lazy(rq);
}
-static struct task_struct *pick_task_fair(struct rq *rq)
+static struct task_struct *pick_task_fair(struct rq *rq, struct rq_flags *rf)
{
struct sched_entity *se;
struct cfs_rq *cfs_rq;
+ struct task_struct *p;
+ bool throttled;
again:
cfs_rq = &rq->cfs;
- if (!cfs_rq->nr_running)
+ if (!cfs_rq->nr_queued)
return NULL;
+ throttled = false;
+
do {
/* Might not have done put_prev_entity() */
if (cfs_rq->curr && cfs_rq->curr->on_rq)
update_curr(cfs_rq);
- if (unlikely(check_cfs_rq_runtime(cfs_rq)))
- goto again;
+ throttled |= check_cfs_rq_runtime(cfs_rq);
se = pick_next_entity(rq, cfs_rq);
if (!se)
@@ -8863,7 +8908,10 @@ again:
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
- return task_of(se);
+ p = task_of(se);
+ if (unlikely(throttled))
+ task_throttle_setup_work(p);
+ return p;
}
static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
@@ -8877,7 +8925,7 @@ pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf
int new_tasks;
again:
- p = pick_task_fair(rq);
+ p = pick_task_fair(rq, rf);
if (!p)
goto idle;
se = &p->se;
@@ -8926,26 +8974,26 @@ again:
return p;
simple:
-#endif
+#endif /* CONFIG_FAIR_GROUP_SCHED */
put_prev_set_next_task(rq, prev, p);
return p;
idle:
- if (!rf)
- return NULL;
-
- new_tasks = sched_balance_newidle(rq, rf);
+ if (rf) {
+ new_tasks = sched_balance_newidle(rq, rf);
- /*
- * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
- * possible for any higher priority task to appear. In that case we
- * must re-start the pick_next_entity() loop.
- */
- if (new_tasks < 0)
- return RETRY_TASK;
+ /*
+ * Because sched_balance_newidle() releases (and re-acquires)
+ * rq->lock, it is possible for any higher priority task to
+ * appear. In that case we must re-start the pick_next_entity()
+ * loop.
+ */
+ if (new_tasks < 0)
+ return RETRY_TASK;
- if (new_tasks > 0)
- goto again;
+ if (new_tasks > 0)
+ goto again;
+ }
/*
* rq is about to be idle, check if we need to update the
@@ -8956,19 +9004,10 @@ idle:
return NULL;
}
-static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
+static struct task_struct *
+fair_server_pick_task(struct sched_dl_entity *dl_se, struct rq_flags *rf)
{
- return pick_next_task_fair(rq, prev, NULL);
-}
-
-static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
-{
- return !!dl_se->rq->cfs.nr_running;
-}
-
-static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
-{
- return pick_task_fair(dl_se->rq);
+ return pick_task_fair(dl_se->rq, rf);
}
void fair_server_init(struct rq *rq)
@@ -8977,7 +9016,7 @@ void fair_server_init(struct rq *rq)
init_dl_entity(dl_se);
- dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
+ dl_server_init(dl_se, rq, fair_server_pick_task);
}
/*
@@ -8999,7 +9038,7 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct t
*/
static void yield_task_fair(struct rq *rq)
{
- struct task_struct *curr = rq->curr;
+ struct task_struct *curr = rq->donor;
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
struct sched_entity *se = &curr->se;
@@ -9023,15 +9062,26 @@ static void yield_task_fair(struct rq *rq)
*/
rq_clock_skip_update(rq);
- se->deadline += calc_delta_fair(se->slice, se);
+ /*
+ * Forfeit the remaining vruntime, only if the entity is eligible. This
+ * condition is necessary because in core scheduling we prefer to run
+ * ineligible tasks rather than force idling. If this happens we may
+ * end up in a loop where the core scheduler picks the yielding task,
+ * which yields immediately again; without the condition the vruntime
+ * ends up quickly running away.
+ */
+ if (entity_eligible(cfs_rq, se)) {
+ se->vruntime = se->deadline;
+ se->deadline += calc_delta_fair(se->slice, se);
+ }
}
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
{
struct sched_entity *se = &p->se;
- /* throttled hierarchies are not runnable */
- if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
+ /* !se->on_rq also covers throttled task */
+ if (!se->on_rq)
return false;
/* Tell the scheduler that we'd really like se to run next. */
@@ -9042,7 +9092,6 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
return true;
}
-#ifdef CONFIG_SMP
/**************************************************
* Fair scheduling class load-balancing methods.
*
@@ -9294,43 +9343,43 @@ static int task_hot(struct task_struct *p, struct lb_env *env)
#ifdef CONFIG_NUMA_BALANCING
/*
- * Returns 1, if task migration degrades locality
- * Returns 0, if task migration improves locality i.e migration preferred.
- * Returns -1, if task migration is not affected by locality.
+ * Returns a positive value, if task migration degrades locality.
+ * Returns 0, if task migration is not affected by locality.
+ * Returns a negative value, if task migration improves locality i.e migration preferred.
*/
-static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
+static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
struct numa_group *numa_group = rcu_dereference(p->numa_group);
unsigned long src_weight, dst_weight;
int src_nid, dst_nid, dist;
if (!static_branch_likely(&sched_numa_balancing))
- return -1;
+ return 0;
if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
- return -1;
+ return 0;
src_nid = cpu_to_node(env->src_cpu);
dst_nid = cpu_to_node(env->dst_cpu);
if (src_nid == dst_nid)
- return -1;
+ return 0;
/* Migrating away from the preferred node is always bad. */
if (src_nid == p->numa_preferred_nid) {
if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
return 1;
else
- return -1;
+ return 0;
}
/* Encourage migration to the preferred node. */
if (dst_nid == p->numa_preferred_nid)
- return 0;
+ return -1;
/* Leaving a core idle is often worse than degrading locality. */
if (env->idle == CPU_IDLE)
- return -1;
+ return 0;
dist = node_distance(src_nid, dst_nid);
if (numa_group) {
@@ -9341,16 +9390,40 @@ static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
dst_weight = task_weight(p, dst_nid, dist);
}
- return dst_weight < src_weight;
+ return src_weight - dst_weight;
}
-#else
-static inline int migrate_degrades_locality(struct task_struct *p,
+#else /* !CONFIG_NUMA_BALANCING: */
+static inline long migrate_degrades_locality(struct task_struct *p,
struct lb_env *env)
{
- return -1;
+ return 0;
}
+#endif /* !CONFIG_NUMA_BALANCING */
+
+/*
+ * Check whether the task is ineligible on the destination cpu
+ *
+ * When the PLACE_LAG scheduling feature is enabled and
+ * dst_cfs_rq->nr_queued is greater than 1, if the task
+ * is ineligible, it will also be ineligible when
+ * it is migrated to the destination cpu.
+ */
+static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
+{
+ struct cfs_rq *dst_cfs_rq;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
+#else
+ dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
#endif
+ if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
+ !entity_eligible(task_cfs_rq(p), &p->se))
+ return 1;
+
+ return 0;
+}
/*
* can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
@@ -9358,24 +9431,44 @@ static inline int migrate_degrades_locality(struct task_struct *p,
static
int can_migrate_task(struct task_struct *p, struct lb_env *env)
{
- int tsk_cache_hot;
+ long degrades, hot;
lockdep_assert_rq_held(env->src_rq);
+ if (p->sched_task_hot)
+ p->sched_task_hot = 0;
/*
* We do not migrate tasks that are:
- * 1) throttled_lb_pair, or
- * 2) cannot be migrated to this CPU due to cpus_ptr, or
- * 3) running (obviously), or
- * 4) are cache-hot on their current CPU.
+ * 1) delayed dequeued unless we migrate load, or
+ * 2) target cfs_rq is in throttled hierarchy, or
+ * 3) cannot be migrated to this CPU due to cpus_ptr, or
+ * 4) running (obviously), or
+ * 5) are cache-hot on their current CPU, or
+ * 6) are blocked on mutexes (if SCHED_PROXY_EXEC is enabled)
+ */
+ if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
+ return 0;
+
+ if (lb_throttled_hierarchy(p, env->dst_cpu))
+ return 0;
+
+ /*
+ * We want to prioritize the migration of eligible tasks.
+ * For ineligible tasks we soft-limit them and only allow
+ * them to migrate when nr_balance_failed is non-zero to
+ * avoid load-balancing trying very hard to balance the load.
*/
- if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
+ if (!env->sd->nr_balance_failed &&
+ task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
return 0;
/* Disregard percpu kthreads; they are where they need to be. */
if (kthread_is_per_cpu(p))
return 0;
+ if (task_is_blocked(p))
+ return 0;
+
if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
int cpu;
@@ -9398,12 +9491,11 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env)
return 0;
/* Prevent to re-select dst_cpu via env's CPUs: */
- for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
- if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
- env->flags |= LBF_DST_PINNED;
- env->new_dst_cpu = cpu;
- break;
- }
+ cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr);
+
+ if (cpu < nr_cpu_ids) {
+ env->flags |= LBF_DST_PINNED;
+ env->new_dst_cpu = cpu;
}
return 0;
@@ -9412,7 +9504,8 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env)
/* Record that we found at least one task that could run on dst_cpu */
env->flags &= ~LBF_ALL_PINNED;
- if (task_on_cpu(env->src_rq, p)) {
+ if (task_on_cpu(env->src_rq, p) ||
+ task_current_donor(env->src_rq, p)) {
schedstat_inc(p->stats.nr_failed_migrations_running);
return 0;
}
@@ -9427,16 +9520,15 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env)
if (env->flags & LBF_ACTIVE_LB)
return 1;
- tsk_cache_hot = migrate_degrades_locality(p, env);
- if (tsk_cache_hot == -1)
- tsk_cache_hot = task_hot(p, env);
+ degrades = migrate_degrades_locality(p, env);
+ if (!degrades)
+ hot = task_hot(p, env);
+ else
+ hot = degrades > 0;
- if (tsk_cache_hot <= 0 ||
- env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
- if (tsk_cache_hot == 1) {
- schedstat_inc(env->sd->lb_hot_gained[env->idle]);
- schedstat_inc(p->stats.nr_forced_migrations);
- }
+ if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
+ if (hot)
+ p->sched_task_hot = 1;
return 1;
}
@@ -9451,6 +9543,15 @@ static void detach_task(struct task_struct *p, struct lb_env *env)
{
lockdep_assert_rq_held(env->src_rq);
+ if (p->sched_task_hot) {
+ p->sched_task_hot = 0;
+ schedstat_inc(env->sd->lb_hot_gained[env->idle]);
+ schedstat_inc(p->stats.nr_forced_migrations);
+ }
+
+ WARN_ON(task_current(env->src_rq, p));
+ WARN_ON(task_current_donor(env->src_rq, p));
+
deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
set_task_cpu(p, env->dst_cpu);
}
@@ -9611,6 +9712,9 @@ static int detach_tasks(struct lb_env *env)
continue;
next:
+ if (p->sched_task_hot)
+ schedstat_inc(p->stats.nr_failed_migrations_hot);
+
list_move(&p->se.group_node, tasks);
}
@@ -9712,12 +9816,12 @@ static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
if (!has_blocked)
rq->has_blocked_load = 0;
}
-#else
+#else /* !CONFIG_NO_HZ_COMMON: */
static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
static inline bool others_have_blocked(struct rq *rq) { return false; }
static inline void update_blocked_load_tick(struct rq *rq) {}
static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
-#endif
+#endif /* !CONFIG_NO_HZ_COMMON */
static bool __update_blocked_others(struct rq *rq, bool *done)
{
@@ -9753,7 +9857,7 @@ static bool __update_blocked_fair(struct rq *rq, bool *done)
if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
update_tg_load_avg(cfs_rq);
- if (cfs_rq->nr_running == 0)
+ if (cfs_rq->nr_queued == 0)
update_idle_cfs_rq_clock_pelt(cfs_rq);
if (cfs_rq == &rq->cfs)
@@ -9826,7 +9930,7 @@ static unsigned long task_h_load(struct task_struct *p)
return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
cfs_rq_load_avg(cfs_rq) + 1);
}
-#else
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
static bool __update_blocked_fair(struct rq *rq, bool *done)
{
struct cfs_rq *cfs_rq = &rq->cfs;
@@ -9843,7 +9947,7 @@ static unsigned long task_h_load(struct task_struct *p)
{
return p->se.avg.load_avg;
}
-#endif
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
static void sched_balance_update_blocked_averages(int cpu)
{
@@ -9988,9 +10092,9 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
min_capacity = ULONG_MAX;
max_capacity = 0;
- if (child->flags & SD_OVERLAP) {
+ if (child->flags & SD_NUMA) {
/*
- * SD_OVERLAP domains cannot assume that child groups
+ * SD_NUMA domains cannot assume that child groups
* span the current group.
*/
@@ -10003,7 +10107,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
}
} else {
/*
- * !SD_OVERLAP domains can assume that child groups
+ * !SD_NUMA domains can assume that child groups
* span the current group.
*/
@@ -10210,7 +10314,7 @@ sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group
(sgs->group_weight - sgs->idle_cpus != 1))
return false;
- return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
+ return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu));
}
/* One group has more than one SMT CPU while the other group does not */
@@ -10285,7 +10389,7 @@ sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
* When there is more than 1 task, the group_overloaded case already
* takes care of cpu with reduced capacity
*/
- if (rq->cfs.h_nr_running != 1)
+ if (rq->cfs.h_nr_runnable != 1)
return false;
return check_cpu_capacity(rq, sd);
@@ -10307,7 +10411,8 @@ static inline void update_sg_lb_stats(struct lb_env *env,
bool *sg_overloaded,
bool *sg_overutilized)
{
- int i, nr_running, local_group;
+ int i, nr_running, local_group, sd_flags = env->sd->flags;
+ bool balancing_at_rd = !env->sd->parent;
memset(sgs, 0, sizeof(*sgs));
@@ -10320,21 +10425,14 @@ static inline void update_sg_lb_stats(struct lb_env *env,
sgs->group_load += load;
sgs->group_util += cpu_util_cfs(i);
sgs->group_runnable += cpu_runnable(rq);
- sgs->sum_h_nr_running += rq->cfs.h_nr_running;
+ sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
nr_running = rq->nr_running;
sgs->sum_nr_running += nr_running;
- if (nr_running > 1)
- *sg_overloaded = 1;
-
if (cpu_overutilized(i))
*sg_overutilized = 1;
-#ifdef CONFIG_NUMA_BALANCING
- sgs->nr_numa_running += rq->nr_numa_running;
- sgs->nr_preferred_running += rq->nr_preferred_running;
-#endif
/*
* No need to call idle_cpu() if nr_running is not 0
*/
@@ -10344,10 +10442,21 @@ static inline void update_sg_lb_stats(struct lb_env *env,
continue;
}
+ /* Overload indicator is only updated at root domain */
+ if (balancing_at_rd && nr_running > 1)
+ *sg_overloaded = 1;
+
+#ifdef CONFIG_NUMA_BALANCING
+ /* Only fbq_classify_group() uses this to classify NUMA groups */
+ if (sd_flags & SD_NUMA) {
+ sgs->nr_numa_running += rq->nr_numa_running;
+ sgs->nr_preferred_running += rq->nr_preferred_running;
+ }
+#endif
if (local_group)
continue;
- if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
+ if (sd_flags & SD_ASYM_CPUCAPACITY) {
/* Check for a misfit task on the cpu */
if (sgs->group_misfit_task_load < rq->misfit_task_load) {
sgs->group_misfit_task_load = rq->misfit_task_load;
@@ -10442,7 +10551,8 @@ static bool update_sd_pick_busiest(struct lb_env *env,
case group_asym_packing:
/* Prefer to move from lowest priority CPU's work */
- return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
+ return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu),
+ READ_ONCE(sg->asym_prefer_cpu));
case group_misfit_task:
/*
@@ -10550,7 +10660,7 @@ static inline enum fbq_type fbq_classify_rq(struct rq *rq)
return remote;
return all;
}
-#else
+#else /* !CONFIG_NUMA_BALANCING: */
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
return all;
@@ -10560,7 +10670,7 @@ static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
return regular;
}
-#endif /* CONFIG_NUMA_BALANCING */
+#endif /* !CONFIG_NUMA_BALANCING */
struct sg_lb_stats;
@@ -10627,7 +10737,7 @@ static inline void update_sg_wakeup_stats(struct sched_domain *sd,
if (sd->flags & SD_ASYM_CPUCAPACITY)
sgs->group_misfit_task_load = 1;
- for_each_cpu(i, sched_group_span(group)) {
+ for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
struct rq *rq = cpu_rq(i);
unsigned int local;
@@ -10635,7 +10745,7 @@ static inline void update_sg_wakeup_stats(struct sched_domain *sd,
sgs->group_util += cpu_util_without(i, p);
sgs->group_runnable += cpu_runnable_without(rq, p);
local = task_running_on_cpu(i, p);
- sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
+ sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
nr_running = rq->nr_running - local;
sgs->sum_nr_running += nr_running;
@@ -11417,7 +11527,7 @@ static struct rq *sched_balance_find_src_rq(struct lb_env *env,
if (rt > env->fbq_type)
continue;
- nr_running = rq->cfs.h_nr_running;
+ nr_running = rq->cfs.h_nr_runnable;
if (!nr_running)
continue;
@@ -11576,7 +11686,7 @@ static int need_active_balance(struct lb_env *env)
* available on dst_cpu.
*/
if (env->idle &&
- (env->src_rq->cfs.h_nr_running == 1)) {
+ (env->src_rq->cfs.h_nr_runnable == 1)) {
if ((check_cpu_capacity(env->src_rq, sd)) &&
(capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
return 1;
@@ -11656,6 +11766,43 @@ static int should_we_balance(struct lb_env *env)
return group_balance_cpu(sg) == env->dst_cpu;
}
+static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
+ enum cpu_idle_type idle)
+{
+ if (!schedstat_enabled())
+ return;
+
+ switch (env->migration_type) {
+ case migrate_load:
+ __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
+ break;
+ case migrate_util:
+ __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
+ break;
+ case migrate_task:
+ __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
+ break;
+ case migrate_misfit:
+ __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
+ break;
+ }
+}
+
+/*
+ * This flag serializes load-balancing passes over large domains
+ * (above the NODE topology level) - only one load-balancing instance
+ * may run at a time, to reduce overhead on very large systems with
+ * lots of CPUs and large NUMA distances.
+ *
+ * - Note that load-balancing passes triggered while another one
+ * is executing are skipped and not re-tried.
+ *
+ * - Also note that this does not serialize rebalance_domains()
+ * execution, as non-SD_SERIALIZE domains will still be
+ * load-balanced in parallel.
+ */
+static atomic_t sched_balance_running = ATOMIC_INIT(0);
+
/*
* Check this_cpu to ensure it is balanced within domain. Attempt to move
* tasks if there is an imbalance.
@@ -11681,6 +11828,7 @@ static int sched_balance_rq(int this_cpu, struct rq *this_rq,
.fbq_type = all,
.tasks = LIST_HEAD_INIT(env.tasks),
};
+ bool need_unlock = false;
cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
@@ -11692,6 +11840,14 @@ redo:
goto out_balanced;
}
+ if (!need_unlock && (sd->flags & SD_SERIALIZE)) {
+ int zero = 0;
+ if (!atomic_try_cmpxchg_acquire(&sched_balance_running, &zero, 1))
+ goto out_balanced;
+
+ need_unlock = true;
+ }
+
group = sched_balance_find_src_group(&env);
if (!group) {
schedstat_inc(sd->lb_nobusyg[idle]);
@@ -11706,7 +11862,7 @@ redo:
WARN_ON_ONCE(busiest == env.dst_rq);
- schedstat_add(sd->lb_imbalance[idle], env.imbalance);
+ update_lb_imbalance_stat(&env, sd, idle);
env.src_cpu = busiest->cpu;
env.src_rq = busiest;
@@ -11932,6 +12088,9 @@ out_one_pinned:
sd->balance_interval < sd->max_interval)
sd->balance_interval *= 2;
out:
+ if (need_unlock)
+ atomic_set_release(&sched_balance_running, 0);
+
return ld_moved;
}
@@ -12057,21 +12216,6 @@ out_unlock:
}
/*
- * This flag serializes load-balancing passes over large domains
- * (above the NODE topology level) - only one load-balancing instance
- * may run at a time, to reduce overhead on very large systems with
- * lots of CPUs and large NUMA distances.
- *
- * - Note that load-balancing passes triggered while another one
- * is executing are skipped and not re-tried.
- *
- * - Also note that this does not serialize rebalance_domains()
- * execution, as non-SD_SERIALIZE domains will still be
- * load-balanced in parallel.
- */
-static atomic_t sched_balance_running = ATOMIC_INIT(0);
-
-/*
* Scale the max sched_balance_rq interval with the number of CPUs in the system.
* This trades load-balance latency on larger machines for less cross talk.
*/
@@ -12080,24 +12224,43 @@ void update_max_interval(void)
max_load_balance_interval = HZ*num_online_cpus()/10;
}
-static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
+static inline void update_newidle_stats(struct sched_domain *sd, unsigned int success)
{
+ sd->newidle_call++;
+ sd->newidle_success += success;
+
+ if (sd->newidle_call >= 1024) {
+ sd->newidle_ratio = sd->newidle_success;
+ sd->newidle_call /= 2;
+ sd->newidle_success /= 2;
+ }
+}
+
+static inline bool
+update_newidle_cost(struct sched_domain *sd, u64 cost, unsigned int success)
+{
+ unsigned long next_decay = sd->last_decay_max_lb_cost + HZ;
+ unsigned long now = jiffies;
+
+ if (cost)
+ update_newidle_stats(sd, success);
+
if (cost > sd->max_newidle_lb_cost) {
/*
* Track max cost of a domain to make sure to not delay the
* next wakeup on the CPU.
*/
sd->max_newidle_lb_cost = cost;
- sd->last_decay_max_lb_cost = jiffies;
- } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
+ sd->last_decay_max_lb_cost = now;
+
+ } else if (time_after(now, next_decay)) {
/*
* Decay the newidle max times by ~1% per second to ensure that
* it is not outdated and the current max cost is actually
* shorter.
*/
sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
- sd->last_decay_max_lb_cost = jiffies;
-
+ sd->last_decay_max_lb_cost = now;
return true;
}
@@ -12120,7 +12283,7 @@ static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
/* Earliest time when we have to do rebalance again */
unsigned long next_balance = jiffies + 60*HZ;
int update_next_balance = 0;
- int need_serialize, need_decay = 0;
+ int need_decay = 0;
u64 max_cost = 0;
rcu_read_lock();
@@ -12129,7 +12292,7 @@ static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
* Decay the newidle max times here because this is a regular
* visit to all the domains.
*/
- need_decay = update_newidle_cost(sd, 0);
+ need_decay = update_newidle_cost(sd, 0, 0);
max_cost += sd->max_newidle_lb_cost;
/*
@@ -12144,13 +12307,6 @@ static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
}
interval = get_sd_balance_interval(sd, busy);
-
- need_serialize = sd->flags & SD_SERIALIZE;
- if (need_serialize) {
- if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
- goto out;
- }
-
if (time_after_eq(jiffies, sd->last_balance + interval)) {
if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
/*
@@ -12164,9 +12320,6 @@ static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
sd->last_balance = jiffies;
interval = get_sd_balance_interval(sd, busy);
}
- if (need_serialize)
- atomic_set_release(&sched_balance_running, 0);
-out:
if (time_after(next_balance, sd->last_balance + interval)) {
next_balance = sd->last_balance + interval;
update_next_balance = 1;
@@ -12204,16 +12357,13 @@ static inline int on_null_domain(struct rq *rq)
* - When one of the busy CPUs notices that there may be an idle rebalancing
* needed, they will kick the idle load balancer, which then does idle
* load balancing for all the idle CPUs.
- *
- * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
- * anywhere yet.
*/
static inline int find_new_ilb(void)
{
const struct cpumask *hk_mask;
int ilb_cpu;
- hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
+ hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
@@ -12231,7 +12381,8 @@ static inline int find_new_ilb(void)
* Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
* SMP function call (IPI).
*
- * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
+ * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
+ * (if there is one).
*/
static void kick_ilb(unsigned int flags)
{
@@ -12319,7 +12470,7 @@ static void nohz_balancer_kick(struct rq *rq)
* If there's a runnable CFS task and the current CPU has reduced
* capacity, kick the ILB to see if there's a better CPU to run on:
*/
- if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
+ if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
goto unlock;
}
@@ -12409,7 +12560,7 @@ unlock:
void nohz_balance_exit_idle(struct rq *rq)
{
- SCHED_WARN_ON(rq != this_rq());
+ WARN_ON_ONCE(rq != this_rq());
if (likely(!rq->nohz_tick_stopped))
return;
@@ -12445,16 +12596,12 @@ void nohz_balance_enter_idle(int cpu)
{
struct rq *rq = cpu_rq(cpu);
- SCHED_WARN_ON(cpu != smp_processor_id());
+ WARN_ON_ONCE(cpu != smp_processor_id());
/* If this CPU is going down, then nothing needs to be done: */
if (!cpu_active(cpu))
return;
- /* Spare idle load balancing on CPUs that don't want to be disturbed: */
- if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
- return;
-
/*
* Can be set safely without rq->lock held
* If a clear happens, it will have evaluated last additions because
@@ -12532,7 +12679,7 @@ static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
int balance_cpu;
struct rq *rq;
- SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
+ WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
/*
* We assume there will be no idle load after this update and clear
@@ -12568,7 +12715,7 @@ static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
* work being done for other CPUs. Next load
* balancing owner will pick it up.
