1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/blk_types.h>
#include "cache.h"
#include "cache_dev.h"
#include "backing_dev.h"
#include "dm_pcache.h"
struct kmem_cache *key_cache;
static inline struct pcache_cache_info *get_cache_info_addr(struct pcache_cache *cache)
{
return cache->cache_info_addr + cache->info_index;
}
static void cache_info_write(struct pcache_cache *cache)
{
struct pcache_cache_info *cache_info = &cache->cache_info;
cache_info->header.seq++;
cache_info->header.crc = pcache_meta_crc(&cache_info->header,
sizeof(struct pcache_cache_info));
memcpy_flushcache(get_cache_info_addr(cache), cache_info,
sizeof(struct pcache_cache_info));
cache->info_index = (cache->info_index + 1) % PCACHE_META_INDEX_MAX;
}
static void cache_info_init_default(struct pcache_cache *cache);
static int cache_info_init(struct pcache_cache *cache, struct pcache_cache_options *opts)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
struct pcache_cache_info *cache_info_addr;
cache_info_addr = pcache_meta_find_latest(&cache->cache_info_addr->header,
sizeof(struct pcache_cache_info),
PCACHE_CACHE_INFO_SIZE,
&cache->cache_info);
if (IS_ERR(cache_info_addr))
return PTR_ERR(cache_info_addr);
if (cache_info_addr) {
if (opts->data_crc !=
(cache->cache_info.flags & PCACHE_CACHE_FLAGS_DATA_CRC)) {
pcache_dev_err(pcache, "invalid option for data_crc: %s, expected: %s",
opts->data_crc ? "true" : "false",
cache->cache_info.flags & PCACHE_CACHE_FLAGS_DATA_CRC ? "true" : "false");
return -EINVAL;
}
return 0;
}
/* init cache_info for new cache */
cache_info_init_default(cache);
cache_mode_set(cache, opts->cache_mode);
if (opts->data_crc)
cache->cache_info.flags |= PCACHE_CACHE_FLAGS_DATA_CRC;
return 0;
}
static void cache_info_set_gc_percent(struct pcache_cache_info *cache_info, u8 percent)
{
cache_info->flags &= ~PCACHE_CACHE_FLAGS_GC_PERCENT_MASK;
cache_info->flags |= FIELD_PREP(PCACHE_CACHE_FLAGS_GC_PERCENT_MASK, percent);
}
int pcache_cache_set_gc_percent(struct pcache_cache *cache, u8 percent)
{
if (percent > PCACHE_CACHE_GC_PERCENT_MAX || percent < PCACHE_CACHE_GC_PERCENT_MIN)
return -EINVAL;
mutex_lock(&cache->cache_info_lock);
cache_info_set_gc_percent(&cache->cache_info, percent);
cache_info_write(cache);
mutex_unlock(&cache->cache_info_lock);
return 0;
}
void cache_pos_encode(struct pcache_cache *cache,
struct pcache_cache_pos_onmedia *pos_onmedia_base,
struct pcache_cache_pos *pos, u64 seq, u32 *index)
{
struct pcache_cache_pos_onmedia pos_onmedia;
struct pcache_cache_pos_onmedia *pos_onmedia_addr = pos_onmedia_base + *index;
pos_onmedia.cache_seg_id = pos->cache_seg->cache_seg_id;
pos_onmedia.seg_off = pos->seg_off;
pos_onmedia.header.seq = seq;
pos_onmedia.header.crc = cache_pos_onmedia_crc(&pos_onmedia);
memcpy_flushcache(pos_onmedia_addr, &pos_onmedia, sizeof(struct pcache_cache_pos_onmedia));
pmem_wmb();
*index = (*index + 1) % PCACHE_META_INDEX_MAX;
}
int cache_pos_decode(struct pcache_cache *cache,
struct pcache_cache_pos_onmedia *pos_onmedia,
struct pcache_cache_pos *pos, u64 *seq, u32 *index)
{
struct pcache_cache_pos_onmedia latest, *latest_addr;
latest_addr = pcache_meta_find_latest(&pos_onmedia->header,
sizeof(struct pcache_cache_pos_onmedia),
sizeof(struct pcache_cache_pos_onmedia),
&latest);
if (IS_ERR(latest_addr))
return PTR_ERR(latest_addr);
if (!latest_addr)
return -EIO;
pos->cache_seg = &cache->segments[latest.cache_seg_id];
pos->seg_off = latest.seg_off;
*seq = latest.header.seq;
*index = (latest_addr - pos_onmedia);
return 0;
}
static inline void cache_info_set_seg_id(struct pcache_cache *cache, u32 seg_id)
{
cache->cache_info.seg_id = seg_id;
}
static int cache_init(struct dm_pcache *pcache)
{
struct pcache_cache *cache = &pcache->cache;
struct pcache_backing_dev *backing_dev = &pcache->backing_dev;
struct pcache_cache_dev *cache_dev = &pcache->cache_dev;
int ret;