*/
- if (need_resched()) {
+ if (!idle_cpu(this_cpu) && need_resched()) {
if (flags & NOHZ_STATS_KICK)
has_blocked_load = true;
if (flags & NOHZ_NEXT_KICK)
@@ -12674,13 +12821,6 @@ static void nohz_newidle_balance(struct rq *this_rq)
{
int this_cpu = this_rq->cpu;
- /*
- * This CPU doesn't want to be disturbed by scheduler
- * housekeeping
- */
- if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
- return;
-
/* Will wake up very soon. No time for doing anything else*/
if (this_rq->avg_idle < sysctl_sched_migration_cost)
return;
@@ -12697,7 +12837,7 @@ static void nohz_newidle_balance(struct rq *this_rq)
atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
}
-#else /* !CONFIG_NO_HZ_COMMON */
+#else /* !CONFIG_NO_HZ_COMMON: */
static inline void nohz_balancer_kick(struct rq *rq) { }
static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
@@ -12706,7 +12846,7 @@ static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle
}
static inline void nohz_newidle_balance(struct rq *this_rq) { }
-#endif /* CONFIG_NO_HZ_COMMON */
+#endif /* !CONFIG_NO_HZ_COMMON */
/*
* sched_balance_newidle is called by schedule() if this_cpu is about to become
@@ -12758,18 +12898,21 @@ static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
rcu_read_lock();
sd = rcu_dereference_check_sched_domain(this_rq->sd);
+ if (!sd) {
+ rcu_read_unlock();
+ goto out;
+ }
if (!get_rd_overloaded(this_rq->rd) ||
- (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
+ this_rq->avg_idle < sd->max_newidle_lb_cost) {
- if (sd)
- update_next_balance(sd, &next_balance);
+ update_next_balance(sd, &next_balance);
rcu_read_unlock();
-
goto out;
}
rcu_read_unlock();
+ rq_modified_clear(this_rq);
raw_spin_rq_unlock(this_rq);
t0 = sched_clock_cpu(this_cpu);
@@ -12785,6 +12928,22 @@ static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
break;
if (sd->flags & SD_BALANCE_NEWIDLE) {
+ unsigned int weight = 1;
+
+ if (sched_feat(NI_RANDOM)) {
+ /*
+ * Throw a 1k sided dice; and only run
+ * newidle_balance according to the success
+ * rate.
+ */
+ u32 d1k = sched_rng() % 1024;
+ weight = 1 + sd->newidle_ratio;
+ if (d1k > weight) {
+ update_newidle_stats(sd, 0);
+ continue;
+ }
+ weight = (1024 + weight/2) / weight;
+ }
pulled_task = sched_balance_rq(this_cpu, this_rq,
sd, CPU_NEWLY_IDLE,
@@ -12792,10 +12951,14 @@ static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
t1 = sched_clock_cpu(this_cpu);
domain_cost = t1 - t0;
- update_newidle_cost(sd, domain_cost);
-
curr_cost += domain_cost;
t0 = t1;
+
+ /*
+ * Track max cost of a domain to make sure to not delay the
+ * next wakeup on the CPU.
+ */
+ update_newidle_cost(sd, domain_cost, weight * !!pulled_task);
}
/*
@@ -12817,11 +12980,11 @@ static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
* have been enqueued in the meantime. Since we're not going idle,
* pretend we pulled a task.
*/
- if (this_rq->cfs.h_nr_running && !pulled_task)
+ if (this_rq->cfs.h_nr_queued && !pulled_task)
pulled_task = 1;
- /* Is there a task of a high priority class? */
- if (this_rq->nr_running != this_rq->cfs.h_nr_running)
+ /* If a higher prio class was modified, restart the pick */
+ if (rq_modified_above(this_rq, &fair_sched_class))
pulled_task = -1;
out:
@@ -12842,9 +13005,9 @@ out:
/*
* This softirq handler is triggered via SCHED_SOFTIRQ from two places:
*
- * - directly from the local scheduler_tick() for periodic load balancing
+ * - directly from the local sched_tick() for periodic load balancing
*
- * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
+ * - indirectly from a remote sched_tick() for NOHZ idle balancing
* through the SMP cross-call nohz_csd_func()
*/
static __latent_entropy void sched_balance_softirq(void)
@@ -12903,8 +13066,6 @@ static void rq_offline_fair(struct rq *rq)
clear_tg_offline_cfs_rqs(rq);
}
-#endif /* CONFIG_SMP */
-
#ifdef CONFIG_SCHED_CORE
static inline bool
__entity_slice_used(struct sched_entity *se, int min_nr_tasks)
@@ -12935,13 +13096,176 @@ static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
* MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
* if we need to give up the CPU.
*/
- if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
+ if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
__entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
resched_curr(rq);
}
/*
- * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
+ * Consider any infeasible weight scenario. Take for instance two tasks,
+ * each bound to their respective sibling, one with weight 1 and one with
+ * weight 2. Then the lower weight task will run ahead of the higher weight
+ * task without bound.
+ *
+ * This utterly destroys the concept of a shared time base.
+ *
+ * Remember; all this is about a proportionally fair scheduling, where each
+ * tasks receives:
+ *
+ * w_i
+ * dt_i = ---------- dt (1)
+ * \Sum_j w_j
+ *
+ * which we do by tracking a virtual time, s_i:
+ *
+ * 1
+ * s_i = --- d[t]_i (2)
+ * w_i
+ *
+ * Where d[t] is a delta of discrete time, while dt is an infinitesimal.
+ * The immediate corollary is that the ideal schedule S, where (2) to use
+ * an infinitesimal delta, is:
+ *
+ * 1
+ * S = ---------- dt (3)
+ * \Sum_i w_i
+ *
+ * From which we can define the lag, or deviation from the ideal, as:
+ *
+ * lag(i) = S - s_i (4)
+ *
+ * And since the one and only purpose is to approximate S, we get that:
+ *
+ * \Sum_i w_i lag(i) := 0 (5)
+ *
+ * If this were not so, we no longer converge to S, and we can no longer
+ * claim our scheduler has any of the properties we derive from S. This is
+ * exactly what you did above, you broke it!
+ *
+ *
+ * Let's continue for a while though; to see if there is anything useful to
+ * be learned. We can combine (1)-(3) or (4)-(5) and express S in s_i:
+ *
+ * \Sum_i w_i s_i
+ * S = -------------- (6)
+ * \Sum_i w_i
+ *
+ * Which gives us a way to compute S, given our s_i. Now, if you've read
+ * our code, you know that we do not in fact do this, the reason for this
+ * is two-fold. Firstly, computing S in that way requires a 64bit division
+ * for every time we'd use it (see 12), and secondly, this only describes
+ * the steady-state, it doesn't handle dynamics.
+ *
+ * Anyway, in (6): s_i -> x + (s_i - x), to get:
+ *
+ * \Sum_i w_i (s_i - x)
+ * S - x = -------------------- (7)
+ * \Sum_i w_i
+ *
+ * Which shows that S and s_i transform alike (which makes perfect sense
+ * given that S is basically the (weighted) average of s_i).
+ *
+ * So the thing to remember is that the above is strictly UP. It is
+ * possible to generalize to multiple runqueues -- however it gets really
+ * yuck when you have to add affinity support, as illustrated by our very
+ * first counter-example.
+ *
+ * Luckily I think we can avoid needing a full multi-queue variant for
+ * core-scheduling (or load-balancing). The crucial observation is that we
+ * only actually need this comparison in the presence of forced-idle; only
+ * then do we need to tell if the stalled rq has higher priority over the
+ * other.
+ *
+ * [XXX assumes SMT2; better consider the more general case, I suspect
+ * it'll work out because our comparison is always between 2 rqs and the
+ * answer is only interesting if one of them is forced-idle]
+ *
+ * And (under assumption of SMT2) when there is forced-idle, there is only
+ * a single queue, so everything works like normal.
+ *
+ * Let, for our runqueue 'k':
+ *
+ * T_k = \Sum_i w_i s_i
+ * W_k = \Sum_i w_i ; for all i of k (8)
+ *
+ * Then we can write (6) like:
+ *
+ * T_k
+ * S_k = --- (9)
+ * W_k
+ *
+ * From which immediately follows that:
+ *
+ * T_k + T_l
+ * S_k+l = --------- (10)
+ * W_k + W_l
+ *
+ * On which we can define a combined lag:
+ *
+ * lag_k+l(i) := S_k+l - s_i (11)
+ *
+ * And that gives us the tools to compare tasks across a combined runqueue.
+ *
+ *
+ * Combined this gives the following:
+ *
+ * a) when a runqueue enters force-idle, sync it against it's sibling rq(s)
+ * using (7); this only requires storing single 'time'-stamps.
+ *
+ * b) when comparing tasks between 2 runqueues of which one is forced-idle,
+ * compare the combined lag, per (11).
+ *
+ * Now, of course cgroups (I so hate them) make this more interesting in
+ * that a) seems to suggest we need to iterate all cgroup on a CPU at such
+ * boundaries, but I think we can avoid that. The force-idle is for the
+ * whole CPU, all it's rqs. So we can mark it in the root and lazily
+ * propagate downward on demand.
+ */
+
+/*
+ * So this sync is basically a relative reset of S to 0.
+ *
+ * So with 2 queues, when one goes idle, we drop them both to 0 and one
+ * then increases due to not being idle, and the idle one builds up lag to
+ * get re-elected. So far so simple, right?
+ *
+ * When there's 3, we can have the situation where 2 run and one is idle,
+ * we sync to 0 and let the idle one build up lag to get re-election. Now
+ * suppose another one also drops idle. At this point dropping all to 0
+ * again would destroy the built-up lag from the queue that was already
+ * idle, not good.
+ *
+ * So instead of syncing everything, we can:
+ *
+ * less := !((s64)(s_a - s_b) <= 0)
+ *
+ * (v_a - S_a) - (v_b - S_b) == v_a - v_b - S_a + S_b
+ * == v_a - (v_b - S_a + S_b)
+ *
+ * IOW, we can recast the (lag) comparison to a one-sided difference.
+ * So if then, instead of syncing the whole queue, sync the idle queue
+ * against the active queue with S_a + S_b at the point where we sync.
+ *
+ * (XXX consider the implication of living in a cyclic group: N / 2^n N)
+ *
+ * This gives us means of syncing single queues against the active queue,
+ * and for already idle queues to preserve their build-up lag.
+ *
+ * Of course, then we get the situation where there's 2 active and one
+ * going idle, who do we pick to sync against? Theory would have us sync
+ * against the combined S, but as we've already demonstrated, there is no
+ * such thing in infeasible weight scenarios.
+ *
+ * One thing I've considered; and this is where that core_active rudiment
+ * came from, is having active queues sync up between themselves after
+ * every tick. This limits the observed divergence due to the work
+ * conservancy.
+ *
+ * On top of that, we can improve upon things by employing (10) here.
+ */
+
+/*
+ * se_fi_update - Update the cfs_rq->zero_vruntime_fi in a CFS hierarchy if needed.
*/
static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
bool forceidle)
@@ -12955,7 +13279,7 @@ static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
cfs_rq->forceidle_seq = fi_seq;
}
- cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
+ cfs_rq->zero_vruntime_fi = cfs_rq->zero_vruntime;
}
}
@@ -12979,7 +13303,7 @@ bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
struct cfs_rq *cfs_rqb;
s64 delta;
- SCHED_WARN_ON(task_rq(b)->core != rq->core);
+ WARN_ON_ONCE(task_rq(b)->core != rq->core);
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
@@ -13001,18 +13325,18 @@ bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
cfs_rqa = sea->cfs_rq;
cfs_rqb = seb->cfs_rq;
-#else
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
cfs_rqa = &task_rq(a)->cfs;
cfs_rqb = &task_rq(b)->cfs;
-#endif
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
/*
* Find delta after normalizing se's vruntime with its cfs_rq's
- * min_vruntime_fi, which would have been updated in prior calls
+ * zero_vruntime_fi, which would have been updated in prior calls
* to se_fi_update().
*/
delta = (s64)(sea->vruntime - seb->vruntime) +
- (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
+ (s64)(cfs_rqb->zero_vruntime_fi - cfs_rqa->zero_vruntime_fi);
return delta > 0;
}
@@ -13028,9 +13352,9 @@ static int task_is_throttled_fair(struct task_struct *p, int cpu)
#endif
return throttled_hierarchy(cfs_rq);
}
-#else
+#else /* !CONFIG_SCHED_CORE: */
static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
-#endif
+#endif /* !CONFIG_SCHED_CORE */
/*
* scheduler tick hitting a task of our scheduling class.
@@ -13074,12 +13398,15 @@ static void task_fork_fair(struct task_struct *p)
* the current task.
*/
static void
-prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
+prio_changed_fair(struct rq *rq, struct task_struct *p, u64 oldprio)
{
if (!task_on_rq_queued(p))
return;
- if (rq->cfs.nr_running == 1)
+ if (p->prio == oldprio)
+ return;
+
+ if (rq->cfs.nr_queued == 1)
return;
/*
@@ -13090,8 +13417,9 @@ prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
if (task_current_donor(rq, p)) {
if (p->prio > oldprio)
resched_curr(rq);
- } else
+ } else {
wakeup_preempt(rq, p, 0);
+ }
}
#ifdef CONFIG_FAIR_GROUP_SCHED
@@ -13103,10 +13431,13 @@ static void propagate_entity_cfs_rq(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
- if (cfs_rq_throttled(cfs_rq))
- return;
-
- if (!throttled_hierarchy(cfs_rq))
+ /*
+ * If a task gets attached to this cfs_rq and before being queued,
+ * it gets migrated to another CPU due to reasons like affinity
+ * change, make sure this cfs_rq stays on leaf cfs_rq list to have
+ * that removed load decayed or it can cause faireness problem.
+ */
+ if (!cfs_rq_pelt_clock_throttled(cfs_rq))
list_add_leaf_cfs_rq(cfs_rq);
/* Start to propagate at parent */
@@ -13117,22 +13448,20 @@ static void propagate_entity_cfs_rq(struct sched_entity *se)
update_load_avg(cfs_rq, se, UPDATE_TG);
- if (cfs_rq_throttled(cfs_rq))
- break;
-
- if (!throttled_hierarchy(cfs_rq))
+ if (!cfs_rq_pelt_clock_throttled(cfs_rq))
list_add_leaf_cfs_rq(cfs_rq);
}
+
+ assert_list_leaf_cfs_rq(rq_of(cfs_rq));
}
-#else
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
-#endif
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
static void detach_entity_cfs_rq(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
-#ifdef CONFIG_SMP
/*
* In case the task sched_avg hasn't been attached:
* - A forked task which hasn't been woken up by wake_up_new_task().
@@ -13141,7 +13470,6 @@ static void detach_entity_cfs_rq(struct sched_entity *se)
*/
if (!se->avg.last_update_time)
return;
-#endif
/* Catch up with the cfs_rq and remove our load when we leave */
update_load_avg(cfs_rq, se, 0);
@@ -13175,6 +13503,12 @@ static void attach_task_cfs_rq(struct task_struct *p)
attach_entity_cfs_rq(se);
}
+static void switching_from_fair(struct rq *rq, struct task_struct *p)
+{
+ if (p->se.sched_delayed)
+ dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
+}
+
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
detach_task_cfs_rq(p);
@@ -13182,7 +13516,7 @@ static void switched_from_fair(struct rq *rq, struct task_struct *p)
static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
- SCHED_WARN_ON(p->se.sched_delayed);
+ WARN_ON_ONCE(p->se.sched_delayed);
attach_task_cfs_rq(p);
@@ -13205,7 +13539,6 @@ static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool firs
{
struct sched_entity *se = &p->se;
-#ifdef CONFIG_SMP
if (task_on_rq_queued(p)) {
/*
* Move the next running task to the front of the list, so our
@@ -13213,11 +13546,10 @@ static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool firs
*/
list_move(&se->group_node, &rq->cfs_tasks);
}
-#endif
if (!first)
return;
- SCHED_WARN_ON(se->sched_delayed);
+ WARN_ON_ONCE(se->sched_delayed);
if (hrtick_enabled_fair(rq))
hrtick_start_fair(rq, p);
@@ -13250,10 +13582,8 @@ static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
cfs_rq->tasks_timeline = RB_ROOT_CACHED;
- cfs_rq->min_vruntime = (u64)(-(1LL << 20));
-#ifdef CONFIG_SMP
+ cfs_rq->zero_vruntime = (u64)(-(1LL << 20));
raw_spin_lock_init(&cfs_rq->removed.lock);
-#endif
}
#ifdef CONFIG_FAIR_GROUP_SCHED
@@ -13268,10 +13598,8 @@ static void task_change_group_fair(struct task_struct *p)
detach_task_cfs_rq(p);
-#ifdef CONFIG_SMP
/* Tell se's cfs_rq has been changed -- migrated */
p->se.avg.last_update_time = 0;
-#endif
set_task_rq(p, task_cpu(p));
attach_task_cfs_rq(p);
}
@@ -13489,7 +13817,7 @@ int sched_group_set_idle(struct task_group *tg, long idle)
for_each_possible_cpu(i) {
struct rq *rq = cpu_rq(i);
struct sched_entity *se = tg->se[i];
- struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
+ struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
long idle_task_delta;
struct rq_flags rf;
@@ -13500,16 +13828,8 @@ int sched_group_set_idle(struct task_group *tg, long idle)
if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
goto next_cpu;
- if (se->on_rq) {
- parent_cfs_rq = cfs_rq_of(se);
- if (cfs_rq_is_idle(grp_cfs_rq))
- parent_cfs_rq->idle_nr_running++;
- else
- parent_cfs_rq->idle_nr_running--;
- }
-
- idle_task_delta = grp_cfs_rq->h_nr_running -
- grp_cfs_rq->idle_h_nr_running;
+ idle_task_delta = grp_cfs_rq->h_nr_queued -
+ grp_cfs_rq->h_nr_idle;
if (!cfs_rq_is_idle(grp_cfs_rq))
idle_task_delta *= -1;
@@ -13519,7 +13839,7 @@ int sched_group_set_idle(struct task_group *tg, long idle)
if (!se->on_rq)
break;
- cfs_rq->idle_h_nr_running += idle_task_delta;
+ cfs_rq->h_nr_idle += idle_task_delta;
/* Already accounted at parent level and above. */
if (cfs_rq_is_idle(cfs_rq))
@@ -13563,6 +13883,8 @@ static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task
*/
DEFINE_SCHED_CLASS(fair) = {
+ .queue_mask = 2,
+
.enqueue_task = enqueue_task_fair,
.dequeue_task = dequeue_task_fair,
.yield_task = yield_task_fair,
@@ -13571,12 +13893,10 @@ DEFINE_SCHED_CLASS(fair) = {
.wakeup_preempt = check_preempt_wakeup_fair,
.pick_task = pick_task_fair,
- .pick_next_task = __pick_next_task_fair,
+ .pick_next_task = pick_next_task_fair,
.put_prev_task = put_prev_task_fair,
.set_next_task = set_next_task_fair,
-#ifdef CONFIG_SMP
- .balance = balance_fair,
.select_task_rq = select_task_rq_fair,
.migrate_task_rq = migrate_task_rq_fair,
@@ -13585,13 +13905,13 @@ DEFINE_SCHED_CLASS(fair) = {
.task_dead = task_dead_fair,
.set_cpus_allowed = set_cpus_allowed_fair,
-#endif
.task_tick = task_tick_fair,
.task_fork = task_fork_fair,
.reweight_task = reweight_task_fair,
.prio_changed = prio_changed_fair,
+ .switching_from = switching_from_fair,
.switched_from = switched_from_fair,
.switched_to = switched_to_fair,
@@ -13612,7 +13932,6 @@ DEFINE_SCHED_CLASS(fair) = {
#endif
};
-#ifdef CONFIG_SCHED_DEBUG
void print_cfs_stats(struct seq_file *m, int cpu)
{
struct cfs_rq *cfs_rq, *pos;
@@ -13646,11 +13965,9 @@ void show_numa_stats(struct task_struct *p, struct seq_file *m)
rcu_read_unlock();
}
#endif /* CONFIG_NUMA_BALANCING */
-#endif /* CONFIG_SCHED_DEBUG */
__init void init_sched_fair_class(void)
{
-#ifdef CONFIG_SMP
int i;
for_each_possible_cpu(i) {
@@ -13672,6 +13989,4 @@ __init void init_sched_fair_class(void)
nohz.next_blocked = jiffies;
zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
-#endif /* SMP */
-
}
diff --git a/kernel/sched/features.h b/kernel/sched/features.h
index a3d331dd2d8f..980d92bab8ab 100644
--- a/kernel/sched/features.h
+++ b/kernel/sched/features.h
@@ -29,7 +29,16 @@ SCHED_FEAT(PREEMPT_SHORT, true)
* wakeup-preemption), since its likely going to consume data we
* touched, increases cache locality.
*/
-SCHED_FEAT(NEXT_BUDDY, false)
+SCHED_FEAT(NEXT_BUDDY, true)
+
+/*
+ * Allow completely ignoring cfs_rq->next; which can be set from various
+ * places:
+ * - NEXT_BUDDY (wakeup preemption)
+ * - yield_to_task()
+ * - cgroup dequeue / pick
+ */
+SCHED_FEAT(PICK_BUDDY, true)
/*
* Consider buddies to be cache hot, decreases the likeliness of a
@@ -112,3 +121,8 @@ SCHED_FEAT(WA_BIAS, true)
SCHED_FEAT(UTIL_EST, true)
SCHED_FEAT(LATENCY_WARN, false)
+
+/*
+ * Do newidle balancing proportional to its success rate using randomization.
+ */
+SCHED_FEAT(NI_RANDOM, true)
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index 621696269584..c174afe1dd17 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -6,6 +6,11 @@
* (NOTE: these are not related to SCHED_IDLE batch scheduled
* tasks which are handled in sched/fair.c )
*/
+#include <linux/cpuidle.h>
+#include <linux/suspend.h>
+#include <linux/livepatch.h>
+#include "sched.h"
+#include "smp.h"
/* Linker adds these: start and end of __cpuidle functions */
extern char __cpuidle_text_start[], __cpuidle_text_end[];
@@ -47,7 +52,7 @@ static int __init cpu_idle_nopoll_setup(char *__unused)
return 1;
}
__setup("hlt", cpu_idle_nopoll_setup);
-#endif
+#endif /* CONFIG_GENERIC_IDLE_POLL_SETUP */
static noinline int __cpuidle cpu_idle_poll(void)
{
@@ -95,10 +100,10 @@ static inline void cond_tick_broadcast_exit(void)
if (static_branch_unlikely(&arch_needs_tick_broadcast))
tick_broadcast_exit();
}
-#else
+#else /* !CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE: */
static inline void cond_tick_broadcast_enter(void) { }
static inline void cond_tick_broadcast_exit(void) { }
-#endif
+#endif /* !CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE */
/**
* default_idle_call - Default CPU idle routine.
@@ -126,12 +131,13 @@ void __cpuidle default_idle_call(void)
}
static int call_cpuidle_s2idle(struct cpuidle_driver *drv,
- struct cpuidle_device *dev)
+ struct cpuidle_device *dev,
+ u64 max_latency_ns)
{
if (current_clr_polling_and_test())
return -EBUSY;
- return cpuidle_enter_s2idle(drv, dev);
+ return cpuidle_enter_s2idle(drv, dev, max_latency_ns);
}
static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
@@ -200,12 +206,13 @@ static void cpuidle_idle_call(void)
u64 max_latency_ns;
if (idle_should_enter_s2idle()) {
+ max_latency_ns = cpu_wakeup_latency_qos_limit() *
+ NSEC_PER_USEC;
- entered_state = call_cpuidle_s2idle(drv, dev);
+ entered_state = call_cpuidle_s2idle(drv, dev,
+ max_latency_ns);
if (entered_state > 0)
goto exit_idle;
-
- max_latency_ns = U64_MAX;
} else {
max_latency_ns = dev->forced_idle_latency_limit_ns;
}
@@ -427,7 +434,6 @@ void cpu_startup_entry(enum cpuhp_state state)
* idle-task scheduling class.
*/
-#ifdef CONFIG_SMP
static int
select_task_rq_idle(struct task_struct *p, int cpu, int flags)
{
@@ -439,7 +445,6 @@ balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
return WARN_ON_ONCE(1);
}
-#endif
/*
* Idle tasks are unconditionally rescheduled:
@@ -449,22 +454,25 @@ static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags)
resched_curr(rq);
}
+static void update_curr_idle(struct rq *rq);
+
static void put_prev_task_idle(struct rq *rq, struct task_struct *prev, struct task_struct *next)
{
- dl_server_update_idle_time(rq, prev);
- scx_update_idle(rq, false);
+ update_curr_idle(rq);
+ scx_update_idle(rq, false, true);
}
static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first)
{
update_idle_core(rq);
- scx_update_idle(rq, true);
+ scx_update_idle(rq, true, true);
schedstat_inc(rq->sched_goidle);
next->se.exec_start = rq_clock_task(rq);
}
-struct task_struct *pick_task_idle(struct rq *rq)
+struct task_struct *pick_task_idle(struct rq *rq, struct rq_flags *rf)
{
+ scx_update_idle(rq, true, false);
return rq->idle;
}
@@ -492,21 +500,36 @@ dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
*/
static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
{
+ update_curr_idle(rq);
}
-static void switched_to_idle(struct rq *rq, struct task_struct *p)
+static void switching_to_idle(struct rq *rq, struct task_struct *p)
{
BUG();
}
static void
-prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio)
+prio_changed_idle(struct rq *rq, struct task_struct *p, u64 oldprio)
{
+ if (p->prio == oldprio)
+ return;
+
BUG();
}
static void update_curr_idle(struct rq *rq)
{
+ struct sched_entity *se = &rq->idle->se;
+ u64 now = rq_clock_task(rq);
+ s64 delta_exec;
+
+ delta_exec = now - se->exec_start;
+ if (unlikely(delta_exec <= 0))
+ return;
+
+ se->exec_start = now;
+
+ dl_server_update_idle(&rq->fair_server, delta_exec);
}
/*
@@ -514,6 +537,8 @@ static void update_curr_idle(struct rq *rq)
*/
DEFINE_SCHED_CLASS(idle) = {
+ .queue_mask = 0,
+
/* no enqueue/yield_task for idle tasks */
/* dequeue is not valid, we print a debug message there: */
@@ -525,15 +550,13 @@ DEFINE_SCHED_CLASS(idle) = {
.put_prev_task = put_prev_task_idle,
.set_next_task = set_next_task_idle,
-#ifdef CONFIG_SMP
.balance = balance_idle,
.select_task_rq = select_task_rq_idle,
.set_cpus_allowed = set_cpus_allowed_common,
-#endif
.task_tick = task_tick_idle,
.prio_changed = prio_changed_idle,
- .switched_to = switched_to_idle,
+ .switching_to = switching_to_idle,
.update_curr = update_curr_idle,
};
diff --git a/kernel/sched/isolation.c b/kernel/sched/isolation.c
index 5891e715f00d..3ad0d6df6a0a 100644
--- a/kernel/sched/isolation.c
+++ b/kernel/sched/isolation.c
@@ -7,17 +7,13 @@
* Copyright (C) 2017-2018 SUSE, Frederic Weisbecker
*
*/
+#include <linux/sched/isolation.h>
+#include "sched.h"
enum hk_flags {
- HK_FLAG_TIMER = BIT(HK_TYPE_TIMER),
- HK_FLAG_RCU = BIT(HK_TYPE_RCU),
- HK_FLAG_MISC = BIT(HK_TYPE_MISC),
- HK_FLAG_SCHED = BIT(HK_TYPE_SCHED),
- HK_FLAG_TICK = BIT(HK_TYPE_TICK),
HK_FLAG_DOMAIN = BIT(HK_TYPE_DOMAIN),
- HK_FLAG_WQ = BIT(HK_TYPE_WQ),
HK_FLAG_MANAGED_IRQ = BIT(HK_TYPE_MANAGED_IRQ),
- HK_FLAG_KTHREAD = BIT(HK_TYPE_KTHREAD),
+ HK_FLAG_KERNEL_NOISE = BIT(HK_TYPE_KERNEL_NOISE),
};
DEFINE_STATIC_KEY_FALSE(housekeeping_overridden);
@@ -46,7 +42,7 @@ int housekeeping_any_cpu(enum hk_type type)
if (cpu < nr_cpu_ids)
return cpu;
- cpu = cpumask_any_and(housekeeping.cpumasks[type], cpu_online_mask);
+ cpu = cpumask_any_and_distribute(housekeeping.cpumasks[type], cpu_online_mask);
if (likely(cpu < nr_cpu_ids))
return cpu;
/*
@@ -97,7 +93,7 @@ void __init housekeeping_init(void)
static_branch_enable(&housekeeping_overridden);
- if (housekeeping.flags & HK_FLAG_TICK)
+ if (housekeeping.flags & HK_FLAG_KERNEL_NOISE)
sched_tick_offload_init();
for_each_set_bit(type, &housekeeping.flags, HK_TYPE_MAX) {
@@ -121,7 +117,7 @@ static int __init housekeeping_setup(char *str, unsigned long flags)
unsigned int first_cpu;
int err = 0;
- if ((flags & HK_FLAG_TICK) && !(housekeeping.flags & HK_FLAG_TICK)) {
+ if ((flags & HK_FLAG_KERNEL_NOISE) && !(housekeeping.flags & HK_FLAG_KERNEL_NOISE)) {
if (!IS_ENABLED(CONFIG_NO_HZ_FULL)) {
pr_warn("Housekeeping: nohz unsupported."
" Build with CONFIG_NO_HZ_FULL\n");
@@ -171,13 +167,36 @@ static int __init housekeeping_setup(char *str, unsigned long flags)
}
}
+ /*
+ * Check the combination of nohz_full and isolcpus=domain,
+ * necessary to avoid problems with the timer migration
+ * hierarchy. managed_irq is ignored by this check since it
+ * isn't considered in the timer migration logic.
+ */
+ iter_flags = housekeeping.flags & (HK_FLAG_KERNEL_NOISE | HK_FLAG_DOMAIN);
+ type = find_first_bit(&iter_flags, HK_TYPE_MAX);
+ /*
+ * Pass the check if none of these flags were previously set or
+ * are not in the current selection.
+ */
+ iter_flags = flags & (HK_FLAG_KERNEL_NOISE | HK_FLAG_DOMAIN);
+ first_cpu = (type == HK_TYPE_MAX || !iter_flags) ? 0 :
+ cpumask_first_and_and(cpu_present_mask,
+ housekeeping_staging, housekeeping.cpumasks[type]);
+ if (first_cpu >= min(nr_cpu_ids, setup_max_cpus)) {
+ pr_warn("Housekeeping: must include one present CPU "
+ "neither in nohz_full= nor in isolcpus=domain, "
+ "ignoring setting %s\n", str);
+ goto free_housekeeping_staging;
+ }
+
iter_flags = flags & ~housekeeping.flags;
for_each_set_bit(type, &iter_flags, HK_TYPE_MAX)
housekeeping_setup_type(type, housekeeping_staging);
}
- if ((flags & HK_FLAG_TICK) && !(housekeeping.flags & HK_FLAG_TICK))
+ if ((flags & HK_FLAG_KERNEL_NOISE) && !(housekeeping.flags & HK_FLAG_KERNEL_NOISE))
tick_nohz_full_setup(non_housekeeping_mask);
housekeeping.flags |= flags;
@@ -195,8 +214,7 @@ static int __init housekeeping_nohz_full_setup(char *str)
{
unsigned long flags;
- flags = HK_FLAG_TICK | HK_FLAG_WQ | HK_FLAG_TIMER | HK_FLAG_RCU |
- HK_FLAG_MISC | HK_FLAG_KTHREAD;
+ flags = HK_FLAG_KERNEL_NOISE;
return housekeeping_setup(str, flags);
}
@@ -210,9 +228,12 @@ static int __init housekeeping_isolcpus_setup(char *str)
int len;
while (isalpha(*str)) {
+ /*
+ * isolcpus=nohz is equivalent to nohz_full.
+ */
if (!strncmp(str, "nohz,", 5)) {
str += 5;
- flags |= HK_FLAG_TICK;
+ flags |= HK_FLAG_KERNEL_NOISE;
continue;
}
diff --git a/kernel/sched/loadavg.c b/kernel/sched/loadavg.c
index c48900b856a2..b601e0243d0e 100644
--- a/kernel/sched/loadavg.c
+++ b/kernel/sched/loadavg.c
@@ -6,6 +6,8 @@
* figure. Its a silly number but people think its important. We go through
* great pains to make it work on big machines and tickless kernels.
*/
+#include <linux/sched/nohz.h>
+#include "sched.h"
/*
* Global load-average calculations
@@ -80,7 +82,7 @@ long calc_load_fold_active(struct rq *this_rq, long adjust)
long nr_active, delta = 0;
nr_active = this_rq->nr_running - adjust;
- nr_active += (int)this_rq->nr_uninterruptible;
+ nr_active += (long)this_rq->nr_uninterruptible;
if (nr_active != this_rq->calc_load_active) {
delta = nr_active - this_rq->calc_load_active;
@@ -333,12 +335,12 @@ static void calc_global_nohz(void)
smp_wmb();
calc_load_idx++;
}
-#else /* !CONFIG_NO_HZ_COMMON */
+#else /* !CONFIG_NO_HZ_COMMON: */
static inline long calc_load_nohz_read(void) { return 0; }
static inline void calc_global_nohz(void) { }
-#endif /* CONFIG_NO_HZ_COMMON */
+#endif /* !CONFIG_NO_HZ_COMMON */
/*
* calc_load - update the avenrun load estimates 10 ticks after the
diff --git a/kernel/sched/membarrier.c b/kernel/sched/membarrier.c
index 809194cd779f..623445603725 100644
--- a/kernel/sched/membarrier.c
+++ b/kernel/sched/membarrier.c
@@ -4,6 +4,8 @@
*
* membarrier system call
*/
+#include <uapi/linux/membarrier.h>
+#include "sched.h"
/*
* For documentation purposes, here are some membarrier ordering
@@ -197,7 +199,7 @@ static void ipi_rseq(void *info)
* is negligible.
*/
smp_mb();
- rseq_preempt(current);
+ rseq_sched_switch_event(current);
}
static void ipi_sync_rq_state(void *info)
@@ -405,9 +407,9 @@ static int membarrier_private_expedited(int flags, int cpu_id)
* membarrier, we will end up with some thread in the mm
* running without a core sync.
*
- * For RSEQ, don't rseq_preempt() the caller. User code
- * is not supposed to issue syscalls at all from inside an
- * rseq critical section.
+ * For RSEQ, don't invoke rseq_sched_switch_event() on the
+ * caller. User code is not supposed to issue syscalls at
+ * all from inside an rseq critical section.
*/
if (flags != MEMBARRIER_FLAG_SYNC_CORE) {
preempt_disable();
diff --git a/kernel/sched/pelt.c b/kernel/sched/pelt.c
index fc07382361a8..fa83bbaf4f3e 100644
--- a/kernel/sched/pelt.c
+++ b/kernel/sched/pelt.c
@@ -23,6 +23,7 @@
* Move PELT related code from fair.c into this pelt.c file
* Author: Vincent Guittot <vincent.guittot@linaro.org>
*/
+#include "pelt.h"
/*
* Approximate:
@@ -275,7 +276,7 @@ ___update_load_avg(struct sched_avg *sa, unsigned long load)
*
* group: [ see update_cfs_group() ]
* se_weight() = tg->weight * grq->load_avg / tg->load_avg
- * se_runnable() = grq->h_nr_running
+ * se_runnable() = grq->h_nr_runnable
*
* runnable_sum = se_runnable() * runnable = grq->runnable_sum
* runnable_avg = runnable_sum
@@ -321,7 +322,7 @@ int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq)
{
if (___update_load_sum(now, &cfs_rq->avg,
scale_load_down(cfs_rq->load.weight),
- cfs_rq->h_nr_running,
+ cfs_rq->h_nr_runnable,
cfs_rq->curr != NULL)) {
___update_load_avg(&cfs_rq->avg, 1);
@@ -413,7 +414,7 @@ int update_hw_load_avg(u64 now, struct rq *rq, u64 capacity)
return 0;
}
-#endif
+#endif /* CONFIG_SCHED_HW_PRESSURE */
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
/*
@@ -466,7 +467,7 @@ int update_irq_load_avg(struct rq *rq, u64 running)
return ret;
}
-#endif
+#endif /* CONFIG_HAVE_SCHED_AVG_IRQ */
/*
* Load avg and utiliztion metrics need to be updated periodically and before
diff --git a/kernel/sched/pelt.h b/kernel/sched/pelt.h
index f4f6a0875c66..f921302dc40f 100644
--- a/kernel/sched/pelt.h
+++ b/kernel/sched/pelt.h
@@ -1,4 +1,8 @@
-#ifdef CONFIG_SMP
+// SPDX-License-Identifier: GPL-2.0
+#ifndef _KERNEL_SCHED_PELT_H
+#define _KERNEL_SCHED_PELT_H
+#include "sched.h"
+
#include "sched-pelt.h"
int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
@@ -15,7 +19,7 @@ static inline u64 hw_load_avg(struct rq *rq)
{
return READ_ONCE(rq->avg_hw.load_avg);
}
-#else
+#else /* !CONFIG_SCHED_HW_PRESSURE: */
static inline int
update_hw_load_avg(u64 now, struct rq *rq, u64 capacity)
{
@@ -26,7 +30,7 @@ static inline u64 hw_load_avg(struct rq *rq)
{
return 0;
}
-#endif
+#endif /* !CONFIG_SCHED_HW_PRESSURE */
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
int update_irq_load_avg(struct rq *rq, u64 running);
@@ -158,7 +162,7 @@ static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
{
u64 throttled;
- if (unlikely(cfs_rq->throttle_count))
+ if (unlikely(cfs_rq->pelt_clock_throttled))
throttled = U64_MAX;
else
throttled = cfs_rq->throttled_clock_pelt_time;
@@ -169,68 +173,17 @@ static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
{
- if (unlikely(cfs_rq->throttle_count))
+ if (unlikely(cfs_rq->pelt_clock_throttled))
return cfs_rq->throttled_clock_pelt - cfs_rq->throttled_clock_pelt_time;
return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time;
}
-#else
+#else /* !CONFIG_CFS_BANDWIDTH: */
static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { }
static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
{
return rq_clock_pelt(rq_of(cfs_rq));
}
-#endif
-
-#else
-
-static inline int
-update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
-{
- return 0;
-}
-
-static inline int
-update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
-{
- return 0;
-}
-
-static inline int
-update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
-{
- return 0;
-}
-
-static inline int
-update_hw_load_avg(u64 now, struct rq *rq, u64 capacity)
-{
- return 0;
-}
-
-static inline u64 hw_load_avg(struct rq *rq)
-{
- return 0;
-}
-
-static inline int
-update_irq_load_avg(struct rq *rq, u64 running)
-{
- return 0;
-}
-
-static inline u64 rq_clock_pelt(struct rq *rq)
-{
- return rq_clock_task(rq);
-}
-
-static inline void
-update_rq_clock_pelt(struct rq *rq, s64 delta) { }
-
-static inline void
-update_idle_rq_clock_pelt(struct rq *rq) { }
-
-static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { }
-#endif
-
+#endif /* !CONFIG_CFS_BANDWIDTH */
+#endif /* _KERNEL_SCHED_PELT_H */
diff --git a/kernel/sched/psi.c b/kernel/sched/psi.c
index 84dad1511d1e..59fdb7ebbf22 100644
--- a/kernel/sched/psi.c
+++ b/kernel/sched/psi.c
@@ -136,6 +136,10 @@
* cost-wise, yet way more sensitive and accurate than periodic
* sampling of the aggregate task states would be.
*/
+#include <linux/sched/clock.h>
+#include <linux/workqueue.h>
+#include <linux/psi.h>
+#include "sched.h"
static int psi_bug __read_mostly;
@@ -172,17 +176,35 @@ struct psi_group psi_system = {
.pcpu = &system_group_pcpu,
};
+static DEFINE_PER_CPU(seqcount_t, psi_seq) = SEQCNT_ZERO(psi_seq);
+
+static inline void psi_write_begin(int cpu)
+{
+ write_seqcount_begin(per_cpu_ptr(&psi_seq, cpu));
+}
+
+static inline void psi_write_end(int cpu)
+{
+ write_seqcount_end(per_cpu_ptr(&psi_seq, cpu));
+}
+
+static inline u32 psi_read_begin(int cpu)
+{
+ return read_seqcount_begin(per_cpu_ptr(&psi_seq, cpu));
+}
+
+static inline bool psi_read_retry(int cpu, u32 seq)
+{
+ return read_seqcount_retry(per_cpu_ptr(&psi_seq, cpu), seq);
+}
+
static void psi_avgs_work(struct work_struct *work);
static void poll_timer_fn(struct timer_list *t);
static void group_init(struct psi_group *group)
{
- int cpu;
-
group->enabled = true;
- for_each_possible_cpu(cpu)
- seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
group->avg_last_update = sched_clock();
group->avg_next_update = group->avg_last_update + psi_period;
mutex_init(&group->avgs_lock);
@@ -262,14 +284,14 @@ static void get_recent_times(struct psi_group *group, int cpu,
/* Snapshot a coherent view of the CPU state */
do {
- seq = read_seqcount_begin(&groupc->seq);
+ seq = psi_read_begin(cpu);
now = cpu_clock(cpu);
memcpy(times, groupc->times, sizeof(groupc->times));
state_mask = groupc->state_mask;
state_start = groupc->state_start;
if (cpu == current_cpu)
memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
- } while (read_seqcount_retry(&groupc->seq, seq));
+ } while (psi_read_retry(cpu, seq));
/* Calculate state time deltas against the previous snapshot */
for (s = 0; s < NR_PSI_STATES; s++) {
@@ -733,7 +755,7 @@ static int psi_rtpoll_worker(void *data)
static void poll_timer_fn(struct timer_list *t)
{
- struct psi_group *group = from_timer(group, t, rtpoll_timer);
+ struct psi_group *group = timer_container_of(group, t, rtpoll_timer);
atomic_set(&group->rtpoll_wakeup, 1);
wake_up_interruptible(&group->rtpoll_wait);
@@ -768,31 +790,21 @@ static void record_times(struct psi_group_cpu *groupc, u64 now)
groupc->times[PSI_NONIDLE] += delta;
}
+#define for_each_group(iter, group) \
+ for (typeof(group) iter = group; iter; iter = iter->parent)
+
static void psi_group_change(struct psi_group *group, int cpu,
unsigned int clear, unsigned int set,
- bool wake_clock)
+ u64 now, bool wake_clock)
{
struct psi_group_cpu *groupc;
unsigned int t, m;
u32 state_mask;
- u64 now;
lockdep_assert_rq_held(cpu_rq(cpu));
groupc = per_cpu_ptr(group->pcpu, cpu);
/*
- * First we update the task counts according to the state
- * change requested through the @clear and @set bits.
- *
- * Then if the cgroup PSI stats accounting enabled, we
- * assess the aggregate resource states this CPU's tasks
- * have been in since the last change, and account any
- * SOME and FULL time these may have resulted in.
- */
- write_seqcount_begin(&groupc->seq);
- now = cpu_clock(cpu);
-
- /*
* Start with TSK_ONCPU, which doesn't have a corresponding
* task count - it's just a boolean flag directly encoded in
* the state mask. Clear, set, or carry the current state if
@@ -843,7 +855,6 @@ static void psi_group_change(struct psi_group *group, int cpu,
groupc->state_mask = state_mask;
- write_seqcount_end(&groupc->seq);
return;
}
@@ -864,8 +875,6 @@ static void psi_group_change(struct psi_group *group, int cpu,
groupc->state_mask = state_mask;
- write_seqcount_end(&groupc->seq);
-
if (state_mask & group->rtpoll_states)
psi_schedule_rtpoll_work(group, 1, false);
@@ -900,24 +909,29 @@ static void psi_flags_change(struct task_struct *task, int clear, int set)
void psi_task_change(struct task_struct *task, int clear, int set)
{
int cpu = task_cpu(task);
- struct psi_group *group;
+ u64 now;
if (!task->pid)
return;
psi_flags_change(task, clear, set);
- group = task_psi_group(task);
- do {
- psi_group_change(group, cpu, clear, set, true);
- } while ((group = group->parent));
+ psi_write_begin(cpu);
+ now = cpu_clock(cpu);
+ for_each_group(group, task_psi_group(task))
+ psi_group_change(group, cpu, clear, set, now, true);
+ psi_write_end(cpu);
}
void psi_task_switch(struct task_struct *prev, struct task_struct *next,
bool sleep)
{
- struct psi_group *group, *common = NULL;
+ struct psi_group *common = NULL;
int cpu = task_cpu(prev);
+ u64 now;
+
+ psi_write_begin(cpu);
+ now = cpu_clock(cpu);
if (next->pid) {
psi_flags_change(next, 0, TSK_ONCPU);
@@ -926,16 +940,15 @@ void psi_task_switch(struct task_struct *prev, struct task_struct *next,
* ancestors with @prev, those will already have @prev's
* TSK_ONCPU bit set, and we can stop the iteration there.
*/
- group = task_psi_group(next);
- do {
- if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
- PSI_ONCPU) {
+ for_each_group(group, task_psi_group(next)) {
+ struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
+
+ if (groupc->state_mask & PSI_ONCPU) {
common = group;
break;
}
-
- psi_group_change(group, cpu, 0, TSK_ONCPU, true);
- } while ((group = group->parent));
+ psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
+ }
}
if (prev->pid) {
@@ -968,12 +981,11 @@ void psi_task_switch(struct task_struct *prev, struct task_struct *next,
psi_flags_change(prev, clear, set);
- group = task_psi_group(prev);
- do {
+ for_each_group(group, task_psi_group(prev)) {
if (group == common)
break;
- psi_group_change(group, cpu, clear, set, wake_clock);
- } while ((group = group->parent));
+ psi_group_change(group, cpu, clear, set, now, wake_clock);
+ }
/*
* TSK_ONCPU is handled up to the common ancestor. If there are
@@ -983,30 +995,30 @@ void psi_task_switch(struct task_struct *prev, struct task_struct *next,
*/
if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
clear &= ~TSK_ONCPU;
- for (; group; group = group->parent)
- psi_group_change(group, cpu, clear, set, wake_clock);
+ for_each_group(group, common)
+ psi_group_change(group, cpu, clear, set, now, wake_clock);
}
}
+ psi_write_end(cpu);
}
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev)
{
int cpu = task_cpu(curr);
- struct psi_group *group;
struct psi_group_cpu *groupc;
s64 delta;
u64 irq;
+ u64 now;
- if (static_branch_likely(&psi_disabled))
+ if (static_branch_likely(&psi_disabled) || !irqtime_enabled())
return;
if (!curr->pid)
return;
lockdep_assert_rq_held(rq);
- group = task_psi_group(curr);
- if (prev && task_psi_group(prev) == group)
+ if (prev && task_psi_group(prev) == task_psi_group(curr))
return;
irq = irq_time_read(cpu);
@@ -1015,27 +1027,24 @@ void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_st
return;
rq->psi_irq_time = irq;
- do {
- u64 now;
+ psi_write_begin(cpu);
+ now = cpu_clock(cpu);
+ for_each_group(group, task_psi_group(curr)) {
if (!group->enabled)
continue;
groupc = per_cpu_ptr(group->pcpu, cpu);
- write_seqcount_begin(&groupc->seq);
- now = cpu_clock(cpu);
-
record_times(groupc, now);
groupc->times[PSI_IRQ_FULL] += delta;
- write_seqcount_end(&groupc->seq);
-
if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
psi_schedule_rtpoll_work(group, 1, false);
- } while ((group = group->parent));
+ }
+ psi_write_end(cpu);
}
-#endif
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
/**
* psi_memstall_enter - mark the beginning of a memory stall section
@@ -1221,12 +1230,14 @@ void psi_cgroup_restart(struct psi_group *group)
return;
for_each_possible_cpu(cpu) {
- struct rq *rq = cpu_rq(cpu);
- struct rq_flags rf;
+ u64 now;
+
+ guard(rq_lock_irq)(cpu_rq(cpu));
- rq_lock_irq(rq, &rf);
- psi_group_change(group, cpu, 0, 0, true);
- rq_unlock_irq(rq, &rf);
+ psi_write_begin(cpu);
+ now = cpu_clock(cpu);
+ psi_group_change(group, cpu, 0, 0, now, true);
+ psi_write_end(cpu);
}
}
#endif /* CONFIG_CGROUPS */
@@ -1240,6 +1251,11 @@ int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
if (static_branch_likely(&psi_disabled))
return -EOPNOTSUPP;
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+ if (!irqtime_enabled() && res == PSI_IRQ)
+ return -EOPNOTSUPP;
+#endif
+
/* Update averages before reporting them */
mutex_lock(&group->avgs_lock);
now = sched_clock();
@@ -1435,7 +1451,7 @@ void psi_trigger_destroy(struct psi_trigger *t)
group->rtpoll_task,
lockdep_is_held(&group->rtpoll_trigger_lock));
rcu_assign_pointer(group->rtpoll_task, NULL);
- del_timer(&group->rtpoll_timer);
+ timer_delete(&group->rtpoll_timer);
}
}
mutex_unlock(&group->rtpoll_trigger_lock);
@@ -1646,7 +1662,7 @@ static const struct proc_ops psi_irq_proc_ops = {
.proc_poll = psi_fop_poll,
.proc_release = psi_fop_release,
};
-#endif
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
static int __init psi_proc_init(void)
{
diff --git a/kernel/sched/rq-offsets.c b/kernel/sched/rq-offsets.c
new file mode 100644
index 000000000000..a23747bbe25b
--- /dev/null
+++ b/kernel/sched/rq-offsets.c
@@ -0,0 +1,12 @@
+// SPDX-License-Identifier: GPL-2.0
+#define COMPILE_OFFSETS
+#include <linux/kbuild.h>
+#include <linux/types.h>
+#include "sched.h"
+
+int main(void)
+{
+ DEFINE(RQ_nr_pinned, offsetof(struct rq, nr_pinned));
+
+ return 0;
+}
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index bd66a46b06ac..f1867fe8e5c5 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -4,6 +4,9 @@
* policies)
*/
+#include "sched.h"
+#include "pelt.h"
+
int sched_rr_timeslice = RR_TIMESLICE;
/* More than 4 hours if BW_SHIFT equals 20. */
static const u64 max_rt_runtime = MAX_BW;
@@ -26,7 +29,7 @@ static int sched_rt_handler(const struct ctl_table *table, int write, void *buff
size_t *lenp, loff_t *ppos);
static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
size_t *lenp, loff_t *ppos);
-static struct ctl_table sched_rt_sysctls[] = {
+static const struct ctl_table sched_rt_sysctls[] = {
{
.procname = "sched_rt_period_us",
.data = &sysctl_sched_rt_period,
@@ -60,7 +63,7 @@ static int __init sched_rt_sysctl_init(void)
return 0;
}
late_initcall(sched_rt_sysctl_init);
-#endif
+#endif /* CONFIG_SYSCTL */
void init_rt_rq(struct rt_rq *rt_rq)
{
@@ -75,12 +78,10 @@ void init_rt_rq(struct rt_rq *rt_rq)
/* delimiter for bitsearch: */
__set_bit(MAX_RT_PRIO, array->bitmap);
-#if defined CONFIG_SMP
rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
rt_rq->highest_prio.next = MAX_RT_PRIO-1;
rt_rq->overloaded = 0;
plist_head_init(&rt_rq->pushable_tasks);
-#endif /* CONFIG_SMP */
/* We start is dequeued state, because no RT tasks are queued */
rt_rq->rt_queued = 0;
@@ -89,6 +90,7 @@ void init_rt_rq(struct rt_rq *rt_rq)
rt_rq->rt_throttled = 0;
rt_rq->rt_runtime = 0;
raw_spin_lock_init(&rt_rq->rt_runtime_lock);
+ rt_rq->tg = &root_task_group;
#endif
}
@@ -127,9 +129,8 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
raw_spin_lock_init(&rt_b->rt_runtime_lock);
- hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
- HRTIMER_MODE_REL_HARD);
- rt_b->rt_period_timer.function = sched_rt_period_timer;
+ hrtimer_setup(&rt_b->rt_period_timer, sched_rt_period_timer, CLOCK_MONOTONIC,
+ HRTIMER_MODE_REL_HARD);
}
static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
@@ -169,19 +170,21 @@ static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
-#ifdef CONFIG_SCHED_DEBUG
WARN_ON_ONCE(!rt_entity_is_task(rt_se));
-#endif
+
return container_of(rt_se, struct task_struct, rt);
}
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
+ /* Cannot fold with non-CONFIG_RT_GROUP_SCHED version, layout */
+ WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group);
return rt_rq->rq;
}
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
+ WARN_ON(!rt_group_sched_enabled() && rt_se->rt_rq->tg != &root_task_group);
return rt_se->rt_rq;
}
@@ -189,11 +192,15 @@ static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
{
struct rt_rq *rt_rq = rt_se->rt_rq;
+ WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group);
return rt_rq->rq;
}
void unregister_rt_sched_group(struct task_group *tg)
{
+ if (!rt_group_sched_enabled())
+ return;
+
if (tg->rt_se)
destroy_rt_bandwidth(&tg->rt_bandwidth);
}
@@ -202,6 +209,9 @@ void free_rt_sched_group(struct task_group *tg)
{
int i;
+ if (!rt_group_sched_enabled())
+ return;
+
for_each_possible_cpu(i) {
if (tg->rt_rq)
kfree(tg->rt_rq[i]);
@@ -246,6 +256,9 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
struct sched_rt_entity *rt_se;
int i;
+ if (!rt_group_sched_enabled())
+ return 1;
+
tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
if (!tg->rt_rq)
goto err;
@@ -279,7 +292,7 @@ err:
return 0;
}
-#else /* CONFIG_RT_GROUP_SCHED */
+#else /* !CONFIG_RT_GROUP_SCHED: */
#define rt_entity_is_task(rt_se) (1)
@@ -315,9 +328,7 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
return 1;
}
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-#ifdef CONFIG_SMP
+#endif /* !CONFIG_RT_GROUP_SCHED */
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
@@ -418,21 +429,6 @@ static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
}
}
-#else
-
-static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
-{
-}
-
-static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
-{
-}
-
-static inline void rt_queue_push_tasks(struct rq *rq)
-{
-}
-#endif /* CONFIG_SMP */
-
static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
@@ -473,20 +469,17 @@ static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
return cpu_cap >= min(min_cap, max_cap);
}
-#else
+#else /* !CONFIG_UCLAMP_TASK: */
static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
{
return true;
}
-#endif
+#endif /* !CONFIG_UCLAMP_TASK */
#ifdef CONFIG_RT_GROUP_SCHED
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
- if (!rt_rq->tg)
- return RUNTIME_INF;
-
return rt_rq->rt_runtime;
}
@@ -499,6 +492,11 @@ typedef struct task_group *rt_rq_iter_t;
static inline struct task_group *next_task_group(struct task_group *tg)
{
+ if (!rt_group_sched_enabled()) {
+ WARN_ON(tg != &root_task_group);
+ return NULL;
+ }
+
do {
tg = list_entry_rcu(tg->list.next,
typeof(struct task_group), list);
@@ -511,9 +509,9 @@ static inline struct task_group *next_task_group(struct task_group *tg)
}
#define for_each_rt_rq(rt_rq, iter, rq) \
- for (iter = container_of(&task_groups, typeof(*iter), list); \
- (iter = next_task_group(iter)) && \
- (rt_rq = iter->rt_rq[cpu_of(rq)]);)
+ for (iter = &root_task_group; \
+ iter && (rt_rq = iter->rt_rq[cpu_of(rq)]); \
+ iter = next_task_group(iter))
#define for_each_sched_rt_entity(rt_se) \
for (; rt_se; rt_se = rt_se->parent)
@@ -580,17 +578,10 @@ static int rt_se_boosted(struct sched_rt_entity *rt_se)
return p->prio != p->normal_prio;
}
-#ifdef CONFIG_SMP
static inline const struct cpumask *sched_rt_period_mask(void)
{
return this_rq()->rd->span;
}
-#else
-static inline const struct cpumask *sched_rt_period_mask(void)
-{
- return cpu_online_mask;
-}
-#endif
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
@@ -611,7 +602,6 @@ bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
rt_rq->rt_time < rt_b->rt_runtime);
}
-#ifdef CONFIG_SMP
/*
* We ran out of runtime, see if we can borrow some from our neighbours.