cache->segments = kvcalloc(cache_dev->seg_num, sizeof(struct pcache_cache_segment), GFP_KERNEL);
if (!cache->segments) {
ret = -ENOMEM;
goto err;
}
cache->seg_map = kvcalloc(BITS_TO_LONGS(cache_dev->seg_num), sizeof(unsigned long), GFP_KERNEL);
if (!cache->seg_map) {
ret = -ENOMEM;
goto free_segments;
}
cache->backing_dev = backing_dev;
cache->cache_dev = &pcache->cache_dev;
cache->n_segs = cache_dev->seg_num;
atomic_set(&cache->gc_errors, 0);
spin_lock_init(&cache->seg_map_lock);
spin_lock_init(&cache->key_head_lock);
mutex_init(&cache->cache_info_lock);
mutex_init(&cache->key_tail_lock);
mutex_init(&cache->dirty_tail_lock);
mutex_init(&cache->writeback_lock);
INIT_DELAYED_WORK(&cache->writeback_work, cache_writeback_fn);
INIT_DELAYED_WORK(&cache->gc_work, pcache_cache_gc_fn);
INIT_WORK(&cache->clean_work, clean_fn);
return 0;
free_segments:
kvfree(cache->segments);
err:
return ret;
}
static void cache_exit(struct pcache_cache *cache)
{
kvfree(cache->seg_map);
kvfree(cache->segments);
}
static void cache_info_init_default(struct pcache_cache *cache)
{
struct pcache_cache_info *cache_info = &cache->cache_info;
cache_info->header.seq = 0;
cache_info->n_segs = cache->cache_dev->seg_num;
cache_info_set_gc_percent(cache_info, PCACHE_CACHE_GC_PERCENT_DEFAULT);
}
static int cache_tail_init(struct pcache_cache *cache)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
bool new_cache = !(cache->cache_info.flags & PCACHE_CACHE_FLAGS_INIT_DONE);
if (new_cache) {
__set_bit(0, cache->seg_map);
cache->key_head.cache_seg = &cache->segments[0];
cache->key_head.seg_off = 0;
cache_pos_copy(&cache->key_tail, &cache->key_head);
cache_pos_copy(&cache->dirty_tail, &cache->key_head);
cache_encode_dirty_tail(cache);
cache_encode_key_tail(cache);
} else {
if (cache_decode_key_tail(cache) || cache_decode_dirty_tail(cache)) {
pcache_dev_err(pcache, "Corrupted key tail or dirty tail.\n");
return -EIO;
}
}
return 0;
}
static int get_seg_id(struct pcache_cache *cache,
struct pcache_cache_segment *prev_cache_seg,
bool new_cache, u32 *seg_id)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
struct pcache_cache_dev *cache_dev = cache->cache_dev;
int ret;
if (new_cache) {
ret = cache_dev_get_empty_segment_id(cache_dev, seg_id);
if (ret) {
pcache_dev_err(pcache, "no available segment\n");
goto err;
}
if (prev_cache_seg)
cache_seg_set_next_seg(prev_cache_seg, *seg_id);
else
cache_info_set_seg_id(cache, *seg_id);
} else {
if (prev_cache_seg) {
struct pcache_segment_info *prev_seg_info;
prev_seg_info = &prev_cache_seg->cache_seg_info;
if (!segment_info_has_next(prev_seg_info)) {
ret = -EFAULT;
goto err;
}
*seg_id = prev_cache_seg->cache_seg_info.next_seg;
} else {
*seg_id = cache->cache_info.seg_id;
}
}
return 0;
err:
return ret;
}
static int cache_segs_init(struct pcache_cache *cache)
{
struct pcache_cache_segment *prev_cache_seg = NULL;
struct pcache_cache_info *cache_info = &cache->cache_info;
bool new_cache = !(cache->cache_info.flags & PCACHE_CACHE_FLAGS_INIT_DONE);
u32 seg_id;
int ret;
u32 i;
for (i = 0; i < cache_info->n_segs; i++) {
ret = get_seg_id(cache, prev_cache_seg, new_cache, &seg_id);
if (ret)
goto err;
ret = cache_seg_init(cache, seg_id, i, new_cache);
if (ret)
goto err;
prev_cache_seg = &cache->segments[i];
}
return 0;
err:
return ret;
}
static int cache_init_req_keys(struct pcache_cache *cache, u32 n_paral)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
u32 n_subtrees;
int ret;
u32 i, cpu;
/* Calculate number of cache trees based on the device size */
n_subtrees = DIV_ROUND_UP(cache->dev_size << SECTOR_SHIFT, PCACHE_CACHE_SUBTREE_SIZE);
ret = cache_tree_init(cache, &cache->req_key_tree, n_subtrees);
if (ret)
goto err;
cache->n_ksets = n_paral;
cache->ksets = kvcalloc(cache->n_ksets, PCACHE_KSET_SIZE, GFP_KERNEL);
if (!cache->ksets) {
ret = -ENOMEM;
goto req_tree_exit;
}
/*
* Initialize each kset with a spinlock and delayed work for flushing.