*/
@@ -784,9 +774,6 @@ static void balance_runtime(struct rt_rq *rt_rq)
raw_spin_lock(&rt_rq->rt_runtime_lock);
}
}
-#else /* !CONFIG_SMP */
-static inline void balance_runtime(struct rt_rq *rt_rq) {}
-#endif /* CONFIG_SMP */
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
@@ -916,7 +903,7 @@ static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
return 0;
}
-#else /* !CONFIG_RT_GROUP_SCHED */
+#else /* !CONFIG_RT_GROUP_SCHED: */
typedef struct rt_rq *rt_rq_iter_t;
@@ -963,12 +950,10 @@ struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
return &cpu_rq(cpu)->rt;
}
-#ifdef CONFIG_SMP
static void __enable_runtime(struct rq *rq) { }
static void __disable_runtime(struct rq *rq) { }
-#endif
-#endif /* CONFIG_RT_GROUP_SCHED */
+#endif /* !CONFIG_RT_GROUP_SCHED */
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
@@ -1019,7 +1004,7 @@ static void update_curr_rt(struct rq *rq)
do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
}
}
-#endif
+#endif /* CONFIG_RT_GROUP_SCHED */
}
static void
@@ -1061,20 +1046,17 @@ enqueue_top_rt_rq(struct rt_rq *rt_rq)
cpufreq_update_util(rq, 0);
}
-#if defined CONFIG_SMP
-
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
-#ifdef CONFIG_RT_GROUP_SCHED
/*
* Change rq's cpupri only if rt_rq is the top queue.
*/
- if (&rq->rt != rt_rq)
+ if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq)
return;
-#endif
+
if (rq->online && prio < prev_prio)
cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
}
@@ -1084,27 +1066,16 @@ dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
-#ifdef CONFIG_RT_GROUP_SCHED
/*
* Change rq's cpupri only if rt_rq is the top queue.
*/
- if (&rq->rt != rt_rq)
+ if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq)
return;
-#endif
+
if (rq->online && rt_rq->highest_prio.curr != prev_prio)
cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
}
-#else /* CONFIG_SMP */
-
-static inline
-void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
-static inline
-void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
-
-#endif /* CONFIG_SMP */
-
-#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
@@ -1143,13 +1114,6 @@ dec_rt_prio(struct rt_rq *rt_rq, int prio)
dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
-#else
-
-static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
-static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
-
-#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
-
#ifdef CONFIG_RT_GROUP_SCHED
static void
@@ -1158,8 +1122,7 @@ inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
if (rt_se_boosted(rt_se))
rt_rq->rt_nr_boosted++;
- if (rt_rq->tg)
- start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
+ start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}
static void
@@ -1171,7 +1134,7 @@ dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
}
-#else /* CONFIG_RT_GROUP_SCHED */
+#else /* !CONFIG_RT_GROUP_SCHED: */
static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
@@ -1181,7 +1144,7 @@ inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
-#endif /* CONFIG_RT_GROUP_SCHED */
+#endif /* !CONFIG_RT_GROUP_SCHED */
static inline
unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
@@ -1259,11 +1222,9 @@ static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_arr
static inline struct sched_statistics *
__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
{
-#ifdef CONFIG_RT_GROUP_SCHED
/* schedstats is not supported for rt group. */
if (!rt_entity_is_task(rt_se))
return NULL;
-#endif
return &rt_task_of(rt_se)->stats;
}
@@ -1479,6 +1440,9 @@ enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
enqueue_rt_entity(rt_se, flags);
+ if (task_is_blocked(p))
+ return;
+
if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
enqueue_pushable_task(rq, p);
}
@@ -1526,10 +1490,9 @@ static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
static void yield_task_rt(struct rq *rq)
{
- requeue_task_rt(rq, rq->curr, 0);
+ requeue_task_rt(rq, rq->donor, 0);
}
-#ifdef CONFIG_SMP
static int find_lowest_rq(struct task_struct *task);
static int
@@ -1644,7 +1607,6 @@ static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
}
-#endif /* CONFIG_SMP */
/*
* Preempt the current task with a newly woken task if needed:
@@ -1658,7 +1620,6 @@ static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
return;
}
-#ifdef CONFIG_SMP
/*
* If:
*
@@ -1673,7 +1634,6 @@ static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
*/
if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr))
check_preempt_equal_prio(rq, p);
-#endif
}
static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
@@ -1713,7 +1673,7 @@ static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
BUG_ON(idx >= MAX_RT_PRIO);
queue = array->queue + idx;
- if (SCHED_WARN_ON(list_empty(queue)))
+ if (WARN_ON_ONCE(list_empty(queue)))
return NULL;
next = list_entry(queue->next, struct sched_rt_entity, run_list);
@@ -1735,7 +1695,7 @@ static struct task_struct *_pick_next_task_rt(struct rq *rq)
return rt_task_of(rt_se);
}
-static struct task_struct *pick_task_rt(struct rq *rq)
+static struct task_struct *pick_task_rt(struct rq *rq, struct rq_flags *rf)
{
struct task_struct *p;
@@ -1759,6 +1719,8 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_s
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
+ if (task_is_blocked(p))
+ return;
/*
* The previous task needs to be made eligible for pushing
* if it is still active
@@ -1767,8 +1729,6 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_s
enqueue_pushable_task(rq, p);
}
-#ifdef CONFIG_SMP
-
/* Only try algorithms three times */
#define RT_MAX_TRIES 3
@@ -1885,6 +1845,27 @@ static int find_lowest_rq(struct task_struct *task)
return -1;
}
+static struct task_struct *pick_next_pushable_task(struct rq *rq)
+{
+ struct task_struct *p;
+
+ if (!has_pushable_tasks(rq))
+ return NULL;
+
+ p = plist_first_entry(&rq->rt.pushable_tasks,
+ struct task_struct, pushable_tasks);
+
+ BUG_ON(rq->cpu != task_cpu(p));
+ BUG_ON(task_current(rq, p));
+ BUG_ON(task_current_donor(rq, p));
+ BUG_ON(p->nr_cpus_allowed <= 1);
+
+ BUG_ON(!task_on_rq_queued(p));
+ BUG_ON(!rt_task(p));
+
+ return p;
+}
+
/* Will lock the rq it finds */
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
{
@@ -1915,18 +1896,16 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
/*
* We had to unlock the run queue. In
* the mean time, task could have
- * migrated already or had its affinity changed.
- * Also make sure that it wasn't scheduled on its rq.
+ * migrated already or had its affinity changed,
+ * therefore check if the task is still at the
+ * head of the pushable tasks list.
* It is possible the task was scheduled, set
* "migrate_disabled" and then got preempted, so we must
* check the task migration disable flag here too.
*/
- if (unlikely(task_rq(task) != rq ||
+ if (unlikely(is_migration_disabled(task) ||
!cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
- task_on_cpu(rq, task) ||
- !rt_task(task) ||
- is_migration_disabled(task) ||
- !task_on_rq_queued(task))) {
+ task != pick_next_pushable_task(rq))) {
double_unlock_balance(rq, lowest_rq);
lowest_rq = NULL;
@@ -1946,27 +1925,6 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
return lowest_rq;
}
-static struct task_struct *pick_next_pushable_task(struct rq *rq)
-{
- struct task_struct *p;
-
- if (!has_pushable_tasks(rq))
- return NULL;
-
- p = plist_first_entry(&rq->rt.pushable_tasks,
- struct task_struct, pushable_tasks);
-
- BUG_ON(rq->cpu != task_cpu(p));
- BUG_ON(task_current(rq, p));
- BUG_ON(task_current_donor(rq, p));
- BUG_ON(p->nr_cpus_allowed <= 1);
-
- BUG_ON(!task_on_rq_queued(p));
- BUG_ON(!rt_task(p));
-
- return p;
-}
-
/*
* If the current CPU has more than one RT task, see if the non
* running task can migrate over to a CPU that is running a task
@@ -2444,7 +2402,6 @@ void __init init_sched_rt_class(void)
GFP_KERNEL, cpu_to_node(i));
}
}
-#endif /* CONFIG_SMP */
/*
* When switching a task to RT, we may overload the runqueue
@@ -2468,10 +2425,8 @@ static void switched_to_rt(struct rq *rq, struct task_struct *p)
* then see if we can move to another run queue.
*/
if (task_on_rq_queued(p)) {
-#ifdef CONFIG_SMP
if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
rt_queue_push_tasks(rq);
-#endif /* CONFIG_SMP */
if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq)))
resched_curr(rq);
}
@@ -2482,13 +2437,15 @@ static void switched_to_rt(struct rq *rq, struct task_struct *p)
* us to initiate a push or pull.
*/
static void
-prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
+prio_changed_rt(struct rq *rq, struct task_struct *p, u64 oldprio)
{
if (!task_on_rq_queued(p))
return;
+ if (p->prio == oldprio)
+ return;
+
if (task_current_donor(rq, p)) {
-#ifdef CONFIG_SMP
/*
* If our priority decreases while running, we
* may need to pull tasks to this runqueue.
@@ -2502,11 +2459,6 @@ prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
*/
if (p->prio > rq->rt.highest_prio.curr)
resched_curr(rq);
-#else
- /* For UP simply resched on drop of prio */
- if (oldprio < p->prio)
- resched_curr(rq);
-#endif /* CONFIG_SMP */
} else {
/*
* This task is not running, but if it is
@@ -2542,9 +2494,9 @@ static void watchdog(struct rq *rq, struct task_struct *p)
}
}
}
-#else
+#else /* !CONFIG_POSIX_TIMERS: */
static inline void watchdog(struct rq *rq, struct task_struct *p) { }
-#endif
+#endif /* !CONFIG_POSIX_TIMERS */
/*
* scheduler tick hitting a task of our scheduling class.
@@ -2604,18 +2556,21 @@ static int task_is_throttled_rt(struct task_struct *p, int cpu)
{
struct rt_rq *rt_rq;
-#ifdef CONFIG_RT_GROUP_SCHED
+#ifdef CONFIG_RT_GROUP_SCHED // XXX maybe add task_rt_rq(), see also sched_rt_period_rt_rq
rt_rq = task_group(p)->rt_rq[cpu];
+ WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group);
#else
rt_rq = &cpu_rq(cpu)->rt;
#endif
return rt_rq_throttled(rt_rq);
}
-#endif
+#endif /* CONFIG_SCHED_CORE */
DEFINE_SCHED_CLASS(rt) = {
+ .queue_mask = 4,
+
.enqueue_task = enqueue_task_rt,
.dequeue_task = dequeue_task_rt,
.yield_task = yield_task_rt,
@@ -2626,7 +2581,6 @@ DEFINE_SCHED_CLASS(rt) = {
.put_prev_task = put_prev_task_rt,
.set_next_task = set_next_task_rt,
-#ifdef CONFIG_SMP
.balance = balance_rt,
.select_task_rq = select_task_rq_rt,
.set_cpus_allowed = set_cpus_allowed_common,
@@ -2635,14 +2589,13 @@ DEFINE_SCHED_CLASS(rt) = {
.task_woken = task_woken_rt,
.switched_from = switched_from_rt,
.find_lock_rq = find_lock_lowest_rq,
-#endif
.task_tick = task_tick_rt,
.get_rr_interval = get_rr_interval_rt,
- .prio_changed = prio_changed_rt,
.switched_to = switched_to_rt,
+ .prio_changed = prio_changed_rt,
.update_curr = update_curr_rt,
@@ -2715,6 +2668,9 @@ static int tg_rt_schedulable(struct task_group *tg, void *data)
tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
return -EBUSY;
+ if (WARN_ON(!rt_group_sched_enabled() && tg != &root_task_group))
+ return -EBUSY;
+
total = to_ratio(period, runtime);
/*
@@ -2870,13 +2826,13 @@ static int sched_rt_global_constraints(void)
int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
/* Don't accept real-time tasks when there is no way for them to run */
- if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
+ if (rt_group_sched_enabled() && rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
return 0;
return 1;
}
-#else /* !CONFIG_RT_GROUP_SCHED */
+#else /* !CONFIG_RT_GROUP_SCHED: */
#ifdef CONFIG_SYSCTL
static int sched_rt_global_constraints(void)
@@ -2884,7 +2840,7 @@ static int sched_rt_global_constraints(void)
return 0;
}
#endif /* CONFIG_SYSCTL */
-#endif /* CONFIG_RT_GROUP_SCHED */
+#endif /* !CONFIG_RT_GROUP_SCHED */
#ifdef CONFIG_SYSCTL
static int sched_rt_global_validate(void)
@@ -2910,6 +2866,7 @@ static int sched_rt_handler(const struct ctl_table *table, int write, void *buff
int ret;
mutex_lock(&mutex);
+ sched_domains_mutex_lock();
old_period = sysctl_sched_rt_period;
old_runtime = sysctl_sched_rt_runtime;
@@ -2936,8 +2893,15 @@ undo:
sysctl_sched_rt_period = old_period;
sysctl_sched_rt_runtime = old_runtime;
}
+ sched_domains_mutex_unlock();
mutex_unlock(&mutex);
+ /*
+ * After changing maximum available bandwidth for DEADLINE, we need to
+ * recompute per root domain and per cpus variables accordingly.
+ */
+ rebuild_sched_domains();
+
return ret;
}
@@ -2967,7 +2931,6 @@ static int sched_rr_handler(const struct ctl_table *table, int write, void *buff
}
#endif /* CONFIG_SYSCTL */
-#ifdef CONFIG_SCHED_DEBUG
void print_rt_stats(struct seq_file *m, int cpu)
{
rt_rq_iter_t iter;
@@ -2978,4 +2941,3 @@ void print_rt_stats(struct seq_file *m, int cpu)
print_rt_rq(m, cpu, rt_rq);
rcu_read_unlock();
}
-#endif /* CONFIG_SCHED_DEBUG */
diff --git a/kernel/sched/sched-pelt.h b/kernel/sched/sched-pelt.h
index c529706bed11..6803cfec7a1e 100644
--- a/kernel/sched/sched-pelt.h
+++ b/kernel/sched/sched-pelt.h
@@ -1,5 +1,6 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* Generated by Documentation/scheduler/sched-pelt; do not modify. */
+#include <linux/types.h>
static const u32 runnable_avg_yN_inv[] __maybe_unused = {
0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 76f5f53a645f..d30cca6870f5 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -5,6 +5,7 @@
#ifndef _KERNEL_SCHED_SCHED_H
#define _KERNEL_SCHED_SCHED_H
+#include <linux/prandom.h>
#include <linux/sched/affinity.h>
#include <linux/sched/autogroup.h>
#include <linux/sched/cpufreq.h>
@@ -20,7 +21,6 @@
#include <linux/sched/task_flags.h>
#include <linux/sched/task.h>
#include <linux/sched/topology.h>
-
#include <linux/atomic.h>
#include <linux/bitmap.h>
#include <linux/bug.h>
@@ -69,6 +69,7 @@
#include <linux/wait_bit.h>
#include <linux/workqueue_api.h>
#include <linux/delayacct.h>
+#include <linux/mmu_context.h>
#include <trace/events/power.h>
#include <trace/events/sched.h>
@@ -91,12 +92,6 @@ struct cpuidle_state;
#include "cpupri.h"
#include "cpudeadline.h"
-#ifdef CONFIG_SCHED_DEBUG
-# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
-#else
-# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
-#endif
-
/* task_struct::on_rq states: */
#define TASK_ON_RQ_QUEUED 1
#define TASK_ON_RQ_MIGRATING 2
@@ -362,7 +357,7 @@ extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
extern bool __checkparam_dl(const struct sched_attr *attr);
extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
-extern int dl_bw_check_overflow(int cpu);
+extern int dl_bw_deactivate(int cpu);
extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
/*
* SCHED_DEADLINE supports servers (nested scheduling) with the following
@@ -370,38 +365,81 @@ extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s6
*
* dl_se::rq -- runqueue we belong to.
*
- * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
- * server when it runs out of tasks to run.
- *
* dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
* returns NULL.
*
* dl_server_update() -- called from update_curr_common(), propagates runtime
* to the server.
*
- * dl_server_start()
- * dl_server_stop() -- start/stop the server when it has (no) tasks.
+ * dl_server_start() -- start the server when it has tasks; it will stop
+ * automatically when there are no more tasks, per
+ * dl_se::server_pick() returning NULL.
+ *
+ * dl_server_stop() -- (force) stop the server; use when updating
+ * parameters.
*
* dl_server_init() -- initializes the server.
+ *
+ * When started the dl_server will (per dl_defer) schedule a timer for its
+ * zero-laxity point -- that is, unlike regular EDF tasks which run ASAP, a
+ * server will run at the very end of its period.
+ *
+ * This is done such that any runtime from the target class can be accounted
+ * against the server -- through dl_server_update() above -- such that when it
+ * becomes time to run, it might already be out of runtime and get deferred
+ * until the next period. In this case dl_server_timer() will alternate
+ * between defer and replenish but never actually enqueue the server.
+ *
+ * Only when the target class does not manage to exhaust the server's runtime
+ * (there's actualy starvation in the given period), will the dl_server get on
+ * the runqueue. Once queued it will pick tasks from the target class and run
+ * them until either its runtime is exhaused, at which point its back to
+ * dl_server_timer, or until there are no more tasks to run, at which point
+ * the dl_server stops itself.
+ *
+ * By stopping at this point the dl_server retains bandwidth, which, if a new
+ * task wakes up imminently (starting the server again), can be used --
+ * subject to CBS wakeup rules -- without having to wait for the next period.
+ *
+ * Additionally, because of the dl_defer behaviour the start/stop behaviour is
+ * naturally thottled to once per period, avoiding high context switch
+ * workloads from spamming the hrtimer program/cancel paths.
*/
+extern void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec);
extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
extern void dl_server_start(struct sched_dl_entity *dl_se);
extern void dl_server_stop(struct sched_dl_entity *dl_se);
extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
- dl_server_has_tasks_f has_tasks,
dl_server_pick_f pick_task);
+extern void sched_init_dl_servers(void);
-extern void dl_server_update_idle_time(struct rq *rq,
- struct task_struct *p);
extern void fair_server_init(struct rq *rq);
extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
u64 runtime, u64 period, bool init);
+static inline bool dl_server_active(struct sched_dl_entity *dl_se)
+{
+ return dl_se->dl_server_active;
+}
+
#ifdef CONFIG_CGROUP_SCHED
extern struct list_head task_groups;
+#ifdef CONFIG_GROUP_SCHED_BANDWIDTH
+extern const u64 max_bw_quota_period_us;
+
+/*
+ * default period for group bandwidth.
+ * default: 0.1s, units: microseconds
+ */
+static inline u64 default_bw_period_us(void)
+{
+ return 100000ULL;
+}
+#endif /* CONFIG_GROUP_SCHED_BANDWIDTH */
+
struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
raw_spinlock_t lock;
@@ -425,7 +463,7 @@ struct cfs_bandwidth {
int nr_burst;
u64 throttled_time;
u64 burst_time;
-#endif
+#endif /* CONFIG_CFS_BANDWIDTH */
};
/* Task group related information */
@@ -443,15 +481,13 @@ struct task_group {
/* runqueue "owned" by this group on each CPU */
struct cfs_rq **cfs_rq;
unsigned long shares;
-#ifdef CONFIG_SMP
/*
* load_avg can be heavily contended at clock tick time, so put
* it in its own cache-line separated from the fields above which
* will also be accessed at each tick.
*/
atomic_long_t load_avg ____cacheline_aligned;
-#endif
-#endif
+#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
struct sched_rt_entity **rt_se;
@@ -460,10 +496,7 @@ struct task_group {
struct rt_bandwidth rt_bandwidth;
#endif
-#ifdef CONFIG_EXT_GROUP_SCHED
- u32 scx_flags; /* SCX_TG_* */
- u32 scx_weight;
-#endif
+ struct scx_task_group scx;
struct rcu_head rcu;
struct list_head list;
@@ -532,7 +565,7 @@ extern void free_fair_sched_group(struct task_group *tg);
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
extern void online_fair_sched_group(struct task_group *tg);
extern void unregister_fair_sched_group(struct task_group *tg);
-#else
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
static inline void free_fair_sched_group(struct task_group *tg) { }
static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
@@ -540,7 +573,7 @@ static inline int alloc_fair_sched_group(struct task_group *tg, struct task_grou
}
static inline void online_fair_sched_group(struct task_group *tg) { }
static inline void unregister_fair_sched_group(struct task_group *tg) { }
-#endif
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
struct sched_entity *se, int cpu,
@@ -567,32 +600,27 @@ extern void sched_online_group(struct task_group *tg,
extern void sched_destroy_group(struct task_group *tg);
extern void sched_release_group(struct task_group *tg);
-extern void sched_move_task(struct task_struct *tsk);
+extern void sched_move_task(struct task_struct *tsk, bool for_autogroup);
#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
extern int sched_group_set_idle(struct task_group *tg, long idle);
-#ifdef CONFIG_SMP
extern void set_task_rq_fair(struct sched_entity *se,
struct cfs_rq *prev, struct cfs_rq *next);
-#else /* !CONFIG_SMP */
-static inline void set_task_rq_fair(struct sched_entity *se,
- struct cfs_rq *prev, struct cfs_rq *next) { }
-#endif /* CONFIG_SMP */
-#else /* !CONFIG_FAIR_GROUP_SCHED */
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
-#endif /* CONFIG_FAIR_GROUP_SCHED */
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
-#else /* CONFIG_CGROUP_SCHED */
+#else /* !CONFIG_CGROUP_SCHED: */
struct cfs_bandwidth { };
static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
-#endif /* CONFIG_CGROUP_SCHED */
+#endif /* !CONFIG_CGROUP_SCHED */
extern void unregister_rt_sched_group(struct task_group *tg);
extern void free_rt_sched_group(struct task_group *tg);
@@ -645,18 +673,18 @@ struct balance_callback {
/* CFS-related fields in a runqueue */
struct cfs_rq {
struct load_weight load;
- unsigned int nr_running;
- unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
- unsigned int idle_nr_running; /* SCHED_IDLE */
- unsigned int idle_h_nr_running; /* SCHED_IDLE */
+ unsigned int nr_queued;
+ unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */
+ unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */
+ unsigned int h_nr_idle; /* SCHED_IDLE */
s64 avg_vruntime;
u64 avg_load;
- u64 min_vruntime;
+ u64 zero_vruntime;
#ifdef CONFIG_SCHED_CORE
unsigned int forceidle_seq;
- u64 min_vruntime_fi;
+ u64 zero_vruntime_fi;
#endif
struct rb_root_cached tasks_timeline;
@@ -668,7 +696,6 @@ struct cfs_rq {
struct sched_entity *curr;
struct sched_entity *next;
-#ifdef CONFIG_SMP
/*
* CFS load tracking
*/
@@ -700,7 +727,6 @@ struct cfs_rq {
u64 last_h_load_update;
struct sched_entity *h_load_next;
#endif /* CONFIG_FAIR_GROUP_SCHED */
-#endif /* CONFIG_SMP */
#ifdef CONFIG_FAIR_GROUP_SCHED
struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
@@ -733,10 +759,12 @@ struct cfs_rq {
u64 throttled_clock_pelt_time;
u64 throttled_clock_self;
u64 throttled_clock_self_time;
- int throttled;
+ bool throttled:1;
+ bool pelt_clock_throttled:1;
int throttle_count;
struct list_head throttled_list;
struct list_head throttled_csd_list;
+ struct list_head throttled_limbo_list;
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};
@@ -751,9 +779,10 @@ enum scx_rq_flags {
*/
SCX_RQ_ONLINE = 1 << 0,
SCX_RQ_CAN_STOP_TICK = 1 << 1,
- SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */
SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */
SCX_RQ_BYPASSING = 1 << 4,
+ SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */
+ SCX_RQ_BAL_CB_PENDING = 1 << 6, /* must queue a cb after dispatching */
SCX_RQ_IN_WAKEUP = 1 << 16,
SCX_RQ_IN_BALANCE = 1 << 17,
@@ -766,17 +795,20 @@ struct scx_rq {
unsigned long ops_qseq;
u64 extra_enq_flags; /* see move_task_to_local_dsq() */
u32 nr_running;
- u32 flags;
u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */
bool cpu_released;
+ u32 flags;
+ u64 clock; /* current per-rq clock -- see scx_bpf_now() */
cpumask_var_t cpus_to_kick;
cpumask_var_t cpus_to_kick_if_idle;
cpumask_var_t cpus_to_preempt;
cpumask_var_t cpus_to_wait;
- unsigned long pnt_seq;
+ unsigned long kick_sync;
+ local_t reenq_local_deferred;
struct balance_callback deferred_bal_cb;
struct irq_work deferred_irq_work;
struct irq_work kick_cpus_irq_work;
+ struct scx_dispatch_q bypass_dsq;
};
#endif /* CONFIG_SCHED_CLASS_EXT */
@@ -795,32 +827,28 @@ struct rt_rq {
struct rt_prio_array active;
unsigned int rt_nr_running;
unsigned int rr_nr_running;
-#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
struct {
int curr; /* highest queued rt task prio */
-#ifdef CONFIG_SMP
int next; /* next highest */
-#endif
} highest_prio;
-#endif
-#ifdef CONFIG_SMP
bool overloaded;
struct plist_head pushable_tasks;
-#endif /* CONFIG_SMP */
int rt_queued;
#ifdef CONFIG_RT_GROUP_SCHED
int rt_throttled;
- u64 rt_time;
- u64 rt_runtime;
+ u64 rt_time; /* consumed RT time, goes up in update_curr_rt */
+ u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */
/* Nests inside the rq lock: */
raw_spinlock_t rt_runtime_lock;
unsigned int rt_nr_boosted;
- struct rq *rq;
- struct task_group *tg;
+ struct rq *rq; /* this is always top-level rq, cache? */
+#endif
+#ifdef CONFIG_CGROUP_SCHED
+ struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */
#endif
};
@@ -836,7 +864,6 @@ struct dl_rq {
unsigned int dl_nr_running;
-#ifdef CONFIG_SMP
/*
* Deadline values of the currently executing and the
* earliest ready task on this rq. Caching these facilitates
@@ -856,9 +883,7 @@ struct dl_rq {
* of the leftmost (earliest deadline) element.
*/
struct rb_root_cached pushable_dl_tasks_root;
-#else
- struct dl_bw dl_bw;
-#endif
+
/*
* "Active utilization" for this runqueue: increased when a
* task wakes up (becomes TASK_RUNNING) and decreased when a
@@ -899,7 +924,7 @@ struct dl_rq {
static inline void se_update_runnable(struct sched_entity *se)
{
if (!entity_is_task(se))
- se->runnable_weight = se->my_q->h_nr_running;
+ se->runnable_weight = se->my_q->h_nr_runnable;
}
static inline long se_runnable(struct sched_entity *se)
@@ -929,7 +954,6 @@ static inline long se_runnable(struct sched_entity *se)
#endif /* !CONFIG_FAIR_GROUP_SCHED */
-#ifdef CONFIG_SMP
/*
* XXX we want to get rid of these helpers and use the full load resolution.
*/
@@ -991,7 +1015,7 @@ struct root_domain {
* Also, some corner cases, like 'wrap around' is dangerous, but given
* that u64 is 'big enough'. So that shouldn't be a concern.
*/
- u64 visit_gen;
+ u64 visit_cookie;
#ifdef HAVE_RT_PUSH_IPI
/*
@@ -1005,7 +1029,7 @@ struct root_domain {
/* These atomics are updated outside of a lock */
atomic_t rto_loop_next;
atomic_t rto_loop_start;
-#endif
+#endif /* HAVE_RT_PUSH_IPI */
/*
* The "RT overload" flag: it gets set if a CPU has more than
* one runnable RT task.
@@ -1040,7 +1064,6 @@ static inline void set_rd_overloaded(struct root_domain *rd, int status)
#ifdef HAVE_RT_PUSH_IPI
extern void rto_push_irq_work_func(struct irq_work *work);
#endif
-#endif /* CONFIG_SMP */
#ifdef CONFIG_UCLAMP_TASK
/*
@@ -1097,6 +1120,8 @@ struct rq {
/* runqueue lock: */
raw_spinlock_t __lock;
+ /* Per class runqueue modification mask; bits in class order. */
+ unsigned int queue_mask;
unsigned int nr_running;
#ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running;
@@ -1104,18 +1129,14 @@ struct rq {
unsigned int numa_migrate_on;
#endif
#ifdef CONFIG_NO_HZ_COMMON
-#ifdef CONFIG_SMP
unsigned long last_blocked_load_update_tick;
unsigned int has_blocked_load;
call_single_data_t nohz_csd;
-#endif /* CONFIG_SMP */
unsigned int nohz_tick_stopped;
atomic_t nohz_flags;
#endif /* CONFIG_NO_HZ_COMMON */
-#ifdef CONFIG_SMP
unsigned int ttwu_pending;
-#endif
u64 nr_switches;
#ifdef CONFIG_UCLAMP_TASK
@@ -1146,12 +1167,17 @@ struct rq {
* one CPU and if it got migrated afterwards it may decrease
* it on another CPU. Always updated under the runqueue lock:
*/
- unsigned int nr_uninterruptible;
+ unsigned long nr_uninterruptible;
+#ifdef CONFIG_SCHED_PROXY_EXEC
+ struct task_struct __rcu *donor; /* Scheduling context */
+ struct task_struct __rcu *curr; /* Execution context */
+#else
union {
struct task_struct __rcu *donor; /* Scheduler context */
struct task_struct __rcu *curr; /* Execution context */
};
+#endif
struct sched_dl_entity *dl_server;
struct task_struct *idle;
struct task_struct *stop;
@@ -1173,16 +1199,13 @@ struct rq {
atomic_t nr_iowait;
-#ifdef CONFIG_SCHED_DEBUG
u64 last_seen_need_resched_ns;
int ticks_without_resched;
-#endif
#ifdef CONFIG_MEMBARRIER
int membarrier_state;
#endif
-#ifdef CONFIG_SMP
struct root_domain *rd;
struct sched_domain __rcu *sd;
@@ -1223,7 +1246,6 @@ struct rq {
#ifdef CONFIG_HOTPLUG_CPU
struct rcuwait hotplug_wait;
#endif
-#endif /* CONFIG_SMP */
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
u64 prev_irq_time;
@@ -1241,9 +1263,7 @@ struct rq {
long calc_load_active;
#ifdef CONFIG_SCHED_HRTICK
-#ifdef CONFIG_SMP
call_single_data_t hrtick_csd;
-#endif
struct hrtimer hrtick_timer;
ktime_t hrtick_time;
#endif
@@ -1270,9 +1290,7 @@ struct rq {
struct cpuidle_state *idle_state;
#endif
-#ifdef CONFIG_SMP
unsigned int nr_pinned;
-#endif
unsigned int push_busy;
struct cpu_stop_work push_work;
@@ -1293,12 +1311,12 @@ struct rq {
unsigned int core_forceidle_seq;
unsigned int core_forceidle_occupation;
u64 core_forceidle_start;
-#endif
+#endif /* CONFIG_SCHED_CORE */
/* Scratch cpumask to be temporarily used under rq_lock */
cpumask_var_t scratch_mask;
-#if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
+#ifdef CONFIG_CFS_BANDWIDTH
call_single_data_t cfsb_csd;
struct list_head cfsb_csd_list;
#endif
@@ -1312,35 +1330,33 @@ static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
return cfs_rq->rq;
}
-#else
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
return container_of(cfs_rq, struct rq, cfs);
}
-#endif
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
static inline int cpu_of(struct rq *rq)
{
-#ifdef CONFIG_SMP
return rq->cpu;
-#else
- return 0;
-#endif
}
#define MDF_PUSH 0x01
static inline bool is_migration_disabled(struct task_struct *p)
{
-#ifdef CONFIG_SMP
return p->migration_disabled;
-#else
- return false;
-#endif
}
DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
+DECLARE_PER_CPU(struct rnd_state, sched_rnd_state);
+
+static inline u32 sched_rng(void)
+{
+ return prandom_u32_state(this_cpu_ptr(&sched_rnd_state));
+}
#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
#define this_rq() this_cpu_ptr(&runqueues)
@@ -1348,10 +1364,17 @@ DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
#define raw_rq() raw_cpu_ptr(&runqueues)
+#ifdef CONFIG_SCHED_PROXY_EXEC
+static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
+{
+ rcu_assign_pointer(rq->donor, t);
+}
+#else
static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
{
/* Do nothing */
}
+#endif
#ifdef CONFIG_SCHED_CORE
static inline struct cpumask *sched_group_span(struct sched_group *sg);
@@ -1417,6 +1440,9 @@ static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
if (!sched_core_enabled(rq))
return true;
+ if (rq->core->core_cookie == p->core_cookie)
+ return true;
+
for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
if (!available_idle_cpu(cpu)) {
idle_core = false;
@@ -1428,7 +1454,7 @@ static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
* A CPU in an idle core is always the best choice for tasks with
* cookies.
*/
- return idle_core || rq->core->core_cookie == p->core_cookie;
+ return idle_core;
}
static inline bool sched_group_cookie_match(struct rq *rq,
@@ -1500,6 +1526,24 @@ static inline bool sched_group_cookie_match(struct rq *rq,
#endif /* !CONFIG_SCHED_CORE */
+#ifdef CONFIG_RT_GROUP_SCHED
+# ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
+DECLARE_STATIC_KEY_FALSE(rt_group_sched);
+static inline bool rt_group_sched_enabled(void)
+{
+ return static_branch_unlikely(&rt_group_sched);
+}
+# else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */
+DECLARE_STATIC_KEY_TRUE(rt_group_sched);
+static inline bool rt_group_sched_enabled(void)
+{
+ return static_branch_likely(&rt_group_sched);
+}
+# endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */
+#else /* !CONFIG_RT_GROUP_SCHED: */
+# define rt_group_sched_enabled() false
+#endif /* !CONFIG_RT_GROUP_SCHED */
+
static inline void lockdep_assert_rq_held(struct rq *rq)
{
lockdep_assert_held(__rq_lockp(rq));
@@ -1556,15 +1600,15 @@ static inline void update_idle_core(struct rq *rq)
__update_idle_core(rq);
}
-#else
+#else /* !CONFIG_SCHED_SMT: */
static inline void update_idle_core(struct rq *rq) { }
-#endif
+#endif /* !CONFIG_SCHED_SMT */
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline struct task_struct *task_of(struct sched_entity *se)
{
- SCHED_WARN_ON(!entity_is_task(se));
+ WARN_ON_ONCE(!entity_is_task(se));
return container_of(se, struct task_struct, se);
}
@@ -1645,7 +1689,7 @@ static inline void assert_clock_updated(struct rq *rq)
* The only reason for not seeing a clock update since the
* last rq_pin_lock() is if we're currently skipping updates.
*/
- SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
+ WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP);
}
static inline u64 rq_clock(struct rq *rq)
@@ -1692,7 +1736,7 @@ static inline void rq_clock_cancel_skipupdate(struct rq *rq)
static inline void rq_clock_start_loop_update(struct rq *rq)
{
lockdep_assert_rq_held(rq);
- SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
+ WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP);
rq->clock_update_flags |= RQCF_ACT_SKIP;
}
@@ -1705,18 +1749,48 @@ static inline void rq_clock_stop_loop_update(struct rq *rq)
struct rq_flags {
unsigned long flags;
struct pin_cookie cookie;
-#ifdef CONFIG_SCHED_DEBUG
/*
* A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
* current pin context is stashed here in case it needs to be
* restored in rq_repin_lock().
*/
unsigned int clock_update_flags;
-#endif
};
extern struct balance_callback balance_push_callback;
+#ifdef CONFIG_SCHED_CLASS_EXT
+extern const struct sched_class ext_sched_class;
+
+DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */
+DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */
+
+#define scx_enabled() static_branch_unlikely(&__scx_enabled)
+#define scx_switched_all() static_branch_unlikely(&__scx_switched_all)
+
+static inline void scx_rq_clock_update(struct rq *rq, u64 clock)
+{
+ if (!scx_enabled())
+ return;
+ WRITE_ONCE(rq->scx.clock, clock);
+ smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID);
+}
+
+static inline void scx_rq_clock_invalidate(struct rq *rq)
+{
+ if (!scx_enabled())
+ return;
+ WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID);
+}
+
+#else /* !CONFIG_SCHED_CLASS_EXT: */
+#define scx_enabled() false
+#define scx_switched_all() false
+
+static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {}
+static inline void scx_rq_clock_invalidate(struct rq *rq) {}
+#endif /* !CONFIG_SCHED_CLASS_EXT */
+
/*
* Lockdep annotation that avoids accidental unlocks; it's like a
* sticky/continuous lockdep_assert_held().
@@ -1731,22 +1805,17 @@ static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
{
rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
-#ifdef CONFIG_SCHED_DEBUG
rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
rf->clock_update_flags = 0;
-# ifdef CONFIG_SMP
- SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
-# endif
-#endif
+ WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback);
}
static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
{
-#ifdef CONFIG_SCHED_DEBUG
if (rq->clock_update_flags > RQCF_ACT_SKIP)
rf->clock_update_flags = RQCF_UPDATED;
-#endif
+ scx_rq_clock_invalidate(rq);
lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
}
@@ -1754,12 +1823,10 @@ static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
{
lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
-#ifdef CONFIG_SCHED_DEBUG
/*
* Restore the value we stashed in @rf for this pin context.
*/
rq->clock_update_flags |= rf->clock_update_flags;
-#endif
}
extern
@@ -1771,7 +1838,8 @@ struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
__acquires(p->pi_lock)
__acquires(rq->lock);
-static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
+static inline void
+__task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
__releases(rq->lock)
{
rq_unpin_lock(rq, rf);
@@ -1783,8 +1851,7 @@ task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
__releases(rq->lock)
__releases(p->pi_lock)
{
- rq_unpin_lock(rq, rf);
- raw_spin_rq_unlock(rq);
+ __task_rq_unlock(rq, p, rf);
raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
}
@@ -1793,6 +1860,11 @@ DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
task_rq_unlock(_T->rq, _T->lock, &_T->rf),
struct rq *rq; struct rq_flags rf)
+DEFINE_LOCK_GUARD_1(__task_rq_lock, struct task_struct,
+ _T->rq = __task_rq_lock(_T->lock, &_T->rf),
+ __task_rq_unlock(_T->rq, _T->lock, &_T->rf),
+ struct rq *rq; struct rq_flags rf)
+
static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
__acquires(rq->lock)
{
@@ -1907,19 +1979,17 @@ extern void sched_setnuma(struct task_struct *p, int node);
extern int migrate_task_to(struct task_struct *p, int cpu);
extern int migrate_swap(struct task_struct *p, struct task_struct *t,
int cpu, int scpu);
-extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
+extern void init_numa_balancing(u64 clone_flags, struct task_struct *p);
#else /* !CONFIG_NUMA_BALANCING: */
static inline void
-init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
+init_numa_balancing(u64 clone_flags, struct task_struct *p)
{
}
#endif /* !CONFIG_NUMA_BALANCING */
-#ifdef CONFIG_SMP
-
static inline void
queue_balance_callback(struct rq *rq,
struct balance_callback *head,
@@ -2033,9 +2103,7 @@ struct sched_group_capacity {
unsigned long next_update;
int imbalance; /* XXX unrelated to capacity but shared group state */
-#ifdef CONFIG_SCHED_DEBUG
int id;
-#endif
unsigned long cpumask[]; /* Balance mask */
};
@@ -2075,13 +2143,8 @@ static inline struct cpumask *group_balance_mask(struct sched_group *sg)
extern int group_balance_cpu(struct sched_group *sg);
-#ifdef CONFIG_SCHED_DEBUG
extern void update_sched_domain_debugfs(void);
extern void dirty_sched_domain_sysctl(int cpu);
-#else
-static inline void update_sched_domain_debugfs(void) { }
-static inline void dirty_sched_domain_sysctl(int cpu) { }
-#endif
extern int sched_update_scaling(void);
@@ -2092,8 +2155,6 @@ static inline const struct cpumask *task_user_cpus(struct task_struct *p)
return p->user_cpus_ptr;
}
-#endif /* CONFIG_SMP */
-
#ifdef CONFIG_CGROUP_SCHED
/*
@@ -2129,9 +2190,16 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
#endif
#ifdef CONFIG_RT_GROUP_SCHED
+ /*
+ * p->rt.rt_rq is NULL initially and it is easier to assign
+ * root_task_group's rt_rq than switching in rt_rq_of_se()
+ * Clobbers tg(!)
+ */
+ if (!rt_group_sched_enabled())
+ tg = &root_task_group;
p->rt.rt_rq = tg->rt_rq[cpu];
p->rt.parent = tg->rt_se[cpu];
-#endif
+#endif /* CONFIG_RT_GROUP_SCHED */
}
#else /* !CONFIG_CGROUP_SCHED: */
@@ -2157,17 +2225,13 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
smp_wmb();
WRITE_ONCE(task_thread_info(p)->cpu, cpu);
p->wake_cpu = cpu;
-#endif
+ rseq_sched_set_ids_changed(p);
+#endif /* CONFIG_SMP */
}
/*
- * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
+ * Tunables:
*/
-#ifdef CONFIG_SCHED_DEBUG
-# define const_debug __read_mostly
-#else
-# define const_debug const
-#endif
#define SCHED_FEAT(name, enabled) \
__SCHED_FEAT_##name ,
@@ -2179,13 +2243,11 @@ enum {
#undef SCHED_FEAT
-#ifdef CONFIG_SCHED_DEBUG
-
/*
* To support run-time toggling of sched features, all the translation units
* (but core.c) reference the sysctl_sched_features defined in core.c.
*/
-extern const_debug unsigned int sysctl_sched_features;
+extern __read_mostly unsigned int sysctl_sched_features;
#ifdef CONFIG_JUMP_LABEL
@@ -2207,24 +2269,6 @@ extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
#endif /* !CONFIG_JUMP_LABEL */
-#else /* !SCHED_DEBUG: */
-
-/*
- * Each translation unit has its own copy of sysctl_sched_features to allow
- * constants propagation at compile time and compiler optimization based on
- * features default.
- */
-#define SCHED_FEAT(name, enabled) \
- (1UL << __SCHED_FEAT_##name) * enabled |
-static const_debug __maybe_unused unsigned int sysctl_sched_features =
-#include "features.h"
- 0;
-#undef SCHED_FEAT
-
-#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
-
-#endif /* !SCHED_DEBUG */
-
extern struct static_key_false sched_numa_balancing;
extern struct static_key_false sched_schedstats;
@@ -2260,18 +2304,22 @@ static inline int task_current_donor(struct rq *rq, struct task_struct *p)
return rq->donor == p;
}
+static inline bool task_is_blocked(struct task_struct *p)
+{
+ if (!sched_proxy_exec())
+ return false;
+
+ return !!p->blocked_on;
+}
+
static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
{
-#ifdef CONFIG_SMP
return p->on_cpu;
-#else
- return task_current(rq, p);
-#endif
}
static inline int task_on_rq_queued(struct task_struct *p)
{
- return p->on_rq == TASK_ON_RQ_QUEUED;
+ return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED;
}
static inline int task_on_rq_migrating(struct task_struct *p)
@@ -2289,11 +2337,9 @@ static inline int task_on_rq_migrating(struct task_struct *p)
#define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */
#define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */
-#ifdef CONFIG_SMP
static_assert(WF_EXEC == SD_BALANCE_EXEC);
static_assert(WF_FORK == SD_BALANCE_FORK);
static_assert(WF_TTWU == SD_BALANCE_WAKE);
-#endif
/*
* To aid in avoiding the subversion of "niceness" due to uneven distribution
@@ -2313,8 +2359,7 @@ extern const u32 sched_prio_to_wmult[40];
/*
* {de,en}queue flags:
*
- * DEQUEUE_SLEEP - task is no longer runnable
- * ENQUEUE_WAKEUP - task just became runnable
+ * SLEEP/WAKEUP - task is no-longer/just-became runnable
*
* SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
* are in a known state which allows modification. Such pairs
@@ -2327,37 +2372,46 @@ extern const u32 sched_prio_to_wmult[40];
*
* MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
*
+ * DELAYED - de/re-queue a sched_delayed task
+ *
+ * CLASS - going to update p->sched_class; makes sched_change call the
+ * various switch methods.
+ *
* ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
* ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
* ENQUEUE_MIGRATED - the task was migrated during wakeup
* ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
*
+ * XXX SAVE/RESTORE in combination with CLASS doesn't really make sense, but
+ * SCHED_DEADLINE seems to rely on this for now.
*/
-#define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */
-#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
-#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
-#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
-#define DEQUEUE_SPECIAL 0x10
-#define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */
-#define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */
-
-#define ENQUEUE_WAKEUP 0x01
-#define ENQUEUE_RESTORE 0x02
-#define ENQUEUE_MOVE 0x04
-#define ENQUEUE_NOCLOCK 0x08
-
-#define ENQUEUE_HEAD 0x10
-#define ENQUEUE_REPLENISH 0x20
-#ifdef CONFIG_SMP
-#define ENQUEUE_MIGRATED 0x40
-#else
-#define ENQUEUE_MIGRATED 0x00
-#endif
-#define ENQUEUE_INITIAL 0x80
-#define ENQUEUE_MIGRATING 0x100
-#define ENQUEUE_DELAYED 0x200
-#define ENQUEUE_RQ_SELECTED 0x400
+#define DEQUEUE_SLEEP 0x0001 /* Matches ENQUEUE_WAKEUP */
+#define DEQUEUE_SAVE 0x0002 /* Matches ENQUEUE_RESTORE */
+#define DEQUEUE_MOVE 0x0004 /* Matches ENQUEUE_MOVE */
+#define DEQUEUE_NOCLOCK 0x0008 /* Matches ENQUEUE_NOCLOCK */
+
+#define DEQUEUE_MIGRATING 0x0010 /* Matches ENQUEUE_MIGRATING */
+#define DEQUEUE_DELAYED 0x0020 /* Matches ENQUEUE_DELAYED */
+#define DEQUEUE_CLASS 0x0040 /* Matches ENQUEUE_CLASS */
+
+#define DEQUEUE_SPECIAL 0x00010000
+#define DEQUEUE_THROTTLE 0x00020000
+
+#define ENQUEUE_WAKEUP 0x0001
+#define ENQUEUE_RESTORE 0x0002
+#define ENQUEUE_MOVE 0x0004
+#define ENQUEUE_NOCLOCK 0x0008
+
+#define ENQUEUE_MIGRATING 0x0010
+#define ENQUEUE_DELAYED 0x0020
+#define ENQUEUE_CLASS 0x0040
+
+#define ENQUEUE_HEAD 0x00010000
+#define ENQUEUE_REPLENISH 0x00020000
+#define ENQUEUE_MIGRATED 0x00040000
+#define ENQUEUE_INITIAL 0x00080000
+#define ENQUEUE_RQ_SELECTED 0x00100000
#define RETRY_TASK ((void *)-1UL)
@@ -2374,16 +2428,61 @@ struct sched_class {
#ifdef CONFIG_UCLAMP_TASK
int uclamp_enabled;
#endif
+ /*
+ * idle: 0
+ * ext: 1
+ * fair: 2
+ * rt: 4
+ * dl: 8
+ * stop: 16
+ */
+ unsigned int queue_mask;
+ /*
+ * move_queued_task/activate_task/enqueue_task: rq->lock
+ * ttwu_do_activate/activate_task/enqueue_task: rq->lock
+ * wake_up_new_task/activate_task/enqueue_task: task_rq_lock
+ * ttwu_runnable/enqueue_task: task_rq_lock
+ * proxy_task_current: rq->lock
+ * sched_change_end
+ */
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
+ /*
+ * move_queued_task/deactivate_task/dequeue_task: rq->lock
+ * __schedule/block_task/dequeue_task: rq->lock
+ * proxy_task_current: rq->lock
+ * wait_task_inactive: task_rq_lock
+ * sched_change_begin
+ */
bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
+
+ /*
+ * do_sched_yield: rq->lock
+ */
void (*yield_task) (struct rq *rq);
+ /*
+ * yield_to: rq->lock (double)
+ */
bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
+ /*
+ * move_queued_task: rq->lock
+ * __migrate_swap_task: rq->lock
+ * ttwu_do_activate: rq->lock
+ * ttwu_runnable: task_rq_lock
+ * wake_up_new_task: task_rq_lock
+ */
void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
+ /*
+ * schedule/pick_next_task/prev_balance: rq->lock
+ */
int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
- struct task_struct *(*pick_task)(struct rq *rq);
+
+ /*
+ * schedule/pick_next_task: rq->lock
+ */
+ struct task_struct *(*pick_task)(struct rq *rq, struct rq_flags *rf);
/*
* Optional! When implemented pick_next_task() should be equivalent to:
*
@@ -2393,57 +2492,123 @@ struct sched_class {
* set_next_task_first(next);
* }
*/
- struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
+ struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev,
+ struct rq_flags *rf);
+ /*
+ * sched_change:
+ * __schedule: rq->lock
+ */
void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
-#ifdef CONFIG_SMP
+ /*
+ * select_task_rq: p->pi_lock
+ * sched_exec: p->pi_lock
+ */
int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
+ /*
+ * set_task_cpu: p->pi_lock || rq->lock (ttwu like)
+ */
void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
+ /*
+ * ttwu_do_activate: rq->lock
+ * wake_up_new_task: task_rq_lock
+ */
void (*task_woken)(struct rq *this_rq, struct task_struct *task);
+ /*
+ * do_set_cpus_allowed: task_rq_lock + sched_change
+ */
void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
+ /*
+ * sched_set_rq_{on,off}line: rq->lock
+ */
void (*rq_online)(struct rq *rq);
void (*rq_offline)(struct rq *rq);
+ /*
+ * push_cpu_stop: p->pi_lock && rq->lock
+ */
struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
-#endif
+ /*
+ * hrtick: rq->lock
+ * sched_tick: rq->lock
+ * sched_tick_remote: rq->lock
+ */
void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
+ /*
+ * sched_cgroup_fork: p->pi_lock
+ */
void (*task_fork)(struct task_struct *p);
+ /*
+ * finish_task_switch: no locks
+ */
void (*task_dead)(struct task_struct *p);
/*
- * The switched_from() call is allowed to drop rq->lock, therefore we
- * cannot assume the switched_from/switched_to pair is serialized by
- * rq->lock. They are however serialized by p->pi_lock.