* Each kset is associated with one queue to ensure independent handling
* of cache keys across multiple queues, maximizing multiqueue concurrency.
*/
for (i = 0; i < cache->n_ksets; i++) {
struct pcache_cache_kset *kset = get_kset(cache, i);
kset->cache = cache;
spin_lock_init(&kset->kset_lock);
INIT_DELAYED_WORK(&kset->flush_work, kset_flush_fn);
}
cache->data_heads = alloc_percpu(struct pcache_cache_data_head);
if (!cache->data_heads) {
ret = -ENOMEM;
goto free_kset;
}
for_each_possible_cpu(cpu) {
struct pcache_cache_data_head *h =
per_cpu_ptr(cache->data_heads, cpu);
h->head_pos.cache_seg = NULL;
}
/*
* Replay persisted cache keys using cache_replay.
* This function loads and replays cache keys from previously stored
* ksets, allowing the cache to restore its state after a restart.
*/
ret = cache_replay(cache);
if (ret) {
pcache_dev_err(pcache, "failed to replay keys\n");
goto free_heads;
}
return 0;
free_heads:
free_percpu(cache->data_heads);
free_kset:
kvfree(cache->ksets);
req_tree_exit:
cache_tree_exit(&cache->req_key_tree);
err:
return ret;
}
static void cache_destroy_req_keys(struct pcache_cache *cache)
{
u32 i;
for (i = 0; i < cache->n_ksets; i++) {
struct pcache_cache_kset *kset = get_kset(cache, i);
cancel_delayed_work_sync(&kset->flush_work);
}
free_percpu(cache->data_heads);
kvfree(cache->ksets);
cache_tree_exit(&cache->req_key_tree);
}
int pcache_cache_start(struct dm_pcache *pcache)
{
struct pcache_backing_dev *backing_dev = &pcache->backing_dev;
struct pcache_cache *cache = &pcache->cache;
struct pcache_cache_options *opts = &pcache->opts;
int ret;
ret = cache_init(pcache);
if (ret)
return ret;
cache->cache_info_addr = CACHE_DEV_CACHE_INFO(cache->cache_dev);
cache->cache_ctrl = CACHE_DEV_CACHE_CTRL(cache->cache_dev);
backing_dev->cache = cache;
cache->dev_size = backing_dev->dev_size;
ret = cache_info_init(cache, opts);
if (ret)
goto cache_exit;
ret = cache_segs_init(cache);
if (ret)
goto cache_exit;
ret = cache_tail_init(cache);
if (ret)
goto cache_exit;
ret = cache_init_req_keys(cache, num_online_cpus());
if (ret)
goto cache_exit;
ret = cache_writeback_init(cache);
if (ret)
goto destroy_keys;
cache->cache_info.flags |= PCACHE_CACHE_FLAGS_INIT_DONE;
cache_info_write(cache);
queue_delayed_work(cache_get_wq(cache), &cache->gc_work, 0);
return 0;
destroy_keys:
cache_destroy_req_keys(cache);
cache_exit:
cache_exit(cache);
return ret;
}
void pcache_cache_stop(struct dm_pcache *pcache)
{
struct pcache_cache *cache = &pcache->cache;
cache_flush(cache);
cancel_delayed_work_sync(&cache->gc_work);
flush_work(&cache->clean_work);
cache_writeback_exit(cache);
if (cache->req_key_tree.n_subtrees)
cache_destroy_req_keys(cache);
cache_exit(cache);
}
struct workqueue_struct *cache_get_wq(struct pcache_cache *cache)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
return pcache->task_wq;
}
int pcache_cache_init(void)
{
key_cache = KMEM_CACHE(pcache_cache_key, 0);
if (!key_cache)
return -ENOMEM;
return 0;
}
void pcache_cache_exit(void)
{
kmem_cache_destroy(key_cache);
}
|