+ * sched_change
+ */
+ void (*switching_from)(struct rq *this_rq, struct task_struct *task);
+ void (*switched_from) (struct rq *this_rq, struct task_struct *task);
+ void (*switching_to) (struct rq *this_rq, struct task_struct *task);
+ void (*switched_to) (struct rq *this_rq, struct task_struct *task);
+ u64 (*get_prio) (struct rq *this_rq, struct task_struct *task);
+ void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
+ u64 oldprio);
+
+ /*
+ * set_load_weight: task_rq_lock + sched_change
+ * __setscheduler_parms: task_rq_lock + sched_change
*/
- void (*switching_to) (struct rq *this_rq, struct task_struct *task);
- void (*switched_from)(struct rq *this_rq, struct task_struct *task);
- void (*switched_to) (struct rq *this_rq, struct task_struct *task);
void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
const struct load_weight *lw);
- void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
- int oldprio);
+ /*
+ * sched_rr_get_interval: task_rq_lock
+ */
unsigned int (*get_rr_interval)(struct rq *rq,
struct task_struct *task);
+ /*
+ * task_sched_runtime: task_rq_lock
+ */
void (*update_curr)(struct rq *rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
+ /*
+ * sched_change_group: task_rq_lock + sched_change
+ */
void (*task_change_group)(struct task_struct *p);
#endif
#ifdef CONFIG_SCHED_CORE
+ /*
+ * pick_next_task: rq->lock
+ * try_steal_cookie: rq->lock (double)
+ */
int (*task_is_throttled)(struct task_struct *p, int cpu);
#endif
};
+/*
+ * Does not nest; only used around sched_class::pick_task() rq-lock-breaks.
+ */
+static inline void rq_modified_clear(struct rq *rq)
+{
+ rq->queue_mask = 0;
+}
+
+static inline bool rq_modified_above(struct rq *rq, const struct sched_class * class)
+{
+ unsigned int mask = class->queue_mask;
+ return rq->queue_mask & ~((mask << 1) - 1);
+}
+
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
WARN_ON_ONCE(rq->donor != prev);
@@ -2469,7 +2634,7 @@ static inline void put_prev_set_next_task(struct rq *rq,
struct task_struct *prev,
struct task_struct *next)
{
- WARN_ON_ONCE(rq->curr != prev);
+ WARN_ON_ONCE(rq->donor != prev);
__put_prev_set_next_dl_server(rq, prev, next);
@@ -2505,19 +2670,6 @@ extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;
-#ifdef CONFIG_SCHED_CLASS_EXT
-extern const struct sched_class ext_sched_class;
-
-DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled); /* SCX BPF scheduler loaded */
-DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */
-
-#define scx_enabled() static_branch_unlikely(&__scx_ops_enabled)
-#define scx_switched_all() static_branch_unlikely(&__scx_switched_all)
-#else /* !CONFIG_SCHED_CLASS_EXT */
-#define scx_enabled() false
-#define scx_switched_all() false
-#endif /* !CONFIG_SCHED_CLASS_EXT */
-
/*
* Iterate only active classes. SCX can take over all fair tasks or be
* completely disabled. If the former, skip fair. If the latter, skip SCX.
@@ -2565,19 +2717,18 @@ static inline bool sched_rt_runnable(struct rq *rq)
static inline bool sched_fair_runnable(struct rq *rq)
{
- return rq->cfs.nr_running > 0;
+ return rq->cfs.nr_queued > 0;
}
-extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
-extern struct task_struct *pick_task_idle(struct rq *rq);
+extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev,
+ struct rq_flags *rf);
+extern struct task_struct *pick_task_idle(struct rq *rq, struct rq_flags *rf);
#define SCA_CHECK 0x01
#define SCA_MIGRATE_DISABLE 0x02
#define SCA_MIGRATE_ENABLE 0x04
#define SCA_USER 0x08
-#ifdef CONFIG_SMP
-
extern void update_group_capacity(struct sched_domain *sd, int cpu);
extern void sched_balance_trigger(struct rq *rq);
@@ -2601,7 +2752,7 @@ static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
static inline cpumask_t *alloc_user_cpus_ptr(int node)
{
/*
- * See do_set_cpus_allowed() above for the rcu_head usage.
+ * See set_cpus_allowed_force() above for the rcu_head usage.
*/
int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
@@ -2629,26 +2780,6 @@ static inline struct task_struct *get_push_task(struct rq *rq)
extern int push_cpu_stop(void *arg);
-#else /* !CONFIG_SMP: */
-
-static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
-{
- return true;
-}
-
-static inline int __set_cpus_allowed_ptr(struct task_struct *p,
- struct affinity_context *ctx)
-{
- return set_cpus_allowed_ptr(p, ctx->new_mask);
-}
-
-static inline cpumask_t *alloc_user_cpus_ptr(int node)
-{
- return NULL;
-}
-
-#endif /* !CONFIG_SMP */
-
#ifdef CONFIG_CPU_IDLE
static inline void idle_set_state(struct rq *rq,
@@ -2659,7 +2790,7 @@ static inline void idle_set_state(struct rq *rq,
static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
- SCHED_WARN_ON(!rcu_read_lock_held());
+ WARN_ON_ONCE(!rcu_read_lock_held());
return rq->idle_state;
}
@@ -2698,6 +2829,8 @@ extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
extern void init_dl_entity(struct sched_dl_entity *dl_se);
+extern void init_cfs_throttle_work(struct task_struct *p);
+
#define BW_SHIFT 20
#define BW_UNIT (1 << BW_SHIFT)
#define RATIO_SHIFT 8
@@ -2744,10 +2877,8 @@ static inline void add_nr_running(struct rq *rq, unsigned count)
call_trace_sched_update_nr_running(rq, count);
}
-#ifdef CONFIG_SMP
if (prev_nr < 2 && rq->nr_running >= 2)
set_rd_overloaded(rq->rd, 1);
-#endif
sched_update_tick_dependency(rq);
}
@@ -2817,12 +2948,11 @@ extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
# define SCHED_NR_MIGRATE_BREAK 32
#endif
-extern const_debug unsigned int sysctl_sched_nr_migrate;
-extern const_debug unsigned int sysctl_sched_migration_cost;
+extern __read_mostly unsigned int sysctl_sched_nr_migrate;
+extern __read_mostly unsigned int sysctl_sched_migration_cost;
extern unsigned int sysctl_sched_base_slice;
-#ifdef CONFIG_SCHED_DEBUG
extern int sysctl_resched_latency_warn_ms;
extern int sysctl_resched_latency_warn_once;
@@ -2833,7 +2963,6 @@ extern unsigned int sysctl_numa_balancing_scan_period_min;
extern unsigned int sysctl_numa_balancing_scan_period_max;
extern unsigned int sysctl_numa_balancing_scan_size;
extern unsigned int sysctl_numa_balancing_hot_threshold;
-#endif
#ifdef CONFIG_SCHED_HRTICK
@@ -2906,7 +3035,6 @@ unsigned long arch_scale_freq_capacity(int cpu)
}
#endif
-#ifdef CONFIG_SCHED_DEBUG
/*
* In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
* acquire rq lock instead of rq_lock(). So at the end of these two functions
@@ -2916,14 +3044,8 @@ unsigned long arch_scale_freq_capacity(int cpu)
static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
{
rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
- /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
-#ifdef CONFIG_SMP
rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
-#endif
}
-#else
-static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { }
-#endif
#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \
__DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
@@ -2931,8 +3053,6 @@ static inline class_##name##_t class_##name##_constructor(type *lock, type *lock
{ class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \
_lock; return _t; }
-#ifdef CONFIG_SMP
-
static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
{
#ifdef CONFIG_SCHED_CORE
@@ -2955,7 +3075,7 @@ static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
/*
* __sched_core_flip() relies on SMT having cpu-id lock order.
*/
-#endif
+#endif /* CONFIG_SCHED_CORE */
return rq1->cpu < rq2->cpu;
}
@@ -3092,42 +3212,6 @@ extern void set_rq_offline(struct rq *rq);
extern bool sched_smp_initialized;
-#else /* !CONFIG_SMP: */
-
-/*
- * double_rq_lock - safely lock two runqueues
- *
- * Note this does not disable interrupts like task_rq_lock,
- * you need to do so manually before calling.
- */
-static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
- __acquires(rq1->lock)
- __acquires(rq2->lock)
-{
- WARN_ON_ONCE(!irqs_disabled());
- WARN_ON_ONCE(rq1 != rq2);
- raw_spin_rq_lock(rq1);
- __acquire(rq2->lock); /* Fake it out ;) */
- double_rq_clock_clear_update(rq1, rq2);
-}
-
-/*
- * double_rq_unlock - safely unlock two runqueues
- *
- * Note this does not restore interrupts like task_rq_unlock,
- * you need to do so manually after calling.
- */
-static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
- __releases(rq1->lock)
- __releases(rq2->lock)
-{
- WARN_ON_ONCE(rq1 != rq2);
- raw_spin_rq_unlock(rq1);
- __release(rq2->lock);
-}
-
-#endif /* !CONFIG_SMP */
-
DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
double_rq_lock(_T->lock, _T->lock2),
double_rq_unlock(_T->lock, _T->lock2))
@@ -3136,7 +3220,6 @@ extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
-#ifdef CONFIG_SCHED_DEBUG
extern bool sched_debug_verbose;
extern void print_cfs_stats(struct seq_file *m, int cpu);
@@ -3147,15 +3230,13 @@ extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
extern void resched_latency_warn(int cpu, u64 latency);
-# ifdef CONFIG_NUMA_BALANCING
+
+#ifdef CONFIG_NUMA_BALANCING
extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
extern void
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
unsigned long tpf, unsigned long gsf, unsigned long gpf);
-# endif /* CONFIG_NUMA_BALANCING */
-#else /* !CONFIG_SCHED_DEBUG: */
-static inline void resched_latency_warn(int cpu, u64 latency) { }
-#endif /* !CONFIG_SCHED_DEBUG */
+#endif /* CONFIG_NUMA_BALANCING */
extern void init_cfs_rq(struct cfs_rq *cfs_rq);
extern void init_rt_rq(struct rt_rq *rt_rq);
@@ -3189,7 +3270,7 @@ extern void nohz_balance_exit_idle(struct rq *rq);
static inline void nohz_balance_exit_idle(struct rq *rq) { }
#endif /* !CONFIG_NO_HZ_COMMON */
-#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
+#ifdef CONFIG_NO_HZ_COMMON
extern void nohz_run_idle_balance(int cpu);
#else
static inline void nohz_run_idle_balance(int cpu) { }
@@ -3233,6 +3314,12 @@ struct irqtime {
};
DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
+extern int sched_clock_irqtime;
+
+static inline int irqtime_enabled(void)
+{
+ return sched_clock_irqtime;
+}
/*
* Returns the irqtime minus the softirq time computed by ksoftirqd.
@@ -3253,7 +3340,14 @@ static inline u64 irq_time_read(int cpu)
return total;
}
-#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
+#else /* !CONFIG_IRQ_TIME_ACCOUNTING: */
+
+static inline int irqtime_enabled(void)
+{
+ return 0;
+}
+
+#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
#ifdef CONFIG_CPU_FREQ
@@ -3302,8 +3396,6 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
# define arch_scale_freq_invariant() false
#endif
-#ifdef CONFIG_SMP
-
unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
unsigned long *min,
unsigned long *max);
@@ -3347,14 +3439,35 @@ static inline unsigned long cpu_util_rt(struct rq *rq)
return READ_ONCE(rq->avg_rt.util_avg);
}
-#else /* !CONFIG_SMP */
-static inline bool update_other_load_avgs(struct rq *rq) { return false; }
-#endif /* CONFIG_SMP */
-
#ifdef CONFIG_UCLAMP_TASK
unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
+/*
+ * When uclamp is compiled in, the aggregation at rq level is 'turned off'
+ * by default in the fast path and only gets turned on once userspace performs
+ * an operation that requires it.
+ *
+ * Returns true if userspace opted-in to use uclamp and aggregation at rq level
+ * hence is active.
+ */
+static inline bool uclamp_is_used(void)
+{
+ return static_branch_likely(&sched_uclamp_used);
+}
+
+/*
+ * Enabling static branches would get the cpus_read_lock(),
+ * check whether uclamp_is_used before enable it to avoid always
+ * calling cpus_read_lock(). Because we never disable this
+ * static key once enable it.
+ */
+static inline void sched_uclamp_enable(void)
+{
+ if (!uclamp_is_used())
+ static_branch_enable(&sched_uclamp_used);
+}
+
static inline unsigned long uclamp_rq_get(struct rq *rq,
enum uclamp_id clamp_id)
{
@@ -3378,7 +3491,7 @@ static inline bool uclamp_rq_is_capped(struct rq *rq)
unsigned long rq_util;
unsigned long max_util;
- if (!static_branch_likely(&sched_uclamp_used))
+ if (!uclamp_is_used())
return false;
rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
@@ -3387,19 +3500,6 @@ static inline bool uclamp_rq_is_capped(struct rq *rq)
return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
}
-/*
- * When uclamp is compiled in, the aggregation at rq level is 'turned off'
- * by default in the fast path and only gets turned on once userspace performs
- * an operation that requires it.
- *
- * Returns true if userspace opted-in to use uclamp and aggregation at rq level
- * hence is active.
- */
-static inline bool uclamp_is_used(void)
-{
- return static_branch_likely(&sched_uclamp_used);
-}
-
#define for_each_clamp_id(clamp_id) \
for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
@@ -3447,6 +3547,8 @@ static inline bool uclamp_is_used(void)
return false;
}
+static inline void sched_uclamp_enable(void) {}
+
static inline unsigned long
uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
{
@@ -3500,6 +3602,8 @@ unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned
#endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
+extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr);
+
#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
@@ -3511,15 +3615,13 @@ static inline bool sched_energy_enabled(void)
return static_branch_unlikely(&sched_energy_present);
}
-extern struct cpufreq_governor schedutil_gov;
-
-#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
+#else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */
#define perf_domain_span(pd) NULL
static inline bool sched_energy_enabled(void) { return false; }
-#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
+#endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
#ifdef CONFIG_MEMBARRIER
@@ -3545,7 +3647,7 @@ static inline void membarrier_switch_mm(struct rq *rq,
WRITE_ONCE(rq->membarrier_state, membarrier_state);
}
-#else /* !CONFIG_MEMBARRIER :*/
+#else /* !CONFIG_MEMBARRIER: */
static inline void membarrier_switch_mm(struct rq *rq,
struct mm_struct *prev_mm,
@@ -3555,7 +3657,6 @@ static inline void membarrier_switch_mm(struct rq *rq,
#endif /* !CONFIG_MEMBARRIER */
-#ifdef CONFIG_SMP
static inline bool is_per_cpu_kthread(struct task_struct *p)
{
if (!(p->flags & PF_KTHREAD))
@@ -3566,7 +3667,6 @@ static inline bool is_per_cpu_kthread(struct task_struct *p)
return true;
}
-#endif
extern void swake_up_all_locked(struct swait_queue_head *q);
extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
@@ -3578,274 +3678,220 @@ extern int preempt_dynamic_mode;
extern int sched_dynamic_mode(const char *str);
extern void sched_dynamic_update(int mode);
#endif
+extern const char *preempt_modes[];
#ifdef CONFIG_SCHED_MM_CID
-#define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */
-#define MM_CID_SCAN_DELAY 100 /* 100ms */
+static __always_inline bool cid_on_cpu(unsigned int cid)
+{
+ return cid & MM_CID_ONCPU;
+}
+
+static __always_inline bool cid_in_transit(unsigned int cid)
+{
+ return cid & MM_CID_TRANSIT;
+}
-extern raw_spinlock_t cid_lock;
-extern int use_cid_lock;
+static __always_inline unsigned int cpu_cid_to_cid(unsigned int cid)
+{
+ return cid & ~MM_CID_ONCPU;
+}
-extern void sched_mm_cid_migrate_from(struct task_struct *t);
-extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
-extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
-extern void init_sched_mm_cid(struct task_struct *t);
+static __always_inline unsigned int cid_to_cpu_cid(unsigned int cid)
+{
+ return cid | MM_CID_ONCPU;
+}
-static inline void __mm_cid_put(struct mm_struct *mm, int cid)
+static __always_inline unsigned int cid_to_transit_cid(unsigned int cid)
{
- if (cid < 0)
- return;
- cpumask_clear_cpu(cid, mm_cidmask(mm));
+ return cid | MM_CID_TRANSIT;
}
-/*
- * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
- * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
- * be held to transition to other states.
- *
- * State transitions synchronized with cmpxchg or try_cmpxchg need to be
- * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
- */
-static inline void mm_cid_put_lazy(struct task_struct *t)
+static __always_inline unsigned int cid_from_transit_cid(unsigned int cid)
{
- struct mm_struct *mm = t->mm;
- struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
- int cid;
+ return cid & ~MM_CID_TRANSIT;
+}
- lockdep_assert_irqs_disabled();
- cid = __this_cpu_read(pcpu_cid->cid);
- if (!mm_cid_is_lazy_put(cid) ||
- !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
- return;
- __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
+static __always_inline bool cid_on_task(unsigned int cid)
+{
+ /* True if none of the MM_CID_ONCPU, MM_CID_TRANSIT, MM_CID_UNSET bits is set */
+ return cid < MM_CID_TRANSIT;
}
-static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
+static __always_inline void mm_drop_cid(struct mm_struct *mm, unsigned int cid)
{
- struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
- int cid, res;
+ clear_bit(cid, mm_cidmask(mm));
+}
- lockdep_assert_irqs_disabled();
- cid = __this_cpu_read(pcpu_cid->cid);
- for (;;) {
- if (mm_cid_is_unset(cid))
- return MM_CID_UNSET;
- /*
- * Attempt transition from valid or lazy-put to unset.
- */
- res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
- if (res == cid)
- break;
- cid = res;
- }
- return cid;
+static __always_inline void mm_unset_cid_on_task(struct task_struct *t)
+{
+ unsigned int cid = t->mm_cid.cid;
+
+ t->mm_cid.cid = MM_CID_UNSET;
+ if (cid_on_task(cid))
+ mm_drop_cid(t->mm, cid);
}
-static inline void mm_cid_put(struct mm_struct *mm)
+static __always_inline void mm_drop_cid_on_cpu(struct mm_struct *mm, struct mm_cid_pcpu *pcp)
{
- int cid;
+ /* Clear the ONCPU bit, but do not set UNSET in the per CPU storage */
+ pcp->cid = cpu_cid_to_cid(pcp->cid);
+ mm_drop_cid(mm, pcp->cid);
+}
- lockdep_assert_irqs_disabled();
- cid = mm_cid_pcpu_unset(mm);
- if (cid == MM_CID_UNSET)
- return;
- __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
+static inline unsigned int __mm_get_cid(struct mm_struct *mm, unsigned int max_cids)
+{
+ unsigned int cid = find_first_zero_bit(mm_cidmask(mm), max_cids);
+
+ if (cid >= max_cids)
+ return MM_CID_UNSET;
+ if (test_and_set_bit(cid, mm_cidmask(mm)))
+ return MM_CID_UNSET;
+ return cid;
}
-static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm)
+static inline unsigned int mm_get_cid(struct mm_struct *mm)
{
- struct cpumask *cidmask = mm_cidmask(mm);
- struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
- int cid = __this_cpu_read(pcpu_cid->recent_cid);
+ unsigned int cid = __mm_get_cid(mm, READ_ONCE(mm->mm_cid.max_cids));
- /* Try to re-use recent cid. This improves cache locality. */
- if (!mm_cid_is_unset(cid) && !cpumask_test_and_set_cpu(cid, cidmask))
- return cid;
- /*
- * Expand cid allocation if the maximum number of concurrency
- * IDs allocated (max_nr_cid) is below the number cpus allowed
- * and number of threads. Expanding cid allocation as much as
- * possible improves cache locality.
- */
- cid = atomic_read(&mm->max_nr_cid);
- while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) {
- if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1))
- continue;
- if (!cpumask_test_and_set_cpu(cid, cidmask))
- return cid;
- }
- /*
- * Find the first available concurrency id.
- * Retry finding first zero bit if the mask is temporarily
- * filled. This only happens during concurrent remote-clear
- * which owns a cid without holding a rq lock.
- */
- for (;;) {
- cid = cpumask_first_zero(cidmask);
- if (cid < READ_ONCE(mm->nr_cpus_allowed))
- break;
+ while (cid == MM_CID_UNSET) {
cpu_relax();
+ cid = __mm_get_cid(mm, num_possible_cpus());
}
- if (cpumask_test_and_set_cpu(cid, cidmask))
- return -1;
-
return cid;
}
-/*
- * Save a snapshot of the current runqueue time of this cpu
- * with the per-cpu cid value, allowing to estimate how recently it was used.
- */
-static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
+static inline unsigned int mm_cid_converge(struct mm_struct *mm, unsigned int orig_cid,
+ unsigned int max_cids)
{
- struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
+ unsigned int new_cid, cid = cpu_cid_to_cid(orig_cid);
- lockdep_assert_rq_held(rq);
- WRITE_ONCE(pcpu_cid->time, rq->clock);
+ /* Is it in the optimal CID space? */
+ if (likely(cid < max_cids))
+ return orig_cid;
+
+ /* Try to find one in the optimal space. Otherwise keep the provided. */
+ new_cid = __mm_get_cid(mm, max_cids);
+ if (new_cid != MM_CID_UNSET) {
+ mm_drop_cid(mm, cid);
+ /* Preserve the ONCPU mode of the original CID */
+ return new_cid | (orig_cid & MM_CID_ONCPU);
+ }
+ return orig_cid;
}
-static inline int __mm_cid_get(struct rq *rq, struct task_struct *t,
- struct mm_struct *mm)
+static __always_inline void mm_cid_update_task_cid(struct task_struct *t, unsigned int cid)
{
- int cid;
+ if (t->mm_cid.cid != cid) {
+ t->mm_cid.cid = cid;
+ rseq_sched_set_ids_changed(t);
+ }
+}
- /*
- * All allocations (even those using the cid_lock) are lock-free. If
- * use_cid_lock is set, hold the cid_lock to perform cid allocation to
- * guarantee forward progress.
- */
- if (!READ_ONCE(use_cid_lock)) {
- cid = __mm_cid_try_get(t, mm);
- if (cid >= 0)
- goto end;
- raw_spin_lock(&cid_lock);
+static __always_inline void mm_cid_update_pcpu_cid(struct mm_struct *mm, unsigned int cid)
+{
+ __this_cpu_write(mm->mm_cid.pcpu->cid, cid);
+}
+
+static __always_inline void mm_cid_from_cpu(struct task_struct *t, unsigned int cpu_cid)
+{
+ unsigned int max_cids, tcid = t->mm_cid.cid;
+ struct mm_struct *mm = t->mm;
+
+ max_cids = READ_ONCE(mm->mm_cid.max_cids);
+ /* Optimize for the common case where both have the ONCPU bit set */
+ if (likely(cid_on_cpu(cpu_cid & tcid))) {
+ if (likely(cpu_cid_to_cid(cpu_cid) < max_cids)) {
+ mm_cid_update_task_cid(t, cpu_cid);
+ return;
+ }
+ /* Try to converge into the optimal CID space */
+ cpu_cid = mm_cid_converge(mm, cpu_cid, max_cids);
} else {
- raw_spin_lock(&cid_lock);
- cid = __mm_cid_try_get(t, mm);
- if (cid >= 0)
- goto unlock;
+ /* Hand over or drop the task owned CID */
+ if (cid_on_task(tcid)) {
+ if (cid_on_cpu(cpu_cid))
+ mm_unset_cid_on_task(t);
+ else
+ cpu_cid = cid_to_cpu_cid(tcid);
+ }
+ /* Still nothing, allocate a new one */
+ if (!cid_on_cpu(cpu_cid))
+ cpu_cid = cid_to_cpu_cid(mm_get_cid(mm));
}
+ mm_cid_update_pcpu_cid(mm, cpu_cid);
+ mm_cid_update_task_cid(t, cpu_cid);
+}
- /*
- * cid concurrently allocated. Retry while forcing following
- * allocations to use the cid_lock to ensure forward progress.
- */
- WRITE_ONCE(use_cid_lock, 1);
- /*
- * Set use_cid_lock before allocation. Only care about program order
- * because this is only required for forward progress.
- */
- barrier();
- /*
- * Retry until it succeeds. It is guaranteed to eventually succeed once
- * all newcoming allocations observe the use_cid_lock flag set.
- */
- do {
- cid = __mm_cid_try_get(t, mm);
- cpu_relax();
- } while (cid < 0);
- /*
- * Allocate before clearing use_cid_lock. Only care about
- * program order because this is for forward progress.
- */
- barrier();
- WRITE_ONCE(use_cid_lock, 0);
-unlock:
- raw_spin_unlock(&cid_lock);
-end:
- mm_cid_snapshot_time(rq, mm);
+static __always_inline void mm_cid_from_task(struct task_struct *t, unsigned int cpu_cid)
+{
+ unsigned int max_cids, tcid = t->mm_cid.cid;
+ struct mm_struct *mm = t->mm;
- return cid;
+ max_cids = READ_ONCE(mm->mm_cid.max_cids);
+ /* Optimize for the common case, where both have the ONCPU bit clear */
+ if (likely(cid_on_task(tcid | cpu_cid))) {
+ if (likely(tcid < max_cids)) {
+ mm_cid_update_pcpu_cid(mm, tcid);
+ return;
+ }
+ /* Try to converge into the optimal CID space */
+ tcid = mm_cid_converge(mm, tcid, max_cids);
+ } else {
+ /* Hand over or drop the CPU owned CID */
+ if (cid_on_cpu(cpu_cid)) {
+ if (cid_on_task(tcid))
+ mm_drop_cid_on_cpu(mm, this_cpu_ptr(mm->mm_cid.pcpu));
+ else
+ tcid = cpu_cid_to_cid(cpu_cid);
+ }
+ /* Still nothing, allocate a new one */
+ if (!cid_on_task(tcid))
+ tcid = mm_get_cid(mm);
+ /* Set the transition mode flag if required */
+ tcid |= READ_ONCE(mm->mm_cid.transit);
+ }
+ mm_cid_update_pcpu_cid(mm, tcid);
+ mm_cid_update_task_cid(t, tcid);
}
-static inline int mm_cid_get(struct rq *rq, struct task_struct *t,
- struct mm_struct *mm)
+static __always_inline void mm_cid_schedin(struct task_struct *next)
{
- struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
- struct cpumask *cpumask;
- int cid;
+ struct mm_struct *mm = next->mm;
+ unsigned int cpu_cid;
- lockdep_assert_rq_held(rq);
- cpumask = mm_cidmask(mm);
- cid = __this_cpu_read(pcpu_cid->cid);
- if (mm_cid_is_valid(cid)) {
- mm_cid_snapshot_time(rq, mm);
- return cid;
- }
- if (mm_cid_is_lazy_put(cid)) {
- if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
- __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
- }
- cid = __mm_cid_get(rq, t, mm);
- __this_cpu_write(pcpu_cid->cid, cid);
- __this_cpu_write(pcpu_cid->recent_cid, cid);
+ if (!next->mm_cid.active)
+ return;
- return cid;
+ cpu_cid = __this_cpu_read(mm->mm_cid.pcpu->cid);
+ if (likely(!READ_ONCE(mm->mm_cid.percpu)))
+ mm_cid_from_task(next, cpu_cid);
+ else
+ mm_cid_from_cpu(next, cpu_cid);
}
-static inline void switch_mm_cid(struct rq *rq,
- struct task_struct *prev,
- struct task_struct *next)
+static __always_inline void mm_cid_schedout(struct task_struct *prev)
{
- /*
- * Provide a memory barrier between rq->curr store and load of
- * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
- *
- * Should be adapted if context_switch() is modified.
- */
- if (!next->mm) { // to kernel
- /*
- * user -> kernel transition does not guarantee a barrier, but
- * we can use the fact that it performs an atomic operation in
- * mmgrab().
- */
- if (prev->mm) // from user
- smp_mb__after_mmgrab();
- /*
- * kernel -> kernel transition does not change rq->curr->mm
- * state. It stays NULL.
- */
- } else { // to user
- /*
- * kernel -> user transition does not provide a barrier
- * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
- * Provide it here.
- */
- if (!prev->mm) { // from kernel
- smp_mb();
- } else { // from user
- /*
- * user->user transition relies on an implicit
- * memory barrier in switch_mm() when
- * current->mm changes. If the architecture
- * switch_mm() does not have an implicit memory
- * barrier, it is emitted here. If current->mm
- * is unchanged, no barrier is needed.
- */
- smp_mb__after_switch_mm();
- }
- }
- if (prev->mm_cid_active) {
- mm_cid_snapshot_time(rq, prev->mm);
- mm_cid_put_lazy(prev);
- prev->mm_cid = -1;
- }
- if (next->mm_cid_active)
- next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm);
+ /* During mode transitions CIDs are temporary and need to be dropped */
+ if (likely(!cid_in_transit(prev->mm_cid.cid)))
+ return;
+
+ mm_drop_cid(prev->mm, cid_from_transit_cid(prev->mm_cid.cid));
+ prev->mm_cid.cid = MM_CID_UNSET;
+}
+
+static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next)
+{
+ mm_cid_schedout(prev);
+ mm_cid_schedin(next);
}
#else /* !CONFIG_SCHED_MM_CID: */
-static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
-static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
-static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
-static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
-static inline void init_sched_mm_cid(struct task_struct *t) { }
+static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) { }
#endif /* !CONFIG_SCHED_MM_CID */
extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
-#ifdef CONFIG_SMP
static inline
void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
{
@@ -3866,7 +3912,6 @@ bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
return false;
}
-#endif
#ifdef CONFIG_RT_MUTEXES
@@ -3901,45 +3946,42 @@ extern void set_load_weight(struct task_struct *p, bool update_load);
extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
-extern void check_class_changing(struct rq *rq, struct task_struct *p,
- const struct sched_class *prev_class);
-extern void check_class_changed(struct rq *rq, struct task_struct *p,
- const struct sched_class *prev_class,
- int oldprio);
-
-#ifdef CONFIG_SMP
extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
-#else
-static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
-{
- return NULL;
-}
-
-static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
-{
-}
-
-#endif
+/*
+ * The 'sched_change' pattern is the safe, easy and slow way of changing a
+ * task's scheduling properties. It dequeues a task, such that the scheduler
+ * is fully unaware of it; at which point its properties can be modified;
+ * after which it is enqueued again.
+ *
+ * Typically this must be called while holding task_rq_lock, since most/all
+ * properties are serialized under those locks. There is currently one
+ * exception to this rule in sched/ext which only holds rq->lock.
+ */
-#ifdef CONFIG_SCHED_CLASS_EXT
/*
- * Used by SCX in the enable/disable paths to move tasks between sched_classes
- * and establish invariants.
+ * This structure is a temporary, used to preserve/convey the queueing state
+ * of the task between sched_change_begin() and sched_change_end(). Ensuring
+ * the task's queueing state is idempotent across the operation.
*/
-struct sched_enq_and_set_ctx {
+struct sched_change_ctx {
+ u64 prio;
struct task_struct *p;
- int queue_flags;
+ int flags;
bool queued;
bool running;
};
-void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
- struct sched_enq_and_set_ctx *ctx);
-void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
+struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags);
+void sched_change_end(struct sched_change_ctx *ctx);
-#endif /* CONFIG_SCHED_CLASS_EXT */
+DEFINE_CLASS(sched_change, struct sched_change_ctx *,
+ sched_change_end(_T),
+ sched_change_begin(p, flags),
+ struct task_struct *p, unsigned int flags)
+
+DEFINE_CLASS_IS_UNCONDITIONAL(sched_change)
#include "ext.h"
diff --git a/kernel/sched/smp.h b/kernel/sched/smp.h
index 21ac44428bb0..7f151d96dba9 100644
--- a/kernel/sched/smp.h
+++ b/kernel/sched/smp.h
@@ -1,8 +1,13 @@
/* SPDX-License-Identifier: GPL-2.0 */
+
+#ifndef _KERNEL_SCHED_SMP_H
+#define _KERNEL_SCHED_SMP_H
+
/*
* Scheduler internal SMP callback types and methods between the scheduler
* and other internal parts of the core kernel:
*/
+#include <linux/types.h>
extern void sched_ttwu_pending(void *arg);
@@ -13,3 +18,5 @@ extern void flush_smp_call_function_queue(void);
#else
static inline void flush_smp_call_function_queue(void) { }
#endif
+
+#endif /* _KERNEL_SCHED_SMP_H */
diff --git a/kernel/sched/stats.c b/kernel/sched/stats.c
index eb0cdcd4d921..d1c9429a4ac5 100644
--- a/kernel/sched/stats.c
+++ b/kernel/sched/stats.c
@@ -2,6 +2,7 @@
/*
* /proc/schedstat implementation
*/
+#include "sched.h"
void __update_stats_wait_start(struct rq *rq, struct task_struct *p,
struct sched_statistics *stats)
@@ -103,7 +104,7 @@ void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p,
* Bump this up when changing the output format or the meaning of an existing
* format, so that tools can adapt (or abort)
*/
-#define SCHEDSTAT_VERSION 16
+#define SCHEDSTAT_VERSION 17
static int show_schedstat(struct seq_file *seq, void *v)
{
@@ -114,10 +115,8 @@ static int show_schedstat(struct seq_file *seq, void *v)
seq_printf(seq, "timestamp %lu\n", jiffies);
} else {
struct rq *rq;
-#ifdef CONFIG_SMP
struct sched_domain *sd;
int dcount = 0;
-#endif
cpu = (unsigned long)(v - 2);
rq = cpu_rq(cpu);
@@ -132,20 +131,22 @@ static int show_schedstat(struct seq_file *seq, void *v)
seq_printf(seq, "\n");
-#ifdef CONFIG_SMP
/* domain-specific stats */
rcu_read_lock();
for_each_domain(cpu, sd) {
enum cpu_idle_type itype;
- seq_printf(seq, "domain%d %*pb", dcount++,
+ seq_printf(seq, "domain%d %s %*pb", dcount++, sd->name,
cpumask_pr_args(sched_domain_span(sd)));
for (itype = 0; itype < CPU_MAX_IDLE_TYPES; itype++) {
- seq_printf(seq, " %u %u %u %u %u %u %u %u",
+ seq_printf(seq, " %u %u %u %u %u %u %u %u %u %u %u",
sd->lb_count[itype],
sd->lb_balanced[itype],
sd->lb_failed[itype],
- sd->lb_imbalance[itype],
+ sd->lb_imbalance_load[itype],
+ sd->lb_imbalance_util[itype],
+ sd->lb_imbalance_task[itype],
+ sd->lb_imbalance_misfit[itype],
sd->lb_gained[itype],
sd->lb_hot_gained[itype],
sd->lb_nobusyq[itype],
@@ -160,7 +161,6 @@ static int show_schedstat(struct seq_file *seq, void *v)
sd->ttwu_move_balance);
}
rcu_read_unlock();
-#endif
}
return 0;
}
diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h
index 8ee0add5a48a..c903f1a42891 100644
--- a/kernel/sched/stats.h
+++ b/kernel/sched/stats.h
@@ -112,10 +112,10 @@ void psi_task_switch(struct task_struct *prev, struct task_struct *next,
bool sleep);
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev);
-#else
+#else /* !CONFIG_IRQ_TIME_ACCOUNTING: */
static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
struct task_struct *prev) {}
-#endif /*CONFIG_IRQ_TIME_ACCOUNTING */
+#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
/*
* PSI tracks state that persists across sleeps, such as iowaits and
* memory stalls. As a result, it has to distinguish between sleeps,
@@ -138,9 +138,13 @@ static inline void psi_enqueue(struct task_struct *p, int flags)
if (flags & ENQUEUE_RESTORE)
return;
+ /* psi_sched_switch() will handle the flags */
+ if (task_on_cpu(task_rq(p), p))
+ return;
+
if (p->se.sched_delayed) {
/* CPU migration of "sleeping" task */
- SCHED_WARN_ON(!(flags & ENQUEUE_MIGRATED));
+ WARN_ON_ONCE(!(flags & ENQUEUE_MIGRATED));
if (p->in_memstall)
set |= TSK_MEMSTALL;
if (p->in_iowait)
@@ -176,8 +180,13 @@ static inline void psi_dequeue(struct task_struct *p, int flags)
* avoid walking all ancestors twice, psi_task_switch() handles
* TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
* Do nothing here.
+ *
+ * In the SCHED_PROXY_EXECUTION case we may do sleeping
+ * dequeues that are not followed by a task switch, so check
+ * TSK_ONCPU is set to ensure the task switch is imminent.
+ * Otherwise clear the flags as usual.
*/
- if (flags & DEQUEUE_SLEEP)
+ if ((flags & DEQUEUE_SLEEP) && (p->psi_flags & TSK_ONCPU))
return;
/*
@@ -202,7 +211,7 @@ static inline void psi_ttwu_dequeue(struct task_struct *p)
rq = __task_rq_lock(p, &rf);
psi_task_change(p, p->psi_flags, 0);
- __task_rq_unlock(rq, &rf);
+ __task_rq_unlock(rq, p, &rf);
}
}
@@ -216,7 +225,7 @@ static inline void psi_sched_switch(struct task_struct *prev,
psi_task_switch(prev, next, sleep);
}
-#else /* CONFIG_PSI */
+#else /* !CONFIG_PSI: */
static inline void psi_enqueue(struct task_struct *p, bool migrate) {}
static inline void psi_dequeue(struct task_struct *p, bool migrate) {}
static inline void psi_ttwu_dequeue(struct task_struct *p) {}
@@ -225,7 +234,7 @@ static inline void psi_sched_switch(struct task_struct *prev,
bool sleep) {}
static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
struct task_struct *prev) {}
-#endif /* CONFIG_PSI */
+#endif /* !CONFIG_PSI */
#ifdef CONFIG_SCHED_INFO
/*
@@ -244,7 +253,10 @@ static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
delta = rq_clock(rq) - t->sched_info.last_queued;
t->sched_info.last_queued = 0;
t->sched_info.run_delay += delta;
-
+ if (delta > t->sched_info.max_run_delay)
+ t->sched_info.max_run_delay = delta;
+ if (delta && (!t->sched_info.min_run_delay || delta < t->sched_info.min_run_delay))
+ t->sched_info.min_run_delay = delta;
rq_sched_info_dequeue(rq, delta);
}
@@ -266,6 +278,10 @@ static void sched_info_arrive(struct rq *rq, struct task_struct *t)
t->sched_info.run_delay += delta;
t->sched_info.last_arrival = now;
t->sched_info.pcount++;
+ if (delta > t->sched_info.max_run_delay)
+ t->sched_info.max_run_delay = delta;
+ if (delta && (!t->sched_info.min_run_delay || delta < t->sched_info.min_run_delay))
+ t->sched_info.min_run_delay = delta;
rq_sched_info_arrive(rq, delta);
}
@@ -323,6 +339,6 @@ sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *n
# define sched_info_enqueue(rq, t) do { } while (0)
# define sched_info_dequeue(rq, t) do { } while (0)
# define sched_info_switch(rq, t, next) do { } while (0)
-#endif /* CONFIG_SCHED_INFO */
+#endif /* !CONFIG_SCHED_INFO */
#endif /* _KERNEL_STATS_H */
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c
index 058dd42e3d9b..4f9192be4b5b 100644
--- a/kernel/sched/stop_task.c
+++ b/kernel/sched/stop_task.c
@@ -7,8 +7,8 @@
*
* See kernel/stop_machine.c
*/
+#include "sched.h"
-#ifdef CONFIG_SMP
static int
select_task_rq_stop(struct task_struct *p, int cpu, int flags)
{
@@ -20,7 +20,6 @@ balance_stop(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
return sched_stop_runnable(rq);
}
-#endif /* CONFIG_SMP */
static void
wakeup_preempt_stop(struct rq *rq, struct task_struct *p, int flags)
@@ -33,7 +32,7 @@ static void set_next_task_stop(struct rq *rq, struct task_struct *stop, bool fir
stop->se.exec_start = rq_clock_task(rq);
}
-static struct task_struct *pick_task_stop(struct rq *rq)
+static struct task_struct *pick_task_stop(struct rq *rq, struct rq_flags *rf)
{
if (!sched_stop_runnable(rq))
return NULL;
@@ -76,14 +75,17 @@ static void task_tick_stop(struct rq *rq, struct task_struct *curr, int queued)
{
}
-static void switched_to_stop(struct rq *rq, struct task_struct *p)
+static void switching_to_stop(struct rq *rq, struct task_struct *p)
{
BUG(); /* its impossible to change to this class */
}
static void
-prio_changed_stop(struct rq *rq, struct task_struct *p, int oldprio)
+prio_changed_stop(struct rq *rq, struct task_struct *p, u64 oldprio)
{
+ if (p->prio == oldprio)
+ return;
+
BUG(); /* how!?, what priority? */
}
@@ -96,6 +98,8 @@ static void update_curr_stop(struct rq *rq)
*/
DEFINE_SCHED_CLASS(stop) = {
+ .queue_mask = 16,
+
.enqueue_task = enqueue_task_stop,
.dequeue_task = dequeue_task_stop,
.yield_task = yield_task_stop,
@@ -106,15 +110,13 @@ DEFINE_SCHED_CLASS(stop) = {
.put_prev_task = put_prev_task_stop,
.set_next_task = set_next_task_stop,
-#ifdef CONFIG_SMP
.balance = balance_stop,
.select_task_rq = select_task_rq_stop,
.set_cpus_allowed = set_cpus_allowed_common,
-#endif
.task_tick = task_tick_stop,
.prio_changed = prio_changed_stop,
- .switched_to = switched_to_stop,
+ .switching_to = switching_to_stop,
.update_curr = update_curr_stop,
};
diff --git a/kernel/sched/swait.c b/kernel/sched/swait.c
index 72505cd3b60a..0fef6496c4c8 100644
--- a/kernel/sched/swait.c
+++ b/kernel/sched/swait.c
@@ -2,6 +2,7 @@
/*
* <linux/swait.h> (simple wait queues ) implementation:
*/
+#include "sched.h"
void __init_swait_queue_head(struct swait_queue_head *q, const char *name,
struct lock_class_key *key)
diff --git a/kernel/sched/syscalls.c b/kernel/sched/syscalls.c
index 0d71fcbaf1e3..0496dc29ed0f 100644
--- a/kernel/sched/syscalls.c
+++ b/kernel/sched/syscalls.c
@@ -64,8 +64,6 @@ static int effective_prio(struct task_struct *p)
void set_user_nice(struct task_struct *p, long nice)
{
- bool queued, running;
- struct rq *rq;
int old_prio;
if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
@@ -74,10 +72,7 @@ void set_user_nice(struct task_struct *p, long nice)
* We have to be careful, if called from sys_setpriority(),
* the task might be in the middle of scheduling on another CPU.
*/
- CLASS(task_rq_lock, rq_guard)(p);
- rq = rq_guard.rq;
-
- update_rq_clock(rq);
+ guard(task_rq_lock)(p);
/*
* The RT priorities are set via sched_setscheduler(), but we still
@@ -90,28 +85,12 @@ void set_user_nice(struct task_struct *p, long nice)
return;
}
- queued = task_on_rq_queued(p);
- running = task_current_donor(rq, p);
- if (queued)
- dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
- if (running)
- put_prev_task(rq, p);
-
- p->static_prio = NICE_TO_PRIO(nice);
- set_load_weight(p, true);
- old_prio = p->prio;
- p->prio = effective_prio(p);
-
- if (queued)
- enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
- if (running)
- set_next_task(rq, p);
-
- /*
- * If the task increased its priority or is running and
- * lowered its priority, then reschedule its CPU:
- */
- p->sched_class->prio_changed(rq, p, old_prio);
+ scoped_guard (sched_change, p, DEQUEUE_SAVE) {
+ p->static_prio = NICE_TO_PRIO(nice);
+ set_load_weight(p, true);
+ old_prio = p->prio;
+ p->prio = effective_prio(p);
+ }
}
EXPORT_SYMBOL(set_user_nice);
@@ -174,7 +153,7 @@ SYSCALL_DEFINE1(nice, int, increment)
return 0;
}
-#endif
+#endif /* __ARCH_WANT_SYS_NICE */
/**
* task_prio - return the priority value of a given task.
@@ -209,10 +188,8 @@ int idle_cpu(int cpu)
if (rq->nr_running)
return 0;
-#ifdef CONFIG_SMP
if (rq->ttwu_pending)
return 0;
-#endif
return 1;
}
@@ -255,8 +232,7 @@ int sched_core_idle_cpu(int cpu)
return idle_cpu(cpu);
}
-
-#endif
+#endif /* CONFIG_SCHED_CORE */
/**
* find_process_by_pid - find a process with a matching PID value.
@@ -300,20 +276,10 @@ static void __setscheduler_params(struct task_struct *p,
p->policy = policy;
- if (dl_policy(policy)) {
+ if (dl_policy(policy))
__setparam_dl(p, attr);
- } else if (fair_policy(policy)) {
- p->static_prio = NICE_TO_PRIO(attr->sched_nice);
- if (attr->sched_runtime) {
- p->se.custom_slice = 1;
- p->se.slice = clamp_t(u64, attr->sched_runtime,
- NSEC_PER_MSEC/10, /* HZ=1000 * 10 */
- NSEC_PER_MSEC*100); /* HZ=100 / 10 */
- } else {
- p->se.custom_slice = 0;
- p->se.slice = sysctl_sched_base_slice;
- }
- }
+ else if (fair_policy(policy))
+ __setparam_fair(p, attr);
/* rt-policy tasks do not have a timerslack */
if (rt_or_dl_task_policy(p)) {
@@ -378,7 +344,7 @@ static int uclamp_validate(struct task_struct *p,
* blocking operation which obviously cannot be done while holding
* scheduler locks.
*/
- static_branch_enable(&sched_uclamp_used);
+ sched_uclamp_enable();
return 0;
}
@@ -458,7 +424,7 @@ static inline int uclamp_validate(struct task_struct *p,
}
static void __setscheduler_uclamp(struct task_struct *p,
const struct sched_attr *attr) { }
-#endif
+#endif /* !CONFIG_UCLAMP_TASK */
/*
* Allow unprivileged RT tasks to decrease priority.
@@ -528,7 +494,7 @@ int __sched_setscheduler(struct task_struct *p,
bool user, bool pi)
{
int oldpolicy = -1, policy = attr->sched_policy;
- int retval, oldprio, newprio, queued, running;
+ int retval, oldprio, newprio;
const struct sched_class *prev_class, *next_class;
struct balance_callback *head;
struct rq_flags rf;
@@ -644,14 +610,14 @@ change:
* Do not allow real-time tasks into groups that have no runtime
* assigned.
*/
- if (rt_bandwidth_enabled() && rt_policy(policy) &&
+ if (rt_group_sched_enabled() &&
+ rt_bandwidth_enabled() && rt_policy(policy) &&
task_group(p)->rt_bandwidth.rt_runtime == 0 &&
!task_group_is_autogroup(task_group(p))) {
retval = -EPERM;
goto unlock;
}
-#endif
-#ifdef CONFIG_SMP
+#endif /* CONFIG_RT_GROUP_SCHED */
if (dl_bandwidth_enabled() && dl_policy(policy) &&
!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
cpumask_t *span = rq->rd->span;
@@ -667,7 +633,6 @@ change:
goto unlock;
}
}
-#endif
}
/* Re-check policy now with rq lock held: */
@@ -709,38 +674,27 @@ change:
prev_class = p->sched_class;
next_class = __setscheduler_class(policy, newprio);
- if (prev_class != next_class && p->se.sched_delayed)
- dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
+ if (prev_class != next_class)
+ queue_flags |= DEQUEUE_CLASS;
- queued = task_on_rq_queued(p);
- running = task_current_donor(rq, p);
- if (queued)
- dequeue_task(rq, p, queue_flags);
- if (running)
- put_prev_task(rq, p);
+ scoped_guard (sched_change, p, queue_flags) {
- if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
- __setscheduler_params(p, attr);
- p->sched_class = next_class;
- p->prio = newprio;
- }
- __setscheduler_uclamp(p, attr);
- check_class_changing(rq, p, prev_class);
-
- if (queued) {
- /*
- * We enqueue to tail when the priority of a task is
- * increased (user space view).
- */
- if (oldprio < p->prio)
- queue_flags |= ENQUEUE_HEAD;
+ if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
+ __setscheduler_params(p, attr);
+ p->sched_class = next_class;
+ p->prio = newprio;
+ }
+ __setscheduler_uclamp(p, attr);
- enqueue_task(rq, p, queue_flags);
+ if (scope->queued) {
+ /*
+ * We enqueue to tail when the priority of a task is
+ * increased (user space view).
+ */
+ if (oldprio < p->prio)
+ scope->flags |= ENQUEUE_HEAD;
+ }
}
- if (running)
- set_next_task(rq, p);
-
- check_class_changed(rq, p, prev_class, oldprio);
/* Avoid rq from going away on us: */
preempt_disable();
@@ -870,6 +824,19 @@ void sched_set_fifo_low(struct task_struct *p)
}
EXPORT_SYMBOL_GPL(sched_set_fifo_low);
+/*
+ * Used when the primary interrupt handler is forced into a thread, in addition
+ * to the (always threaded) secondary handler. The secondary handler gets a
+ * slightly lower priority so that the primary handler can preempt it, thereby
+ * emulating the behavior of a non-PREEMPT_RT system where the primary handler
+ * runs in hard interrupt context.
+ */
+void sched_set_fifo_secondary(struct task_struct *p)
+{
+ struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 - 1 };
+ WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
+}
+
void sched_set_normal(struct task_struct *p, int nice)
{
struct sched_attr attr = {
@@ -885,7 +852,7 @@ do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
{
struct sched_param lparam;
- if (!param || pid < 0)
+ if (unlikely(!param || pid < 0))
return -EINVAL;
if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
return -EFAULT;
@@ -994,7 +961,7 @@ SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
struct sched_attr attr;
int retval;
- if (!uattr || pid < 0 || flags)
+ if (unlikely(!uattr || pid < 0 || flags))
return -EINVAL;
retval = sched_copy_attr(uattr, &attr);
@@ -1059,7 +1026,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
struct task_struct *p;
int retval;
- if (!param || pid < 0)
+ if (unlikely(!param || pid < 0))
return -EINVAL;
scoped_guard (rcu) {
@@ -1095,8 +1062,8 @@ SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
struct task_struct *p;
int retval;
- if (!uattr || pid < 0 || usize > PAGE_SIZE ||
- usize < SCHED_ATTR_SIZE_VER0 || flags)
+ if (unlikely(!uattr || pid < 0 || usize > PAGE_SIZE ||
+ usize < SCHED_ATTR_SIZE_VER0 || flags))
return -EINVAL;
scoped_guard (rcu) {
@@ -1129,7 +1096,6 @@ SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
return copy_struct_to_user(uattr, usize, &kattr, sizeof(kattr), NULL);
}
-#ifdef CONFIG_SMP
int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
{
/*
@@ -1140,6 +1106,13 @@ int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
return 0;
/*
+ * The special/sugov task isn't part of regular bandwidth/admission
+ * control so let userspace change affinities.
+ */
+ if (dl_entity_is_special(&p->dl))
+ return 0;
+
+ /*
* Since bandwidth control happens on root_domain basis,
* if admission test is enabled, we only admit -deadline
* tasks allowed to run on all the CPUs in the task's
@@ -1151,7 +1124,6 @@ int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
return 0;
}
-#endif /* CONFIG_SMP */
int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
{
@@ -1200,7 +1172,7 @@ int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
bool empty = !cpumask_and(new_mask, new_mask,
ctx->user_mask);
- if (WARN_ON_ONCE(empty))
+ if (empty)
cpumask_copy(new_mask, cpus_allowed);
}
__set_cpus_allowed_ptr(p, ctx);
@@ -1244,7 +1216,7 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
if (user_mask) {
cpumask_copy(user_mask, in_mask);
- } else if (IS_ENABLED(CONFIG_SMP)) {
+ } else {
return -ENOMEM;
}
@@ -1360,7 +1332,7 @@ static void do_sched_yield(void)
rq = this_rq_lock_irq(&rf);
schedstat_inc(rq->yld_count);
- current->sched_class->yield_task(rq);
+ rq->donor->sched_class->yield_task(rq);
preempt_disable();
rq_unlock_irq(rq, &rf);
@@ -1429,12 +1401,13 @@ EXPORT_SYMBOL(yield);
*/
int __sched yield_to(struct task_struct *p, bool preempt)
{
- struct task_struct *curr = current;
+ struct task_struct *curr;
struct rq *rq, *p_rq;
int yielded = 0;
- scoped_guard (irqsave) {
+ scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
rq = this_rq();
+ curr = rq->donor;
again:
p_rq = task_rq(p);
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
index 9748a4c8d668..cf643a5ddedd 100644
--- a/kernel/sched/topology.c
+++ b/kernel/sched/topology.c
@@ -3,16 +3,24 @@
* Scheduler topology setup/handling methods
*/
+#include <linux/sched/isolation.h>
#include <linux/bsearch.h>
+#include "sched.h"
DEFINE_MUTEX(sched_domains_mutex);
+void sched_domains_mutex_lock(void)
+{
+ mutex_lock(&sched_domains_mutex);
+}
+void sched_domains_mutex_unlock(void)
+{
+ mutex_unlock(&sched_domains_mutex);
+}
/* Protected by sched_domains_mutex: */
static cpumask_var_t sched_domains_tmpmask;
static cpumask_var_t sched_domains_tmpmask2;
-#ifdef CONFIG_SCHED_DEBUG
-
static int __init sched_debug_setup(char *str)
{
sched_debug_verbose = true;
@@ -81,7 +89,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
break;
}
- if (!(sd->flags & SD_OVERLAP) &&
+ if (!(sd->flags & SD_NUMA) &&
cpumask_intersects(groupmask, sched_group_span(group))) {
printk(KERN_CONT "\n");
printk(KERN_ERR "ERROR: repeated CPUs\n");
@@ -94,7 +102,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
group->sgc->id,
cpumask_pr_args(sched_group_span(group)));
- if ((sd->flags & SD_OVERLAP) &&
+ if ((sd->flags & SD_NUMA) &&
!cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
printk(KERN_CONT " mask=%*pbl",
cpumask_pr_args(group_balance_mask(group)));
@@ -151,15 +159,6 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
break;
}
}
-#else /* !CONFIG_SCHED_DEBUG */
-
-# define sched_debug_verbose 0
-# define sched_domain_debug(sd, cpu) do { } while (0)
-static inline bool sched_debug(void)
-{
- return false;
-}
-#endif /* CONFIG_SCHED_DEBUG */
/* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
@@ -215,8 +214,6 @@ static bool sched_energy_update;
static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
{
bool any_asym_capacity = false;
- struct cpufreq_policy *policy;
- struct cpufreq_governor *gov;
int i;
/* EAS is enabled for asymmetric CPU capacity topologies. */
@@ -251,25 +248,12 @@ static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
return false;
}
- /* Do not attempt EAS if schedutil is not being used. */
- for_each_cpu(i, cpu_mask) {
- policy = cpufreq_cpu_get(i);
- if (!policy) {
- if (sched_debug()) {
- pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
- cpumask_pr_args(cpu_mask), i);
- }
- return false;
- }
- gov = policy->governor;
- cpufreq_cpu_put(policy);
- if (gov != &schedutil_gov) {
- if (sched_debug()) {
- pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
- cpumask_pr_args(cpu_mask));
- }
- return false;
+ if (!cpufreq_ready_for_eas(cpu_mask)) {
+ if (sched_debug()) {
+ pr_info("rd %*pbl: Checking EAS: cpufreq is not ready\n",
+ cpumask_pr_args(cpu_mask));
}
+ return false;
}
return true;
@@ -312,7 +296,7 @@ static int sched_energy_aware_handler(const struct ctl_table *table, int write,
return ret;
}
-static struct ctl_table sched_energy_aware_sysctls[] = {
+static const struct ctl_table sched_energy_aware_sysctls[] = {
{
.procname = "sched_energy_aware",
.data = &sysctl_sched_energy_aware,
@@ -331,7 +315,7 @@ static int __init sched_energy_aware_sysctl_init(void)
}
late_initcall(sched_energy_aware_sysctl_init);
-#endif
+#endif /* CONFIG_PROC_SYSCTL */
static void free_pd(struct perf_domain *pd)
{
@@ -467,9 +451,9 @@ free:
return false;
}
-#else
+#else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */
static void free_pd(struct perf_domain *pd) { }
-#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
+#endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
static void free_rootdomain(struct rcu_head *rcu)
{
@@ -560,7 +544,7 @@ static int init_rootdomain(struct root_domain *rd)
rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
#endif
- rd->visit_gen = 0;
+ rd->visit_cookie = 0;
init_dl_bw(&rd->dl_bw);
if (cpudl_init(&rd->cpudl) != 0)
goto free_rto_mask;
@@ -1336,6 +1320,60 @@ next:
update_group_capacity(sd, cpu);
}
+/* Update the "asym_prefer_cpu" when arch_asym_cpu_priority() changes. */
+void sched_update_asym_prefer_cpu(int cpu, int old_prio, int new_prio)
+{
+ int asym_prefer_cpu = cpu;
+ struct sched_domain *sd;
+
+ guard(rcu)();
+
+ for_each_domain(cpu, sd) {
+ struct sched_group *sg;
+ int group_cpu;
+
+ if (!(sd->flags & SD_ASYM_PACKING))
+ continue;
+
+ /*
+ * Groups of overlapping domain are replicated per NUMA
+ * node and will require updating "asym_prefer_cpu" on
+ * each local copy.
+ *
+ * If you are hitting this warning, consider moving
+ * "sg->asym_prefer_cpu" to "sg->sgc->asym_prefer_cpu"
+ * which is shared by all the overlapping groups.
+ */
+ WARN_ON_ONCE(sd->flags & SD_NUMA);
+
+ sg = sd->groups;
+ if (cpu != sg->asym_prefer_cpu) {
+ /*
+ * Since the parent is a superset of the current group,
+ * if the cpu is not the "asym_prefer_cpu" at the
+ * current level, it cannot be the preferred CPU at a
+ * higher levels either.
+ */
+ if (!sched_asym_prefer(cpu, sg->asym_prefer_cpu))
+ return;
+
+ WRITE_ONCE(sg->asym_prefer_cpu, cpu);
+ continue;
+ }
+
+ /* Ranking has improved; CPU is still the preferred one. */
+ if (new_prio >= old_prio)
+ continue;
+
+ for_each_cpu(group_cpu, sched_group_span(sg)) {
+ if (sched_asym_prefer(group_cpu, asym_prefer_cpu))
+ asym_prefer_cpu = group_cpu;
+ }
+
+ WRITE_ONCE(sg->asym_prefer_cpu, asym_prefer_cpu);
+ }
+}
+
/*
* Set of available CPUs grouped by their corresponding capacities
* Each list entry contains a CPU mask reflecting CPUs that share the same
@@ -1552,13 +1590,19 @@ static void claim_allocations(int cpu, struct sched_domain *sd)
#ifdef CONFIG_NUMA
enum numa_topology_type sched_numa_topology_type;
+/*
+ * sched_domains_numa_distance is derived from sched_numa_node_distance
+ * and provides a simplified view of NUMA distances used specifically
+ * for building NUMA scheduling domains.
+ */
static int sched_domains_numa_levels;
-static int sched_domains_curr_level;
+static int sched_numa_node_levels;
int sched_max_numa_distance;
static int *sched_domains_numa_distance;
+static int *sched_numa_node_distance;
static struct cpumask ***sched_domains_numa_masks;
-#endif
+#endif /* CONFIG_NUMA */
/*
* SD_flags allowed in topology descriptions.
@@ -1594,14 +1638,7 @@ sd_init(struct sched_domain_topology_level *tl,
int sd_id, sd_weight, sd_flags = 0;
struct cpumask *sd_span;
-#ifdef CONFIG_NUMA
- /*
- * Ugly hack to pass state to sd_numa_mask()...
- */
- sched_domains_curr_level = tl->numa_level;
-#endif
-
- sd_weight = cpumask_weight(tl->mask(cpu));
+ sd_weight = cpumask_weight(tl->mask(tl, cpu));
if (tl->sd_flags)
sd_flags = (*tl->sd_flags)();
@@ -1632,16 +1669,20 @@ sd_init(struct sched_domain_topology_level *tl,
.last_balance = jiffies,
.balance_interval = sd_weight,
+
+ /* 50% success rate */
+ .newidle_call = 512,
+ .newidle_success = 256,
+ .newidle_ratio = 512,
+
.max_newidle_lb_cost = 0,
.last_decay_max_lb_cost = jiffies,
.child = child,
-#ifdef CONFIG_SCHED_DEBUG
.name = tl->name,
-#endif
};
sd_span = sched_domain_span(sd);
- cpumask_and(sd_span, cpu_map, tl->mask(cpu));
+ cpumask_and(sd_span, cpu_map, tl->mask(tl, cpu));
sd_id = cpumask_first(sd_span);
sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
@@ -1676,7 +1717,7 @@ sd_init(struct sched_domain_topology_level *tl,
SD_WAKE_AFFINE);
}
-#endif
+#endif /* CONFIG_NUMA */
} else {
sd->cache_nice_tries = 1;
}
@@ -1696,22 +1737,63 @@ sd_init(struct sched_domain_topology_level *tl,
return sd;
}
+#ifdef CONFIG_SCHED_SMT
+int cpu_smt_flags(void)
+{
+ return SD_SHARE_CPUCAPACITY | SD_SHARE_LLC;
+}
+
+const struct cpumask *tl_smt_mask(struct sched_domain_topology_level *tl, int cpu)
+{
+ return cpu_smt_mask(cpu);
+}
+#endif
+
+#ifdef CONFIG_SCHED_CLUSTER
+int cpu_cluster_flags(void)
+{
+ return SD_CLUSTER | SD_SHARE_LLC;
+}
+
+const struct cpumask *tl_cls_mask(struct sched_domain_topology_level *tl, int cpu)
+{
+ return cpu_clustergroup_mask(cpu);
+}
+#endif
+
+#ifdef CONFIG_SCHED_MC
+int cpu_core_flags(void)
+{
+ return SD_SHARE_LLC;
+}
+
+const struct cpumask *tl_mc_mask(struct sched_domain_topology_level *tl, int cpu)
+{
+ return cpu_coregroup_mask(cpu);
+}
+#endif
+
+const struct cpumask *tl_pkg_mask(struct sched_domain_topology_level *tl, int cpu)
+{
+ return cpu_node_mask(cpu);
+}
+
/*
* Topology list, bottom-up.
*/
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
- { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
+ SDTL_INIT(tl_smt_mask, cpu_smt_flags, SMT),
#endif
#ifdef CONFIG_SCHED_CLUSTER
- { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
+ SDTL_INIT(tl_cls_mask, cpu_cluster_flags, CLS),
#endif
#ifdef CONFIG_SCHED_MC
- { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
+ SDTL_INIT(tl_mc_mask, cpu_core_flags, MC),
#endif
- { cpu_cpu_mask, SD_INIT_NAME(PKG) },
+ SDTL_INIT(tl_pkg_mask, NULL, PKG),
{ NULL, },
};
@@ -1732,10 +1814,14 @@ void __init set_sched_topology(struct sched_domain_topology_level *tl)
}
#ifdef CONFIG_NUMA
+static int cpu_numa_flags(void)
+{
+ return SD_NUMA;
+}
-static const struct cpumask *sd_numa_mask(int cpu)
+static const struct cpumask *sd_numa_mask(struct sched_domain_topology_level *tl, int cpu)
{
- return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
+ return sched_domains_numa_masks[tl->numa_level][cpu_to_node(cpu)];
}
static void sched_numa_warn(const char *str)
@@ -1772,10 +1858,10 @@ bool find_numa_distance(int distance)
return true;
rcu_read_lock();
- distances = rcu_dereference(sched_domains_numa_distance);
+ distances = rcu_dereference(sched_numa_node_distance);
if (!distances)
goto unlock;
- for (i = 0; i < sched_domains_numa_levels; i++) {
+ for (i = 0; i < sched_numa_node_levels; i++) {
if (distances[i] == distance) {
found = true;
break;
@@ -1851,14 +1937,34 @@ static void init_numa_topology_type(int offline_node)
#define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
-void sched_init_numa(int offline_node)
+/*
+ * An architecture could modify its NUMA distance, to change
+ * grouping of NUMA nodes and number of NUMA levels when creating
+ * NUMA level sched domains.
+ *
+ * A NUMA level is created for each unique
+ * arch_sched_node_distance.
+ */
+static int numa_node_dist(int i, int j)
{
- struct sched_domain_topology_level *tl;
- unsigned long *distance_map;
+ return node_distance(i, j);
+}
+
+int arch_sched_node_distance(int from, int to)
+ __weak __alias(numa_node_dist);
+
+static bool modified_sched_node_distance(void)
+{
+ return numa_node_dist != arch_sched_node_distance;
+}
+
+static int sched_record_numa_dist(int offline_node, int (*n_dist)(int, int),
+ int **dist, int *levels)
+{
+ unsigned long *distance_map __free(bitmap) = NULL;
int nr_levels = 0;
int i, j;
int *distances;
- struct cpumask ***masks;
/*
* O(nr_nodes^2) de-duplicating selection sort -- in order to find the
@@ -1866,17 +1972,16 @@ void sched_init_numa(int offline_node)
*/
distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
if (!distance_map)
- return;
+ return -ENOMEM;
bitmap_zero(distance_map, NR_DISTANCE_VALUES);
for_each_cpu_node_but(i, offline_node) {
for_each_cpu_node_but(j, offline_node) {
- int distance = node_distance(i, j);
+ int distance = n_dist(i, j);
if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
sched_numa_warn("Invalid distance value range");
- bitmap_free(distance_map);
- return;
+ return -EINVAL;
}
bitmap_set(distance_map, distance, 1);
@@ -1889,18 +1994,46 @@ void sched_init_numa(int offline_node)
nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
- if (!distances) {
- bitmap_free(distance_map);
- return;
- }
+ if (!distances)
+ return -ENOMEM;
for (i = 0, j = 0; i < nr_levels; i++, j++) {
j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
distances[i] = j;
}
- rcu_assign_pointer(sched_domains_numa_distance, distances);
+ *dist = distances;
+ *levels = nr_levels;
- bitmap_free(distance_map);
+ return 0;
+}
+
+void sched_init_numa(int offline_node)
+{
+ struct sched_domain_topology_level *tl;
+ int nr_levels, nr_node_levels;
+ int i, j;
+ int *distances, *domain_distances;
+ struct cpumask ***masks;
+
+ /* Record the NUMA distances from SLIT table */
+ if (sched_record_numa_dist(offline_node, numa_node_dist, &distances,
+ &nr_node_levels))
+ return;
+
+ /* Record modified NUMA distances for building sched domains */
+ if (modified_sched_node_distance()) {
+ if (sched_record_numa_dist(offline_node, arch_sched_node_distance,
+ &domain_distances, &nr_levels)) {
+ kfree(distances);
+ return;
+ }
+ } else {
+ domain_distances = distances;
+ nr_levels = nr_node_levels;
+ }
+ rcu_assign_pointer(sched_numa_node_distance, distances);
+ WRITE_ONCE(sched_max_numa_distance, distances[nr_node_levels - 1]);
+ WRITE_ONCE(sched_numa_node_levels, nr_node_levels);
/*
* 'nr_levels' contains the number of unique distances
@@ -1918,6 +2051,8 @@ void sched_init_numa(int offline_node)
*
* We reset it to 'nr_levels' at the end of this function.
*/
+ rcu_assign_pointer(sched_domains_numa_distance, domain_distances);
+
sched_domains_numa_levels = 0;
masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
@@ -1943,10 +2078,13 @@ void sched_init_numa(int offline_node)
masks[i][j] = mask;
for_each_cpu_node_but(k, offline_node) {
- if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
+ if (sched_debug() &&
+ (arch_sched_node_distance(j, k) !=
+ arch_sched_node_distance(k, j)))
sched_numa_warn("Node-distance not symmetric");
- if (node_distance(j, k) > sched_domains_numa_distance[i])
+ if (arch_sched_node_distance(j, k) >
+ sched_domains_numa_distance[i])
continue;
cpumask_or(mask, mask, cpumask_of_node(k));
@@ -1972,30 +2110,20 @@ void sched_init_numa(int offline_node)
/*
* Add the NUMA identity distance, aka single NODE.
*/
- tl[i++] = (struct sched_domain_topology_level){
- .mask = sd_numa_mask,
- .numa_level = 0,
- SD_INIT_NAME(NODE)
- };
+ tl[i++] = SDTL_INIT(sd_numa_mask, NULL, NODE);
/*
* .. and append 'j' levels of NUMA goodness.
*/
for (j = 1; j < nr_levels; i++, j++) {
- tl[i] = (struct sched_domain_topology_level){
- .mask = sd_numa_mask,
- .sd_flags = cpu_numa_flags,
- .flags = SDTL_OVERLAP,
- .numa_level = j,
- SD_INIT_NAME(NUMA)
- };
+ tl[i] = SDTL_INIT(sd_numa_mask, cpu_numa_flags, NUMA);
+ tl[i].numa_level = j;
}
sched_domain_topology_saved = sched_domain_topology;
sched_domain_topology = tl;
sched_domains_numa_levels = nr_levels;
- WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
init_numa_topology_type(offline_node);
}
@@ -2003,14 +2131,18 @@ void sched_init_numa(int offline_node)
static void sched_reset_numa(void)
{
- int nr_levels, *distances;
+ int nr_levels, *distances, *dom_distances = NULL;
struct cpumask ***masks;
nr_levels = sched_domains_numa_levels;
+ sched_numa_node_levels = 0;
sched_domains_numa_levels = 0;
sched_max_numa_distance = 0;
sched_numa_topology_type = NUMA_DIRECT;
- distances = sched_domains_numa_distance;
+ distances = sched_numa_node_distance;
+ if (sched_numa_node_distance != sched_domains_numa_distance)
+ dom_distances = sched_domains_numa_distance;
+ rcu_assign_pointer(sched_numa_node_distance, NULL);
rcu_assign_pointer(sched_domains_numa_distance, NULL);
masks = sched_domains_numa_masks;
rcu_assign_pointer(sched_domains_numa_masks, NULL);
@@ -2019,6 +2151,7 @@ static void sched_reset_numa(void)
synchronize_rcu();
kfree(distances);
+ kfree(dom_distances);
for (i = 0; i < nr_levels && masks; i++) {
if (!masks[i])
continue;
@@ -2065,7 +2198,8 @@ void sched_domains_numa_masks_set(unsigned int cpu)
continue;
/* Set ourselves in the remote node's masks */
- if (node_distance(j, node) <= sched_domains_numa_distance[i])
+ if (arch_sched_node_distance(j, node) <=
+ sched_domains_numa_distance[i])
cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
}
}
@@ -2103,7 +2237,7 @@ int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
for (i = 0; i < sched_domains_numa_levels; i++) {
if (!masks[i][j])
break;
- cpu = cpumask_any_and(cpus, masks[i][j]);
+ cpu = cpumask_any_and_distribute(cpus, masks[i][j]);
if (cpu < nr_cpu_ids) {
found = cpu;
break;
@@ -2174,6 +2308,8 @@ int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
goto unlock;
hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
+ if (!hop_masks)
+ goto unlock;
hop = hop_masks - k.masks;
ret = hop ?
@@ -2277,9 +2413,7 @@ static int __sdt_alloc(const struct cpumask *cpu_map)
if (!sgc)
return -ENOMEM;
-#ifdef CONFIG_SCHED_DEBUG
sgc->id = j;
-#endif
*per_cpu_ptr(sdd->sgc, j) = sgc;
}
@@ -2301,7 +2435,7 @@ static void __sdt_free(const struct cpumask *cpu_map)
if (sdd->sd) {
sd = *per_cpu_ptr(sdd->sd, j);
- if (sd && (sd->flags & SD_OVERLAP))
+ if (sd && (sd->flags & SD_NUMA))
free_sched_groups(sd->groups, 0);
kfree(*per_cpu_ptr(sdd->sd, j));
}
@@ -2338,10 +2472,8 @@ static struct sched_domain *build_sched_domain(struct sched_domain_topology_leve
if (!cpumask_subset(sched_domain_span(child),
sched_domain_span(sd))) {
pr_err("BUG: arch topology borken\n");
-#ifdef CONFIG_SCHED_DEBUG
pr_err(" the %s domain not a subset of the %s domain\n",
child->name, sd->name);
-#endif
/* Fixup, ensure @sd has at least @child CPUs. */
cpumask_or(sched_domain_span(sd),
sched_domain_span(sd),
@@ -2356,35 +2488,58 @@ static struct sched_domain *build_sched_domain(struct sched_domain_topology_leve
/*
* Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
- * any two given CPUs at this (non-NUMA) topology level.
+ * any two given CPUs on non-NUMA topology levels.
*/
-static bool topology_span_sane(struct sched_domain_topology_level *tl,
- const struct cpumask *cpu_map, int cpu)
+static bool topology_span_sane(const struct cpumask *cpu_map)
{
- int i = cpu + 1;
+ struct sched_domain_topology_level *tl;
+ struct cpumask *covered, *id_seen;
+ int cpu;
- /* NUMA levels are allowed to overlap */
- if (tl->flags & SDTL_OVERLAP)
- return true;
+ lockdep_assert_held(&sched_domains_mutex);
+ covered = sched_domains_tmpmask;
+ id_seen = sched_domains_tmpmask2;
+
+ for_each_sd_topology(tl) {
+ int tl_common_flags = 0;
+
+ if (tl->sd_flags)
+ tl_common_flags = (*tl->sd_flags)();
+
+ /* NUMA levels are allowed to overlap */
+ if (tl_common_flags & SD_NUMA)
+ continue;
+
+ cpumask_clear(covered);
+ cpumask_clear(id_seen);
- /*
- * Non-NUMA levels cannot partially overlap - they must be either
- * completely equal or completely disjoint. Otherwise we can end up
- * breaking the sched_group lists - i.e. a later get_group() pass
- * breaks the linking done for an earlier span.
- */
- for_each_cpu_from(i, cpu_map) {
/*
- * We should 'and' all those masks with 'cpu_map' to exactly
- * match the topology we're about to build, but that can only
- * remove CPUs, which only lessens our ability to detect
- * overlaps
+ * Non-NUMA levels cannot partially overlap - they must be either
+ * completely equal or completely disjoint. Otherwise we can end up
+ * breaking the sched_group lists - i.e. a later get_group() pass
+ * breaks the linking done for an earlier span.
*/
- if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
- cpumask_intersects(tl->mask(cpu), tl->mask(i)))
- return false;
- }
+ for_each_cpu(cpu, cpu_map) {
+ const struct cpumask *tl_cpu_mask = tl->mask(tl, cpu);
+ int id;
+
+ /* lowest bit set in this mask is used as a unique id */
+ id = cpumask_first(tl_cpu_mask);
+ if (cpumask_test_cpu(id, id_seen)) {
+ /* First CPU has already been seen, ensure identical spans */
+ if (!cpumask_equal(tl->mask(tl, id), tl_cpu_mask))
+ return false;
+ } else {
+ /* First CPU hasn't been seen before, ensure it's a completely new span */
+ if (cpumask_intersects(tl_cpu_mask, covered))
+ return false;
+
+ cpumask_or(covered, covered, tl_cpu_mask);
+ cpumask_set_cpu(id, id_seen);
+ }
+ }
+ }
return true;
}
@@ -2417,27 +2572,25 @@ build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *att
sd = NULL;
for_each_sd_topology(tl) {
- if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
- goto error;
-
sd = build_sched_domain(tl, cpu_map, attr, sd, i);
has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
if (tl == sched_domain_topology)
*per_cpu_ptr(d.sd, i) = sd;
- if (tl->flags & SDTL_OVERLAP)
- sd->flags |= SD_OVERLAP;
if (cpumask_equal(cpu_map, sched_domain_span(sd)))
break;
}
}
+ if (WARN_ON(!topology_span_sane(cpu_map)))
+ goto error;
+
/* Build the groups for the domains */
for_each_cpu(i, cpu_map) {
for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
sd->span_weight = cpumask_weight(sched_domain_span(sd));
- if (sd->flags & SD_OVERLAP) {
+ if (sd->flags & SD_NUMA) {
if (build_overlap_sched_groups(sd, i))
goto error;
} else {
@@ -2684,7 +2837,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
*
* Call with hotplug lock and sched_domains_mutex held
*/
-void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
+static void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
struct sched_domain_attr *dattr_new)
{
bool __maybe_unused has_eas = false;
@@ -2716,19 +2869,8 @@ void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
for (i = 0; i < ndoms_cur; i++) {
for (j = 0; j < n && !new_topology; j++) {
if (cpumask_equal(doms_cur[i], doms_new[j]) &&
- dattrs_equal(dattr_cur, i, dattr_new, j)) {
- struct root_domain *rd;
-
- /*
- * This domain won't be destroyed and as such
- * its dl_bw->total_bw needs to be cleared. It
- * will be recomputed in function
- * update_tasks_root_domain().
- */
- rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
- dl_clear_root_domain(rd);
+ dattrs_equal(dattr_cur, i, dattr_new, j))
goto match1;
- }
}
/* No match - a current sched domain not in new doms_new[] */
detach_destroy_domains(doms_cur[i]);
@@ -2785,6 +2927,7 @@ match3:
ndoms_cur = ndoms_new;
update_sched_domain_debugfs();
+ dl_rebuild_rd_accounting();
}
/*
@@ -2793,7 +2936,7 @@ match3:
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
struct sched_domain_attr *dattr_new)
{
- mutex_lock(&sched_domains_mutex);
+ sched_domains_mutex_lock();
partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
- mutex_unlock(&sched_domains_mutex);
+ sched_domains_mutex_unlock();
}
diff --git a/kernel/sched/wait.c b/kernel/sched/wait.c
index 51e38f5f4701..20f27e2cf7ae 100644
--- a/kernel/sched/wait.c
+++ b/kernel/sched/wait.c
@@ -4,6 +4,7 @@
*
* (C) 2004 Nadia Yvette Chambers, Oracle
*/
+#include "sched.h"
void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
{
@@ -40,13 +41,31 @@ void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_
{
unsigned long flags;
- wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY;
+ wq_entry->flags |= WQ_FLAG_PRIORITY;
spin_lock_irqsave(&wq_head->lock, flags);
__add_wait_queue(wq_head, wq_entry);
spin_unlock_irqrestore(&wq_head->lock, flags);
}
EXPORT_SYMBOL_GPL(add_wait_queue_priority);
+int add_wait_queue_priority_exclusive(struct wait_queue_head *wq_head,
+ struct wait_queue_entry *wq_entry)
+{
+ struct list_head *head = &wq_head->head;
+
+ wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY;
+
+ guard(spinlock_irqsave)(&wq_head->lock);
+
+ if (!list_empty(head) &&
+ (list_first_entry(head, typeof(*wq_entry), entry)->flags & WQ_FLAG_PRIORITY))
+ return -EBUSY;
+
+ list_add(&wq_entry->entry, head);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(add_wait_queue_priority_exclusive);
+
void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
{
unsigned long flags;
@@ -64,7 +83,7 @@ EXPORT_SYMBOL(remove_wait_queue);
* the non-exclusive tasks. Normally, exclusive tasks will be at the end of
* the list and any non-exclusive tasks will be woken first. A priority task
* may be at the head of the list, and can consume the event without any other
- * tasks being woken.
+ * tasks being woken if it's also an exclusive task.
*
* There are circumstances in which we can try to wake a task which has already
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
diff --git a/kernel/sched/wait_bit.c b/kernel/sched/wait_bit.c
index b410b61cec95..1088d3b7012c 100644
--- a/kernel/sched/wait_bit.c
+++ b/kernel/sched/wait_bit.c
@@ -1,5 +1,8 @@
// SPDX-License-Identifier: GPL-2.0-only
+#include <linux/sched/debug.h>
+#include "sched.h"
+
/*
* The implementation of the wait_bit*() and related waiting APIs:
*/